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Abstract. Primal infon logic was introduced in 2009 in connection with access control. In
addition to traditional logic constructs, it contains unary connectives p said indispensable in the
intended access control applications. Propositional primal infon logic is decidable in linear time, yet
suffices for many common access control scenarios. The most obvious limitation on its expressivity
is the failure of the transitivity law for implication: x → y and y → z do not necessarily yield x → z.
Here we introduce and investigate equiexpressive “transitive” extensions TPIL and TPIL∗ of propo-
sitional primal infon logic as well as their quote-free fragments TPIL0 and TPIL0

∗ respectively. We
prove the subformula property for TPIL0

∗ and a similar property for TPIL∗; we define Kripke models
for the four logics and prove the corresponding soundness-and-completeness theorems; we show that,
in all these logics, satisfiable formulas have small models; but our main result is a quadratic-time
derivation algorithm for TPIL∗.

§1. Introduction. In a brick-and-mortar setting, some access control policies may
be vague and even unwritten. The clerks ordinarily know them. When in doubt, they
know whom to ask. In the cloud there are no clerks, and policies have to be managed
automatically. The most challenging are federated scenarios where the policies of different
principals interact in the absence of central authority. Distributed Knowledge Authorization
Language (DKAL) was created to deal with such problems (Gurevich & Neeman, 2008;
Blass et al., 2011). The DKAL project led to the introduction of infon logic and its primal
fragment (Gurevich & Neeman, 2009, 2011; Blass & Gurevich, 2010); here infons are
pieces (or items) of information.

It turns out that full infon logic is a natural conservative extension of intuitionistic logic
with the quotation construct p said (Beklemishev & Gurevich, 2012). If x is a formula
then p said x is a formula. The derivability problem (decide whether a given formula, the
query, follows from given hypotheses) is PSPACE complete. Gurevich & Neeman (2009)
introduced primal infon logic. Similar ideas were independently discovered from purely
proof-theoretic considerations (Avron & Lahav, 2009). A general analysis of infon logic
shows that primal infon logic is a natural fragment of full infon logic Beklemishev et al.,
in preparation.

PROVISO 1.1. In the rest of the paper, logics are by default propositional.
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Gurevich & Neeman (2011) investigated basic primal infon logic; the presentation was
improved and simplified1 in Cotrini & Gurevich (2013). We view the version BPIL of
basic primal infon logic in Cotrini & Gurevich (2013) as the canonic basic propositional
infon logic. The quote-free fragment of BPIL will be denoted BPIL0. The multideriva-
tion problem (decide which of given queries follows from given hypotheses) for BPIL is
solvable in linear time, yet BPIL suffices for many common access control scenarios. The
most obvious limitation on the expressivity of BPIL is the failure of the transitivity law
for implication: x → y and y → z do not necessarily yield x → z. Here we investigate
transitive extensions of BPIL and BPIL0.

The extension TPIL0 of BPIL0 with axiom x → x and rule

x → y y → z
(trans0) x → z

leads to a polynomial-time derivation problem (Savateev, 2009). More exactly, the multi-
derivation problem for TPIL0 is solvable in cubic time. Replacing axiom x → x and rule
(trans0) with a rule

x1 → x2 x2 → x3 . . . xk−1 → xk(trans0
∗) x1 → xk

where k is any positive integer, gives an equiexpressive logic TPIL0
∗. The replacement

seems innocuous. Surprisingly the multiderivation problem for TPIL0
∗ is solvable in

quadratic time.
One of our reviewers wrote that “[t]he use of quotation prefixes makes the presentation

extremely more complicated . . . If . . . quotation prefixes do play some important role, then
this should be clarified.” Quotations are indispensable in our applications. Here is a simple
example. Imagine that a principal p tells you an infon x . It is reasonable that you learn
only p said x rather than x itself, isn’t it? Accordingly, in the center of our attention, are
transitive primal infon logics TPIL and TPIL∗. TPIL extends BPIL with axiom x → x and
rule

pref (x → y) pref (y → z)
(trans)

pref (x → z)

where pref ranges over quotation prefixes of the form

q1 said q2 said . . . q� said

TPIL∗ extends BPIL with rule

pref(x1 → x2) pref(x2 → x3) . . . pref(xk−1 → xk)(trans*)
pref(x1 → xk)

In §2 we introduce Hilbertian calculi for TPIL, TPIL∗ and their quote-free fragments
TPIL0 and TPIL0

∗. In §3, we prove that TPIL0
∗ has the subformula property: if ϕ follows

from � then there is a derivation of ϕ from � composed from subformulas of (formulas in)
�∪{ϕ}. The main result of §3 is that TPIL∗ has a similar property. In §4, we define seman-
tics and prove the soundness-and-completeness theorems for all four of our logics. Every

1 The logic itself was simplified. Originally there were two quotation constructs, p said and
pimplied, but the subsequent evolution of the DKAL project demonstrated that latter construct
was superfluous, and it was removed (Gurevich, 2011).
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satisfiable TPIL0
∗ formula has a one-element model. Every satisfiable TPIL∗ formula has

a small model.
In §5, we give our main result: a quadratic-time algorithm for the multiderivability

problem for TPIL∗. The algorithm is rather involved and uses numerous algorithmic tools.
Note that linear and quadratic time complexities are much more fragile than the more
familiar and robust polynomial time complexity. The algorithm has been implemented
(DKAL at CodePlex).

The final §6 is devoted to related work.

§2. Hilbertian calculi. Formulas are built from propositional variables and the propo-
sitional constants �, ⊥ by means of the binary connectives ∧, ∨ and → and unary con-
nectives q said, where q ranges over principal constants. Thus every formula x has the
form

q1 said q2 said . . . q� said y

where y, the body of x , is an atomic formula or a binary combination (conjunction, dis-
junction, or implication) of two formulas. If � > 0 then x is a quote formula or simply
a quote. Every string π = q1 said . . . q j said with j ≤ � is a quotation prefix of x .
If j = 0 then π is empty, and if j = � then π is the maximal quotation prefix of x .

If a formula x is not a quote, we say that x is a nonquote formula. A nonquote formula
may have quote subformulas. We say that x is quote free if it has no quote subformulas.

2.1. Hilbertian calculus for TPIL. Let x, y range over formulas and pref range over
quotation prefixes.

Axioms

(�) pref � (x2x)pref (x → x)

Inference rules

(∧i)
pref x pref y

pref (x ∧ y)
(∧e)

pref (x ∧ y)

pref x
pref (x ∧ y)

pref y

(→i)
pref y

pref (x → y)
(→e)

pref x pref (x → y)

pref y

(∨i)
pref x

pref(x ∨ y)

pref y
pref(x ∨ y)

pref (x → y) pref (y → z)
(trans)

pref (x → z)

Thus we have three introduction rules (∧i), (→i), (∨i), two elimination rules (∧e), (→e),
and the rule (trans).

REMARK 2.1. The TPIL treatment of quotation prefixes may seem simplistic. In fact, one
of our reviewers wrote that “[t]he calculus . . . does not include any rule for changing the
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quotation prefix of a formula. It follows that . . . one can simply split the [multi-derivation]
problem to separate disjoint problems according to the quotation prefixes.” Things are
more complicated, however. For example, the minor premise pref x and the conclusion
pref y of (→e) may have longer maximal prefixes than the maximal prefix pref of the
major premise pref (x → y). By the way, the prefix preservation property does not hold
in the sequent calculus for primal infon logic (Gurevich & Neeman, 2011).

2.2. Hilbertian calculus for TPIL∗. The calculus for TPIL∗ is obtained from that for
TPIL by removing the axiom x → x and replacing the derivation rule (trans) with

pref(x1 → x2) pref(x2 → x3) . . . pref(xk−1 → xk)(trans*)
pref(x1 → xk)

where k is any positive integer. Think of the sequence of k premises as a chain from x1 to
xk . In the case k = 1, the rule has no premises, and the conclusion is x1 → x1, so that the
rule is the inference-rule form of the removed axiom.

COROLLARY 2.2. The same formulas are derivable in TPIL and TPIL∗.

The rational for introducing TPIL∗ will be given in §3.

2.3. Hilbertian calculi TPIL0 and TPIL0
∗. The calculus for TPIL0 (resp. TPIL0

∗) is
the quote-free fragment of the calculus for TPIL (resp. TPIL∗) obtained by removing pref
and restricting the ranges of x, y, z to quote-free formulas.

COROLLARY 2.3. The same formulas are derivable in TPIL0 and TPIL0
∗.

2.4. Derivations. As usual, a derivation D of a formula x from a set � of hypotheses is
a finite tree (or, more generally, a finite dag—directed acyclic graph—with a single source
node, the root) where each node u is labeled with a formula D(u). The root is labeled
with x . If v1, v2, . . . , vn are the children of node u, then

D(v1) . . . D(vn)

D(u)

is an instance of an inference rule. Of course in our case, n is 1 or 2. The length of a
derivation is the number of its nodes.

§3. Locality.

DEFINITION 3.1 (Local formulas). Formulas local to a formula z are defined by induction.
First, z is local to z. Second, for any binary connective ∗, if pref(x ∗ y) is local to z then
pref x and pref y are also local to z. A formula is local to a set � of formulas if it is
local to some formula in �.

If we remove the axiom x → x and the rule (trans) from TPIL, we obtain the Hilbert
calculus for basic primal infon logic BPIL (Cotrini & Gurevich, 2013). The BPIL cal-
culus has a locality property: Every formula y derivable from � can be derived from �
using only formulas local to � ∪ {y}. The locality property plays a key role in Cotrini &
Gurevich (2013). Unfortunately TPIL does not have the locality property. For example,
any derivation of x → w from {x → y, y → z, z → w} requires either x → z or y → w.
In this section, we prove that TPIL∗ has the locality property.
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DEFINITION 3.2. A derivation D1 is lighter than D2 if the number of instances of (trans*)
if D1 is less than that in D2, or else the number of instances of (trans*) is the same in both
derivations but the length of D1 is less than that of D2.

LEMMA 3.3. In a lightest derivation D of a formula ϕ from hypotheses �, the premises
and conclusions of elimination rules are local to �.

Proof. It suffices to prove this claim: For any instance of (∧e) or (→e) in D, the premises
are local to �. The claim is proved by induction on the length of the subderivation of the
major premise. Note that, in the case of implication elimination, it suffices to prove that the
major (the longer) premise is local to �.

The basis of induction is obvious: due to its form, the major premise isn’t an axiom, and
so is a hypothesis. In the induction step, the major premise is the conclusion of an instance
of some inference rule R. If R is an elimination rule, use the induction hypotheses. The
remaining rules are the three introduction rules (∧i), (∨i), (→i) and (trans*). We show that
R cannot be any of these four rules.

Consider an instance

...
pref x1 ∧ x2

pref xi

of (∧e). Due to the form of the major premise, R cannot be (→i), (∨i) or (trans*). It cannot
be (∧i) because

...
pref x1

...
pref x2

pref (x1 ∧ x2)

pref xi

...

can be shorten to

...
pref xi

...

Next consider an instance

...
pref x

...
pref (x → y)

pref y

of (→e). Due to the form of the major premise, R cannot be (∧i) or (∨i). If R were (→i)
then D could be shorten in the obvious way. If R were the premiseless (trans*) then x = y
and

...
pref x pref (x → x)

pref x
could be shorten to

...
pref x

Finally if R were a version of (trans*) with premises then

...
pref x1

...
pref (x1 → x2) · · ·

...
pref (xk−1 → xk)

(trans*)
pref (x1 → xk)

(→e)
pref xk
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could be replaced with
...

pref x1

...
pref (x1 → x2)

(→e)
pref x2

...
pref (x2 → x3)

(→e)
pref x3

...
...(→e)

pref xk−1

...
pref (xk−1 → xk)

(→e)
pref xk

thus eliminating one instance of (trans*). �

LEMMA 3.4. In a lightest derivation D of a formula ϕ from hypotheses �, for any
instance

pref(x1 → x2) pref(x2 → x3) . . . pref(xk−1 → xk)

pref(x1 → xk)

of (trans*), every premise pref(xi → xi+1) is local to �.

Proof. Induction on the length of the subderivation of pref(xi → xi+1). The basis of
induction is obvious: the premise is not an axiom so it should be a hypothesis.

Induction step. The premise pref(xi → xi+1) is the conclusion of an instance of some
inference rule R. If R is an elimination rule, use Lemma 3.3. Due to the form of the
premise, R is neither (∧i) nor (∨i). If R were the premiseless (trans*) then xi = xi+1
and D could be shortened by removing pref(xi → xi+1). If R were a (trans*) with
premises then

pref(x1 → x2) . . .

pref(xi → y) . . . pref(z → xi+1)

pref(xi → xi+1) . . . pref(xk−1 → xk )

pref(x1 → xk )

could be shortened to

pref(x1 → x2) . . . pref(xi → y) . . . pref(z → xi+1) . . . pref(xk−1 → xk )

pref(x1 → xk )

Finally, if R were (→i) then

...
pref (x1 → x2) . . .

...
pref xi(→i)

pref (xi−1 → xi )

...
. . . pref (xk−1 → xk)

(trans*)
pref (x1 → xk)

could be replaced with

...
pref xi

...
pref (xi → xi+1)

(→e)
pref xi+1

...
...(→e)

pref xk−1

...
pref (xk−1 → xk)

(→e)
pref xk(→i)

pref (x1 → xk)

thus eliminating one instance of (trans*). �
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THEOREM 3.5 (Local-formula property for TPIL∗). In a lightest derivation D of ϕ from
�, every node formula D(u) is local to � ∪ {ϕ}.

Proof. Clearly ϕ is local to � ∪ {ϕ}. Now suppose that we have proved x to be local
to � ∪ {ϕ} and let x ′ be a premise of x in D, according to an inference rule R. If R is
an introduction rule then obviously x ′ is local to � ∪ {ϕ}. If R is an elimination rule, use
Lemma 3.3. If R is (trans*), use Lemma 3.4. �

COROLLARY 3.6 (Subformula property for TPIL0
∗). In a lightest derivation D of ϕ

from � in TPIL0
∗, every node formula D(u) is a subformula of a hypothesis.

Proof. The formulas local to a quote-free formula z are subformulas of z. �

§4. Semantics.

DEFINITION 4.1. A formula x is an offshoot of a set � of formulas if x is a subformula of
� or else x = (x1 → x2) where x1, x2 are subformulas of �.

4.1. The quote-free case. In this subsection, we restrict attention to quote-free formu-
las. Semantics is simpler in that case. We adopt (and adapt to our purposes) the notion of
valuation from Beklemishev et al. (in preparation).

DEFINITION 4.2 (Valuations). A valuation is a Boolean-valued function v on formulas
such that v(x → z) = 1 when v(x → y) = v(y → z) = 1.

DEFINITION 4.3 (Holds under). A relation �v x (formula x holds under valuation v) is
defined by induction on x.

• �v �.
• If x is atomic then �v x if and only if 2 v(x) = 1.
• �v x1 ∧ x2 if and only if �v x1 and �v x2.
• �v x1 ∨ x2 if and only if �v x1 or �v x2 or v(x1 ∨ x2) = 1.
• �v x → x.
• If x �= y, three cases arise:

— If �v y then �v x → y.
— If �v x but �v y then �v x → y.
— If �v x and �v y then �v x → y if and only if v(x → y).

Further, let � be a set of formulas. Define �v � (� holds under valuation v) if and only if
every formula in � holds under v .

THEOREM 4.4 (Quotation-free soundness and completeness). Let y be a quote-free for-
mula and � a set of quote-free formulas. The following claims are equivalent.

(1) �  y in TPIL0.

(2) �  y in TPIL0
∗.

(3) For any valuation v , if �v � then �v y.

2 Often relations are defined by specifying explicitly the cases where the relation holds; it is implicit
that in all other cases the relation fails. Here and in Definition 4.7 below we need to specify
explicitly both, positive and negative cases; hence the use of “if and only if” rather than just “if.”
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Proof. By Corollary 2.3, claims 1 and 2 are equivalent. We prove that claims 1 and 3
are equivalent.

1 ⇒ 3. Let D be a derivation of y from �, and assume that � holds under a valuation v .
We prove that �v y by induction on the length of D. The base case, where y is the axiom
or a hypothesis, is obvious. Suppose then that y is obtained in D by inference rule R. We
consider only the case where R is

x1 → x2 x2 → x3(trans) x1 → x3

The other cases are simpler. By the induction hypothesis, �v x1 → x2 and �v x2 → x3.
First suppose that �v xi for all i ≤ 3. Then v(x1 → x2) = v(x2 → x3) = 1 which

entails v(x1 → x3) = 1. But v(x1 → x3) = 1 and �v x1 entail �v x1 → x3.
Second suppose �v xi for some i ≤ 3. �v x3 entails �v x1 → x3 immediately. Taking

the induction hypothesis into account, �v x2 entails �v x3 which entails �v x1 → x3.
Similarly �v x1 entails �v x2 which entails �v x3 which entails �v x1 → x3.

3 ⇒ 1. Assume that y is not derivable from � and let v be the valuation such that v(x) = 1
if and only if x is an offshoot of � ∪ {y} and �  x in TPIL0. It is easy to see that v is
indeed a valuation.

LEMMA 4.5. For any offshoot x of � ∪ {y}, �v x if and only if �  x.

Proof of the lemma. Induction on x . The cases where x is atomic or an axiom or a
conjunction are obvious.

If x = x1 ∨ x2, consider two cases. If �v xi for some i , then (i) by the definition of �,
we have �v x and (ii) by the induction hypothesis, we have �  xi and therefore �  x . If
�v xi for i = 1, 2, then �v x ⇔ v(x) = 1 by the definition of �, and v(x) = 1 ⇔ �  x
by the definition of v .

If x = x1 → x2 and x1 �= x2, consider the three cases in the definition of �v x . If
�v x2, then we have �v x and �  x . If �v x1 but �v x2 then (i) by the definition of �,
we have �v x , and (ii) by the induction hypothesis, we have �  x1 and � � x2 which
gives rise to � � x . If �v x1 and �v x2, then �v x ⇔ v(x) = 1 by the definition of �, and
v(x) = 1 ⇔ �  x by the definition of v . �
Since � � y, it follows that |�v � but �v y. �

Valuations can be seen as single-world Kripke models.

4.2. The general case.

DEFINITION 4.6 (Kripke models). A Kripke model for transitive primal infon logic is a
structure M such that

• the vocabulary of M consists of (i) binary relations Sq where q ranges over principal
constants and (ii) unary relations Vx where x ranges over formulas, and

• M satisfies the constraint Vx→y ∩ Vy→z ⊆ Vx→z .

DEFINITION 4.7 (Holds in). Let w range over the worlds (that is elements) of a given
Kripke model. By induction on formula x, we define relation w � x (x holds in w).

(1) � holds in w.

(2) A variable x holds in w if and only if w ∈ Vx .

(3) y ∧ z holds in w if and only if w � y and w � z.
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(4) y ∨ z holds in w if and only if w � y or w � z or w ∈ Vy∨z .

(5) y → y holds in w.

(6) Suppose that y, z are distinct formulas. To define when y → z holds in w, we
consider three cases.

(a) If w � y then w � x → y.

(b) If w � x but w � y then w � x → y.

(c) w � x and w � y then w � x → y if and only if w ∈ Vx→y .

(7) q said y holds in w if and only if w � y for every w′ with w Sq w′.
A set of formulas � holds in w if every formula in � holds there.

DEFINITION 4.8 (Local prefixes). A quotation prefix pref is local to a set � of formulas
if some formula pref x is local to �.

THEOREM 4.9 (Soundness and completeness). Let y be a formula and � a set of formulas.
The following claims are equivalent.

(1) �  y in TPIL.

(2) �  y in TPIL∗.

(3) For every Kripke model M, y holds in every world of M where � holds.

Proof. By Corollary 2.2, claims 1 and 2 are equivalent.

1 ⇒ 3. Assume that � holds in a world w of a given Kripke model. We prove w � y
by induction on the length of a given derivation of y from �. The case y ∈ � is obvious.
To prove w � pref� (resp. w � pref (x → x)), induct on pref. Suppose then that
y is obtained via an inference rule R. Several cases arise, all straightforward. We consider
only the case where R is the rule

pref x pref(x → z)
(→e)

pref z

By the induction hypothesis, w � pref x and w � pref(x → z). Without loss of
generality x and z are distinct formulas. We prove that w � pref z by auxiliary induction
on the length of pref. If pref is empty then we have case (6a) of Definition 4.7 and so
w � z. Otherwise pref = q said pref′. Consider any world w′ with w Sq w′. Since
w � pref x , we have w′ � pref′ x . Similarly w′ � pref′ (x → z). By the auxiliary
induction hypothesis w′ � pref′ z. By Definition 4.7, w � pref z.

3 ⇒ 1. We consider only those formulas that are offshoots of � ∪ {y}. Assume that y is
not derivable from � and let M be the structure where

• The elements are the quotation prefixes local to � ∪ {y},
• pref Sq pref′ if pref′ = q said pref,
• Vx = {pref : �  pref x}.

If pref ∈ Vx1→x2 ∩ Vx2→x3 , then �  pref(x1 → x2) and �  pref(x2 → x3),
therefore �  pref(x1 → x3), therefore pref ∈ Vx1→x3 ; so M is a Kripke model. We
will check that � holds in ε, the empty-prefix world, but y does not.

LEMMA 4.10. pref � x if and only if �  pref x.

Proof of the lemma. Induction on x . The cases where x is atomic, an axiom or a
conjunction are straightforward.
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Suppose x = x1∨x2. If pref � xi for some i , then pref � x , �  xi and �  pref x .
If pref � xi for i = 1, 2, then pref � x if and only if pref ∈ Vx only if �  pref x .

Suppose x = x1 → x2 where x1, x2 are distinct. If pref � x2, then pref � x , �  x2
and �  pref x . If pref � x1 but pref � x2, then pref � x and � � pref x .
If pref � x1 and pref � x2, then pref � x if and only if pref ∈ Vx if and only if
�  pref x .

Finally suppose that x = q said x ′. We have

pref � q said x ′ ⇔
pref q said � x ′ ⇔ (by the induction hypothesis)

�  (pref q said)x ′ ⇔
�  pref (q said x ′) �

It follows that ε � �, but ε � y. This completes the proof of the theorem. �

DEFINITION 4.11 (Width of a formula). By induction on a formula x, we define its width
|x |. If x is a variable then |x | = 1; if x = x1 ∗ x2, where ∗ is any binary connective, then
|x | = |x1| + |x2| + 1, and if x = q said x1 then |x | = |x1| + 2. For a set � of formulas,
the width |�| = ∑{|x | : x ∈ �}.
THEOREM 4.12 (Small models). If � � y then there is a counterexample Kripke model of
size ≤ |� ∪ {y}|/2.

Proof. We start with an auxiliary lemma.

LEMMA 4.13. The number L P(x) of prefixes local to a formula x is less than |x |/2.

Proof of the lemma. An easy induction on x . For the case x = q said x ′, note that the
nonempty prefixes local to x are q said plus all the prefixes of the form q said pref,
where pref is nonempty and local to x ′. Hence,

L P(q said x ′) = 1 + L P(x ′) < 1 + |x ′|/2 = (2 + |x ′|)/2

= |q said x ′|/2. �
Now, consider the Kripke model M built in the proof of Theorem 4.9. Recall that

the worlds of M are all prefixes local to � ∪ {y}. The previous lemma implies that the
number of nonempty prefixes local to a set of formulas � is less than |�|/2; so the
number of prefixes local to � is less than 1 + |�|/2. Hence, the size of M is less than
1 + |� ∪ {y}|/2. �

REMARK 4.14 (Possible worlds). The original definition of Kripke models for primal
logic in Gurevich & Neeman (2011) contained a partial order on the worlds. We simplified
the definition because the partial order is not needed for the soundness and complete-
ness theorem. But, in the intended applications, a partial order on the worlds may reflect
possible developments. In a world w1, Bob is proposing Alice to be a Facebook friend
of his but she isn’t his friend in w1. However, she is a Facebook friend of his in some
world w2 > w1. Incorporating a partial order ≤ on the worlds imposes the following
constraints:

• If u ≤ v and v Sq w then u Sq w.
• If u ≤ v and u ∈ Vx then v ∈ Vx .
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§5. Decision algorithm.

THEOREM 5.1 (Decision algorithm). There is a quadratic time algorithm that, given two
finite sequences of formulas, H (hypotheses) and Q (queries), decides which formulas in
Q are derivable from H.

This section is devoted to proving the theorem. We construct the desired decision
algorithm.

Computation model. We use the standard computation model of the analysis of al-
gorithms; see Cormen et al. (2001) for example. It is the random access machine such
that (i) the registers are of size O(log n) where n is the size of the input and (ii) the
basic register operations are constant-time. The main justification for that computation
model is that the traditional uniprocessor computer can be viewed as a unit-cost random
access machine. “In algorithms you use the unit-cost RAM model where basic register
operations over O(log n) bit registers count as a single computation step. There are some
good arguments for this: As technology improves for us to handle larger input sizes, the
size of the registers tend to increase as well. For example, registers have grown from 8 to
64 bits on microprocessors over the past few decades” (Fortnow, 2009).

Syntax assumptions. We assume that the formal syntax of our formulas satisfies the
following rather usual requirements.

• Formulas are strings in a fixed finite alphabet.
• Any occurrence of any subformula of a formula x is a contiguous segment of the

string x .
• No two subformula occurrences in a formula x start at the same position of the

string x . We will use the starting position of a subformula occurrence o as a key to
identify o.

• There is a deterministic pushdown automaton that detects the initial position Key(o)
of every subformula occurrence o and computes the length of the subformula in
question.

The standard syntax of formulas with all binary operators in prefix position satisfies the
requirements; no parentheses are required. The infix position for the binary operators is
no problem; just put parentheses around every nonatomic subformula including the whole
formula. We have been allowing ourselves to skip the outermost parentheses because they
are not needed for human comprehension. But, formally, they are required.

Input. The input is a sequence H of the given hypotheses followed by some separator
and then by a sequence Q of the queries; n is the length of the input. We presume that the
input went through a lexical analyzer and so the names of the variables and constants are
of length O(log n).

A formula or quotation prefix is local if it is local to H, Q. A local formula is locally
derivable if it can be derived from H using only local formulas.

If J is a contiguous segment of the input then the initial position p of J is its key,
symbolically Key(J ) = p. In particular, every formula occurrence in the input is uniquely
identified by its key.

The stages of the decision algorithm. Our decision algorithm works in five stages.

(1) Parse the input and bind the nodes of the resulting parse tree to appropriate input
positions.

(2) Construct a convenient data structure of the local quotation prefixes.

(3) Bind local formulas to nodes of the input parse tree.
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(4) Construct additional data structures needed for fast derivation of local formulas.

(5) Derive the locally derivable formulas and output the derivable queries.

Stages 1–3 are also stages 1–3 the BPIL decision algorithm (Cotrini & Gurevich, 2013). To
make this exposition self-contained, we summarize these three stages in §5.1. Stages 4 and
5 are described in §5.2 and 5.4 respectively. In §5.4 we prove that the algorithm is indeed
quadratic-time, establish its correctness and remark on computing—in quadratic time—not
only the derivable queries but also their derivations.

5.1. Parsing and auxiliary algorithms 1–3. Contrary to our derivation trees, which
grow up in accordance with logic tradition, our parse trees grow down in accordance with
computer science tradition. In particular, the root of a parse tree is at the top of the tree.

DEFINITION 5.2 (Formula parse tree (Bjørner et al., 2012)). By induction on formula x,
we define the parse tree PT(x) of x.

• If x is atomic, PT(x) consists of one node labeled with x.
• If x is a quote pref z with body z, then the root r of PT(x) has a unique child r ′, the

r ′-rooted subtree is isomorphic to PT(z), and the edge (r, r ′) is labeled with pref.
• Let x be a binary combination x1 ∗ x2. Then the root r of PT(x) is labeled with the

binary connective ∗ and has two children, a left child r1 and right child r2. Let Ti be
the ri -rooted subtree of PT(x), and let T ′

i be the extension of Ti with r and the edge
(r, ri ). Three cases arise.

(1) If neither xi is a quote then each Ti is isomorphic to PT(xi ), and the edges
(r, ri ) are unlabeled.

(2) If xi is a quote but x j is not then Tj is isomorphic to PT(x j ), the edge (r, r j )
is unlabeled, and T ′

i is isomorphic to PT(xi ).

(3) If both xi are quotes then each T ′
i is isomorphic to PT(xi ).

We present some examples to clarify this definition. See Figures 1–4. Here, x and y are
propositional variables.

Fig. 1. Parse tree for x ∧ y.

Fig. 2. Parse tree for x ∧ (p said q said y).
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Fig. 3. Parse tree for p said((q said x) ∧ (q said y)).

Fig. 4. Parse tree for p said ((q said x) ∧ y).

DEFINITION 5.3 (Parse tree for the input). The root of the input parse tree is labeled with
input. The root has two children labeled hypothesis and query. The parse trees of
the hypotheses hang under the hypothesis node in the order they occur in H. If the root
node of a hypothesis x is unlabeled it is merged with the hypothesis node; otherwise
the edge from the hypothesis node to the root of x is unlabeled. In a similar way, the
parse of the queries hang under the query node.

Figure 5 shows the parse tree for input

H = {p said x, p said (q said y ∧ r said s said x)},
Q = {p said (x → (q said x → x))}.

DEFINITION 5.4 (Regular nodes and their body formulas). A node u of the input parse
tree is regular if u is labeled with an atomic formula or a binary connective; otherwise it
is irregular. The body formula BF(u) of a regular node u is the formula x such that the
u-rooted subtree is isomorphic to the parse tree of BF(u).

There are exactly three irregular nodes. These are the nodes labeled with input,
hypothesis and query.
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Fig. 5. Parse tree for an instance of the multiderivability problem.

DEFINITION 5.5. Let x be a nonquote subformula of H, Q, let o1, . . . , om be the occur-
rences of x in the input, and let u1, . . . , um be the m nodes of the input parse tree with x as
their body formula. If o1, . . . , om are listed in order of their keys and u1, . . . , um are listed
in the depth-first order then each ui represents the occurrence oi of x, and the key of ui is
that of oi .

COROLLARY 5.6 (Corollary 22 in Cotrini & Gurevich, 2013). There is a linear time
algorithm—Algorithm 1—that, given an input in the form of a list of hypotheses and
queries, builds the following.

• A parse tree for the input where every node u is decorated with the following addi-
tional fields.

— Key(u), the initial position of the occurrence of formula BF(u) represented
by u.

— H(u), a pointer of type node but set to nil (to be used in stage 3 of the
decision algorithm).

— Length(u), the length of BF(u).
— Vertex(u) (to be used in stage 2 of the decision algorithm).
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• An array Node indexed by input positions. If p is the initial position of a subformula
occurrence then Node[p] is the node u with Key(u) = p. Otherwise Node[p] =
nil.

DEFINITION 5.7 (Node prefixes). For every node u of the input parse tree, Pref(u) is the
prefix resulting from the concatenation the prefixes labeling the edges of the route from
the root to u. In other words, if u is the root, then Pref(u) = ε; otherwise Pref(u) =
Pref(v) Label(v, u) where v is the parent of u.

THEOREM 5.8 (Theorem 25 in Cotrini & Gurevich, 2013). There is a linear-time
algorithm—Algorithm 2—that, given the output of Algorithm 1, builds an auxiliary data
structure of the local prefixes in such a way that questions whether Pref(u) = Pref(w) are
decidable in constant time.

Notation. If u is a node with exactly two children then ul and ur are the left and the
right child of u respectively.

DEFINITION 5.9 (Complete node formulas CF(u)). For every regular node u, CF(u) =
Pref(u)BF(u). In other words, if u is a leaf then CF(u) = Pref(u)Label(u), and otherwise

CF(u) = Pref(u)
[(

Label(u, ul)(BF(ul)
) ∗ (

Label(u, ur )BF(ur )
)]

.

DEFINITION 5.10 (Homonymy). Let u, w range over the regular nodes of the input parse
tree. If CF(u) = CF(w) then u, w are homonyms.

COROLLARY 5.11 (Corollary 29 in Cotrini & Gurevich, 2013). Every CF(u) is a local
formula, and every local formula is the complete node formula CF(u) for some node u.

THEOREM 5.12 (Theorem 30 in Cotrini & Gurevich, 2013). There is a linear-time
algorithm—Algorithm 3—that, given the input sequence of hypotheses and queries and
the outputs of Algorithm 1 and Algorithm 2,

• computes a particular node, the homonymy leader, in every homonymy class of
regular nodes, and

• sets the pointer H(u) to the homonymy leader of u, for every regular node u.

Stages 1–3. Algorithms 1, 2, and 3 are stages 1, 2, 3 respectively of the decision
algorithm.

5.2. Preprocessing. At its fourth stage the decision algorithm constructs a table T to
be used on the final fifth stage. The intended meaning of the table will become clear in the
next subsection.

Description of table T . For every homonymy leader u, the entry T (u) is a record with
the following fields where ∗ ranges over the binary connectives. Let CF(u) = pref x
where x may be a quote.

• (∗, left): A list of all homonymy leaders w such that CF(w) = pref (x ∗ y) for
some y.

• (∗, right): A list of all homonymy leaders w such that CF(w) = pref (y ∗ x) for
some y.

• A numeric field Status(u) takes values 1, 2, and 3. Contrary to the previous fields
which stay unchanged during Stage 5, the status of a node may change on that stage.

The intended meaning of the status. Formally Status(u) is the status of a given
homonymy leader u but intentionally it is the status of the formula CF(u).
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• Status(u) = 1 indicates that CF(u) has not been derived yet. In such a case we say
that u is raw.

• Status(u) = 2 indicates that CF(u) has been derived but not processed in the sense
explained in the next section. In such a case we say that u is pending.

• Status(u) = 3 indicates that CF(u) has been derived and processed. In such a case
we say that u is processed.

In Stage 4, the status of every homonymy leader u is initialized to 1 unless u represents an
axiom or hypothesis in which case the status of u is initialized to 2. Recall that ul and ur

are the left and the right child of a node u provided that u has exactly two children.

Stage 4. The algorithm traverses the input parse tree in the depth-first order and con-
structs the table T . On the same occasion, it constructs a queue, called the pending queue,
and initializes it with the axioms and hypotheses.

• If the label of u is a binary connective ∗ and if H(u) = u (so that u is a homonymy
leader) then append u to the (∗, left) field of T (H(ul)) and to the (∗, right) field of
T (H(ur )).

• If

— Label(u) = �,
— u is a child of the hypothesis node or
— u is labeled with → and H(ul) = H(ur ),

and if Status(H(u)) = 1, then append u to the pending queue and set
Status(u) = 2.

The one-node computation is constant-time. Therefore, Stage 4 takes linear time.

5.3. Processing. At stage 5 the decision algorithm derives all the locally derivable
formulas. The idea is to repeat the following procedure until there are no pending nodes:
Pick the first pending node u and apply all derivation rules to CF(u), which may cause
some raw formulas to become pending, and then remove u from the pending queue and set
Status(u) = 3. The following invariant is maintained: if a homonymy leader u is pending
or processed then CF(u) is derivable.

But what does it mean to apply a derivation rule to the formula CF(u)? We explain
that. So let u be a homonymy leader. For brevity we say “make a raw homonymy leader
w pending” to means this: append w to the pending queue and set Status(w) = 2. As
before ul and ur are the left and the right child of a node u provided that u has exactly two
children.

Applying (∧e) to CF(u).

If u is labeled with ∧ do the following; otherwise do nothing.
If H(ul) is raw, make it pending. If H(ur ) is raw, make it pending.

Justification If u is labeled with ∧ then CF(u) = pref (x ∧ y), CF(ul) = pref x
and CF(ur ) = pref y. Since u is pending, pref (x ∧ y) is derivable. By rule (∧e),
pref x and pref y are derivable.

Applying (∧i) to CF(u).

(1) Walk through the nodes w in the (∧,left) field of T (u). If w is raw and if H(wr ) is
pending or processed then make w pending.



TRANSITIVE PRIMAL INFON LOGIC 297

Justification. Suppose CF(u) = pref x . The (∧,left) field of T (u) comprises
homonymy leaders w such that CF(w) = pref (x ∧ y) for some y. It follows that
CF(wr ) = pref y. Since u is pending, pref x is derivable. If H(wr ) is pending
or processed, then pref y is derivable as well, and then — by the rule (∧i) —
pref (x ∧ y) is derivable.

(2) Similarly, walk through the nodes w in the (∧,right) field of T (u). If w is raw and
if H(wl) is pending or processed then make w pending.

Applying (∨i) to CF(u).

Walk through the (∨,left) and (∨,right) fields of T (u) and make pending each raw
node w there.

Justification. Let CF(u) = pref x . The (∨,left) list comprises homonymy leaders
w with CF(w) = pref (x ∨ y) for some y. Similarly the (∨,right) list comprises
homonymy leaders w with CF(w) = pref (y ∨ x) for some y. Since u is pending,
pref x is derivable. By rule (∨i), pref (x ∨ y) and pref (y ∨ x) are derivable.

Applying (→i) to CF(u).

Walk through the (→, right) field of T (u) and make pending each raw node w there.

Justification. Let CF(u) = pref x . The (→,right) list comprises homonymy lead-
ers w such that CF(w) = pref (y → x) for some y. Since pref x is derivable, so
is every pref (y → x).

Applying (→e) to CF(u).

CF(u) can be used as the left or the right premise of the rule (→e). Accordingly, we
have two cases.

(1) Walk through the (→,left) list of T (u). For each node w there, if w is pending or
processed but H(wr ) is raw, then make H(wr ) pending.

Justification. Let CF(u) = pref x . The (→,left) field of T (u) comprises
homonymy leaders w such that CF(w) = pref (x → y) for some y. Then
CF(wr ) = pref y. Since u is pending, pref x is derivable. If w is pending or
processed then pref (x → y) is also derivable, and then — by the rule (→e) —
pref y is derivable.

(2) If u is labeled with → and if H(ul) is pending or processed but H(ur ) is raw, then
make H(ur ) pending.

Justification. Suppose that CF(u) = pref (x → y), so that CF(ul) = pref x
and CF(ur ) = pref y. Since u is pending, pref (x → y) is derivable. If pref x
is also derivable then, by the rule (→ e), pref y is derivable.

Toward applying rule (trans*) to CF(u).

The case of (trans*) is more complicated. We need an auxiliary result. Consider a state S
of the decision algorithm, and let v1, v2 be homonymy leaders with CF(v1) = pref x and
CF(v2) = pref y. We say that v1 pred v2 modulo pref at S if the formula pref x →
pref y is local and the homonymy leader w with CF(w) = pref (x → y) is pending
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or processed at S. Further pred∗ is the reflexive, transitive closure of the binary relation
pred modulo pref at S on the homonymy leaders.

LEMMA 5.13. There is a linear time (linear in the input size n) algorithm that, given
any pref, S and any homonymy leader v2 with CF(v2) of the form pref y, marks all
homonymy leaders v1 such that v1 pred∗ v2 modulo pref at S.

Proof. We build upon a well-known algorithm that (i) given a directed graph and a
vertex v2, marks every vertex v with a path from v to v2 and (ii) works in time linear in the
number of edges. In our case, the vertices are the homonymy leaders and the edges are the
relationships v pred w modulo pref at S. Define the distance d(v,w) to be the number
of edges in the shortest path from v to w; if there is no path from v to w then d(v,w) = ∞.
Now we describe the desired algorithm (skipping some book-keeping details).

Start by marking v2; this is round 0. Then walk through the (→, left) field of the record
T (v2). The field comprises all homonymy leaders w such that CF(w) = pref (x → y)
and therefore CF(wl) = pref x for some x . For every w with Status(w) ≥ 2, mark the
homonymy leader H(wl) unless it is already marked. This completes round 1, and it takes
care of the homonymy leaders v with d(v, v2) = 1. For every v with d(v, v2) = 1, walk
through the (→, left) field of the record T (v), and for every w there with Status(w) = 2,
mark H(wl) unless it is already marked. This is round 2, and it takes care of the homonymy
leaders v with d(v, v2) ≤ 2. And so on. Stop when a round produces no new marking.

Note that every edge v pred w in our graph is examined at most once, and the ex-
amination is constant time. The edges corresponds to local formulas, and different edges
correspond to different local formulas. And the number of local formulas is ≤ n. Hence
the algorithm is linear in n. �

Similarly, there is a linear time algorithm that, given any pref, S and any homonymy
leader v1 with CF(v2) of the form pref x , marks all homonymy leaders v2 such that
v1 pred∗ v2 modulo pref at S.

Applying (trans*) to CF(u) If CF(u) = pref(x → y) for distinct x, y then do the
following.

• Mark “left” all nodes v1 such that v1 pred∗ ul .
• Mark “right” all nodes v2 such that ur pred∗ v2.
• Traverse the input tree and make pending every raw homonymy leader v such that

CF(v) = pref(x ′ → y′) for some x ′, y′ and H(vl) is marked “left” and H(vr ) is
marked “r”.

• Traverse the input tree and remove all marks “left” and “right.”

Justification. Suppose CF(u) = pref(x → y) and CF(v) = pref(x ′ → y′) and the
homonymy leaders H(vl), H(vr ) are marked “left” and “right” respectively. Then we have

H(vl) pred
∗ ul pred ur pred

∗ H(vr )

modulo pref at S. Thus there is a chain of homonymy nodes w1, w2, . . . , wk such that

H(vl) = w1 pred w2 . . . pred wk = H(vr )

modulo pref at S. By the definition of pred modulo pref at S, there are formulas
z1, z2, . . . , zk such that every CF(wi ) = pref zi and every formula pref (zi → zi+1)
is locally derivable. By (trans*), pref (z1 → zk) is locally derivable. But CF(v) =
pref (z1 → zk).
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Stage 5. While the pending queue is not empty, the algorithm takes the first node u of
the queue and applies all the inference rules as explained above. When the pending queue
is empty, the algorithm compiles a list of derivable queries by walking through the children
of the query node and observing their status.

That concludes the construction of the decision algorithm.

5.4. Analysis and correctness.

THEOREM 5.14. The decision algorithm works in quadratic time.

Proof. We already mentioned that , according to Cotrini & Gurevich (2013), stages 1–3
take linear time. Clearly, stages 4 takes linear time. For every rule R different from (trans*),
the cumulative time of applying R to all formulas CF(u) is linear; this is as in Cotrini &
Gurevich (2013). The reason is the same in all cases. Consider, for example the rule (∧i).
To apply the rule to CF(u), we examine every node w in the (∧, left) and (∧, right) fields
of the record T (u) of a homonymy node u. Every such w has the form pref(x ∧ y). But
every particular w of that form appears in exactly one field (∧, left), namely in the record
T (H(wl)), and in exactly one field (∧, right), namely of the record T (H(wr )); so this w
will be examined at most twice.

On the other hand, one application of (trans*) takes time O(n), and there are O(n)
such applications. So the cumulative time of applying (trans*) is quadratic. Compiling the
list of derivable queries takes linear time, so the whole decision algorithm takes quadratic
time. �

THEOREM 5.15. The decision algorithm is sound (so that every query deemed derivable by
the algorithm is indeed derivable) and complete (so that every derivable query is deemed
derivable by the algorithm).

Proof. Soundness follows from the justifications provided in §5.3, so it remains to prove
completeness. By Corollary 5.11, every complete node formula CF(u) is local, and every
local formula is CF(u) for some node u. Thus it suffices to prove the claim that, for every
homonymy leader u, if CF(u) is locally derivable, then u is pending at some state of the
decision algorithm, and thus u is pending or processed at the later stages. We prove the
claim by induction on a given local derivation of CF(u).

If CF(u) is an axiom or a hypothesis, then u becomes pending at stage 4. So suppose
that CF(u) is the conclusion of some inference rule R. Several cases arise.

• R is (∧i). The derivation of CF(u) looks like this:

H
...

pref x

H
...

pref y
pref (x ∧ y)

Thus CF(ul) = pref x and CF(ur ) = pref y. By the induction hypothesis H(ul)
and H(ur ) are pending at some states of the decision algorithm. Without loss of
generality we may assume that H(ur ) is processed earlier than H(ul). When we
apply (∧i) to H(ul), we walk through the nodes in the (∧,left) list of ul and find u
there. By that time H(ur ) is processed. If u is raw, we make it pending.
All other cases are similar to or easier than that of (∧i) with the exception of the case
of (trans*) with multiple premises.
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• R is (trans*) with multiple premises. The derivation of CF(u) looks like this:

H
...

pref (x1 → x2) . . .

H
...

pref (xi → xi+1)

H
...

. . . pref (xk−1 → xk)

pref (x1 → xk)

There are homonymy leaders ui , vi such that CF(ui ) = pref(xi ) and CF(vi ) =
pref(xi → xi+1) for i = 1, . . . , k − 1. By the induction hypothesis, every CF(vi )
is pending at some state of the decision algorithm. Let CF(v j ) be processed last
among the formulas CF(vi ). When CF(v j ) is processed, all other formulas CF(vi )
are processed, so that ui pred ui+1 for all i = 1, . . . , k − 1 modulo pref. When
we apply (trans*) to CF(v j ), we have

u1 pred
∗ u j pred u j+1 pred

∗uk

modulo pref. If u is raw at this point, we make it pending. �

COROLLARY 5.16 (Witness extraction). The decision algorithm can be extended to ex-
tract, in quadratic time, a witness that the queries deemed to be locally derivable are indeed
derivable from the given hypotheses and that the remaining queries are not derivable from
the given hypotheses.

Proof. The desired derivation dag (directed acyclic graph) D is constructed as follows.
As a node u becomes pending, put it on the derivation tree with pointers to the nodes
representing the premises, if any, of the derivation rule used to make u pending.

Let H and Q be as above. For every query y ∈ Q that is claimed to be derived,
derivation D includes a derivation of y from H ; just consider the subtree of the derivation
tree D rooted at a homonymy leader representing y. Derivation D also witnesses that the
remaining queries in Q are not derivable. Indeed, consider the collection LD (an allusion to
“locally derivable”) of the formulas (labeling the nodes) in D. D is closed in the following
sense. Consider any application of any derivation rule such that the premises belong to LD
and the conclusion is local to H, Q; the conclusion already belongs to LD. �

§6. Related work. We already mentioned, in the introduction, the related work on
primal logic. Here we consider other related work.

The unary connectives “p said” of primal logic can be viewed as necessity operators.
Thus primal logic and transitive primal logic are multimodal extensions of the primal
fragment propositional intuitionistic logic. We refer the reader to Wolter & Zakharyaschev
(1999) for a presentation of intuitionistic modal logic and to Chapter 1 of Gabbay et al.
(2003) for a presentation of multimodal logics.

Recall that the derivability problem for a logic is the problem of deciding whether a
given formula is derivable from a given set of formulas, and the validity problem is the
problem of deciding whether a given formula is valid. Clearly, the second is a particular
case of the first, and these two problems are the same when the deduction theorem holds
for the logic.

There seems to be very few known natural fragments of intuitionistic logic, let alone
its modal extensions, with polynomial-time decidable validity problem. First, we mention
some loosely related tractability results on modal and description logics. Halpern proved
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that the validity problem for Kn , Tn , S4n and K45n , KD45n , S5n can be decided in linear
time if the nesting of modal operators and propositional variables is restricted (Halpern,
1995). See articles (Kurucz et al., 2010, 2011) for the analysis of fragments of description
logic EL (and some of its extensions) whose validity problem can be solved in poly-
nomial time. Now, regarding propositional intuitionistic logic, the best known fragment
with decidable derivability problem is the Horn fragment, which is solvable in linear
time (Dantzin et al., 2001; Dowling & Gallier, 1984; Minoux, 1988). Mints (1992) found
another fragment whose validity problem is decided in polynomial time.

The derivability problem for the primal fragment is linear-time decidable as well
(Gurevich & Neeman, 2011). Propositional primal infon logic is an extension of the primal
fragment of intuitionistic logic with quotation connectives. Originally there were two series
of quotation connectives, “p said” and “p implied” where p ranges over an infinite list
of principal constants; the associated derivability problem is linear-time decidable in the
case of bounded quotation depth (Gurevich & Neeman, 2011). Later the implied series
was removed. The derivability problem for the redefined logic is decidable in linear time
(with no restriction on the quotation depth) (Gurevich, 2011).

Finally, consider the NNIL fragment of propositional intuitionistic logic (Visser et al.,
2008). Recall that negation in intuitionistic logic is defined by ¬ϕ := ϕ → ⊥ and that the
implicational complexity ρ(ϕ) of a formula ϕ is defined as follows:

• ρ(�) = ρ(⊥) = ρ(v) = 0, where v is a variable.
• ρ(ϕ1 ∧ ϕ2) = ρ(ϕ1 ∨ ϕ2) = max{ρ(ϕ1), ρ(ϕ2)}.
• ρ(ϕ1 → ϕ2) = max{ρ(ϕ1) + 1, ρ(ϕ2)}.

NNIL comprises the formulas with implicational complexity ≤ 1. We say that an NNIL
formula ϕ is without premise disjunctions if, for every implication subformula α → β of
ϕ, disjunction does not occur in α.

Discussions with Alfred Visser led to the following new result that uses the soundness
and completeness of Kripke semantics for propositional intuitionistic logic.

THEOREM 6.1.

(1) The validity problem for NNIL formulas without premise disjunction is decidable in
polynomial time Visser 2012.

(2) The validity problem for NNIL is CONP-complete.

Proof.

(1) A propositional intuitionistic formula is valid iff it holds in every world of every
Kripke model for propositional intuitionistic logic. Accordingly, validity of NNIL
formulas without premise disjunctions can be decided inductively as follows:

• Constant � is valid, constant ⊥ is not valid and a variable is not valid.
• A conjunction is valid iff both conjuncts are valid.
• A disjunction is valid iff at least one disjunct is valid (Theorem 5.4.2. of van

Dalen, 2008).
• For an implication ϕ1 → ϕ2, since ϕ1 does not have disjunctions, it must have

the form p1 ∧ p2 ∧ . . . ∧ pk , where each pi is a variable. Then, ϕ1 → ϕ2 is
valid iff ϕ2[p1 := �, p2 := �, . . . , pk := �] is valid.

This gives rise to a validity checking algorithm. It is easy to see that the algorithm
runs in polynomial time.
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(2) A formula (ϕ1 ∨ ϕ2) → ψ is valid iff both ϕ1 → ψ and ϕ2 → ψ are valid. Note
that this doubles the amount of work. But if we guess one disjunct ϕi and show
that ϕi → ψ is not valid, then we have that (ϕ1 ∨ ϕ2) → ψ is not valid. This idea
leads to a nondeterministic algorithm for deciding whether a NNIL formula ϕ is
not valid. First, for every disjunction occurring in a premise of some implication,
make a guess and replace the disjunction with one of the disjuncts. Then, apply the
polynomial-time procedure described in (1). Hence, the validity problem for NNIL
is CONP.
Now, we prove the CONP-hardness by a reduction from the non-three-coloring
problem. Given a graph G = (V, E), we write a NNIL formula α such that G is
three-colorable iff α is not intuitionistically valid. For every v ∈ V , define three
propositional variables Rv , Gv and Bv . Define α = β → (γ ∨ δ), where

β =
∧

v∈V

(Rv ∨ Gv ∨ Bv )

γ =
∨

v∈V

((Rv ∧ Gv ) ∨ (Gv ∧ Bv ) ∨ (Rv ∧ Bv ))

δ =
∨

(u,v)∈E

((Ru ∧ Rv ) ∨ (Gu ∧ Gv ) ∨ (Bu ∧ Bv )).

Suppose G is 3-colorable, with colors red, green, and blue. Define a classical valua-
tion given by Rv is true iff v is colored red, Gv is true iff v is colored green, and Bv

is true iff v is colored blue. In this valuation β is true while γ and δ are false. So α is
not valid classicaly and, therefore, it is not valid intuitionistically. For the converse,
if α is not valid intuitionistically, then there is a Kripke model for propositional
intuitionistic logic with a world in which α does not hold. Hence, in this world, β
is true while γ and δ are false; which implies that there is a 3-coloring for G. Since
the 3-coloring problem is NP-complete, we conclude that the validity problem for
NNIL is CONP-hard, and hence, it is CONP-complete.

§7. Acknowledgments. We thank Artem Melentyev for implementing the decision
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