
9

Logic of Infons: the Propositional Case

YURI GUREVICH
Microsoft Research
and
ITAY NEEMAN
UCLA

Infons are statements viewed as containers of information (rather then representations of truth
values). The logic of infons turns out to be a conservative extension of logic known as constructive or
intuitionistic. Distributed Knowledge Authorization Language uses additional unary connectives
“p said” and “p implied” where p ranges over principals. Here we investigate infon logic and a
narrow but useful primal fragment of it. In both cases, we develop model theory and analyze the
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1. INTRODUCTION

The notion of infon is basic in DKAL, Distributed Knowledge Authorization
Language, that we have been developing [Gurevich and Neeman 2008, 2009;
Gurevich and Roy 2009]. Infons are statements, that is declarative statements,
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9:2 • Y. Gurevich and I. Neeman

viewed as containers of information, for example, John has the right to read
File 13 of the given computer system.

Quisani1: How is this different from the usual treatment of statements in
mathematical logic?

Authors2: We don’t ask whether an infon is true or false. Instead we ask
whether it is known to relevant principals. For example, does the owner of
File 13 know that John has the right to read the file? Does the administrator
of the system know? Does John know? Besides, the notion of infon is purely
semantical.

Q: Did you invent the term?

A: No, though for a while we thought that we did. The term has been used
in situation theory where the name is “intended to emphasize the fact that
‘infons’ are semantic objects, not syntactic representations” [Devlin 1991,
22]. But infons are assigned truth values in situation theory, so our usage of
the term is quite different.

One may study the algebra of infons. Order a ≤ b if the information in a is a
part of that in b. At the bottom of that partial order are uninformative infons
carrying no information whatsoever. There is a natural union operation a + b
on infons. You know a + b if you know a and you know b. Infon a + b is the
least upper bound of a and b. But one has to be careful with the information
order because of the omniscience problem well known in epistemic logic. The
partial order is intractable. Indeed, valid logic statements are uninformative.
In Gurevich and Neeman [2008] we used a rule-based feasible approximation
of the true information order.

The right tool to deal with infons is logic. The addition operation a + b gives
rise to conjunction a∧b. And the implication connective is natural. If you know
a and you know a → b then you know b. In terms of the information order,
a → b is the least solution x of the inequality a + x ≥ b.

Q: Give me an example of implication.

A: You have the right to fish in this river if you have an appropriate licence
from the state.

The use of implication allowed us to simplify DKAL [Gurevich and Neeman
2009]. For example “principal p is trusted on saying infon x,” used to be a
primitive notion in DKAL, subject to a stipulation “x ≤ (p said x) + (p trusted
on saying x).” Now we define “p trusted on saying x” as “(p said x) → x.” The
stipulation follows. It turns out that infon logic is a conservative extension of
the appropriate fragment of intuitionistic logic. In addition to conjunction and
implication, infon logic has two unary connectives “p said” and “p implied” for
any principal p. The number of principals is unbounded.

1Quisani is an inquisitive friend of ours.
2Speaking one at a time.
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Q: How is infon logic related to authorization?

A: In DKAL, a principal uses infon logic to derive consequences from, (1) his
own knowledge assertions, and (2) the communications from other princi-
pals.

Q: How are “said” and “implied” different?

A: A principal p may just say x to q. Then (if the communication reaches
q and q accepts it but let us ignore all that) q learns infon p said x. How-
ever p may condition his saying x on q knowing y. Then q learns infon
y → (p implied x).

Q: Give me an example.

A: Suppose that Alice and Bob work in the same company, and Charlie is an
outside visitor. If Alice tells Bob that Charlie can read the latest company
letter then Bob learns this: Alice said Charlie can read the letter. But if
Alice tells Bob that Charlie can read the letter provided that Charlie signed
the nondisclosure agreement (NDA) then Bob learns this: if Charlie signed
the NDA then Alice implied that Charlie can read the letter.

Q: What does this buy you? Suppose that Bob knows the proviso that Charlie
signed the NDA. Then he learns that Alice implied that Charlie can read the
letter. Shouldn’t he learn that Alice said that Charlie can read the letter?

A: If one is not careful, a proviso can be used for undesired delegation and
even a probing attack [Gurevich and Neeman 2009, §7]. To get from knowing
p said x to knowing x, q needs to trust p on saying x. To get from know-
ing p implied x to knowing x, q needs to trust p on implying x which is a
stronger condition.

The derivability problem (whether formulas � entail a formula x) for intu-
itionistic logic may seem to be intractable. Even the termination of the proof
search does not seem to be guaranteed. But there are intuitionistic calculi with
the subformula property: if � entails x then there is a derivation of x from �

that uses only subformulas of formulas � ∪ {x}. This helps to establish that
the problem is solvable in polynomial space. The problem is in fact polynomial
space complete in the worst case [Statman 1979].

Starting with a known natural deduction calculus for intuitionistic logic,
which is sound and complete with respect to the standard Kripke semantics
and which has the subformula property, we extend the calculus and semantics
to infon logic and prove that the extended calculus is sound and complete and
has the subformula property. The derivability problem remains polynomial
space complete in the worst case. This does not make infon logic useless. It
works in a great many practical cases. Typical cases are far from the worst
ones.

Further, we identify a narrow primal fragment of infon logic that is surpris-
ingly expressive. For the sake of contrast, the original infon logic may be called
full. We modify the natural deduction calculus for full infon logic to fit primal
infon logic. The new calculus has a version of subformula property; instead of
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subformulas we speak of relatives of theirs, which we call local (to the given
hypotheses and query) formulas. The new calculus is sound and complete with
respect to Kripke semantics adjusted in a simple and natural way. The defini-
tion of when an implication x → y holds in a world w becomes nondeterministic,
and that’s it.

Q: What about primal intuitionistic logic? I mean the intersection of primal
infon logic with intuitionistic logic. It’s got to be known. Intuitionistic logic
has been researched for such a long time.

A: Well, the only references of relevance that we know are proof-theoretic
papers [Avron 2010] and [Avron and Lahav 2009]. Their “semi-implication"
is our primal implication. But even the two papers have not been published
yet; we learned of them when we presented infon logic at Tel Aviv University.
Primal intuitionistic logic is weak indeed. That may explain the lack of
attention.

The more involved technical results of this article are related to the deriv-
ability problem for primal infon logic.

Definition 1.1. The multiple derivability problem MD(L) for a logic L is to
compute, given formulas x1, . . . , xm (the hypotheses) and y1, . . . , yn (the queries),
which of the queries are derivable from the hypotheses.

We construct an algorithm that solves the multiple derivability problem for
primal infon logic. We stratify primal logic according to the quotation depth
of infons. For example, both infons “Alice said that Bob implied that John
has the right to read File 13” and “Bob said that John has the right to read
File 13” belong to stratum 2 but only the second belongs to stratum 1. At each
stratum, our algorithm works in linear time. (Our computation model is the
usual random access machine, as in Cormen et al. [1990].)

In applications, quotation depth tends to be small. Most authorization lan-
guages do not even allow nesting the pronouncements of principals. This applies
to all Datalog-based authorization languages that we know.

Q: The lowest stratum where pronouncements are nested is stratum 2. Is
stratum 2 of primal logic of any use for authorization purposes?

A: Very much so. In our experience, stratum 2 suffices for most purposes.

Q: Is there any evidence beyond your own experience?

A: An authorization language SecPAL [Becker et al. 2007] expresses many
important access control scenarios. A rather natural translation of SecPAL
to DKAL uses only stratum 2 of primal infon logic.

This article is self-contained. We do not presume that the reader is familiar
with DKAL or intuitionistic logic.
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2. NATURAL DEDUCTION CALCULI FOR FULL AND PRIMAL INFON LOGIC

In DKAL, infons are expressed by means of terms, and formulas have the form
“principal knows infon”. Primitive terms have the form t0 A(t1, . . . , tk), where A
is an attribute name, each ti is a term in the sense of first-order logic, and t0
is of type Principal. Compound terms are built from primitive ones by means
of functions ∧ and → of type Infon × Infon −→ Infon and functions said and
implied of type Principal × Infon −→ Infon.

This article is devoted to infon logic. (Readers interested primarily in DKAL
and not so much in infon logic per se may want to go directly to [Gurevich
and Neeman 2009].) Here we treat infon terms as propositional formulas. We
use symbol � to represent an uninformative infon. We presume an infinite
vocabulary of infon variables and another infinite vocabulary of (the names of)
principals. Formulas are built from infon variables and the infon constant �
by the following means.

—Conjunction. If x, y are formulas then so is x ∧ y.
—Implication. If x, y are formulas then so is x → y.
—Two unary connectives p said and p implied for every principal p. If x is a

formula then so are p said x and p implied x.

Formulas that do not involve the unary connectives will be called quotation-
free.

Some of our algorithms take formulas or sequences of formulas as inputs.
In this connection, we presume that the syntax of formulas is such that an
occurrence of a subformula y in a formula x is uniquely defined by the position
of the first symbol of y in x.

2.1 Natural Deduction Calculus for Full Infon Logic

Our natural deduction calculus, NDF, for full infon logic is essentially an exten-
sion of the disjunction-free version of the intuitionistic propositional system,
NJp [Mints 2000, Section 2.2]. It works with sequents of the form � 	 x, where
x is a formula and � is a set of formulas written as a sequence.3 Here are the
axioms and rules of inference.

Axioms.

(�) 	 �.
(x2x) x 	 x.

Inference rules.

(Premise Inflation)
� 	 y

�, x 	 y
;

3Even though NDF works with sequents, we refrain from calling it a sequent calculus. The term
sequent calculus has a different meaning in modern proof theory.
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(∧E) � 	 x ∧ y
� 	 x

� 	 x ∧ y
� 	 y

;

(∧I) � 	 x � 	 y
� 	 x ∧ y

;

(→E)
� 	 x � 	 x → y

� 	 y
;

(→I)
�, x 	 y

� 	 x → y
;

(Said)
� 	 y

q said � 	 q said y
;

(Implied)
(�1 ∪ �2) 	 y

(q said �1) ∪ (q implied �2) 	 q implied y
.

Here E and I allude to “elimination” and “introduction” respectively. If � =
{x1, . . . , xn} then “q said�” is the set {(q said xi) : i = 1, . . . , n} and “q implied�”
is the set {(q implied xi) : i = 1, . . . , n}.

COROLLARY 2.1. q said x 	 q implied x.

PROOF. Apply rule (Implied) to x 	 x.

COROLLARY 2.2 (TRANSITIVITY). If � 	 x and �, x 	 y then � 	 y.

PROOF. By (→I), we have � 	 (x → y). It remains to apply (→E).

Q: I guess � is the propositional constant usually called “true.”

A: This is a reasonable point of view as far as this article is concerned.

Q: Is there any semantical difference between � and “true”?

A: Yes, � is an infon known to all principals. It is natural to assume that it
is true but we don’t have to lump all true infons together. Some true infons
may be informative.

Q: Rule (Implied) is too complicated. Turn Corollary 2.1 into an axiom and

then replace (Implied) with a simpler rule
� 	 y

q implied � 	 q implied y
.

A: Calculus NDF has the subformula property. If a sequent � 	 x is provable
then it has a proof that uses only subformulas of the sequent formulas;
see Theorem 3.2. The modified system loses the subformula property. For
example any proof of sequent

q said r said x 	 q implied r implied x.

involves additional formulas.
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2.2 Natural Deduction Calculus for Primal Infon Logic

We introduce primal infon logic by means of a natural deduction calculus, NDP,
obtained from the calculus NDF for full infon logic by replacing the implication-
introduction rule (→I) with two rules:

(→IW)
� 	 y

� 	 (x → y)

(Trans)
� 	 x, �, x 	 y

� 	 y
Rule (→IW) is a weaker (hence the W) implication-introduction rule. Rule
(Trans) reflects Corollary 2.2.

LEMMA 2.3. In either calculus,

if � ∪ {x1, . . . , xn} 	 y and � 	 x1, . . . , � 	 xn

then � 	 y.

PROOF. Induction on n. If n = 0, the lemma is trivial. Suppose that n > 0 and
the lemma has been proved for n − 1. Let �′ = � ∪ {x1, . . . , xn−1}. Use (Premise
Inflation) to derive �′ 	 xn from the last premise. The first premise is �′, xn 	 y.
Now use (Trans) and then the induction hypothesis.

Q: Rule (→IW) is ridiculous. Why do you need the implication if you already
have the conclusion?

A: A principal may know the conclusion y but may be willing to share only
an implication x → y with another principal. Besides, the implication x → y
may be needed for derivation as it may occur as the premise of another
implication.

3. SEMANTICS, SOUNDNESS AND COMPLETENESS
SUBFORMULA PROPERTY

3.1 Semantics for Full Infon Logic

Recall that a quasi-order ≤ is a binary relation that is reflexive and transitive.
We say that subset U of a quasi-ordered set (W,≤) is a cone if u ∈ U and u ≤ v

imply v ∈ U for all u, v in W . A Kripke structure for propositional intuitionistic
logic [Kripke 1965] can be defined as a triple (W,≤, C), where the following hold.

K1. W is a nonempty set whose elements are traditionally called worlds.
K2. ≤ is a quasi-order of W .
K3. C assigns a cone to every infon variable.

By induction, every quotation-free formula z is assigned a cone C(z) of worlds
as follows.

K4. C(�) = W.

K5. C(x ∧ y) = C(x) ∩ C(y).
K6. C(x → y) = {u : C(x) ∩ {v : v ≥ u} ⊆ C(y)}.
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Here � plays the traditional role of propositional constant “true.” It is easy to
check, by induction on formula z, that every C(z) is indeed a cone.

We extend this definition to accommodate full infon logic. A Kripke structure
for full infon logic is a quintuple (W,≤, C, S, I) where W,≤, C are as defined
earlier and where S and I assign binary relations Sq and Iq over W respectively
to every principal q in such a way that the following two requirements are
satisfied.

K7. Iq ⊆ Sq.
K8. If u ≤ w and w Sq v then u Sq v, and the same for Iq.

The cone map C is extended to all formulas by means of clauses K4–K6 and
the following two clauses.

K9. C(q said x) = {u : {v : u Sq v} ⊆ C(x)}.
K10. C(q implied x) = {u : {v : u Iq v} ⊆ C(x)}.

If u ∈ C(z), we say that z holds in u and that u models z, and we write
u |= z. Again, it is easy to check, by induction on formula z, that every C(z) is
indeed a cone. We consider here only the case when z = (q said x). Suppose
that u ∈ C(z) and u ≤ w. By K9, {v : u Sq v} ⊆ C(z), and we need to show that
{v : w Sq v} ⊆ C(z). This follows from K8.

The cone map C extends naturally to sets of formulas and to sequents:

— C(�) = ⋂
x∈� C(x),

— C(� 	 y) = {u : C(�) ∩ {v : v ≥ u} ⊆ C(y)}.
The Kripke structure itself models a sequent s = [� 	 y] if C(s) = W which
is equivalent to C(�) ⊆ C(y). A sequent s is valid if every Kripke structure
models s.

COROLLARY 3.1. C(q said x) ⊆ C(q implied x)

PROOF. By K9 and K10, it suffices to show that, for every u, {v : u Iq v} ⊆ {v :
u Sq v}. This is exactly K7.

Unary Connectives (q said) and (q implied) can be viewed as modalities; see
for example, Section 4.1 of Bella et al. 2009.

3.2 Semantics for Primal Infon Logic

The definition of Kripke structures for primal infon logic is similar to that for
full infon logic except that the deterministic requirement K6 is replaced with
the following nondeterministic requirement.

K6W. C(x → y) is an arbitrary cone subject to the following two constraints:

C(y) ⊆ C(x → y) ⊆ {u : C(x) ∩ {v : v ≥ u} ⊆ C(y)}.
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3.3 Soundness and Completeness

THEOREM 3.2. In the case of either infon logic, full or primal, the following
claims are equivalent for any sequent s.

(1) s is provable.
(2) s is valid.
(3) Every finite Kripke structure models s.
(4) There is a proof of s that uses only subformulas of s.

PROOF. We deal with both logics at once. We prove that (1) =⇒ (2) =⇒
(3) =⇒ (4) =⇒ (1). Implications (4) =⇒ (1), and (2) =⇒ (3) are obvious.

(1) =⇒ (2). Let K = (W,≤, C, S, I) be an arbitrary Kripke structure. By induc-
tion on the given derivation of sequent s we show that K models s. If s is the
(�) axiom, use K4. If s is an (x2x) axiom, the desired C(x) ⊆ C(x) is obvious.

Suppose that s is not an axiom. Let u be a world in the cone of the premise
of s. We need to show that u models the conclusion of s. Consider the last step
in the given derivation of s. Several cases arise. The case of (Premise Inflation)
is obvious. The cases (∧E) and (∧I) are obvious as well; just use K5.

(→E). By the induction hypothesis, u models x as well as x → y. By K6W
(use the second inclusion of the constraint), u models y.

(→I). This case is relevant for the full, but not primal, infon logic. By K6, it
suffices to check that v |= x implies v |= y for all v ≥ u. Suppose v |= x. By the
induction hypothesis, v |= y.

(→IW). This case is relevant for primal infon logic. By the induction hypoth-
esis, u models y. By K6W (use the first inclusion of the constraint), u models
x → y.

(Trans). This case is relevant for primal infon logic. By the choice of u,
we have u ∈ C(�). By the induction hypothesis applied to the first premise,
u ∈ C(x). Now we apply the induction hypothesis to the second premise:
u ∈ C(y).

(S) and (I). These two cases are similar. We consider only (I). By the choice
of u, we have u ∈ C(q said �1) ∩ C(q implied �2). By Corollary 3.1, u ∈
C(q implied (�1 ∪ �2)), which by K10, is equivalent to this: v ∈ C(�1 ∪ �2) for
all v with u Iq v. For any such v, by the induction hypothesis, v ∈ C(y). By K10,
u ∈ C(q implied y).
(3) =⇒ (4). Assuming that (4) fails, we construct a finite model K = (W,≤,

C, S, I) for sequent s. Call a formula native if it is a subformula of s. A native
theory is any set u of native formulas closed under native deduction in the
following sense: u contains every native formula x such that sequent u 	 x is
provable using only native formulas.

The quasi-order (W,≤) of K is the set of native theories ordered by inclusion.
Set u Iq v true if v contains every formula x such that (q implied x) belongs to u
or (q said x) belongs to u. Set uSq v true if v contains every formula x such that
q said x belongs to u. Requirements K1–K2 and K7–K8 are obviously satisfied.
It remains to define the cone map C. In the case of full infon logic, we could
have defined C on the variables and then used clauses K4–K6 and K9–K10 to
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extend C to compound formulas. For the uniformity of the proof, we choose a
different route.

If z is a native formula or � define C(z) = {u : z ∈ u}, so that u |= z if and only
if z ∈ u. Clearly requirements K3 and K4 are satisfied. Now use clauses K5–
K6 and K9–K10 to extend C to the remaining formulas composed from native
formulas and � by means of connectives ∧,→, q said, q implied. To complete
the definition of K, we check that requirements K5, K6 (resp. K6W) and K9–
K10 on C(z) are satisfied for any native formula z. This is done by induction
on z. The base of induction when z is a variable, is trivial. The induction step
splits into several cases.

Case K5. Using the definition of C on native formulas and the fact that every
world is closed under native deduction, we have:

u ∈ C(x ∧ y) ⇐⇒ (x ∧ y) ∈ u ⇐⇒
x ∈ u ∧ y ∈ u ⇐⇒ u ∈ C(x) ∩ C(y).

Case K6. First we prove that C(x → y) ⊆ {u : C(x) ∩ {v : v ≥ u} ⊆ C(y)}. This
part is relevant to both infon logics. Suppose that u contains x → y. If a native
theory v ≥ u also contains x then it contains y.

Second we prove that {u : C(x) ∩ {v : v ≥ u} ⊆ C(y)} ⊆ C(x → y). This
part is relevant only to full infon logic. Pick an arbitrary world u such that
C(x)∩{v : v ≥ u} ⊆ C(y). We claim that sequent u, x 	 y is provable. Otherwise,
there is a native theory v that includes u, contains x but does not contain y,
which contradicts the choice of u. By (→I) with � = u, we have that u contains
x → y.

Case K6W. This case is relevant for primal infon logic. The right inclusion
has already been proven. To prove the left inclusion, suppose that u ∈ C(y), so
that u 	 y is provable. By (→IW), u 	 (x → y) is provable, and so u ∈ C(x → y).

Cases K9 and K10. The two cases are similar; we consider only case K9.
Consider an arbitrary world u. First, suppose that u ∈ C(q said x), that is u
contains (q said x). We need to prove that any v with u Sq v contains x. This
follows from the definition of Sq. Second, suppose that {v : u Sq v} ⊆ C(x), that
is every native theory v with u Sq v contains x. Let � be the set of formulas
y such that u contains (q said y), and let �∗ be the least native theory that
includes �. By the definition of Sq , we have u Sq �∗. Then �∗ contains x, so
that the sequent � 	 x is provable. By rule (Said), sequent u 	 (q said x) is
provable, and so u contains q said x.

Thus K is a legitimate Kripke structure. Finally let s be � 	 x, and let �∗ be
the least native theory. By the assumption that (4) fails, �∗ does not contain x.
It follows that s fails in K.

4. FULL INFON LOGIC: COMPLEXITY

THEOREM 4.1. The validity problem (whether a given formula is valid) for
full infon logic is polynomial-space complete.

The rest of this section is devoted to proving the theorem. The quotation-free
fragment of our natural deduction calculus for full infon logic is a calculus for a
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fragment of propositional intuitionistic logic whose validity problem is pspace
(that is polynomial space) hard [Statman 1979]. Hence our problem is pspace
hard. It remains to show that the validity problem for full infon logic is pspace.

We use the following idea that goes back to [Ladner 1977], who proved
that the validity problem for some modal logics is pspace. Instead of checking
validity, check whether the given formula can be refuted “in a tree-like model
structure,” which may be exponentially large but where the branches have only
polynomial length and thus “can be constructed one branch at a time.” The idea
was developed in a variety of publications, in particular in Halpern and Moses
[1992] and in [Schröder and Pattinson 2008]. The latter paper is quite recent,
has a survey of related literature, and will delight the fans of category theory.

Instead of constructing a tree-like model structure and examining it branch
by branch, we use games; this helps to avoid bookkeeping. Recall that pspace
equals alternating polynomial time [Chandra et al. 1981]. We show that the un-
provability problem for the natural deduction calculus NDF for full infon logic,
whether a given sequent is unprovable, is solvable in alternating polynomial
time.

We start with a few auxiliary definitions. A sequent s = [� 	 ϕ] self-refuting
if � is closed under s-native deduction but does not contain ϕ. A formula is
potent if it has the form x → y or p said x or p implied x. Define quotation
depth in the obvious way.

QD(z) = 0 if z is a variable or �,
QD(x ∧ y) = QD(x → y) = max{QD(x), QD(y)},
QD(p said x) = QD(p implied x) = 1 + QD(x),
QD(� 	 z) = max{QD(x) : x ∈ � ∨ x = z}.

THE GAME. Given a sequent s0 = [�0 	 ϕ0], we define a game G(s0) between two
players, Refuter, who intends to refute s, and Challenger. Let n be the length
of s0 and d the quotation depth QD(s0). Notice that the number of s0-native
formulas is ≤ n.

Phase 0. Refuter starts the game by guessing a sequent s1 = [�1 	 ϕ1] such
that �1 ⊇ �0 and ϕ1 = ϕ0; Refuter claims that s1 is self-refuting.

Winning condition. For any k > 0, the state of the game after phase k − 1
(unless the game terminated earlier) is given by a sequent sk = [�k 	 ϕk]. The
game continues further provided the following conditions are satisfied.

R1 � ∈ �k, and ϕ /∈ �k, and every formula in �k is sk−1-native.
R2 If x ∧ y is in �k then both x and y are in �k.
R3 If x, y are in �k and x ∧ y is sk-native then x ∧ y is in �k.
R4 If x is in �k and x → y is in �k then y is in �k.
C1 There is an sk native potent formula outside of �k.

Otherwise the game terminates. If at least one of conditions R1–R4 fails, then
Challenger wins. If conditions R1–R4 hold but condition C1 fails, then Refuter
wins.

Phase number k > 0. In state given by sequent sk = [�k, ϕk], Challenger
chooses a potent sk-native formula z outside of �k.
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Case z = (x → y). Refuter guesses a sequent sk+1 = [�k+1 	 y] with �k+1 ⊇
�k ∪ {x}.

Case z = (p said y). Let � be the set of formulas x such that formula p said x
belongs to �k. Refuter guesses a sequent sk+1 = [�k+1 	 y], where �k+1 consists
of formulas native to � ∪ {y} and �k+1 ⊇ �.

Case z = (p implied y). Let � be the set of formulas x such that either
(p said x) or (p implied x) belongs to �k. Refuter guesses a sequent sk+1 =
[�k+1 	 y], where �k+1 consists of formulas native to � ∪ {y} and �k+1 ⊇ �.

That completes the description of the game.
Termination. The game terminates in at most 1 + (d+ 1)n phases. Indeed, at

every phase k, where Challenger chooses a said-formula or implied-formula, we
have QD(sk+1) < QD(sk). Thus there can be at most d such cases. Every stretch
of phases where Challenger chooses implications can contain at most n phases
as at each such phase the set of hypotheses, grows but there can only be ≤ n
hypotheses, as there are only ≤ n s0-native formulas. The only exception is the
very first stretch, because the set of hypotheses may not grow during the very
first phase.

LEMMA 4.2.
1. If s0 is refutable then Refuter has a winning strategy in G(s0).
2. If s0 is valid then Challenger has a winning strategy in G(s0).

PROOF. (1) Assuming that s0 = [�0 	 ϕ0] is refutable, we construct a winning
strategy for Refuter. At phase 0, Refuter chooses �1 to be the least s0-native
theory that includes �0, and he chooses ϕ1 = ϕ0 so that sequent s1 = [�1 	 ϕ1]
is self-refuting.

Suppose that k > 0, phase k− 1 has been executed, the current sequent sk is
self-refuting, the game continues, and Challenger chose a formula z. We show
that Refuter can reply with a self-refuting sequent sk+1 = �k+1 	 ϕk+1 whose
form depends on the form of z. But first notice that sk is not valid because it is
self-refuting and condition R1 holds. Let K be the counter-model constructed
in the proof of Theorem 3.2 with sk playing the role of s. Since sk is self-refuting,
�k is an sk-native theory and thus a world in K.

Case z = (x → y). Since (x → y) does not belong to sk-native theory �k, there
is a world �k+1 ⊇ �k in K that contains x but not y. The desired sk = [�k+1 	 y].

Case z = (p said y). Let � be as in the definition of phase k > 0. Taking
into account the rule (Said) of calculus NDF for full infon logic, we see that
sequent t = � 	 y is unprovable. The desired �k+1 is the least t-native theory
that includes � and the desired ϕk+1 = y.

Case z = (p implied y) is similar to the previous one.
(2) Suppose that s0 is valid and thus provable in calculus NDF for full infon

logic. We construct a winning strategy for Challenger. Suppose that k > 0,
phase k − 1 has been executed and the current sequent sk is provable. If at
least one of the clauses R1–R4 in the winning definition fails, then Challenger
wins. Suppose that all four clauses hold. We show that Challenger can choose a
potent sk-native formula in such a way that every legal response sk+1 of Refuter
is provable.
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Since sk is provable and condition R1 holds, �k is not closed under sk-native
deduction. Hence there exist sk-native formulas ψ outside of �k such that se-
quent [�k 	 ψ] is provable in NDF. Challenger should choose a formula z among
such formulas ψ , subject to an additional constraint. The proof P of sequent
t = [�k 	 z] should be the minimal possible. Clearly t is not an axiom of NDF.
Let R be the inference rule used to obtain t in P. Taking into account that con-
ditions R2–R4 hold, R cannot be (Premise Inflation), (∧E), (∧I), or (→E). We
consider the remaining cases. In all those remaining cases formula z, chosen
by Challenger, is potent.

Case R = (→I), so that z has the form x → y. Refuter guesses a sequent
sk+1 = [�k+1 	 y] with �k+1 ⊇ �k ∪ {x}. But the premise of (our application of) R
is sequent �k, x 	 y, so sk+1 is provable.

Case R = (Said), so that z has the form p said x. Let � be as in the definition
of phase k. Refuter guesses a sequent sk+1 = [�k+1 	 y], where �k+1 consists of
formulas native to �∪{y} and �k+1 ⊇ �. But the premise of R is sequent � 	 y;
sk+1 is provable.

Case R = (Implied) is similar to the previous one.

Thus the question of whether a given sequent s0 is valid or refutable
can be decided in alternating polynomial time. That concludes the proof of
Theorem 4.1.

5. HILBERT-TYPE CALCULUS FOR PRIMAL INFON LOGIC

The rest of this article is devoted to primal infon logic. Let told, with
or without a subscript, range over {implied, said}. A string π of the form
q1 told1 q2 told2 . . . qk toldk is a quotation prefix; the length k of π may be
zero. Let pref with or without a subscript range over quotation prefixes. If x is
a formula:

q1 told1 q2 told2 . . . qm toldm y,

where y is a variable, conjunction, or implication then every quotation prefix
(q1 told1 q2 told2 . . . qk toldk) with k ≤ m is a quotation prefix of x so that
(q1 told1 q2 told2 . . . qm toldm) is the maximal quotation prefix of x.

We say that pref1 is dominated by pref2 and write pref1 ≤ pref2 if pref1
is obtained from pref2 by replacing some (possibly none) occurrences of said
with implied.

CALCULUS H
Axioms. pref �;

Inference rules.

(Pref Deflation)
pref2 x
pref1 x

; where pref1 ≤ pref2;

(Pref ∧E)
pref (x ∧ y)

pref x
pref (x ∧ y)

pref y
;
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(Pref ∧I)
pref x pref y

pref (x ∧ y)
;

(Pref →E)
pref x pref (x → y)

pref y
;

(Pref →I)
pref y

pref (x → y)
.

5.1 Soundness and Completeness

Calculus H is sound and complete with respect to the Kripke semantics for
primal logic. Recall the natural deduction calculus NDP of Section 2.2 for primal
infon logic.

THEOREM 5.1 (SOUNDNESS AND COMPLETENESS).
For every sequent s = [� 	 ϕ], the following claims are equivalent.

(1) s is derivable in NDP.
(2) s is valid.
(3) ϕ is derivable from � in H.

PROOF. (1) and (2) are equivalent by Theorem 3.2. It suffices to prove that
(4) implies (1) and (1) implies (4).

(4) implies (1). By induction on a given derivation of ϕ from � in H, we
prove � 	 ϕ in NDP. If ϕ is an axiom pref � of H, start with the axiom � of
NDP; repeatedly apply rules (Said) or (Implied) to obtain sequent ∅ 	 (pref �);
then repeatedly apply (Premise Inflation) to obtain sequent � 	 pref �. If ϕ

is a hypothesis, use axiom (x2x) of NDP and then repeatedly apply (Premise
Inflation). Otherwise several cases arise according to the last step in the given
derivation of ϕ. We consider only the case when rule (Pref→E) was applied at
the last step; other cases are similar. By the induction hypothesis, � 	 pref x
and � 	 pref(x → y) are provable. By Lemma 2.3, it suffices to prove the
sequent:

�, pref x, pref (x → y) 	 pref y.

Start with an obviously provable sequent x, (x → y) 	 y and apply rules (Said),
(Implied) to obtain sequent:

pref x, pref (x → y) 	 pref y;

and then repeatedly apply (Premise Inflation).

(1) implies (4). By induction on a given proof P of sequent s = [� 	 ϕ] in
NDP, we construct a derivation of ϕ from � in H. The base case, where s is an
axiom, is obvious. Otherwise several cases arise according to the last step in P.
We consider here only two cases.
(→E). Suppose that rule in the last step of P is implication elimination. By
the induction hypothesis, there exist derivations of x and x → y from � in H.
It remains to apply rule (Pref→E) with the empty prefix.
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(Implied). Suppose that rule (Implied) was applied in the last step of P, so that
� has the form (q said �1) ∪ (q implied �2), and ϕ has the form q implied ϕ0.
By the induction hypothesis, there is a derivation D of ϕ0 from �1 ∪ �2 in H.
Without loss of generality, D has the form:

�1,�2, Tail,

so that first �1 formulas are listed, then �2 formulas are listed, and then the
remaining tail formulas z are listed. Let D′ be:

q implied �1, q implied �2, q implied Tail.

D′ is a derivation of ϕ from (q implied �1)∪ (q implied �2) in H. Indeed, if a tail
formula z of D is an axiom or is obtained from earlier members of D by means
of a rule R then (q implied z) is an axiom or is obtained from the corresponding
members of D′ by rule R. But formulas q implied �1 follow from q said �1.

5.2 Local Derivations

Calculus H does not have the subformula property.

Example. Hypotheses

p said x, p said (x → y), p said (y → z)

entail p said z. Indeed, the first two hypotheses entail formula p said y; that
formula and the third hypotheses entail p said z. That derivation and indeed
all derivations of p said z from the hypotheses contain formula p said y, which
is not a subformula of the hypotheses or the conclusion.

To remedy the absence of the subformula property we will introduce the notion
of formulas local to a set of formulas and we will prove the following. If � yields
ϕ, then there is a derivation of ϕ from � that uses only formulas local to � ∪{ϕ}.

It will be convenient to view derivations as follows. A derivation D of a
formula ϕ from hypotheses � as a finite quasi ordered set of items where each
item i is a pair: a formula F(i) and a witness W(i) that justifies F(i). The witness
W(i) may indicate that F(i) is an axiom or hypothesis. Alternatively, W(i) may
specify one or two preceding items (the premise items for i) and an inference
rule R(i) that produces F(i) from the formulas of the premise items. The rule
R(i) could be a prefix deflation rule, an introduction rule, or an elimination rule;
the item i is called a deflation item, an introduction item, or an elimination
item, respectively. And there is an item i in D such that F(i) is ϕ.

Definition 5.2 (Formula domination). A formula x dominates a formula y
if there is a formula z such that x = pref1 z and y = pref2 z for some pref1 ≥
pref2. A set � of formulas dominates a formula y if some formula x in �

dominates y.

Definition 5.3 (Components). The components of a formula z are defined by
induction:

—z is a component of z,
—if pref (x ∧ y) is a component of z then pref x and pref y are components of

z, and
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—if pref (x → y) is a component of z then pref x and pref y are components
of z.

The components of a set � of formulas are the components of the formulas
in �.

COROLLARY 5.4 (COMPONENTS). If x is a component of z then p told x is a
component of p told z.

Definition 5.5 (Local). A formula x is local to a formula z if it is dominated
by a component of z. Formula x is local to a set � of formulas if it is local to a
formula in �.

LEMMA 5.6. Let � contain every �-local formula derivable from �. If � yields
a formula ϕ then there is a derivation of ϕ from � that does not use elimination
rules.

PROOF. We prove the theorem by induction on the number ε of elimination
items in the given derivation D of ϕ from �. The base case ε = 0 is obvious.
Suppose that ε > 0 and pick an earliest elimination item �.

Case 1. R(�) is an implication elimination rule. Then R(�) has the form:

pref x pref (x → y)

pref y
.

Let k be the premise item with F(k) = pref (x → y). Item k may or may not
be a deflation item. In either case, there is a chain j0, . . . , jn of items such that
j0 is not a deflation item, each jm+1 is a deflation item with premise jm, and
jn = k. If k is a deflation item, then n > 0; otherwise n = 0. In either case
F( j0) = pref′ (x → y) for some pref′ ≥ pref.

F( j0) is not an axiom. If F( j0) ∈ � then F(k) ∈ � because � contains all
�-local formulas derivable from �. But F(�) is a component of F(k) and so is
local to �; therefore F(�) ∈ �, and the claim is obvious. So we may assume that
F( j0) /∈ �. By the choice of �, j0 is not an elimination item. By the construction,
j0 is not a deflation item. Thus j0 is an introduction item. Taking into account
that F( j0) = pref′ (x → y), we have:

R( j0) = pref′ y

pref′ (x → y)
.

Modify R(�) to pref′ y
pref y . This decreases the number of elimination items and leaves

the proof valid.

Case 2. R(�) is a conjunction elimination rule. Then R(�) has the form
pref (x∧y)
pref x or the form pref (x∧y)

pref y . We consider only the second subcase; the first
subcase is similar. Let k be the premise item with F(k) = pref (x ∧ y), and let
a chain j0, . . . , jn be as in Case 1, so that F( j0) = pref′ (x ∧ y) for some pref′ ≥
pref.
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As in the previous case, j0 has to be an introduction item. Taking into account
that F(k) = pref (x ∧ y), we have:

R( j0) = pref′ x pref′ y
pref′ (x ∧ y)

.

Modify R(�) to pref′ y
pref y . This decreases the number of elimination items and leaves

the proof valid.

LEMMA 5.7. Let � contain every �-local formula derivable from �. If � yields
a formula ϕ, then there is a derivation of ϕ from � and possibly some axioms by
means of introduction rules only.

PROOF. For brevity, derivations from � and possibly some axioms, will be
called derivations from �+. For every derivation D, the depth of an item k is the
length d of the longest chain j0, . . . , jn, where every predecessor is a premise
item for the successor. In addition, the depth of D itself is the maximal depth
of its items.

By Lemma 5.6, we may assume that the given derivation D of ϕ from �+

uses no elimination rules. Without loss of generality, D has a unique deepest
item � and F(�) = ϕ. We prove the lemma by induction on the depth d of D. The
base case d = 1 is obvious. Suppose that d > 1. Two cases arise.

Case 1. � is an introduction item. By the induction hypothesis, for every
premise item k for � there is an introduction-only derivation of F(k) from �+. It
follows that there is an introduction-only derivation of ϕ from �+.

Case 2. � is a deflation item. Let k be the premise item for � so that F(k)
dominates ϕ. If F(k) is an axiom, then so is ϕ, and the claim is obvious. Suppose
that F(k) is a hypothesis. Then ϕ is local to �. Recall that � contains all �-local
formulas derivable from �. Hence ϕ ∈ �, and the claim is obvious. So we may
assume that F(k) is neither axiom nor hypothesis. Since D has no elimination
rules, R(k) is a deflation or introduction rule.

If R(k) is a deflation rule and j is the premise item for k, then F( j) dominates
F(k), which dominates ϕ. Modify W(�) by using j, rather than k, as the premise
item; and then remove item k. This decreases the derivation depth of ϕ. By
the induction hypothesis, there is an introduction-only derivation of ϕ from
�+.

Thus we may assume that R(k) is an introduction rule. If R(k) is implication
introduction, then in terms of formulas only, the final segment of D has the
form:

pref′ y

pref′ (x → y)

pref′ (x → y)

pref (x → y)
.

Modify it to

pref′ y

pref y

pref y

pref (x → y)
.

This reduces Case 2 to Case 1.
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Next suppose that R(k) is conjunction introduction. In terms of formulas
only, the final segment of D has the form:

pref′ x pref′ y

pref′ (x ∧ y)

pref′ (x ∧ y)

pref (x ∧ y)
.

Modify it to:

pref′ x

pref x

pref′ y

pref y

pref x pref y

pref (x → y)
,

so that introduction item k is replaced with two deflation items of the same
depth d−1, and � becomes an introduction item of depth d. This reduces Case 2
to Case 1.

Note that the axioms and hypotheses used in the introduction-only proof of
ϕ are components of ϕ.

THEOREM 5.8 (NORMAL FORM). If � yields ϕ and �∗ is the set of �-local for-
mulas derivable from �, then there is a derivation of ϕ from �∗ and possibly
some axioms by means of introduction rules only.

Q: I noticed something. There is a stronger normal form. Narrow the defini-
tion of components by modifying the last clause to this: if pref (x → y) is a
component of z then pref y is a component of z. Do not require that pref x is
also a component of z. Lemmas 5.6 and 5.7 as well as Theorem 5.8 remain
true. The proofs require no changes whatsoever.

Let me reformulate that. Define precomponents of a formula z exactly
as you defined the components of z except that the last clause is this: if
pref (x → y) is a precomponent of z then pref y is a precomponent of z. Say
that a formula x is prelocal to a formula z if it is dominated by a precompo-
nent of z. Then you have the following stronger normal form theorem.

THEOREM. If � yields ϕ and �∗ is the set of formulas derivable from � and
prelocal to the formulas of �, then there is a derivation of ϕ from �∗ and
possibly some axioms by means of introduction rules only.

A: You are right. However, the notion of prelocal formulas has a drawback.
It is possible that � yields ϕ but every derivation of ϕ from � contains a
formula that is not prelocal to � ∪ {ϕ}. For example, let x, y, z be distinct
infon variables and � consist of x, y, and (x ∧ y) → z. Then � yields z but
every derivation of z from � uses formula x ∧ y that is not pre-local to �.

Definition 5.9 (Local Proofs). A derivation D of ϕ from � is local if all item
formulas in D are local to set � ∪ {ϕ}.

LEMMA 5.10. If � yields a formula ϕ that is local to �, then there is a local
derivation of ϕ from �.

PROOF. We prove the lemma by induction on the number of nonlocal (to �)
items i in the given derivation of ϕ from �. If all items are local, we are done.
Suppose that there are nonlocal items. Define the weight of an item i to be the
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number of the occurrences of propositional connectives in the formula F(i). Let
w be the weight of the heaviest nonlocal item. Pick a latest nonlocal item k of
weight w.

First consider the case where F(k) is an axiom. Then w = 0, and all items
of positive weight are local. If no items use k as a premise item then remove
k, and we are done. Otherwise let � range over items that use k as a premise
item. If � is an elimination item, R(�) is implication elimination, and F(k)
is the minor premise of F(�). The corresponding major premise is of positive
weight and thus local to �. But then k is local to �, which is impossible. If �

is an introduction item, then � is of positive weight and thus local. But then
k is local, which is impossible. Thus every � is a deflation item so that every
F(�) is an axiom. Modify every W(�) so that the justification for F(�) is that
it is an axiom. After that we can remove k, reducing the number of nonlocal
items.

Assume that F(k) is not an axiom. Since k is nonlocal, F(k) is not a hypothesis.
Hence there is a rule R(k). It may or may not be a deflation rule. In either case,
there is a chain j0, . . . , jn of items such that j0 is not a deflation item, each jm+1

is a deflation item with premise jm, and jn = k. Here n can be zero. Formula
F( j0) cannot be an axiom; otherwise F(k) would be an axiom. F(k) cannot be
a hypothesis; otherwise F(k) would be local, which is not the case. Thus there
is a rule R( j0). That rule cannot be an elimination rule; otherwise one of its
premises would be a nonlocal formula heavier than F(k). Thus R( j0) is an
introduction rule.

We consider only the case where R( j0) is an implication introduction so
that it has the form pref1 y

pref1 (x → y) . Accordingly R(k) is pref2 (x → y) for some
pref2 ≤ pref1. Let � range over the items that use k as a premise item for �.
In particular R(�) exists. Since k is a heaviest nonlocal item, � cannot be an
introduction item. Since k is a latest item of weight w, R(�) cannot be a deflation
rule. Thus R(�) is an elimination rule. Taking into account the form of F(k), the
rule R(�) is implication elimination. Taking into account that k is a heaviest
item, F(k) is the longer premise in R(�). Thus R(�) has the form:

pref2 x pref2 (x → y)

pref2 y
.

Modify R(�) to pref1 y
pref2 y . In other words, ignore k and use j0 as the premise item.

When this is done for all �, item k can be removed.

Theorem 5.8 and Lemma 5.10 give the following theorem.

THEOREM 5.11 (LOCAL PROOFS). If � yields ϕ then there is local derivation of
ϕ from �.

Q: Do you really need local formulas in addition to the components of �∪{ϕ}?
Maybe there is a derivation of ϕ from � that uses only the components
whenever ϕ is derivable from �.
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A: Here is a counter example to your conjecture. Let x, y, z, be distinct infon
variables, and let � consist of formulas:

p implied x, p said (x → y), p said (y → z).

Formula ϕ = (p implied z) is derivable from � but any derivation of it from
� involves local formula (p implied y) that is not a component of � ∪ {ϕ}.
Furthermore, if y is not a variable and y = (q said y′), then any derivation
of ϕ from � involves a quotation prefix (p implied q said) that is not a prefix
of any component.

Andreas Blass noticed the following corollary.

THEOREM 5.12 (INTERPOLATION). If � yields ϕ, then there is a set � of formulas
that are simultaneously local to � and local to ϕ, and such that, (1) there is a
derivation of every � formula from � using only formulas local to Gamma, and
(2) there is a derivation of ϕ from � using only formulas local to ϕ.

PROOF. Suppose that � yields ϕ, and let �∗ be the set of �-local formulas
derivable from �. By Theorem 5.8, there is an introduction-only derivation D
of ϕ from �∗ and possibly some axioms. The desired � consists of item formulas
F(i) in D, where i is a hypothesis in D according to the justification W(i).

Every x ∈ � is local to � and thus, by Theorem 5.11, there is a derivation
of x from � that uses only formulas local to �. Since D is introduction-only, it
uses only formulas local to ϕ.

6. PRIMAL INTUITIONISTIC LOGIC

To logicians, primal intuitionistic (or constructive) logic may be of interest in its
own right. In this connection, in Section 6.1, we specialize the relevant results
of the previous section to the case of primal intuitionistic logic. In Section 6.2 we
construct a linear time algorithm for the multiple derivation problem (defined
in Section 6.1) for primal intuitionistic logic. The algorithm will be generalized
in the next section. For brevity, primal intuitionistic logic will be called PCL,
which is an allusion to “Primal Constructive Logic.”

6.1 Syntax and Semantics

PCL formulas are built from variables and constant � by means of conjunction
and implication. A PCL natural deduction calculus is obtained from the natural
deduction calculus for primal infon logic by removing inference rules (Said) and
(Implied):

Axioms.

(�) 	 �
(x2x) x 	 x

Inference rules.

(Premise Inflation)
� 	 y

�, x 	 y
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(∧E) � 	 x ∧ y
� 	 x

� 	 x ∧ y
� 	 y

(∧I) � 	 x � 	 y
� 	 x ∧ y

(→E)
� 	 x � 	 x → y

� 	 y

(→IW)
� 	 y

� 	 x → y

(Trans)
� 	 x, �, x 	 y

� 	 y

Kripke structures for PCL are triples (W,≤, C) subject to conditions K1–K5
in Section 2.1 and condition K6W in Section 2.2. Theorem 3.2 holds for PCL:
for every PCL sequent s the clauses 1–4 are equivalent.

A Hilbert type calculus HPCL for PCL is a simplification of calculus H of the
previous section:

Axiom. �
Inference rules.

(∧e) x ∧ y
x

x ∧ y
y

(∧i) x y
x ∧ y

(→e)
x x → y

y

(→i)
y

x → y

The Soundness and Completeness Theorem 5.1, the Normal Form
Theorem 5.8 and the Local Proofs Theorem 5.11 remain valid. In the case
of primal constructive logic, the components of a formula z are exactly the
subformulas of z.

6.2 Linear Time Theorem for Primal Constructive Logic

THEOREM 6.1. There is a linear time algorithm for the multiple derivability
problem for primal constructive logic. Given hypotheses � and queries Q, the
algorithm determines which of the queries in Q follow from the hypotheses �.
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PROOF. Formulas local to �∪ Q will be simply called local. By Theorem 5.11,
we may restrict attention to derivations where all formulas are local. The idea
is to compute all local (to � ∪ Q) consequences of �. This is obviously sufficient.

Without loss of generality we may assume that � does not occur in � ∪ Q. It
follows that � does not occur in any local formula. Let n be the length of the
input sequence �, Q. The key K(y) of a local formula y is the position of the first
symbol of the first occurrence of y in the input sequence.

Parse tree. Run a parser on the input string producing a parse tree. The
subtrees of the hypotheses and the queries hang directly under the root. Each
node of the parse tree has a label that is, or represents (according to the lexical
analyzer), a variable or connective. The label length is O(log(n)) due to the
lexical analysis phase of parsing. Extra tags mark hypotheses and queries;
such a tag is not a part of the official label.

By induction, define the locutions L(u) of nodes u. If u is a node with children
u1, . . . , uk, then:

L(u) = Label(u)(L(u1), . . . , L(uk)).

The locutions are being introduced for use in our analysis of the algorithm; the
algorithm will not have the time to produce all the locutions.

Each node u is associated with a particular occurrence of L(u) in the input
string. The initial position of L(u) in the input string is the key K(u) of u. Nodes
u and v are homonyms if L(u) = L(v). A node with the least key in its homonymy
class is a homonymy original. A homonymy original u represents the locution
L(u); its key is the key of the locution. We presume that the nodes u come with
homonymy pointers H(u) initially set to nil.

Homonymy originals. Run the Cai-Paige algorithm [Cai and Paige 1995] on
the parse tree. The algorithm partitions the (keys of) nodes u into buckets B�

according to the height � of u, that is the height (or depth) of the subtree rooted
at u. Furthermore, every bucket is ordered according to the lexicographic order
of locutions L(u). Note that two homonyms have the same height and thus
belong to the same bucket. Homonyms are ordered according to their keys.
The Cai-Paige algorithm sets every homonymy pointer H(u) to the homonymy
original of u. This wonderful algorithm runs in linear time.

Preprocessing. Create a table T of records indexed by the homonymy origi-
nals u such that L(u) is a formula. A record T (u) has five fields. One of them is
the status field S(u) with values in the set {1, 2, 3}. The status field is dynamic;
its value may change as our algorithm runs. All other fields are static; once
created their values remain immutable.

The status field S(u) determines the current status of the formula L(u).
Formulas of status 1, 2, 3 will be called raw, pending, processed, respectively.
A raw formula has not been derived. A pending formula has been derived but
remains a subject of some processing. A processed formula has been derived
and processed. Initially every S(u) = 1. Traverse the parse tree setting the
status S(u) to 2 if L(u) is tagged as a hypothesis.

The static fields of the record T (u) are (∧, left), (∧, right), (→, left), and
(→, right). Each entry in these fields is a sequence of (the keys of) nodes. To
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compute those sequences, traverse the parse tree in the depth-first manner. If
the current node v is the left child of a node v′ with label “∧” then append H(v′)
to the (∧, left) sequence of H(v) and move on. The cases where v is the right
child of v′ or the label of v′ is → or both are treated similarly.

Processing. Walk through the table T and process every pending formula
L(u) in turn. When the processing of L(u) is finished do the following.

—Set S(u) = 3, indicating that L(u) is processed.
—If u is tagged as a query, then output K(u).

The processing consists of firing, one after another, the inference rules ap-
plicable to L(u).

Rule (∧e) requires that L(u) has the form x ∧ y. If any of the formulas x, y, is
raw, make it pending. More exactly, let u1, u2, be the left and right children of
u. If S(H(ui)) = 1, set S(H(ui)) = 2.

Rule (∧i) may be applied in two ways depending on whether we view L(u) as
the left or right premise of the rule. The two cases—call them the left and right
cases—are similar; we describe here only the left case, where L(u) is the left
conjunct x of a formula x ∧ y. For any such y that has been derived but x ∧ y is
still raw, make x ∧ y pending. More exactly, for every v in the (∧, left) sequence
of T (u) do the following. Note that L(v) = L(u) ∧ L(w) where w is the right child
of v. If S(H(w)) > 1 and S(v) = 1, set S(v) = 2.

Rule (→e) may be applied in two ways depending on whether we view L(u)
as the left or right premise of the rule. This time around the two cases—call
them the left and right cases—are quite different. The left case is similar to the
left case in the application of rule (∧i). For every v in the (→, left) sequence of
T (u) do the following. Note that L(v) = L(u) → L(w) where w is the right child
of v. If S(v) > 1 and S(H(w)) = 1, set S(H(w)) = 2. The right case requires that
L(u) has the form x → y. If x has been derived and y is raw, make y pending.
More exactly, let u1, u2 be the left and right children of u. If S(H(u1)) > 1 and
S(H(u2)) = 1, set S(H(u2)) = 2.

Rule (→i) has only one premise y = L(u). Any raw formula of the form x → y
becomes pending. More exactly, for every v in the (→, right) sequence of T (u)
do the following. Note that L(v) = L(w) → L(u), where w is the homonymy
original of the left child of v. If S(v) = 1, set S(v) = 2.

This completes the algorithm.

Proof of correctness. Note that every pending formula becomes processed.
Obviously only provable formulas become pending. To prove the correctness of
the algorithm, it suffices to prove that every provable formula L(v) becomes
pending. We do that by induction on the proof length of L(v). If L(v) is a hy-
pothesis, it becomes pending when the table is formed. Otherwise several cases
arise depending on the rule used at the last step of the given proof of L(v). All
cases are pretty obvious. We consider just one of those cases.

Case (∧i) is where L(v) = x ∧ y and x, y have been derived earlier. By sym-
metry we may assume without loss of generality that x became pending first.
Formula y is L(u) for some u. But then v occurs in the (∧, right) sequence of
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T (u). Accordingly L(v) becomes pending as a result of applying the right case
of rule (∧i) in the processing of L(u).

Time complexity. It remains to check that the algorithm is indeed linear
time. Obviously the parse-tree and table stages are linear time. The only ques-
tion is whether the processing stage is linear time. Instead we claim something
else. Note that the processing of a pending formula L(u) is done in a fixed finite
number of phases. At each phase, we make some number k(u) of attempts to
apply a particular inference rule viewing L(u) as one of the premises. Each at-
tempt takes bounded time. The number of attempts is not bounded. It suffices
to prove, however, that

∑
u k(u) = O(n).

The proof is similar for all phases. Here we consider only the phase when
we attempt to apply rule (∧e) with L(u) as the left premise x. In this phase
the number k(u) is the length of the (∧, left) sequence of u. But the (∧, left)
sequences for distinct records are disjoint. And so

∑
u k(u) ≤ n.

7. LINEAR TIME THEOREM FOR PRIMAL INFON LOGIC

We return to primal infon logic. We will be working with fragments of the
Hilbert-type calculus H for primal infon logic. To recall H, see Section 5.

In Section 4 we gave the obvious definition of the quotation depth of formulas.
In the case of primal infon logic, another definition of quotation depth is more
pertinent.

Definition 7.1 (Primal quotation depth). The primal quotation depth of for-
mulas is defined by induction:

—δ(x) = 0 if x is a variable.
—δ(p told x) = 1 + δ(x).
—δ(x ∧ y) = max{δ(x), δ(y)}.
—δ(x → y) = δ(y)

Further δ(�) = maxx∈� δ(x) for any set � of formulas.

Recall Definition 1.1 of the multiple derivability problem MD(L) for a logic L.

THEOREM 7.2. For every natural number d, there is a linear time algorithm
for the multiple derivability problem for primal infon logic restricted to formulas
z with δ(z) ≤ d.

Q: The definition of primal quotation depth is strange. The clause
δ(x → y) = δ(y) ignores δ(x). If foo is a quotation-free formula then
δ((p said q said foo) → foo) = 0. The formula involves quotation but
its primal quotation depth is zero.

A: Well, the strange definition makes the theorem stronger.

Q: Does the additional strength matter?

A: It does. For example it allows us to interpret authorization logic
SecPAL [Becker et al. 2007] in the stratum of depth ≤ 2 of primal infon
logics [Gurevich and Neeman 2009].
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7.1 Reduction to Main Lemma

Definition 7.3 (Regular). A formula x is regular if it has no occurrences of
�. A derivation is regular if all its formulas are regular. R is the fragment of H
obtained by removing � from the language and removing the axioms from the
calculus.

Two formulas are equivalent if each of them entails the other in primal infon
logic.

LEMMA 7.4. (1) For any formula z there is an equivalent formula z′ that is
either an axiom or regular.
(2) There is a linear time algorithm that, given a formula z, computes the equiv-
alent formula z′.
(3) Any local derivation of a regular formula from regular hypotheses is regular.
(4) There is a linear-time reduction of MD(H) to MD(R).

PROOF. (1) Easy induction on z. We consider only the case z = x → a in
the induction step, where a is an axiom. In that case z′ may be a. Indeed z 	 a
because a is an axiom, and a 	 z by (Pref→I).
(2) Execute the regularization algorithm implicit in the proof of 1. One ap-
propriate data structure is parse tree. Even if z is given as a string, in linear
time you can construct the parse tree of z and then execute the regularization
algorithm.
(3) By the definition of local derivation.
(4) Apply the regularization algorithm to the hypotheses and queries. If a mod-
ified hypothesis is an axiom, remove it. If a modified query is an axiom, mark
it derivable and remove it.

LEMMA 7.5. Theorem 5.1 remains true if sequent s is assumed to be regular
and if H is replaced with R.

PROOF. The proof of Theorem 5.1 needs only two minor modifications, in
fact simplifications. In the proof that (4) implies (1), ignore the case where ϕ is
an axiom of H. Similarly, in the proof that (2) implies (4), in the proof that D′

is a derivation, ignore the case where the tail formula z is an axiom of H.

LEMMA 7.6. (1) For any inference rule in R, the primal quotation depth of
the conclusion is bounded by the primal quotation depth of the premise(s).
(2) If � entails ϕ in R, then δ(ϕ) ≤ δ(�).
(3) The restriction Rd of R to formulas z with δ(z) ≤ d is a calculus in its own
right; all inference rules of R produce formulas in Rd when applied to formulas
in Rd.

PROOF. Claim (1) is obvious, but note that the unusual clause δ(x → y) =
δ(y) in the definition of primal quotation depth is used in the case of rule (Pref
→I). Claims (2) and (3) are obvious as well.

MAIN LEMMA 7.7. For every natural number d, there is a linear time algo-
rithm for the multiple derivation problem MD(Rd) for Rd.
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Clearly Theorem 7.2 follows from Main Lemma. We prove Main Lemma in
the next subsection.

7.2 Proof of Main Lemma

Given a positive integer d, we construct a linear time algorithm for MD(Ld)
by modifying the linear-time algorithm of Section 5. Recall that told with or
without a subscript ranges over {said, implied}, and pref with or without a
subscript ranges over quotation prefixes q1 told1 . . . qk toldk, where k is the
length of pref. We say that a quotation prefix is relevant if its length is ≤ d.

Parsing. Parse the input as in Section 6.2 except that now we have addi-
tional labels p told. There is a problem, however. In Section 6.2, every local
formula was the locution L(u) of some node u of the parse tree. Now it is not
necessarily the case. To remedy the situation, we graft extra nodes into the
parse tree. This is not the optimal remedy but it simplifies the exposition.

By induction on nodes u, define pref(u). If u is the root, then pref(u) is empty.
Suppose that v is the parent of u. If the label of v is of the form p told then
pref(u) is pref(v) appended with the label of v; otherwise pref(u) = pref(v).
Let C(u) be the formula pref(u) L(u). It is easy to check that every C(u) is a
component and that every component is C(u) for some u. Call node u relevant
if (1) u is not the root of the parse tree so that L(u) is a formula and (2) pref(u)
is relevant.

The fan F(pref) of a prefix pref is a tree of prefixes. It contains all prefixes
pref′ ≤ pref. Further, it contains a prefix q1 told1 . . . qi toldi of length i if it
contains a prefix q1 told1 . . . qi toldi qi+1 toldi+1 of length i + 1, which is a
parent of q1 told1 . . . qi toldi. Every node in F(pref) has at most two children
and at most one parent. If d = 2, then F(pref) contains at most 7 nodes. Now
turn F(pref) upside down, and let F ′(pref) be the result. Normally our trees
go downward so that the root is at the top. F ′(pref) grows upward.

Traverse the parse tree in the depth-first manner and graft a fresh copy F(u)
of F ′(pref(u)) at every relevant node u. There is a one-to-one correspondence
ξ : F(u) −→ F ′(pref(u)). If v ∈ F(u) and ξ (v) is a prefix q1 told1 . . . qi toldi of
length i > 0, then the label of v is qi toldi and the key of v is the pair:

(Key(u), told1 . . . toldi).

The keys are ordered lexicographically. We do not distinguish between Key(u)
and the pair (Key(u), s), where string s is empty. Every node u of the resulting
parse structure has at most three parents, and the nodes ≤ u form a tree.

Remark 7.8. For every relevant original node u, the formula pref(u) L(u)
is a component of � ∪ Q. If pref ≤ pref(u), then pref L(u) is local. Every local
formula is obtained this way. Thus the parse structure has a node for every
local formula (and for some nonlocal formulas).

Homonymy originals. As in Section 6.2, run the Cai-Paige algorithm on the
parse structure and compute homonymy pointers H(u).
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Preprocessing. Let T1 be the table T constructed in Section 6.2. T1 is a one-
dimensional table of records T1(u) indexed by nodes usuch that u is a homonymy
original. Now, in addition to T1, we construct a sparse two-dimensional table
T2. The rows of T2 are indexed by original nodes u, and the columns are indexed
by relevant prefixes π . If there is a node v with L(v) = π L(u), then T2(u, π ) =
{H(v)}; otherwise T2(u, π ) = ∅. A traversal around the parse structure suffices
to fill in table T2.

Remark 7.9. We graft nodes and then put only some of them into table T2.
This is not the most efficient way to do things. One can forgo grafting, construct
table T2 directly, and refer to the table instead of to grafted nodes in the
following processing. We thought that grafting would simplify the exposition.

Remark 7.10. It is more efficient to combine preprocessing with parsing.

Processing. As in Section 6.2, we walk through the table T and process
every pending formula L(u) in turn. The processing consists of firing, one after
another, the inference rules applicable to L(u). The case of rule:

pref2 x

pref1 x
,

is new. Suppose that L(u) = pref2 x and let pref1 ≤ pref2. The descendant u0

of u with locution x has an ancestor v with locution pref1 x. If H(v) is raw, make
it pending.

As far as the remaining rules are concerned, the situation is similar to that
in Section 6.2. For example, consider the application of the rule:

pref (x ∧ y)

pref x
,

to a formula L(u) = pref(x ∧ y). Find the descendant u0 of u with L(u0) = x ∧ y.
The left child of u0 has an ancestor v with locution pref x. If H(v) is raw, make
it pending.

For a more interesting example, consider the application of rule:

pref x pref y

pref (x ∧ y)
,

to a formula L(u) = pref x. Find the descendant u0 of u with L(u) = x. For each
v in the (∧, left) field of record T1(H(u0)) do the following.

Check the entry T2(v, pref). If it is empty, do nothing. Otherwise let w be the
node in the entry. The locution of v is x ∧ y, and the locution of w is pref (x ∧ y).
Let w0 be the descendent of w with locution x ∧ y. The right child of w0 has an
ancestor w′ with locution L(w′) = pref y. If the status of H(w′) is > 1, so that
pref y has been proved, but the status of w is 1, so that pref (x ∧ y) has not
been proved, then set the status of w to 2; otherwise do nothing.

Correctness and time complexity. The proof of the correctness of the algo-
rithm and the analysis of time complexity of Section 6.2 survive with minor
changes.
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