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Abstract

Gurevich and Neeman introduced Distributed Knowledge Authorization Language (DKAL). The world of DKAL consists of
communicating principals computing their own knowledge in their own states. DKAL is based on a new logic of information,
the so-called infon logic, and its efficient subsystem called primal logic. In this article, we simplify Kripkean semantics of
primal logic and study various extensions of it in search to balance expressivity and efficiency. On the proof-theoretic side
we develop cut-free Gentzen-style sequent calculi for the original primal logic and its extensions.
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1 Introduction

Our story starts with cloud computing and cloud security, not because these are fashionable buzzwords
but because this article was written in the framework of such a project (code-named Vidalia for the time
being [E|]). With the advent of cloud computing, the role of formal policies grows. The personnel of
brick-and-mortar businesses often exercise their judgements; all that should be replaced with formal
policies when businesses move to the cloud. The logic-based policy language DKAL (Distributed
Knowledge Authorization Language) [@ lﬂ E] was developed with such applications in mind.
The feature that distinguishes DKAL from most preceding logic-based policy languages is that it is
explicitly geared towards federated scenarios (with no central authority) where trust may be in short
supply.

The world of DKAL consists of communicating principals computing their own knowledge in their
own states. They communicate infons, pieces of information, and reason in terms of infons. In [E],
the original developers of DKAL distilled the basic features of the logic of infons and introduced
infon logic qI that is an extension of the {—, A} fragment I of intuitionistic logic with quotation
modalities p said ¢ and p implied ¢. In addition they discovered a primal fragment qP of ql
which is very efficient and yet sufficiently expressive for many purposes. In the case of bounded
quotation depth, the derivation problem for qP is solvable in linear time. In particular, the quotation-
free fragment P of P is linear time in that sense. (Notations I, qI, P and qP are introduced in the
present paper.)

The continuing development of DKAL (whose current implementation is found at [ﬁ]) requires
further investigation of the logic of infons. That is exactly what we are doing here. We extend the
four logics of [22] with one or both of disjunction and negation, and we determine the complexities
of the extended logics. We provide a simpler semantics for the extension P[V] of P that we call quasi-
boolean. This allows us to give efficient mutual translations between P[V] and classical propositional
logic as well as an embedding of the appropriate classical modal logic into qP[V]. On the proof-
theoretic side we develop cut-free Gentzen-style sequent calculi for the extensions of primal logic P
with some or all of disjunction, negation and quotations.
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2 Propositional primal logic with disjunction

1.1 Related work

As we mentioned, infon logic emerged in the context of access control language DKAL. However,
the present study deals exclusively with infon logic itself. Accordingly we do not discuss access
control literature here. The DKAL papers mentioned above include short discussions on the issue.

Technically, infon logic belongs to the family of intuitionistic (or constructive) modal logics. Such
logics have been considered at least from the time of Bull [E, H], see [@, E, E, d @, @].
Potential applications in Computer Science stimulated a growing interest in this topic, see e.g. [LL2,
E, E, @]. We would like to refer the reader to Simpson [@] and Wolter and Zakharyaschev [@]
for comprehensive surveys. General results on decidability of intuitionistic modal logics have been
considered in [E, , ].

Infon logics of this article are, in one important respect, simpler than typical intuitionistic modal
logics found in the literature. Namely, they only have O-type modalities, though there are infinitely
many of those. They have no O-type modalities[] The situation is similar for the other access control
modal logics in the literature, where says operators play the role of modalities, see e.g. [H,, Iﬂ, E,
E] and especially [E, m]. The axioms of said and implied modalities in our systems correspond
to basic modal logic K. Thus they do not admit the principles such as ¢ — ¢ said ¢ postulated for
some of the typical access control logics and discussed in [E]. In this regard our systems are closer
to the standard modal logics than to the so-called lax logics.

An essential novelty of infon logic is the use of restricted (primal) implication introduced in [E]
as a compromise between expressivity and practical efficiency. The goal of this article is to better
understand primal implication, also in relation to the modalities. Our conclusions are that this new
connective is quite manageable and has good proof-theoretic and semantic properties.

Primal implication can be understood from the point of view of more general frameworks developed
by Avron and Lev [@] and Avron and Lahav [ﬂ—@]. In fact, the quasi-boolean semantics for primal
logic without quotations introduced in this article is a particular case of non-deterministic two-valued
matrix semantics of Avron and Lev [IE]. Recently, Avron and Lahav [E] introduced a more general
framework of basic sequent systems. It turns out that the propositional primal logic (even with
quotations) considered in this article nicely falls within this general framework. In fact, the Kripke
semantics that can be read off from our Gentzen-style multi-conclusion formulation of primal logic
following [E] is equivalent to the semantics presented in Section 6 of the current article. In particular,
a proof of Theorem 5 can be independently extracted from the results of Avron and Lahav

2 Infon logic: language and derivability

2.1 Language

The vocabulary of infon logic consists of a set P of constants denoting principals and of a set
of propositional variables P,Q,... denoting infons, that is, any pieces of information that can be
communicated between the principals. We can think of infons as declarative statements; the notion
of infon is basic in DKAL.

Propositional infon logic introduced in [‘ﬁ, E] is an extension of the fragment of propositional
intuitionistic logic without disjunction and negation by two series of quotation modalities p said
and p implied, for each principal peP.

!In intuitionistic modal logic diamonds are usually not expressible in terms of boxes.
2We thank the anonymous referee who supplied these recent references and gave many other helpful remarks.
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Propositional primal logic with disjunction 3

Intuitively, logical connectives denote some natural ways of combining infons. Thus, conjunction
@AY means joining the information contained in ¢ and in ¥ . The implication ¢ — ¥ represents
conditional information: the minimal information needed to infer 1/ once one has ¢. Logical constant
T represents the uninformative infon, that is, something every principal knows.

The meaning of quotations is related to communication between the principals. The intuitive
meaning of ¢ said ¢ (from the point of view of another principal p) is that ¢ can be inferred from
the information directly said by ¢ to pﬁ Here is the most typical DKAL scenario how a principal p
learns that ¢ said ¢. Suppose that a principal g says ¢ to p (and p gets the message, and the message
is properly signed by g so that there is no doubt that it is coming from ¢); then p learns ¢ said ¢.

The intuitive meaning of ¢ implied ¢ is that ¢ indeed communicated (its support for) ¢ but
predicated it on the knowledge of some proviso . Here is the most typical scenario how a principal
p learns g implied ¢. Suppose that ¢ communicates ¢ to p under condition that p knows v, and
suppose that p knows the proviso v; then p learns ¢ implied ¢. The exact meaning of ¢ said ¢
and g implied ¢ in DKAL is more involved but those details are irrelevant for our purposes in
this article. Intuitively, ¢ said ¢ is a version of ¢ implied ¢ where the communication was not
predicated on any proviso. Technically, both kinds of modalities satisfy the rules of the basic modal
logic K and the relation (¢ said ¢)F (g implied ¢).

2.2 Proof system

A proof system for infon logic could be equivalently stated in any of the familiar proof-theoretic
formats, in particular, it has been formulated in a Hilbert-style format and in a natural deduction style
format in ['JZ)H]. In this article, we adopt the sequent-style natural deduction format from [Iﬁ] as our
basic definition of derivability relation. In Section 3] we also present an equivalent Gentzen-style
calculus together with the corresponding cut-elimination theorem.

LetI', A denote sets of formulas; we abbreviate 'UA as ', A and 'U{¢} as ", ¢. Also, g said I’
stands for {g said ¢:peTl}.

We define the relation I't¢ ‘formula ¢ is provable from assumptions I’ as the minimal relation
containing the following axioms and closed under the following inference rules.

Axioms: pl¢; FT;
N N |
Inference rules: — ¢ (weakening) (ﬂ—(plﬂ (cut)
AR 'y
I'FpAy I'FpAy 'k THY
“Tre (NED) Try (NEy) Trony
'Fep—v¢Y T'ko (S E) oy
— - '
'y 'Fe—¥
- - (said) - - - - -
q said T'kqg said ¢ q said T, g implied Alg implied ¢

(AD)

(=D

(Implied)

We note that I' - ¢ as defined above is a consequence relation in the sense of Tarski. In other words,
it is

e reflexive: I' ¢ whenever ¢ €T

3DKAL avoids the logical omniscience problem by means of a mechanism of computing knowledge. On the level of
logical systems, deduction is unrestricted.
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4 Propositional primal logic with disjunction

* monotone: if '@ and ' C A, then AFg;
e transitive: if ¢ and T', o -1, then ' ; and
e compact: if I' ¢, then there is a finite A CT" such that AFg.

The intuitionistic propositional logic, and even its fragment in the language without disjunction
and negation which we denote I, is known to be PSPACE-complete by a result of R. Statman [34] (see
also [38]). The same result holds for the infon logic with quotations: it remains in the class PSPACE
like many other natural modal logics [lﬁ]. This motivated Gurevich and Neeman to introduce a
weaker but still relatively expressive and much more efficient fragment of intuitionistic logic called
primal logic P. Primal logic is obtained by restricting the (— 1) rule as follows:

% (—1).

o=y

For P, there is a linear time algorithm deciding whether I' ¢ [E]. We note that the consequence
relation I' ¢ in primal logic is still Tarskian.

Alogical connective satisfying the rules (— E) and (— I,) can be called quasi-implication. Both the
intuitionistic and classical implications are examples of such. The quasi-implication of P itself will
be called the primal implication. Sometimes it would be convenient to denote it —, to distinguish
from the intuitionistic implication. One possible interpretation would be to say that ¢ — , ¥ denotes
an arbitrary infon 6 such that ¢ yields 6 and 6 A ¢ yields ¥ . This reading will be supported by the
formal notion of primal model, see below.

Let qP denote the primal infon logic, that is, the extension of primal logic to the language with
quotations, when the rules (Said) and (Implied) are added. There is a linear time algorithm
deciding whether I' ¢ provided I' and ¢ have quotation depth bounded by a constant [E]. Despite
its restrictions on the implication and quotation depth this logic turns out to be sufficiently expressive
for many practical purposes.

2.3 Introducing disjunction and negation

Some scenarios we would like to formalize in DKAL presuppose the use of disjunction and negation.
Disjunction is a way of combining information related to hiding it. When you say ‘There is a coin in
my left or in my right pocket’ you essentially communicate a disjunction of two pieces of information
(you can have a coin in each pocket). The rules of handling disjunctions are the usual ones: the
introduction rules

g =y

Trovy (V1) Trovy (V1)

are applied when wrapping an infon into a disjunction (they can be called hiding rules). The receiver
can use disjunction 6 V¢ by the following rule: if ¢ can be inferred separately from 8 and from 1,
and disjunction 6 Vv ¢ is known, then one can infer ¢. Proof-theoretically this amounts to the usual
disjunction elimination rule:

roFe T,y THOVY
| )

(VE).

When speaking about disjunction in infon logic we will assume all three of the above rules. We also
remark that the rule (VE), as well as (— ), involves ‘cancelation’ of some hypotheses and, thus, it
is not hilbertian in the sense of [E].
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Propositional primal logic with disjunction 5

Introducing negation into the language of infon logic is a more delicate matter. Here, we consider
the most straightforward approach to negation in infon logic similar to intuitionistic negation. This
has been sufficient in practice. As we gain more experience in the use of DKAL, we will see whether
the other, possibly stronger, forms of negation are needed.

Negation —¢ in intuitionistic logic is often introduced as an abbreviation for ¢ — L, where L is
the constant false. The other way around, L can be introduced, for example, as —T, once one has
the negation. In intuitionistic logic, the constant L satisfies the principle ex contradictio:

€L Lk,

for any ¢. When this axiom is not assumed, that is, when we just have a constant L without postulating
any logical laws for it, we obtain the so-called minimal logic (see [@])El

What should be the infon-logical interpretation of L ? It is natural to assume that L represents
inconsistent information, that is, the information that should be interpreted as an error. Obtaining
this information a principal should go into the error-handling mode rather than continue its usual
mode of operation. This interpretation of L seems to call for the minimal logic rather than the
intuitionistic logic axioms. In fact, having L - ¢ as an axiom might lead in some scenarios to unwanted
communication between the principals.

Technically, the intuitionistic and the minimal logics are very close to each other (see e.g. [E]).
Therefore, until we gain more experience in the practical use of infon logic to favour one of the two
logics, we will treat both of them in parallel. Since in the minimal logic L is as good as any other
variable, we shall ignore the difference between such logics and the logics without L and negation.

We shall use the following notation for various logics. Our basic propositional logics are I and
P. We denote their extensions by the rules for Vv and/or the axiom (L) as P[V], I[V, L], etc. The
presence of quotations is indicated by a q in front of the logic name, for example, qP[V, L].

3 Primal logic with disjunction: semantics and complexity

A complete Kripke-style semantics for primal logic P was developed in [Iﬁ]. Here, we simplify it by
showing that the completeness result holds for a very particular class of models that we call quasi-
boolean. We define these models for the language with disjunction, that is, for P[]. In Section 3]
this semantics is extended to the language with quotations.

Anotable feature of primal logic is that it does not respect substitution of equivalents. For example,
as we will see shortly, one cannot derive in P

0 (PAP)-Q— P. (1)

This means that a complete semantics for primal logic cannot be compositional in the sense that
the meaning of an implication ¢ — v is determined by the meanings of the formulas ¢ and . The
quasi-boolean models defined below are a non-compositional analogue of the usual {0, 1}-valued
semantics for classical propositional logic.

DEFINITION 3.1
A valuation v is a map assigning 0 or 1 to each propositional variable, as well as to each implication
¢ — ¥ of the language of primal logic (with disjunction). Valuation v naturally extends to all formulas

4When one deals with the primal implication instead of the intuitionistic implication the meaning of negation changes
accordingly and therefore becomes, strictly speaking, different from the standard intuitionistic negation.
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6 Propositional primal logic with disjunction

by applying the usual truth tables for A, Vv and by letting v(T)=1. A formula ¢ is valid under v if
v(¢)=1, which is denoted F, ¢. For a set of formulas I" we write =, " iff F,, ¢, forall p e T".
We say that v is quasi-boolean if, for each implication ¢ — i,

(i) IfFy ¢, then &y (9 — ¥);
(ii) IfF, (¢ — ¥), then either #, ¢ or F, .

Notice that the classical material implication is defined by postulating an equivalence in (ii),
whereas (i) is just a half of the converse implication.
Valuations satisfying

Fulp—>y) iff (FrporF¢)

will be called classical. The following is a strong form of soundness and completeness theorem for
primal logic.

THEOREM 3.2
'@ holds in P[] iff =, " implies F, ¢ for all quasi-boolean valuations v.

PrROOF. The soundness part is a routine check. To show the completeness we apply a variant of the
usual canonical model argument.

A set of formulas F' is called a theory if, for all formulas ¢, F 1 implies ¢ € F, that is, if F is
deductively closed. The following lemma has a standard proof. ]

LeEmMMmA 3.3
Any set of formulas I" such that I'* ¢ can be extended to a maximal theory F D I" such that F ¥ .

Assume ' ¢ and let F' be a maximal theory such that I' C F" and F ¥ ¢.

LEMMA 3.4

For all v, ¥,
(WnVin)eF < (Y1 €F orynelF).

PROOF. (<) If Y| € F then F =1 Vi by (VI), hence (Y V) € F, since F is deductively closed.
(=) If Y1,¢¥r¢F, then F, 1 ¢ and F,y¥» ¢ by maximality. Hence, F, ¥ V¢ by (VE)
contradicting (Y1 Vi) €F. |

We define a valuation v by

vA)=1& AcF,

for each variable or implication A.

LeEmMMA 3.5
For every formula ¢, F, ¢ <= Y €F.

PRrROOF. Induction on the build-up of 1. The claim is obvious if ¥ is a variable, an implication or the
constant T.
Suppose ¥ = (Y1 Ayrp). By the induction hypothesis we have:
Fv <= (Fy ¥ and Fyyn) <= (Y1 €F and yp € F).

Since F is deductively closed, ¥1,Y» € F <= (Y1 AYp)eF <=  €F.
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Propositional primal logic with disjunction 7

Suppose ¥ = (Y1 V). Then
Foy <= Ry or Fyyn) <= (Y1 EF or Y €F) <= (Y1 V) EF,

by Lemma[3.4l
By this lemma we can conclude that F, I" and ¥, ¢. We can also easily check that v is quasi-boolean.
Consider an implication 0 — .

(1) If Fy ¢ then ¢ € F, hence (6 — ¥ )e F by (—P) and F,60 — .
(i) If F,0 and F, (0 — V), then 8,(60 — ¥ )€ F, hence Y € F by (—E) and F, .

This completes the proof of the theorem. |

To define a quasi-boolean valuation v falsifying I'F¢ it is sufficient to only specify it on the
variables and the implications contained in I' U {¢}. This observation is made precise by the following
helpful lemma.

Let F be a set of formulas closed under subformulas. By an F-valuation we mean a valuation
specified on the variables and the implications occurring in F. It is uniquely extended to all formulas
in F. An F-valuation v is quasi-boolean if it satisfies conditions (i) and (ii) for all implications in F.

LEMMA 3.6
If vis a quasi-boolean F-valuation, then there is a quasi-boolean valuation w on the set of all formulas
that agrees with v on F.

PROOF. We can specify a map w from formulas to {0, 1} by induction on the complexity of ¢, for
example, as follows:

s w@)=v(p)ifpeF;

* w(p)=1, if ¢ is a variable not contained in F or ¢ =T;
*c wp—>yY)=w)if (p— V) ¢F;

* wpAy)=min(w(p), w(¥));

* w(pVy)=max(w(g), w(y)).

Clearly, w is a quasi-boolean valuation and agrees with v. |

REMARK 3.7

We have selected a particular way of extending a given F-valuation setting v(¢ — 1) =v({/) outside
JF . This corresponds, in a sense, to the strongest quasi-implication. There are many other possibilities,
e.g., we could have selected outside F the usual classical valuation.

EXAMPLE 3.8

We can illustrate the use of this semantics by exhibiting a quasi-boolean valuation falsifying (). In
fact, it is sufficient to put v(P) =v(Q)=v(Q — P)=0 and v(Q — (P AP))=1. Hence, formula () is
unprovable in P.

As an application of quasi-boolean semantics we prove that the primal logic shares with the
intuitionistic logic its fundamental disjunction property. Our method of constructing a quasi-boolean
model is similar to the so-called Aczel slash, see [@]. In some sense quasi-boolean models clarify
this somewhat mysterious operation.

Recall that the set of Harrop formulas H is defined by the following grammar:

H:=T|PI[HANH|A—H P a variable, A a formula
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8 Propositional primal logic with disjunction

THEOREM 3.9 (disjunction property)
If T is a set of Harrop formulas and '¢ V¢ in P[], then I'¢ or '

PrOOF. For any set of formulas I" we inductively define a valuation v (Aczel slash) as follows:

e y(P)=1<= TP, if Pis a variable;
* vg—>Y)=1<= (I'F(p— ¥) and (¥ ¢ or F, ). [ ]

We remark that =, ¢ is usually written as I'|¢ in the intuitionistic literature. It is easy to check the
following property by induction on the build-up of ¢.

Lemma 3.10
If F, ¢ then I' g, for any formula ¢.

As an immediate corollary we obtain that v is quasi-boolean. In fact, condition (i) holds because =,
implies I'1 and hence I' ¢ — ; therefore v(¢ — )= 1. Condition (ii) is immediate from the
definition of v.

Next, we show that Harrop formulas are well behaved in this model.

LEMMA 3.11
If ¢ is Harrop, then

Fro <= Tto.

PrOOF. The implication (=) always holds by the previous lemma. To prove (<) we argue by
induction on the build-up of ¢. The cases when ¢ is T, a variable or a conjunction are easy. Suppose
¢ =(0 — ) with ¥ Harrop. We have to show that ¥, 6 or ¥, . Suppose =, 6, then I'6. Since we
also assume I' (6 — ) we have I' ¢ and by the induction hypothesis 1.

Now suppose I' is Harrop and I' = ¢ v/ 9. For any 6 € I" we have I' -0, hence =, 6 by Lemma[3.11]
By the soundness theorem it follows that ,, ¢ Vi, hence F, ¢ or =, ¥. By Lemma[B.IQ this implies
'Fpor ' |

REMARK 3.12
All of the above works for the logic P[V, L]. One only has to stipulate in this case that L is always
evaluated as 0.

4 Reductions between primal and classical logic

In spite of the above, the quasi-boolean semantics shows that primal logic is in some respects akin to
classical logic. We define polynomial translations from one logic to the other assuming disjunction
to be present in the language. This shows, in particular, that the derivability problem for P[V] is
co-NP-complete.

We assume that classical logic C is formalized in the language of P[] with a distinguished variable
L for falsity. For a given formula A let H(A) denote the conjunction of the following formulas:

(1) ¢V (p— ), for all subformulas ¢ —  of A;
(ii) L — Q, for all variables Q of A.

PROPOSITION 4.1
CHA iff H(A)FA is provable in P[V].
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Propositional primal logic with disjunction 9

PRrROOF. The (if) part is clear, since H(A) is classically valid.
(only if) Suppose H(A)#¥ A. There is a quasi-boolean valuation for which F H(A) and #A. We have
to show that it is, in fact, a classical boolean valuation. For each subformula ¢ — 1 of A we have:

Flo—> ) < Fpor Fy).

Indeed, the implication (=) always holds, and = 1 implies F ¢ — 1. If # ¢ then, since F (¢ — V) V ¢,
we also have Fp — .

It remains for us to check that L is evaluated as 0. By induction on the build-up of an arbitrary
formula ¥ (of positive logic) it is easy to show that i whenever FQ, for each variable Q of .
Since we have ¥ A, this means that some variable P of A must be false. But the formula L — P is
true, hence _L is false. ]

THEOREM 4.2
The derivability problem for primal logic with disjunction is co-NP-complete.

ProOF. Since the length of H(A) is polynomial in the length of A, the hardness follows from the above
proposition. It is also clear that the non-derivability problem for primal logic is in NP. In fact, we
can verify I'¥ ¢ by non-deterministically guessing a quasi-boolean valuation, which is polynomial
in the size of ¢, then checking that it satisfies the conditions of being quasi-boolean, and computing
the truthvalues of I and ¢. |

REMARK 4.3

The same result can be obtained by a somewhat simpler translation: CHA iff Hy(A)FA Vv L in primal
logic, where Hy(A) only consists of formulas (i) in the definition of H(A). The way to handle L in
the original translation is somewhat more general, as it also works in the absence of V: it allows to
reduce I[ L] to I and P[_L] to P. The use of disjunction is necessary for an effective reduction of C
to P[] because of the linear time complexity bound established for P in [E].

Next we show that P[Vv, L] (and hence P[V]) is effectively reducible to C, and P is effectively
reducible to the Horn fragment of C.

Suppose we want to check whether I't=A in primal logic. We introduce a fresh variable P, for
each subformula ¢ of a formula in ' U{A}. Let ® be the union of the following sets of formulas:

P AP, — P

1. vy te v , for each subformula ¢ — i of A;
Py —>Pyy
P — Py, P, — Py,

2. e ¢ (4 v , for each subformula ¢ Ay of A;
Py APy — Pory
Py,—Pyyy, Py—P, ,

3. ¢ 44 v oy , for each subformula ¢ v of A;
Py — (PyV Py),

4. P1; P —Py.
Let ¢* denote Py, and let I'*={P,:p €T}

PROPOSITION 4.4
I'FAinP[v, L]iff I'*,®+FA* in C.
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10 Propositional primal logic with disjunction

PROOF. (<) Suppose I'¥A. Let v be a quasi-boolean valuation such that =, I" and ¥, A. Define a
classical valuation v on propositional variables Py, by v'(Py) :=v(¢). Obviously, =, I'* and #,s A*.
Since v is quasi-boolean, we also have ,» ®. Hence, I'*, ® ¥ A* in classical logic.

(=) Suppose I'*, d¥ A* in C. Let v be a classical valuation such that =, I'*, ® and 4, A*. Define
a valuation v/ by v/ () :=v(y*), for each variable or implication .

Let 6 be a subformula of a formula in "'U{A}. We claim that

V(0)=v(6%).

The claim is proved by a straightforward induction on the build-up of 6. It is obvious if 6 is T, a
variable or an implication.

If 6 is L we have F, (L* — A*), since L* — A* is in ®. Since ¥, A* we have v(L*)=0=1/(L).

If 6 is a conjunction or a disjunction we use the validity of parts 2 and 3 of ®, respectively.

Finally, using the validity of part 1 of ® we check that v’ is quasi-boolean. Suppose ¢ — ¥ is a
subformula of a formula in ' U{A}.

(i) IfkFy ¢ then F, ¥™* by the claim. We have F,, (¢ — ¥)* by the second part of 1, hence F,/ (¢ —
V).

(ii) Similarly, if £,/ (¢ — ¥) then F, (¢ — 1)*. By the first part of 1, either ¥, ¢* or F,, ¥ *. Hence,
EyporEyy. u

Next we remark that the above reduction is quite efficient. As usual, we consider linear time
computations within the PRAM model. We denote by I'= A a formal expression consisting of a
finite set of hypotheses I" followed by conclusion A.

LEMMA 4.5
There is a linear-time algorithm producing on input I' = A the output I'*, ® = A*.

PROOF. Run a parser on the input string (of length n) producing a parse tree. The subtrees of the
formulas in I" and the one of A hang immediately under the root. Each node of the parse tree has a
label representing a variable or a connective. The label length can be assumed to be O(log(n)). Extra
tags mark the hypotheses in I" and the query A.

Each variable Py in the translation will be represented by (the name of) a node of the parse tree,
except for the root. Thus, we consider an obvious variant of the translation in Proposition .4 where
new variables are assigned to all occurrences of subformulas in I'U{A} rather than to subformulas
themselves.

Run through the parse tree visiting each node once (in whatever order). For each node write down
the formulas of the groups 1-4 depending on the label of the node. Notice that each variable Py,
occurs in ® no more than 6 times: at most 3 times in a group where Py is the main variable, and at
most 3 times in a group where it is a secondary variable. Hence, the total number of steps needed
to write down @ is linear in the sum of the lengths of all new variables. The latter, however, does
not exceed the total size of the representation of the tree, which is linear in the size n of the original
input. ]

Recall that a Horn clause is a variable or a formula of the form Py APy A--- AP, — Q, where
P1,...,Py,Q are variables. We notice that if I" and A are in the language without disjunction, then the
translation I'*, ® = A* consists of Horn clauses. It is well known that the satisfiability problem for
a set of Horn clauses in classical logic is solvable in linear time (see [‘ﬂ]). As a corollary we obtain
that the derivability problem for primal logic is in linear time. This fact was proved by Gurevich and
Neeman [E] using a different method.
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COROLLARY 4.6
For the language without disjunction, there is a linear time algorithm to determine whether I' A
in P.

REMARK 4.7

In view of the previous corollary it is tempting to consider a modified disjunction that would not
increase the linear complexity of primal logic. Indeed, this can be done. Consider a quasi-disjunction
Vp specified only by the standard introduction rules:

| ) 'y
ThoVv,y TEeVvyy’

but not by the disjunction elimination rule. Quasi-boolean semantics is then naturally extended to
this connective by weakening the requirement that v(¢ Vv ¥ ) =max(v(¢), v(¥)) to the inequality

V(@ Vp ) Zmax(v(e), v(¥)).

Then, we have the following results.

First, the analogue of Theorem[3.2lholds and is even simpler, since we have to consider just theories
instead of maximal theories.

Second, Proposition .4 holds provided the translation is modified by deleting the last clause from
item 3 in the definition of ®. This yields a reduction of P[V,, L] to the Horn fragment of classical
logic. Hence, P[V,, L] is linear time decidable.

5 Primal logic with disjunction and quotations: sequent calculus
and cut-elimination

In this section we study the logic qP[V,_L]. We introduce a Gentzen-style sequent calculus and
a Kripke-style semantics, and we prove a cut-elimination theorem as well as a soundness and
completeness theorem. Gentzen-style systems without L, Vv or the quotations can be obtained by
ignoring the respective connectives everywhere below.

Sequents are objects of the form I'= A, where I" and A are finite sets of formulas. The rules of
primal, intuitionistic and classical sequent calculus are all the same, except for the rules (—R) of
introduction of implication to the right.

Axioms: p=¢; =T; 1=
Inference rules:

'=A '=A r A
=Ayp I's ’I/I(AR) oY= (AL)
C=A, oAy Cony=A
r A T A '=A
o= Y= L) =A0,0, ¢ (VR)
Fevy=A '=sA,evy
Ly=A I'=sAp
(—=L)
Fe—-vyv=A

The (— R) rules for the three logics respectively are

=y, A
T=So— ¥, A

Moo=y (SR Moo=y, A

R =V _v=v.a
e N T=g—y.A

(—=Rc)
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12 Propositional primal logic with disjunction

Within this framework, the rules for quotations look the same as the corresponding natural deduction-
style rules:
=g A=y

Said
q saidI'=¢g said g (Said) q said T, g implied A=¢q implied ¢

(Implied)

We also posit the rules of weakening and cut:

Fr=A '=A¢ ¢I'=A
FT S AR (Weaken) FTI S AR (Cut)
The systems described above will be denoted GP (primal), GI (intuitionistic) and GC (classical).
Checking that they axiomatize the respective logics under the interpretation of ' = A as TH\/A
is routine. The cut-rule can be eliminated in all these systems. This can be done both syntactically
and semantically. The syntactical argument (in either case) is more tedious, but it is constructive
and differs only slightly from the standard proof of the cut-elimination theorem due to Gentzen. In
contrast, the semantical argument also delivers completeness theorems for these calculi and shall be
presented (for the case of primal logic) in the next section.

THEOREM 5.1
Let L be any of the Gentzen-style systems GP, GI or GC. A sequent I' = A is provable in L iff it is
provable in L without a cut.

PrROOF. We essentially follow the standard proof-reduction strategy due to Gentzen. It is sufficient
to show that cuts can be eliminated in any proof containing a single cut as the last inference rule. The
grade g(d) and the rank r(d) of such a proof d are defined as usual: let || denote the height of the
parse tree of a formula ¥. Then g(d):=|6|+ 1 where 6 is the cut-formula in d, and r(d) is the sum
of heights of the right and the left proof subtrees of d.

The proof of cut-elimination goes by induction on the grade and a subsidiary induction on the rank
of d. We first sketch a proof for the cases of GC and GP. Then we indicate the modifications for the
case of GL.

Suppose 6 has not been introduced in d on both sides of the cut-rule immediately before the cut. In
this case the modal rules (having no side formulas) cannot be applied immediately before the cut and
we can decrease the rank of d as in the usual proof for classical logic. For example, if the end-piece
of d has the form

I'= A0 I=A)
I'=sA,0 &) 0,'= A
ITi=AA

(Cut) @)

then this derivation is transformed into the following one of smaller rank:

= A

I"=A0 0,T1=A
I',I'=A,A;

Trioa A, B

JT1=AA

(Cut)
(3

This is based on the special property of non-modal rules in GP and GC we call context
independence: a rule application remains legal after changing its context, that is, the side formulas
on the left and on the right-hand side of the sequent as we did in (). It is exactly this property that
makes GI special. The (— R;) rule of GI is only /eft, but not right, context independent in this sense,
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and so it has to be treated differently. We postpone its treatment until the end of the proof. In the
meantime we return to the remaining part, which is the same for all the three systems.

So, let us assume now that 6 is the main formula on both sides of the cut. If 6 is a part of an axiom or
is introduced by weakening, the rank of the proof can easily be decreased. The proof transformations
in the cases when 6 is a conjunction, a disjunction or an implication (in the cases of classical and
intuitionistic logics) are standard. Thus, it is sufficient to consider the case 8 =(¢ — ) for GP, and
the cases of quotations 8 =g said ¢ and 8 =g implied ¢ which in all three logics are treated in
the same way.

If 6 = (¢ — ) the end-piece of the proof d (in GP) must have the form

'=svy,A ',vy=A1 I''=A9
_rr = R
Tseoya R TR o Susa; (C t(f”
IINEYWA] Ut

We can reduce it to a proof-tree with a lower grade to which the induction hypothesis is applicable:

=y, A TLy=A
MTi=AA

(Cut).

To enhance the readability we shall locally write O and A for ¢ said and ¢ implied,
respectively.

If 6 =0Og is introduced on both sides of the cut, the left rule must be (Said) and the right one either
(Said) or (Implied). Both cases are similar, so we only consider the latter. Then the end-piece of
d has the form =g (Said) o.T1,Ta= v

Or' =0 O, 00, AT, = Ay
or,ary, Ay = Ay

(Implied)
(Cut).

We reduce this proof to the following one of lower grade:
l's¢ oIy

L, o=y
00,00, AT, = Ay

(Cut)
(Implied).

The case 6 = Ag is similar; the end-piece of d must have the form

21, %=0 . o.I'.To=y
———————— (Implied)
O0%,A%) = Ag Ap, 0T, AT, = Ay
0%, A%,,00, AT, = Ay

(Implied)
(Cut).

We reduce this proof to the following one of lower grade:
X, %= o N o=y

1,5, =y
0%1,A%,,00 1, AT, = Ay

(Cut)
(Implied).

This completes our sketch of a proof of Theorem 5.1 for the cases of GP and GC. To treat GI we
only have to deal with the case when the cut-formula 6 is the side formula of the right subderivation
of d and, moreover, this subderivation ends with an application of (— R;) rule. Otherwise, if d ends
with @), the rule (R) cannot be (—R;) or a modal rule. Hence, it is context independent and the
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14 Propositional primal logic with disjunction

transformation (@) works. Similarly, if the right subderivation of d ends with any other rule but
(—R;), a symmetric proof transformation works.
Thus, we assume that d ends with

I'=sA  0.TLe=9¢

'=A,0 0,'=p—>1¢
LTi=Ae—>Y

(Cut) @)
where 6 is the main formula of the inference on the left-hand side.

If 6 =(6; — 6»), then A is empty and, again, no problem arises with the standard transformation.
However, if 6 is a conjunction or a disjunction, then we have to apply inversion properties expressed
in the following lemma that holds in fact for any of the systems GP, GI and GC (see [E], Section
4.1.10, for a similar argument).

LEMMA 5.2
(i) If a sequent I',p Ay = A is cut-free provable, then so is [', ¢, ¥y = A;
(i) I',o V¢ = A is cut-free provable, then so are ', o= A and I, ¥ = A.

A proof in both cases is straightforward by induction on the depth of the cut-free derivation and is
omitted.
Continuing with the main argument, suppose 6 = (8] V 6,) and the left subderivation of @) has the

form
I'=A.,01,0,

I'=A,01v6,
We first apply inversion to the cut-free derivable sequent 6,11, = and obtain two cut-free

derivations of 01,I'1,¢9=1 and 6,,I'1,¢=¢. Then we can transform the given derivation as
follows:

(VR)

01, T, o=>v
I'=A,0,,01 91,F1=>§0—>W(Cut) 0. T1,0=>Y
CLi=A,0— 4,0, .T1=e—>y¢
(Cut)

Chi=Ae—>¢

Notice that the two cuts in this derivation have smaller grade than the original one. Hence, by the
induction hypothesis both can be successively eliminated.

The case when 6 = (6] A 6,) is treated similarly using the conjunction inversion rule. This completes
the missing part of the induction argument in the case of GI and thereby the proof of the theorem. W

We note some standard corollaries. Firstly, GP without cut enjoys the subformula property: if
[’ = A occurs in a cut-free derivation of I'0 = Ay, then I and A only contain the subformulas of the
formulas in ['gU Ag. In fact, the set of all subformulas here can be replaced by a somewhat narrower
set of primal subformulas.

DEFINITION 5.3
We define the sets of the left L(¢) and the right R(p) primal subformulas of a formula ¢. (These are
subsets of the sets of the negatively and of the positively occurring subformulas of ¢, respectively.)

* L(p)= and R(¢)={gp}, if ¢ is a variable or a constant;
* If o=(p1 Ag2) or 9 =(¢1 V), then

L(¢) = L(p1)UL(¢2),
R(¢) = {9} UR(@1)UR(p2);
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e If op=(p1 — @) then

L(¢) = R(p1)UL(¢2),
R(p) = {p}UR(¢2).

e If p=(g said ¢1) or p=(g implied ¢;) then

L(p)=L(¢1), R(@)={p}UR(¢p1).

For a set of formulas I" define

L(M)=U{L(p):p €T},
RM)=U{R(p):peT}.

A primal subformula of ¢ is either its left or its right primal subformula.

REMARK 5.4
Because of the specific right introduction rule for the primal implication, the definition of R(¢) can
be given independently of L(¢), however L(¢) depends on R(p).

PROPOSITION 5.5
If I' = A occurs in a cut-free derivation in GP of a sequent I'o= A, then A CL(I'g) UR(Ap) and
' CR(Ty).

PRrROOF. The proof goes by a routine induction on the length of a cut-free proof of 'g = Ag. We only
treat the cases of the implication and the quotation rules.
Suppose Ag=A1,¢— ¥ and the last application of a rule in the derivation of I'o = Ag has the

form r Ay
0= A1,

——F—  (—R

Fo=>A1,<P—>I/f( )~

If '= A coincides with I'g= A, the claim is obvious. Otherwise, I'= A occurs in the proof
of I'p= A1,v¥. By the induction hypothesis ' CR(I'g) and A CL(I'g)UR(A)UR(). However,
R(Y)CR(¢p — V) CR(Ap). Hence, the claim.

Suppose I'g=I"1,¢ — ¢ and the last application of a rule in the derivation of I'g0=> A has the

form
1= Age T, ¥=Ap

F,p—>¢v=Ag

(=L

Suppose I'= A occurs in the proof of I'y = A, . By the induction hypothesis I' CR(I"1) and
ACL(T1)UR(Ap)UR(p). However, R(¢) S L(¢ — ) CL(I'g). Hence, A CL(I'g) UR(Ay).

If ' = A occurs in the proof of I'1, ¥ = Ag, then by the induction hypothesis I' CR(I"1) UR(r)
and A CL(I')UR(Ap)UL(Y). We have R(v) CR(¢ — ¥) CR(I'g), hence I' C R(I'g). On the other
hand, L(¥) S L(¢ — ¥) S L(I'g), hence A CL(I'g) UR(Ap).

Suppose the last inference in the proof is

I',Ai1=9¢
g said I'1,q implied A1=¢q implied ¢.

Here 'gp=¢q said 'y, ¢ implied Aj and Ag={q implied ¢}.
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16  Propositional primal logic with disjunction

Suppose [' = A occurs in the proof of I'1, A| = ¢. By the induction hypothesis ' CR(I"{ )UR(A1)
and ACL(T)UL(A1)UR(p). Since R(I'{) CR(q said I'1) and R(A1)CR(q implied Ayp), we
have I' CR(I"p). On the other hand, L(I'1) C L(g said I'1), L(A1) S L(g implied A1) and R(p) <
R(q implied ¢). Hence, ACL(I'g) UR(Ag).

All the other rules are treated similarly. |

The standard proof-search procedure for a cut-free derivation in GP provides a PSPACE algorithm
solving the derivability problem.

COROLLARY 5.6
The derivability problem for qP[V, L] is in PSPACE.

PrROOF. Here, it is sufficient to notice that the number of nodes in any branch in a cut-free derivation
of asequent I'g = A( is bounded by the length n of that sequent, and the length of any sequentI' = A
occurring at any node in the proof-tree is polynomial in n by the subformula property. |

REMARK 5.7
The sequent calculus GP is a close analogue of the one for classical propositional logic. On the other
hand, qP[V, L] is a relative of intuitionistic logic as well. Thus, it can be axiomatized by a sequent
calculus GP; similar to the one for intuitionistic logic.

Sequents of GP; have the form ' = A where A may not have more than one formula (which
is reflected in the subscript 1). The axioms and inference rules are similar to those of GP with the
following modifications:

'se T'=y e v=A

ooy P Toaysa D
Ne=A Iy=A M= g; a
Fovesa VD to,0,, (VR fri=l2.
fosv=a D ooy OR

The remaining axioms and rules for GP; are the same as those for GP and are required to respect
the restriction that there is no more than one formula on the right-hand side of sequents. Notice that
this restriction is automatically met for the quotation rules.

The following facts are then easy to verify:

1. A sequent I' = ¢ is provable in GPq iff I' ¢ holds in qP[V, L].
2. I'= ¢ is provable in GP iff it is provable in GP; without a cut.

A syntactical argument for cut-elimination is an obvious modification of the proof of Theorem B.1]
As an immediate corollary we also obtain the following proposition.

PROPOSITION 5.8
A sequent I' = ¢ is provable in GP; without a cut iff it is provable in GP without a cut.

We remark that one can also give a proof of this proposition by a purely syntactical argument
not referring to the cut-elimination theorem. Even though the transformation from a GP-proof to a
GP-proof is not quite trivial, we omit this argument.

The calculus GP| is, in some situations, more convenient than GP. For example, it is easier to
prove the disjunction property for qP[V, L] on the basis of GP. See the next section for the statement
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and a semantical proof of the disjunction property. A syntactical proof based on GP is similar to the
argument in [@] on page 85.

6 Primal logic with disjunction and quotations: semantics and a
completeness proof

Kripke semantics for the intuitionistic and primal infon logic was introduced in [E]. We define
simpler Kripke models for primal infon logic.

DEFINITION 6.1
Atuple W=(W,(Sg)gep,Ug)gep,v) is called a primal Kripke pre-model, if P is the set of principals
in the language and W is a non-empty set (of worlds). For each g € P, S, and 1, are binary relations
on W such that I, CS;; they correspond to modalities said and implied, respectively. vis a
map assigning to each x € W a valuation vy. In turn, vy is a map assigning O or 1 to all the variables
and implications of the language of primal logic with quotations.

Given a pre-model W, the validity relation x ¢ is defined, for each x € W and each formula ¢, as
follows:

xE@ < vy(p)=1, if ¢ is a variable or an implication;
xET,xFL;

XEOANY < (xF6 and xF);

XEOVY < (xEO or xE);

xFq said ¥ <= Vy(xSy=yFv);

6. xFq implied ¥ <= Vy(xlgy=yF ).

SAE IR S e

We require that the validity relation satisfies the conditions of being quasi-boolean, for each x € W:

(i) If xEy then xF (¢ — ¥);
(i) If xE(p— v) then (xF ¢ or xF ).

If the two conditions are satisfied for a given pre-model W, we say that W is a primal Kripke model.
A sequent I' = A is valid in W if

VxeWxEAT=xE\/A).

THEOREM 6.2
The following statements are equivalent:

(1) TH\/ A holds in qP[V, L];

(i) I'= A is provable in GP;

(iii) I'= A is provable in GP without cut;

(iv) I'= A is valid in all finite primal Kripke models;
(v) T'= A is valid in all primal Kripke models.

PrROOF. The implications (iii)=(ii), (ii))=(i), (v)=(iv), and (i)=>(v) are routine. We only prove
(iv)=(iii).

Suppose I'g = Ay is not cut-free provable. We are going to construct a finite primal Kripke model
W such that I'o = Ag is not valid in W.

Let F be the set of all subformulas of I'gUAg. Sequents I'= A with I', A CF will be called
F-sequents.
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DEFINITION 6.3
Let '= A be an F-sequent. I'= A is called saturated if the following conditions hold for all
o, yeF:

s oAy ell=p, el

s pANYeA=>(peAoryeA);
s pvyell'=s(pel oryel);

s VY eA=p, Y eA;

s (p—>Y)ell'= W el orpeA);
s (p—>Y)eA= Y eEA,

e Tel, LeA.

LeEmmA 6.4
Suppose I' = A is an F-sequent unprovable in GP without cut. Then there is a saturated F-sequent
"= A’ such that T €T/, AC A’ and I = A’ is unprovable without cut.

PrROOF. The closure conditions 1-6 correspond to the inference rules of GP being read bottom-up.
Therefore, these statements directly follow from the logical form of the rules in our Gentzen-style
sequent calculus. In the case of 7 we have show, that I" = A is cut-free derivable if (and only if) so is
I', T = A. This is easily checked by induction on the height of the cut-free derivation of I', T = A.
The case of L is similar. |

Now we introduce the following notation. Let s=(I"= A) be a sequent. Then sy denotes I" and
s1 denotes A.
We define a Kripke model W= (W, (Sg)4ep,(g)gep,v) as follows:

* W is the set of all cut-free unprovable saturated F-sequents; further, for all r,se W,
def . .

* sSqr <= Vo(q said peso=> @ €Erp);

o slyr g Vo(q implied g €s9= @ €rg) and sS,7.

The valuation v on W is defined by induction on the complexity of formulas. We introduce the
following measure of formula complexity.

* c(p)=0, if ¢ is a variable or a constant;
s g P)=c)+1;

s clpny)=cleVvy)=max(c(p),c(¥));
* ¢(q said p)=c(q implied ¢)=c(p).

By a partial n-valuation we mean a map assigning O or 1 to all variables and implications of
complexity at most n at each node s€ W. If such a partial n-valuation is given, the corresponding
validity relation xF, ¢ is uniquely defined, for all formulas ¢ such that c(¢) <n, according to the
clauses of Definition [&.1]

Therefore, by induction on n we can define partial n-valuations v" on W as follows: for all se W,

e Vi(P)=1 <L pegg, if Pis a variable;

Vi )=1<L (9> y)esp or sEu_1 ¥). if clo— Y)<n.
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We notice that with n increasing the partial valuations v"* extend each other. Hence, in the limit we
obtain a valuation v on W such that, for all s€ W and all formulas ¢, ¢ (not necessarily from F),

e v(P)=1 <d=ef> P e s, if P is a variable;
def
s vslp—Y)=1ES (9= ) eso or SEY). (%)

This completes the definition of the model JV. Before showing that this model is, in fact, primal we
prove the following lemma.

LEMMA 6.5
For all se W and g € F,

(i) peso=sFe;
(1) pes;=>sFo.

PrOOF. If ¢ is a variable or a constant, both (a) and (b) are obvious.

Suppose ¢ =(6 — ¥). If (8 — ) €59 then trivially s=(6 — ) by ().

If (6 — ) s then v €51 since s is saturated. Hence, s# ¢ by the induction hypothesis. We also
have (6 — ) ¢ 5o, otherwise s would be provable. Thus, sF (6 — ) by ().

Suppose ¢ =(0 A). If (0 AYr) €59 then 6, € sg by saturation, hence sF 1,6 and sE0 A by the
induction hypothesis.

If (0 AYr)€sy then 6 €51 or i €51 by saturation. Hence, s# ¢ or s 6, which implies s#Z6 V.

Suppose ¢ = (0 V). If (B V) € 50 then 8 € 5 or Y € s by saturation. Hence, s = or s=6, which
implies sFO V.

If (v yr)es) then 6,y €51 by saturation, hence s¥ ,0 and sF6 V.

Suppose ¢ =(q said ¥). (a) By definition of Sy, if sS;r and g said ¥ €sg, then ¥ erg
and rFy by the induction hypothesis. Since this holds for any r, we obtain skFq said ¢
whenever ¢ said ¥ €sg.

(b) Assume g said ¥ esy. Let I':'={0:q said 6 €sp}. We claim that I'=1 is cut-free
unprovable. Otherwise, from I' = ¢ one could infer

q said I'=g¢q said ¥,

and therefore s would be provable by weakening (we have g said I' Csp and g said ¢ €s1).

Let r be any saturated unprovable sequent with I' C 7y and v € 7. We have sS4 by the definition
of S, and r¥ ¢ by the induction hypothesis. It follows that s# g said .

Suppose ¢ =(q implied ). Part (a) is similar to the previous case. We prove (b). Assume
q implied v €sy. Let

I''={0:qg saidfesgorq implied 6 €sp}.

We claim that I = ¢ is cut-free unprovable. Otherwise, from I'= 1 by the rule (Implied) we
could infer

{g said 0,q implied £:q said 0, g implied é €esg}=¢q implied ¥,

from which s follows by weakening. Let  be an unprovable saturation of I' = 1. We have sl,r and
Y €ry, hence sFq implied . |

Now we can check that W satisfies the conditions of being primal.
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LEMMA 6.6
For any (9 > y)eF and any se W,

(i) if sEy then sE (@ — ¥);
(i) if sF (¢ — ) then (s# @ or sE V).

PrROOF. Statement (i) is immediate from (). We prove (ii).
Suppose s ¢ — . Then, by (x), either (p — ) €sg or sE . If s we are done. If (¢ — ) €59
then i € sg or ¢ €51 by the saturation of s. Hence, either sk or s# ¢ by the previous lemma. W

To complete the proof of Theorem recall that the given sequent I'g= Ay is not cut-free
provable. Let s be an unprovable saturation of I'g= Agy. By Lemma we obtain sk ATy and
s¥\/ Ag. Hence, T'o= Ag is not valid in W. |

We now establish the disjunction property for qP[V, _L]. In fact, the Aczel slash method works
here with just a few modifications.

The set of Harrop formulas for the language with quotations is now defined by the following
grammar:

H:=T|L|PIHANH|A—H|q said A|q implied A.
Here P is a variable, A is a formula, and ¢ is a principal constant.

THEOREM 6.7 (disjunction property)
If T is aset of Harrop formulas and ' V¢ in qP[Vv, L], then '@ or I'—.

PROOF. As in the proof of Theorem[3.9] with a given set I' we inductively associate a valuation v on
the set of formulas of the language of qP[V, L]:

e y(1L)=0;
* v(p)=1<= T'Fo,if ¢ is a variable or has the form ¢ said ¢ or g implied v;
* vg—>Y)=1<= I'k(p—¥)and (¥, ¢ or 5, ¥));

In other words, we treat all formulas of the form g said i or g implied ¥ as propositional atoms.
We further proceed as in the proof of Theorem 9] Firstly, by an easy induction on ¢ we obtain

LEMMA 6.8
For any formula ¢, if F,, ¢ then ' ¢.

Then we establish the soundness lemma for provability in qP[V, L].

LEMMA 6.9
If AFA and F, A, then F,A.

PrROOF. This is proved by a straightforward induction on the length of the proof of A+A. We only
treat the cases of implication and quotation rules.

Suppose A+ (¢ — ) is obtained from A+ . If =, A, by the induction hypothesis we have F, ¥
and by the previous lemma I" . It follows that I' (¢ — ) and by the definition of v we obtain
Fvle—v).

Suppose that F,, A and A F 1 is obtained from A (¢ — ¥) and A - ¢. By the induction hypothesis
we have F, (¢ — ) and F, ¢. However, F, (¢ — ¥) implies that ¥, ¢ or =, i, by the definition of
v. The first is false, hence =, 1.

2102 ‘TE A2 uo 138nb Aq /Bio'seulnolployxo wodbo)//:dny woly papeoumoq


http://logcom.oxfordjournals.org/

Propositional primal logic with disjunction 21

Suppose A=g said A, A=q said ¢ and the last inference is

Ao
q said A1lq said ¢.

Assume F, g said Aj.Thismeans I'g said ¥, foreach ¢y € Ay. Since ¢ said A1t¢g said ¢,
we also have '-¢g said ¢, which means ¥, g said ¢ by the definition of v. So, in this case we do
not even have to use the induction hypothesis.

The case of the rule (Implied) is similar. |

The analogue of Lemma[B T works without any change.

LEMMA 6.10
If ¢ is Harrop, then

Now suppose I is Harrop and I' ¢ V. For any 6 € I" we have I' -6, hence =, 6 by Lemmal6. 10
By Lemma 6.9 it follows that =, ¢ vV, hence F, ¢ or F, 1. By Lemma [6.8] this implies I' ¢ or
THy. m

7 Complexity bounds

Next, we show that there is a reduction of classical modal logic to primal logic with quotations.
This gives suitable complexity bounds for the fragments of the primal logic with disjunction and
quotations.

Let us call a prefix a sequence of modalities of the form g; said or g; implied, for example,
q1 said g3 implied q; said is a prefix of length three. We say that a subformula ¢ occurs in A
under a prefix o, if in the parse tree of A there is a branch leading to an occurrence of ¢ such that
reading the modalities top down along this branch yields o. Of course, for a given occurrence of ¢
this prefix is uniquely defined. Modal depth of A can be defined as the maximal length of prefixes of
subformula occurrences in A.

Let H(A) denote the set of all formulas of the form o (¢ Vv (¢ — ¥)), where ¢ —  occurs in A
under a prefix o. We note that the length of H(A) is polynomial in the length of A.

Let qC denote the extension of classical logic by quotations.

PROPOSITION 7.1
For any formula A, qCHA iff H(A)FA in qP[V, L].

PrOOF. The implication from right to left is obvious, since H(A) is provable in qC for any A.

For the opposite implication we give a syntactic proof based on our Gentzen-style sequent calculus
for primal logic. Given a set of formulas I define H(I") to be the union of all H(p), for all p €T".
By induction on the length of derivation we show that H(I", A),I" = A is provable in GP whenever
I'= A is provable in GC.

We only have to treat the cases of the modal rules and the rule (— R). Suppose the last rule applied
in the classical derivation of I' = A is (— R), that is, the last inference has the form

Fo=Ay
T=A.9g—y
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By the induction hypothesis we obtain a derivation of H,[,¢= A’,% in GP where H=
H(T, @, A, ). We notice that

H(I,A)=H, A\, —y)=HU{pV(p—¥)}.
Then we consider the following proof tree:

H,o.T=A,

% / 14 (>R,) /

H, o I'=SA,po—=>¢ Ho—->y,I'=Ap—>¢
H,oV(p—y).T=>AN 90—y

(VL)

The leaves of this tree are provable in primal logic, the left one by the induction hypothesis and the
right one for trivial reasons. Hence, we obtain the required derivation.
Suppose the last inference has the form

M=
gsaidI"=q said ¢

(said).

Let H:=H(I", ), then clearly
H(q said I’,q said ¢)={q said ¢ : W €H}=:q said H.

By the induction hypothesis H,I'" = ¢ is provable in primal logic. Hence, we obtain the required
derivation
HI' =¢
q said H,q said I'=>¢q said ¢.

Suppose the last inference has the form

Y, 1I=9
q said ¥,q implied [1=¢q implied ¢

(Implied).

Let H:=H(X,T1,¢)=H(S)UH(IT, ). Then

H(q said ¥,q implied I1,q implied ¢)=H(q said X)UH(q implied I1,q implied ¢)
=¢ said H(X)Ugq implied H(IT, ).

By the induction hypothesis H, X, [T = ¢ is provable in primal logic. Hence, we obtain the required
derivation

H(X),H(I1,p), X, [T=¢
q said H(X),q implied H(I1,¢),q said X,q implied [1=¢q implied ¢.

The cases of all the other rules and axioms are obvious. | |

It follows from the well-known work of Ladner [E] that the derivability problem for qC is
PSpAcE-hard. Hence, Proposition [Z]] together with Corollary 5.6l imply the following theorem.
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THEOREM 7.2
The derivability problem for qP[V, L] is PSPACE-complete.

On the other hand, Halpern [@] showed that the derivability problem for the bounded-modal-depth
fragment of modal logic K is co-NP-complete. The situation for qP[V, L] is similar.

THEOREM 7.3
(i) f THFA in qP[V, L] and ", A have modal depth bounded by a constant d, there is a primal
model W of size polynomial in the length of I" and A such that, for some x e W, xFT" but x#A.
(i) Foreachd,the derivability problem for modal depth d fragment of qP[V, L ] is co-NP-complete.

Clause (ii) follows from (i) and Theorem Clause (i) can be proved by adapting the standard
methods of [|2_£I|]. We prove the following main lemma, which is a more specific version of (i). We
call a primal model treelike, if its I, relations are finite trees (and hence, so are its S, relations).

LEmMMA 7.4

Suppose I'= A is unprovable in GP and has modal depth bounded by d. Then there is a tree-like
primal model W of depth d and branching bounded by the length of I' = A such that ' = A is false
at the root r of W.

PrROOF. We argue by induction on d. If d =0 the model WV will consist of a single root, by Theorem
Suppose the modal depth of I' = A is d+ 1. Let F denote the set of all subformulas of ' = A.
We write u=I" = A as a shorthand for u AT'— \/ A.

Consider any primal model I/ and a point u €/ such that u#I" = A. For each ¢ let

Iy :={p:(qg said p)eF, uFq said ¢}
Ay = {g:(q implied p)€F, uFq implied ¢}

Further, let go?, ..o be all the formulas ¢ such that (g said ¢)eF and u¥gq said ¢, and let
1//?, . 1//,?1 be all the formulas ¢ such that (g implied ¢)€F and u¥q implied ¢.

We notice that each of the sequents I'y = (p? ,fori=1,...,n, is false at some node u? € W such that
uSqu?. Similarly, each of the sequents I'y, A, = lqu, forj=1,...,m,is false at some node v;.] €U such
that ulqvj‘?. The modal depth of all these sequents is bounded by d, so by the induction hypothesis we
obtain tree-like models Wl.q with the roots rl.q, and qu with the roots tjq such that

r{FTq= ¢! and 1] ¥ Tq, A=y

The required model W will consist of the disjoint union of all these models qu and V;] together

with a new root r. The root r is only connected to the points r? by S, and to the points tjq by 14, for
all g. The valuation at the root r (on the variables and the implications) coincides with that at u /.

CLAM. For each formula ¢ € F, uF ¢ holds in U iff = ¢ holds in W.

This claim is proved by a straightforward induction that we omit. It follows that r#I"= A. We
finally remark that the depth of W is bounded by d 41, and that the branching at r is bounded by the
total number of formulas in F, hence by the length of I' = A. This concludes the proof of Lemma
and thereby of Theorem [Z3] [ |
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REMARK 7.5

We conclude by mentioning that all the results of this article remain valid for the language without
implied quotations. One only has to drop the corresponding rules from the axiomatizations of the
logics qI and P.
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