CONTENT-DEPENDENT CHUNKING FOR DIFFERENTIAL
COMPRESSION,
THE LOCAL MAXIMUM APPROACH

NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

ABSTRACT. When a file is to be transmitted from a sender to a recipient and when the latter
already has a file somewhat similar to it, remote differential compression seeks to determine
the similarities interactively so as to transmit only the part of the new file not already in the
recipient’s old file. Content-dependent chunking means that the sender and recipient chop
their files into chunks, with the cutpoints determined by some internal features of the files, so
that when segments of the two files agree (possibly in different locations within the files) the
cutpoints in such segments tend to be in corresponding locations, and so the chunks agree. By
exchanging hash values of the chunks, the sender and recipient can determine which chunks of
the new file are absent from the old one and thus need to be transmitted.

We propose two new algorithms for content-dependent chunking, and we compare their
behavior, on random files, with each other and with previously used algorithms. One of our
algorithms, the local maximum chunking method, has been implemented and found to work
better in practice than previously used algorithms.

Theoretical comparisons between the various algorithms can be based on several criteria,
most of which seek to formalize the idea that chunks should be neither too small (so that
hashing and sending hash values become inefficient) nor too large (so that agreements of entire
chunks become unlikely). We propose a new criterion, called the slack of a chunking method,
which seeks to measure how much of an interval of agreement between two files is wasted
because it lies in chunks that don’t agree.

Finally, we show how to efficiently find the cutpoints for local maximum chunking.

1. INTRODUCTION

The proliferation of networks such as intranets, extranets, and the internet has led to a large
growth in the number of users that share information across wide networks. However, the amount
of data that is transferred over the networks is still limited by cost and bandwidth constraints. As
a result of limited network bandwidth, users can experience long delays or high costs in retrieving
and transferring large amounts of data across a network.

Fortunately, there are stratagems for reducing the amount of data that must be transmitted.
Data compression algorithms take advantage of the redundancy that is present in many files. They
allow one to transmit not the file itself but information enabling the recipient to reconstruct the
file; because of redundancy, this information may be much shorter than the original file.

In this paper, we are concerned with taking advantage of another frequently occurring situa-
tion, namely that the recipient already has a file similar to the one being transmitted. The idea
here is, of course, to transmit only the new content, not the content that the recipient already
has. Because what is transmitted is just the part of one file that differs from the other, one
calls this compression method “differential compression”. What makes differential compression
non-trivial is that, to implement this idea, one must first decide what part of the file doesn’t need
to be sent, and one must decide this without sending massive amounts of information.

The most favorable situation of this sort arises, for example, in the distribution of software
updates. Here, a client computer can tell a distribution server “Please update my program X
to version 3.1415d]; I currently have version 2.71828.” The distribution server has a copy of the
old version 2.71828, compares it with the new version 3.14159, and sends the client essentially
just the difference between the two [27, 2] 30, 15, [16]. What makes this situation so pleasant is
that the sender knows exactly what file the recipient already has (and that the sender got this
information via a very short message from the recipient). “Local differential compression” refers

IThis choice of version number is used by TEX.

2 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

to this situation where, after the initial message from the recipient, the sender can locally decide
what information needs to be sent. Copious use of local differential compression is found in source
and revision control systems [25] 29], in file systems [19], and in domain specific versions, such
as binary code differencing used for distributing software patches [9] 21].

We shall treat the more difficult situation where the recipient has a file F} that is believed to
be similar to the file F5 to be transmitted, but the exact content of F} is not known to the sender.
We shall discuss some existing protocols and propose new ones for handling this situation, i.e.,
for taking advantage of similarity between F} and F5 to reduce the amount of data being sent.
“Remote differential compression” (RDC) refers to such protocols, where the difference between
the two files cannot be produced by the sender alone but must be determined interactively by
the sender and the recipient. We also suggest a new measure, which we call slack, for comparing
such protocols. And we compare the various protocols using several criteria, including slack.

A comprehensive overview of how chunking is used for RDC, how RDC can be used recursively,
how similar files are identified for RDC, and how RDC can be used within a file replication system
is presented in [28].

All the RDC protocols that we consider involve dividing at least one of the files into segments,
which we call chunks, and computing hash values of these chunks to determine which chunks
are common between the sender’s and the recipient’s files and thus do not need to be sent. The
protocols differ in how the chunks are chosen.

Remark 1. RDC chunking protocols are designed for situations where reasonably large segments
of Fy and Fy agree (but are perhaps in different locations in the two files). Other sorts of similarity
would require other sorts of RDC protocols.

One sort of similarity that may fail to produce agreement of significant chunks occurs in
compilation of programs. Compilers produce binaries with jump statements, where the jump
locations are offsets into the file. These offsets are represented as absolute numbers. As a
result, two almost equal source programs may compile to binaries with differences rather densely
distributed throughout the files.

Something similar happens when files are compressed. Local differences between two files may
result in densely distributed differences between their compressed versions.

Another sort of example arises from different methods of encoding. If a single file is encoded
according to two different schemes, then the two encoded files are certainly similar in an intuitive
sense, but that similarity may not result in any actual agreement between the encoded files.

All these situations are outside the scope of this paper. We are concerned here only with the
use of chunking to detect and exploit agreement between reasonably long segments of two files.

The RSYNC protocol [31] uses the simplest and uniform choice of chunks: the recipient chops
his file into chunks that are all of the same length [(except for the last chunk if [doesn’t divide
the file length). He then sends a weak and a strong, collision resistant checksum (or hash value
— we use the terms interchangeably) of each segment to the sender. The sender traverses his
version of the file, computing weak checksums over a sliding window. The weak checksums are
used in a crude, in-cache filter to find candidates to match the chunks hashed by the recipient.
By using the strong checksums to validate the candidate local file chunks, the sender can then
deduce which chunks the recipient already has and which parts of the file need to be transferred
directly.

Note that, in this approach, it is necessary for the sender to compute weak checksums for all
segments of length [in his file. It would not do for the sender to chop his file into chunks of
length [as the recipient did and to compute checksums only for those chunks. Two files that
differ merely by adding a single character at the beginning would almost surely have no chunks
in common, so the nearly total similarity of the files would be entirely wasted.

The sender thus has to do considerable work, computing the hashes of all length [segments
of the file he wants to send, and comparing the results with the list of hash values obtained from
the recipient.

If a protocol of this sort is to be used repeatedly, to transfer F5 to many recipients, who have
different approximations F}, then the sender must either repeat all this work for each recipient
or else store all the hash-values (considerably more data than the original file F5) and then still
do the comparisons separately for each recipient.

LOCAL MAXIMUM CHUNKING 3

Remark 2. One could try to alleviate these problems by (partially) reversing roles. Let the sender
chop F5 into chunks of fixed size and send weak and strong hashes of these to the recipient. The
recipient computes weak hashes in a sliding window to find chunks that might already be in F}.
After using the strong checksums to confirm the candidates, he asks the sender for those chunks
that he doesn’t already have. Of course, the total amount of work and communication here is
essentially the same as in RSYNC, but if there are many recipients then much of the work is
distributed among them, rather than being completely loaded on the sender. On the other hand,
in many applications, such as updating calendar schedules or mailboxes, the file transfer is, from
the recipients’ point of view, mere overhead, not part of their immediate work. So it may be
inappropriate to assign most of the work to the recipients.

Remark 3. Tt is possible to reduce the communication overhead of the RSYNC protocol by
using multiple rounds [I§]. In the first round, use a relatively large chunk size. If there are
large segments that match, they will be handled during this round. Subsequent rounds use
progressively smaller chunk sizes.

Remark 4. We are concerned in this paper with reducing the communication needed for file
transfer, but in particular applications other considerations may become especially important.
For example, when files are sent to space-constrained devices, standard RSYNC has the drawback
of requiring the receiver to create a fresh copy of the received file. For this situation, an in-place
version of RSYNC is proposed in [24] to reduce the recipient’s storage needs.

The protocols that we treat in this paper, known ones as well as new, proceed differently from
RSYNC in that both the sender and the recipient divide their files into chunks and compute
(strong) checksums for the chunks. To avoid the pitfall described above, where a single character
added to a file can make the chunks entirely different, the chunks in these protocols are not of a
fixed length; rather, the places where the file is to be cut, the chunk boundaries, are determined
by internal features of the files. This is the meaning of “content-dependent chunking”.

The protocols under consideration all proceed according to the following rough outline; details
will be added later. As before, we use F5 to denote the file to be transmitted and F; to denote a
file that is already owned by the intended recipient of F5 and that is believed to have substantial
overlap with F5.

(1) The sender chops F, into chunks and computes a hash value for each chunk.

(2) The recipient does the same for F}.

(3) The sender sends the recipient the hash values for Fy (along with the lengths of the
chunks).

(4) The recipient compares those hash values with the ones he computed for F;. When two
agree, he assumes that the corresponding chunks of F; and F, are the same, so there is
no need for the sender to transmit those chunks of F5.

(5) The recipient tells the sender which of the chunks of F5 need to be sent.

(6) The sender sends those chunks.

Remark 5. We describe in this remark a situation where content-dependent chunking has an
important advantage over protocols like RSYNC that require a sliding window rather than inde-
pendent chunking by the two parties. The situation is that the recipient is believed to have parts
of Fy in some file (or files) somewhere in his system, but it is not known where. In other words,
the recipient doesn’t know which file should be F; (or perhaps he should use several files, each
containing some part(s) of Fy). With a content-dependent protocol, the recipient can prepare
(ahead of time) a list of hashes of all the chunks of all his relevant files. When he gets from the
sender the hashes of the chunks of F5, he compares these with the contents of his list. If one tried
to apply this idea to RSYNC, the recipient would send that whole list to the sender, who would
have to compare everything listed with all the hashes produced in his sliding window. For the
role-reversed variant of RSYNC, the situation is even worse; if the recipient wanted to prepare
a list in advance, it would have to contain all the (weak) checksums of all the contents of the
sliding window in all the relevant files.

Remark 6. The communication cost of content-dependent chunking can be reduced by using a
chunking method recursively as follows [28]. Fix the parameter(s) of the chunking method to

4 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

yield a relatively small chunk size ¢, just large enough to make it worthwhile to compute and send
hashes of such chunks rather than the chunks themselves. Let Chk denote the length of a hash
value. Apply the chunking method to produce a sequence of checksums, whose concatenation we
regard as a new file F(!). On average, ¢ symbols in F are represented by Chk symbols in F(1).
Now apply the chunking protocol to F1), obtaining a new file F(?). On average, Chk symbols
here represent ¢ symbols in F(1, ie., ¢/Chk hash values in F("), and thus ¢?/Chk symbols in
the original F. Repeating the process n times, we get a file F(") each Chk symbols of which
represent, on average ¢"/ Chk™ ™! symbols of F. By choosing the number n of iterations suitably,
we can arrange that each checksum in F(™ represents a rather large chunk of F. Now, to transmit
F, the sender should first send F(™. When a hash value here matches one in the file already
owned by the recipient, a large chunk of F has been transferred. For those hash values in F(™)
that don’t match any of the recipient’s, the sender should next transfer the chunks of F("~1)
that were hashed to produce those values. Continue similarly for n rounds, sending the necessary
chunks from F*) for smaller and smaller k, where “necessary chunks” are those whose hashes
didn’t match any of the recipient’s at the previous round. At the very end, when k has decreased
to zero, send the remaining chunks of the original file F.

This sort of repeated chunking and hashing, converting F into F(!)| then into F(?), and so on,
would not work with a fixed chunk length protocol such as RSYNC. As we saw earlier, addition
of a single character at the start of a file would completely change the checksums in F(1). As a
result, all the later files F*) would also be completely different, and the entire similarity between
the files would be wasted. When one uses RSYNC repeatedly, sending large chunks first and
then smaller ones as in Remark [3] it is necessary to process the whole original file F' for each of
the desired chunk sizes. With content-dependent methods, the files to be processed decrease in
length at each step, by a factor ¢/Chk.

The main difference between the various protocols we consider will be the chunking methods,
i.e, how the files are to be divided into chunks at steps (1) and (2) in the outline above. In step (3),
the sender should provide the lengths of the chunks of F, because these will not be fixed by the
chunking method. He should also provide the locations in Fb of those chunks (their offsets)
if these cannot easily be computed from the lengths (e.g., if the information about different
chunks might be received out of order). Then in step (5), the recipient can efficiently request the
necessary chunks by sending their offsets to the sender.

This somewhat rough description of content-dependent chunking protocols makes some desider-
ata evident. First, the chunks should not be too short. The main reason is that the efficiency
of the protocol depends on sending hash values that are significantly shorter than the chunks
they represent. The hash values cannot be too short, lest accidental coincidences of hash values
lead the recipient to think he already has a chunk when he doesn’t. And the chunks themselves
should be a good deal longer than the hash values; otherwise one might as well send the chunks
themselves (i.e., send all of F) rather than computing and sending hash values.

There are other disadvantages associated with short chunks. One is that strong checksums
have to be re-initialized for each small chunk, so setting up the computation for each strong
checksum has an overhead. More importantly, each checksum is stored in a table and the table
is searched for matches with checksums from the other files. There is a time overhead in storing
and searching checksums.

On the other hand, the chunks should not be too long. With excessively long chunks, there is
a risk that large segments of F; and F» might coincide yet no whole chunk coincides. Then the
protocol would not detect any of the agreement between the two files, and the recipient would
have to request all the chunks (i.e., all of F5) from the sender.

A third desideratum is that similar files should be chopped into chunks at corresponding
locations. Similarity of the files does us no good if the protocol fails to detect the similarity
because the files were chopped into entirely different chunks. It is this requirement that prevents
us from using chunks all of the same length in both files.

We shall describe and analyze a standard content-dependent chunking method, the one used in
the Low Bandwidth File System (LBFS) proposed in [20], and we shall propose and analyze two
new content-dependent chunking methods, called interval filter chunking and local maximum
chunking. The analyses of these methods involve several measures, related to the desiderata

LOCAL MAXIMUM CHUNKING 5

described above. For example, since excessively long chunks and excessively short chunks both
cause problems, it is desirable to keep the variance of the chunk length (on random files) low.
For similar reasons, one may want to reduce the probability of getting chunks a great deal longer
than the average chunk. We also introduce a more precise measure, though unfortunately rather
difficult to compute, the slack of a chunking method, which takes into account not only the
lengths of chunks but also the method’s ability to take advantage of identical segments in files
by putting chunk boundaries in matching places.

Let us say a few words on the history of the RDC project. It was conceived by and executed
during 2003-2005 in the Core File Systems group in the Windows division of Microsoft. The
project was successful, and the technology is widely used in Microsoft products. Results were
reported in technical report [28]. The local-max method was the result of a collaboration of the
Core File Systems group and Microsoft Research. The group performed experiments in order
to evaluate different chunking methods. The local-max method proved to be superior to the
competitors. The question arose whether there were a priori, mathematical reasons behind the
better performance of the local-max method. We conceived this paper as a mathematical account
with a relatively narrow purpose to clarify various issues related to content-dependent chunking.
The narrow purpose is reflected in the title of the paper; the paper is not about the RDC project
in general.

In more detail, the content of this paper is as follows. In Section[2, we present some preliminary
information, including some mathematical tools needed later and some conventions concerning
the files we consider. In Section [3l we introduce a simple probabilistic model of files with partial
agreement, and we use it to define a measure, which we call slack, of the responsiveness of a
chunking method to agreements between the files. That is, once two files start to agree, how
much further in the files must one go until whole chunks agree? Section Ml is devoted to a
description and analysis of point-filter methods, particularly the method used in LBFS [20]. In
Section [} we introduce and study one of our proposed new chunking methods, the interval filter
method. Section [does the same for our second (and better) new method, the local maximum
method. Section [7] is about the probabilities, under various chunking methods, of finding long
intervals without any chunk boundaries. In Section[8 we give an efficient algorithm for finding the
chunk boundaries in the local maximum method. (For the other methods, efficient algorithms are
easy to see, but for the local maximum method this matter is not trivial.) Section [describes an
experimental evaluation of the chunking methods in the context of Microsoft’s RDC protocol. We
also report a few experiments for evaluating chunking methods in isolation. Finally, in Section 10
we indicate connections with other work.

Applicability. Local maximum chunking is used as part of the RDC algorithms included in the
Distributed File System Replication engine that was released as part of Windows Server 2003
R2 []. Tt is also being used as part of the file replication engine underlying Sharing Folders in the
Windows Live Messenger 8.0 [5], and as part of Windows Meeting Space in Windows Vista [7].
The RDC algorithms are furthermore packaged as a stand-alone library that is made publicly
available for application developers [6].

2. PRELIMINARIES

We collect in this section our conventions about files in general and random files in particular.
We also recall some facts from probability theory, including ergodic theory, some formulas that
will be used in our calculations, and some combinatorial information about greedy sequences.
The reader may refer to [I1], [22], and [12] for further information about these topics.

2.1. Files. In the description and analysis of content-dependent chunking protocols, we shall use
the following model of files.

We model a file as a sequence of elements from a finite set PFE of potential file entries. In
reality, the sequence is always finite, its positions being indexed by a segment [0,1 — 1] of the
natural numbers. (It is convenient to start the indexing at 0 rather than 1; we stop at [—1 so that
I denotes the length.) We shall, however, sometimes use infinite sequences, indexed by the set
N of all natural numbers, or even doubly infinite sequences, indexed by the set Z of all integers.

6 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

Infinite and doubly infinite sequences serve as a convenient mathematical approximation to long
finite sequences.

When we use the words “left” and “right”, in connection with the positions in a file, we always
assume the traditional picture of Z; the integers lie on a horizontal line, with the smaller ones to
the left of the larger ones. For example, we would call 0 the left end and [— 1 the right end of
the interval [0,1 — 1].

For our analyses of various chunking methods, we shall assume that the entries of a file are
probabilistically independent and uniformly distributed. That is, if I denotes the index set (a
segment [0,1—1] or N or Z), then we give the space PFE! of files the product measure determined
by the uniform measure on PFE. This means in particular that, if i1, ..., ¢; are distinct elements
of I (i.e., distinct positions in a file), if X7,..., X are subsets of PFE, and if A is the set of
those files F' for which F(i;) € X, for each j (i.e., the entries at the positions i; come from
the corresponding sets X, all other entries being unconstrained), then A has probability (or
measure)

I Gl

PrOb(A) = m,

where | X| means the number of elements in the set X.

For finite I, it follows that any subset A of PFE’ has probability |A|/(|PFE[!!); that is, we
have the uniform distribution on files. For infinite I, the laws of probability theory provide a
unique measure, not for all subsets of PFE! but for all reasonably well-behaved ones (known
as measurable sets or as events). The measurable sets include all the sets that will arise in our
discussion. This measure is also called the uniform measure, just as for finite I, even though it
cannot be defined by simply saying that all individual elements of PFE! have the same probability.
(They do have the same probability, but it is zero, and so it tells us nothing about probabilities
of more interesting events.)

We use standard terminology and notation from probability theory. For example, when A is a
measurable set, we say that a random file has probability Prob(A) of being in the set A. When
this probability is 1, then we say that files are almost surely in A and that almost all files are
in A. We use E(f) for the expectation and Var(f) for the variance of a random variable (i.e., a
measurable, real-valued function on the probability space). We also use the standard notations
Prob(A|B), E(f|B), and Var(f|B) for the conditional probability, expectation, and variance,
conditional on the event B, assumed to have positive measure.

Whether the product measure accurately reflects the actual probabilities of files in the real
world depends on the sort of files under consideration. Highly compressed files are close to random
in our sense, but English text files are not, for two reasons. First, the probabilities of individual
characters are not equal; the letter ¢ occurs far less often than the uniform measure predicts,
while the space occurs far more often. Second, the probabilities at different locations in the file
are not independent; for example, the probability of the letter u is far higher immediately after ¢
than elsewhere. Similarly, spreadsheets tend not to be random, as they often have considerable
periodic content.

Fortunately, experimentation has shown that our protocols, particularly the local maximum
chunking, work well even on common sorts of files, like English text, where our analysis becomes
doubtful because our randomness assumptions fail.

Remark 7. There are rather easy ways of increasing the apparent randomness of a file. Given
a file that is a sequence of symbols from an alphabet ¥ (not our intended alphabet PFE), one
can compute a hash value for each contiguous subsequence of some fixed window size w. The
resulting sequence of hash values constitutes a new file, whose set PFE is the set of all possible
hash values. Because of the hashing, this new file usually looks random even if the original file
did not.

The time needed to compute hash values for all the windows of length w can be reduced by
using a rolling hash function. This means that the hash value for each window except the first
is computed from the hash value h of the immediately preceding window, the first symbol a in
that preceding window (the symbol that is no longer present in the new window), and the last
symbol b in the new window (the symbol that was not in the previous window).

LOCAL MAXIMUM CHUNKING 7

If we assume that the symbols in ¥ can be represented by bit-vectors of length w, then we
can obtain a very simple rolling hash, using bit vectors of length w as hash values, and using the
operations of bitwise exclusive or and rotation on these vectors, as follows. Given the hash value
h for a particular window, given the first symbol @ in that window (which is about to leave the
window), and given the next symbol b after that window (which is about to enter the window),
regard a and b as bit vectors of length w. Compute the hash value of the next window by first
taking the bit-wise exclusive-or h@a@®b and then rotating the resulting bit vector by one position
(the last bit is removed and put in the front). Because the window size w equals the length of
the bit vectors, when the element b that has just entered the window leaves the window w steps
later, the hash vector will have been rotated by one full rotation. So the exclusive-or addition
of b when it entered the window will be exactly canceled by the addition of b when it leaves the
window.

A prime example of a rolling hash, for which the collision probabilities have been thoroughly
analyzed, is the Rabin hash [23] [I7]. Tt is based on arithmetic modulo an irreducible polynomial
with coefficients in Z/2. The number |PFE| of possible hash values can be adjusted by using
polynomials of degree log(|PFE|).

The local maximum chunking method was originally proposed and implemented with a prelim-
inary rolling hash, intended to introduce the randomness that our analysis presupposes. (Strictly
speaking, a deterministic, length-preserving transformation cannot introduce or increase random-
ness. It can, however, mask any regularities so that they are unlikely to influence the analysis of
chunking protocols.) Later, it was found experimentally that the local maximum method works
well even without this preliminary hashing.

Rolling hashes essentially summarize the contents of a neighborhood in each position of the
file, thus making the new file more resistant to local entropy variations.

Remark 8. There are additional actions that one can undertake in order to increase the entropy.
For example, Mark Manasse noticed that if a short pattern repeats many times in succession, as in
a long stretch of zeros, then that stretch can be compressed to a much shorter string before rolling
hashes are applied. The idea is to replace many successive occurrences of the same string with
one occurrence and the number of times to repeat it. (Care is needed to avoid possible ambiguity
of such repetition instructions, but we need not concern ourselves with the details here.) Such
run-length encoding is essential for the content-dependent chunking methods discussed in this
paper when the file exhibits periodicity with period significantly shorter than the horizon of the
chunking method. If no coding is undertaken, then such periodicity would produce undesirably
long chunks under the interval filter and local maximum methods, because there would be no
cutpoint in the periodic stretch of the file. Under the LBFS method, there would be cutpoints,
but identical periodic segments in two files might well have their cutpoints in entirely different
places.

We make an additional assumption about our files, namely that the set PFE of potential file
entries is equipped with a linear ordering. In many situations, this assumption is clearly satisfied.
If the potential file entries are hash values, or integers obtained in some other way, then we can
use the usual ordering of integers. If they are characters, then we can order them by their ASCII
codes or Unicodes.

One might even argue that, in real computers, potential file entries are always linearly ordered
because they are ultimately represented by bit strings, and we can use the lexicographic ordering
of these strings. This observation works as long as the sender and recipient use the same bit string
representations. We need our linear orderings to be the same for the sender and the recipient,
and whether the computers’ internal bit strings can serve this purpose depends on the particular
application.

Having assumed a linear ordering of PFE, we obtain a canonical bijection between PFE and
{0,1,...,|PFE| -1}, namely the unique order-preserving bijection. We shall therefore, whenever
it is convenient, assume without loss of generality that PFE = {0,1,...,|[PFE| — 1}.

2.2. Ergodic Theory. We shall use a little ergodic theory in part of our analysis, so we sum-
marize here what is needed. We state the results in their natural generality, namely a probability

8 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

space {2 with a measure-preserving, one-to-one transformation 7' of {2 onto itself. In our appli-
cations of these results, however, Q will always be the space PFEZ of doubly infinite files, and
T will always be the (leftward) Bernoulli shift, BS, which sends any file F' € PFE? to the file
G = BS(F) defined by G(i) = F(i + 1). (The reader should see that, despite the impression one
might get from the plus sign in ¢+ 1, this really does shift a file to the left.) Thus, the reader can
safely pretend that whenever we write 2 and T', we mean PFE” and BS. Clearly, the Bernoulli
shift is a one-to-one function from PFEZ onto itself. (Indeed, this is a major reason for using
doubly infinite files.) It is also clear, from the definition of the probability measure on PFEZ,
that this measure is invariant under BS. (So BS is an automorphism of the probability space.)

A measure-preserving bijection T : — € is called ergodic if, whenever an event A C is
invariant (meaning T'(A) = A), then its probability is 0 or 1. It is known that BS is ergodic
(see [22, Section 2.4, Example (1)]), so all the following results about ergodic transformations
apply to the particular case that we need later. Notice that the definition of ergodicity would be
unchanged if we required probability 0 or 1 for all events A for which T'(4) C A. This is because
T is measure-preserving, so such an A would differ from T(A) by a set of measure 0, and the
intersection [, 7" (A) would be an invariant set differing from A by a set of measure 0.

We shall need three classical theorems of ergodic theory. Poincaré’s Recurrence Theorem [22]
Theorem I1.3.2] implies that, if T : Q@ — Q is ergodic and if A C Q is an event of positive
probability, then almost all points € Q have the property that T%(z) € A for some positive
integer k (in fact for infinitely many k). Birkhoff’s ergodic theorem [22] Theorems II.2.3 and
11.4.4] gives more detail about how often the sequence T*(x) visits A.

Proposition 9. Let T : — Q be ergodic and let A C be any event. Then for almost all
z €,

lim Number of k € [0, N — 1] with T*(x) € A _ Prob(A).
N—o00 N

Another way to measure frequency of visits to A is the time until the first visit to A. For
ergodic T, let p(z) denote the least k > 1 with T%(x) € A. (Either define p(z) arbitrarily on the
measure-zero set of points = for which no such & exists, or simply ignore sets of measure zero.)
Kac’s theorem [22] Theorem I1.4.6] gives the following result. Note that it is about random
elements of A, not of the whole space §2; that is, the expectation in the conclusion of the theorem

is conditional on x € A.

Proposition 10. Let A be an event of positive probability p in 2, and let x be a random member
of A. The expectation of the return time p(x), E(p|A), equals 1/p.

It will be useful to have a companion result to Kac’s theorem, giving the expectation of p on
the whole space) rather than on A. Easy examples show that this E(p) is not determined by
Prob(A) alone, but it turns out to be related to the variance of p on A.

Proposition 11. With notation as above,

1 1
E(p) = 3 Prob(A) Var(p|A) + Prob(4) +1
Proof. For the sake of brevity, we systematically ignore sets of measure zero; they do not affect
any of the following computations. Partition A into the pieces 4, = {z € A : p(z) = n}
(n e N—{0}).

It is not difficult to see that the sets T*(4,,) for 0 < k < n are all pairwise disjoint. In-
deed, suppose, toward a contradiction, that we had = € T*(A,) N T (A,), and suppose
this counterexample is chosen with k as small as possible. If neither k nor k' were 0, then
T (z) € T*Y(A,)NT* ~'(A,) would contradict the minimality of k. So we may assume k = 0
and so z € A, NT* (A,). In particular, z € A and z = T* (y) for some y € A,,. But then from
K <n' = p(y) we get TF (y) ¢ A, a contradiction.

Consider how T' acts on the sets T*(A,,) for 0 < k < n. It sends each one to the one with k
increased by 1, except that when k = n—1 it sends 7" 1(A,,) into A, according to the definitions
of A, and p. Since A is the union of the various Ay,’s, it follows that (J,,, T*(A,) (where both
n and k vary) is mapped into itself by T. By ergodicity, its measure is 0 or 1. As it includes A,

LOCAL MAXIMUM CHUNKING 9

its measure cannot be 0, so it is almost all of the space 2. Since we are ignoring sets of measure
0, we can say that €2 is partitioned into the sets T%(A,,), where, as before, 0 < k < n.

From the definitions of A,, and p, it follows that p is constant on T%(A,) with value n — k.
Therefore,

E(p)= > (n—k)Prob(T*(4,))= > (n—k)Prob(4,),
0<k<n 0<k<n

where the second equality uses the fact that T preserves the measure. Carrying out the summation
over k for each fixed n, we get

E(p) = nil (Prob(An)@> _

= % [Z nProb(4,) + Z n” Prob(A,)| .

The first of the two sums in the brackets here can be rewritten as the sum of Prob(T*(A,,))
over all n and all & < n. So, as these sets T%(A,) partition 2, this sum is simply 1. (This
observation is essentially a proof of Kac’s theorem.) The second sum can be rewritten as follows,
using the fact that, since A,, C A, Prob(4,,) = Prob(A4) Prob(A,|A).

Prob(A4) Z n? Prob(A,|A) = Prob(A) E(p?|A).

Furthermore, since all random variables satisfy Var(f) = E(f?) — E(f)?, we can rewrite this in
terms of the variance as

Prob(A)[Var(p|A) + E(p|A)?].
Remembering that E(p|4) = 1/ Prob(A) by Kac’s theorem, and substituting the results of our
computation back into the formula for E(p), we immediately get the proposition. 0

2.3. Useful Formulas. We collect here some formulas for use in the calculations in later sections.
First, there is the well-known formula for the sum of a geometric series:

L fi < 1.
;:17 T or |z

Differentiating term by term (which is correct in the interior of the interval of convergence of any
power series) and omitting the vanishing ¢ = 0 term from the result, we get
- 1
il = —— for |x| < 1.
Z (1—1x)2 1
=1

Multiplying this equation by = and then differentiating again, we get

o0
; 1+
Zz&x“l -t for |z| < 1.
(1—x)3
i=1
We also need a special case of the familiar formula for the sum of an arithmetic progression.
h

h
Z — (h+ 1)'
2
m=1
A similar formula for adding values of a quadratic polynomial will be useful in the form

h

h3 —h
Zm(m—l): 3

m=2

Although this formula, once it is proposed, is easily proved by induction, it can also be seen

directly, in the equivalent form
i m\ [(h+1
2) \ 3)

m=2

10 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

The right side here counts the 3-element subsets of {0,1,...,h}. The term with index m on
the left side counts those 3-element subsets whose last element is m, since such a subset is
determined by its other elements, a 2-element subset of {0,1,...,m — 1}. (The same proof
gives the corresponding result for binomial coefficient sums with 2 and 3 changed to any k and
k+ 1.) Note that the lower limit m = 2 in the sums here can be changed to 1 or to 0, since the
corresponding terms m(m — 1) vanish.

We shall also have use for estimates of sums of powers in the form
L (LY
= m \m '
This is a lower Riemann sum approximating the integral

1
1
/ " de = ——.
0 T+1

An upper Riemann sum approximating the same integral is obtained by letting k range from 1
to m rather than from 0 to m — 1. That amounts to adding 1/m to the sum, so we have

m—1 T
1 1 1 [k 1
-—=< — =] < :
r+1 m §m<m> r+1
’”Zli(ﬁ)’; !
= mA\m r+1

Although these approximations suffice for our needs, we note that there is an exact expression in
terms of the Bernoulli numbers Bj:

m—1 T T

1 [k 1 1 r+1

i - - B r+1—k
Zm(m> mrHTHZ(i) em

k=0 k=0

So for large m we have

1 1 n r n
Cor+l 2m 12m?2 T
The first term here is the integral approximation obtained above, and the second term says that

the integral is approximately halfway between the upper and lower Riemann sums.

2.4. Greedy Increasing Sequences. Consider a finite file F' or, more generally, a function F'
from any interval of integers I = [a, b] to PFE. Recall that we identified the set PFE of potential
file entries with a set of integers {0, 1,...,|PFE| — 1}. So it makes sense to talk about increasing
(or decreasing) subsequences of F. It will be convenient here to discuss subsequences, not in
terms of the values of F' that constitute them, but in terms of the positions where those values
oceur.

For a fixed F, we define the left-to-right greedy increasing sequence, abbreviated — greedy
sequence, in the interval I = [a,b] as follows. Its first element gy is the first element a of I.
Thereafter, i1 is defined as the smallest n € I such that n > g5 and F(n) > F(gx). That is, we
build an increasing sequence of elements of I such that the corresponding sequence of F-values
is also increasing, and we do so greedily, always putting into our sequence the first available
number. The sequence ends at g;, when there is no n satisfying the requirements for gx41. Notice
that then F'(gy) is the largest value that F' attains on I.

There is an analogous definition of the right-to-left greedy sequence or «—greedy sequence, which
starts with the rightmost point b of I and thereafter takes giy1 to be the rightmost point n to
the left of gy with F'(n) > F(g,). Notice that the terms in this sequence are chosen in decreasing
order, but their F-values are in increasing order, so that the corresponding restriction of the
original sequence is decreasing. Because of this somewhat confusing situation, we do not use the
words “increasing” or “decreasing” in connection with «—greedy sequences

2 There are a half dozen more variants of greediness: We could take, in either the left-to-right or the right-
to-left versions, successive points with smaller rather than larger F-values. And in all these situations, we could
use weak rather than strict inequalities of F-values. We shall get by with the —greedy and «greedy sequences
as defined above and avoid needing any of these other variants.

LOCAL MAXIMUM CHUNKING 11

When we simply say “greedy sequence” without further modifiers, we mean the —greedy
increasing sequence.

The elements g of the greedy increasing sequence admit a simple alternative characterization
that does not involve recursion on k.

Proposition 12. The —greedy increasing sequence in I consists of those n € I such that F(n) >
F(m) for all m € I such that m <n.

In other words, they are the places where, as we read the sequence F' from left to right, we see
a new maximum value. We shall refer to such places as left-to-right maxima or —mazxima of F.
Analogously, of course, the «greedy sequence consists of the «—maxima, those n € I such that
F(n) > F(m) for all m € I such that m > n.

Proof. We first prove, by induction on k, that each gy satisfies the condition in the lemma. For
go, this is vacuously true, since there is no smaller m € I. As for gi41, we have F(gxy1) > F(gk)
by definition and F(g) > F(m) for all m < g; in I by induction hypothesis, so it remains only
to consider m € (g, gr+1). But the greediness in the definition of gi41 implies that all such m
have F'(m) < F(gx) < F(gr+1)-

Conversely, suppose n € I satisfies the condition in the proposition, and let k£ be the largest
index for which g, < n. (This exists because go, being the first element of I, is < n.) If we had
the strict inequality g < n, then, because gi11 is chosen greedily and because F(n) > F(gx) by
the assumption about n, we would have gi+1 < n, contrary to our choice of k. This contradiction
shows that we must have g = n, and so the lemma is proved. 1

Corollary 13. If n € I is not a member of the —greedy sequence, then there is some m < n
such that F(m) > F(n) and m is a member of the —greedy sequence.

Proof. This was, in effect, proved in the second half of the proof of Proposition[I2] but it can also
be obtained by applying the proposition itself, as follows. If n is not in the greedy subsequence,
then there is, by the proposition, some m < n with F(m) > F(n). The smallest such m is, by
the proposition again, in the greedy sequence. O

We turn next to some probabilistic information about the —greedy sequence for a random file
F : [a,b] — PFE. We shall use this information in a context where |PFE| > b — a and therefore
it is very unlikely that two positions in [a,b] will have the same F-value. We take advantage
of this circumstance by doing our calculations under the assumption that F' is one-to-one, i.e.,
that there are no “ties” between F-values. Formally, this means that we work not with the usual
probability space PFE[* but with the subspace consisting of the one-to-one functions (and with
the probability measure restricted to this subspace and renormalized to have total probability 1).

Proposition 14. For any n € [a,b], the probability that n is in the — greedy sequence is 1/(n —
a+1).

Proof. For any n € [a,b], the largest F-value at the n — a + 1 positions in [a,n] has an equal
chance of occurring at any of these positions. So the probability that the largest F-value on [a, n]
occurs at n is 1/(n—a+1). By Proposition[I2] this is also the probability that n is in the greedy
sequence. 0

Corollary 15. The expected length of the greedy sequence in [a,b] is
b 1 b—a+1 1

Zm = Z p. ~1Inb—a+1)=Inlla,bl.

n=a m=1
Proof. The expected size of any set is the sum, over all potential elements n, of the probability
that n is in the set. So the first sum in the corollary follows immediately from the proposition.
The logarithm is a well-known asymptotic (for large b — a) approximation to these harmonic
sums. (]

Remark 16. Tt is known that the expected length of the longest (in contrast to the greedy)
increasing sequence is O(1/|[a, b]|). So the greedy method of selecting an increasing subsequence
usually falls far short of the maximum achievable length. In fact, a theorem of Erdés and Szekeres

12 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

([I0L 1) asserts that a sequence of integers of length pg + 1, without repetitions, must have an
increasing subsequence of length p+ 1 or a decreasing subsequence of length ¢+ 1. So a sequence
of length [will have a monotone sequence of length at least v/I. By symmetry, there will be an
increasing subsequence of this length at least half the time, so the expectation of the maximum
length of an increasing subsequence is at least v/1 /2.

Although the greedy increasing sequences do not usually come near the length given by the
Erdés-Szekeres theorem, they do provide an elegant proof of that theorem, as follows. Given a
sequence F' of distinct integers, let G; be the greedy increasing subsequence. Delete G from F,
and let G2 be the greedy increasing subsequence of what remains. Continue in the same manner,
forming and removing greedy increasing subsequences G, ..., until nothing remains. If one of
these sequences GG; has at least p+ 1 terms, then we have the desired conclusion, so assume that
each G; has at most p terms. So the first ¢ of our greedy sequences have altogether at most pg
elements, not enough to exhaust the given sequence of length pg + 1. Pick any position that is
not in any of G1,...,G,. Because it was not in G,, Corollary provides an earlier position
that has a larger I’ value and is in G,. This, in turn, was not in G,_1, so Corollary [[3 provides
an even earlier position with an even larger F' value in Gy—;. Continuing in this way, we get a
decreasing subsequence of length ¢ + 1 in F.

We shall need one additional, perhaps surprising piece of information about the —maxima of
a random file, namely that different positions behave independently.

Proposition 17. For each n € I, let E,, be the event that n is a —mazimum of a random file
F. Then these events are probabilistically independent.

Proof. Let ny < ng < --- < ng be elements of I. We must show that
k
Prob(All n; are —maxima) = H Prob(n; is a —maximum),
i=1
and we shall do this by induction on k, the cases ¥ = 0 and k£ = 1 being trivial. Suppose,
therefore, that the result holds for £ — 1. Consider the conditional probability

Prob(ni,...,n,_1 are —maxima | ng is a —maximum).

The event that all of nq,...,n;x_1 are —maxima depends only on the relative order of the values
of F' at points n < ng. The conditioning event, that nj is a —maximum, means that all those
values F'(n) are smaller than F'(ny), but it says nothing about the order of those F'(n)’s relative
to each other. Thus, the conditional probability equals the absolute probability that nq,...,ng_1
are —maxima, which is, by the induction hypothesis,

k—1

H Prob(n; is a —maximum).

i=1
Finally, the probability that all of nq, ..., n; are —=maxima is obtained by multiplying this condi-
tional probability by the probability that ny is a —maximum, so we get the required equality. [J

3. CHUNKING METHODS AND SLACK

3.1. Chunking Methods and Locality. We begin our discussion of content-dependent chunk-
ing methods for remote differential compression by defining what we mean by a chunking method.
Our definition is general enough to also cover content-independent methods, such as chopping a
file into chunks of a fixed length, but we shall use it only in the content-dependent case.

Definition 18. A chunking method is an operation assigning to every file a set of locations in
that file, called the cutpoints of the file. That is, for files in PFE! where I is [0,] — 1] or N
or Z, the cutpoints form a subset of I. The chunks of a file F' are the segments beginning at
one cutpoint and ending immediately before the next cutpoint, as well as the segment from the
beginning of the file (when there is a beginning, i.e., when I # Z) up to and not including the
first cutpoint and the segment from the last cutpoint (if there is one) to the end of the file. In
the degenerate case where the set of cutpoints is empty, the whole file counts as a single chunk.

LOCAL MAXIMUM CHUNKING 13

We have adopted here the arbitrary convention that a cutpoint belongs to the chunk on its
right rather than the one on its left. So the actual cutting occurs just to the left of the cutpoints.

When the files are infinite (/=N or Z), infinite chunks can occur. In all the chunking methods
that we consider, however, the probability of such an occurrence is zero. That is, almost all files
will be chopped into finite chunks. We shall often ignore the measure-zero set of exceptions.
Indeed, we have already ignored it in our rough description of protocols, where the first two steps
involve applying a hash function to each chunk.

Definition 19. Let & be a non-negative integer, and let ' € PFE’ be a file. A position i € I is
h-internal to the file F if the interval [¢ — h,i + h] is included in I. In this case, the restriction
of F to this interval, consisting of the 2h + 1 entries F(i — h),...,F(i + h) of F, is called the
h-vicinity of i in F. We may omit the prefix A when it is clear from the context.

One of the advantages of dealing with doubly infinite files is that all positions are internal. In
a singly infinite file, all except the first h positions are h-internal; in a finite file, the exceptions
are the first and last h positions.

We shall need to compare vicinities at different positions, and for this purpose it is useful to
have a brief expression for “being the same except that the positions have been shifted”.

Definition 20. Consider two finite sequences of potential file entries, of the same length, but
indexed by (possibly) different segments of Z, say o € PFE*** and r € PFEL*H . We say
that o and 7 agree if they differ only by shifting the indices from a to b, i.e., if c(a+1i) = 7(b+1)
fori=0,...,1.

Definition 21. A chunking method is local if there exist a non-negative integer h and a nonempty
set C of sequences of length 2h + 1, C' C PFEI""" such that the cutpoints of any file F' are
exactly those h-internal positions in F' whose h-vicinity agrees with some o € C. We call h the
horizon of the method and C' its criterion (for cutpoints).

The requirement that C' be nonempty avoids trivialities; if it were violated, no file would have
cutpoints. With this requirement, not only do some files have cutpoints, but almost all infinite
files in PFE" have infinitely many cutpoints and almost all doubly infinite files in PFEZ have
infinitely many positive and infinitely many negative cutpoints. Thus, almost all files are chopped
into finite chunks.

Definition 22. A chunking method is shift-invariant if, whenever i is a cutpoint of a doubly
infinite file F' and s is an arbitrary integer, then ¢ — s is a cutpoint of BS*(F).

It follows immediately from the definition of locality that any local chunking method is shift-
invariant, simply because the vicinity of i — s in BS®*(F") agrees with that of ¢ in F'.

3.2. Length of Chunks. Fix a shift-invariant chunking method for doubly infinite files. Because
of shift-invariance, each position ¢ € Z has the same probability p of being a cutpoint. We call
this p the cutpoint probability of the method. In the case of local chunking methods, we have,
with notation as in the definition of locality,
L,
[PFE[2h+1"

In the case of singly infinite files, locality requires all cutpoints to be h-internal, i.e., to be positions
> h. All these positions have the same probability of being cutpoints, and that probability is
given by the same formula as for the doubly infinite case. Similarly, for finite files, the same
formula gives the probability that any particular A-internal position will be a cutpoint.

Definition 23. For a file F' with a cutpoint at 0, we define the chunk length L(F') to be the first
positive cutpoint.

Thus, the chunk length of F' is the length of the chunk whose first element is 0. We shall
comment later, in Remark 28 on why we consider only files with a cutpoint at 0, rather than
extending the definition to arbitrary files.

It is possible for a file to have a cutpoint at 0 but no cutpoints farther to the right, so
that the chunk length is not defined. But, with all local chunking methods and indeed with all

14 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

shift-invariant methods that have non-zero cutpoint probability, the Poincaré recurrence theorem
ensures that the files with no chunk length form a set of measure zero, so they will not affect any
of the considerations below.

For finite files, on the other hand, there is a non-zero probability that the chunk length doesn’t
exist. But this probability approaches zero exponentially fast as the length of the file increases.
So for very long files, there is only a negligible danger that the chunk length is undefined. It
would also be reasonable to modify the definition of chunk length, to cover the case where a finite
file F € PFEI®'~! has no positive cutpoint, by letting the chunk length in this case be the whole
length [of the file.

Notation 24. Given a shift-invariant chunking method, we write p for the cutpoint probability.
If a file F' with a cutpoint at 0 is also given, then we write L(F') for its chunk length. Thus, L is
a random variable (defined almost everywhere) on the subspace Cut0 of PFE? consisting of files
with a cutpoint at 0.

Because the random variable L is defined only on the subspace Cut0, any statement about
its statistical properties must be interpreted as conditional on the event CutO. Nevertheless, to
reduce the chance of confusion, we shall often (as in the next proposition) indicate the conditioning
explicitly.

Proposition 25. For doubly infinite files, the expectation of the chunk length for any shift-
invariant chunking method is the reciprocal of the cutpoint probability, E(L|Cutd) = 1/p.

Proof. Notice that the first positive cutpoint of F' is, by shift-invariance, the smallest positive
number k such that 0 is a cutpoint of the shifted file BS*(F), where BS denotes the leftward
Bernoulli shift as above. Thus the expectation of the chunk length is the conditional expectation,
conditioned on F' € Cut0, of the smallest positive k with BSk(F) € Cut0. This is precisely the
situation covered by Kac’s theorem, Proposition[I0l According to that theorem, the expectation
under consideration is the reciprocal of the probability of Cut0, so it is 1/p. O

Can one associate chunk lengths to (almost) all F € PFE”, rather than only to those with a
cutpoint at 07 The answer is yes, to some extent, but the right approach is more complicated
than one might guess. It involves averaging over all the chunks within the file, as follows.
Definition 26. The average chunk length of a file F € PFEZ is the limit

. 2N +1
lim - - .
N—oo Number of cutpoints in [—N, N]

This limit and thus the average chunk length may be undefined for some files F, but these form
a set of measure zero. In fact, we have the following consequence of Birkhoft’s ergodic theorem.

Proposition 27. For almost all files in PFE”, the average chunk length equals 1/p.

Proof. Before starting the main part of the proof, we note that the definition of average chunk
length would be unaffected if we replaced 2N + 1 by 2N in the numerator (without changing the
denominator), because 2]2\]]11 — 1 as N — oo. We refer to such a change, also in other similar
situations, as a “trivial modification” of the fraction.

Applying Birkhoff’s result, Proposition @ to the space PFEZ, the leftward Bernoulli shift,
and the event Cut0O, and recalling that the cutpoints of a file F' are exactly those k for which
BS*(F) € Cut0, we find that

lim Number of cutpoints in [0, N]
N—o00 N
where we have made a trivial modification to get N rather than N + 1 in the denominator.
Symmetrically, using BS™" and shifting the file by one unit (and not needing a trivial modification
this time), we get

=D

lim Number of cutpoints in [—N, 1] .
N —oc0 N
Average these two equations to get
lim Number of cutpoints in [—N, N]
N—o0 2N

LOCAL MAXIMUM CHUNKING 15

Finally, take reciprocals of both sides and make a trivial modification to get the desired result. [

Thus, Proposition 25 would remain true if we replaced chunk length by average chunk length
and took the expectation over all of PFEZ rather than over Cut0. Notice, however, that average
chunk length cannot replace chunk length in other contexts. For example, in a non-trivial chunk-
ing method, the chunk length will have non-zero variance, essentially because not all chunks have
the same length. But the average chunk length is, according to Proposition 27, constant almost
everywhere, so its variance is 0.

Remark 28. Tt is tempting to associate, to (almost) every file F € PFE”, the length of a par-
ticular, chosen chunk to serve as the chunk length of F'. Such a definition would avoid both the
restriction to Cut0 in our definition of chunk length and the limiting process in our definition of
average chunk length. In fact, an earlier draft of this paper defined the chunk length of F' to be
the distance between the first two non-negative cutpoints. Unfortunately, the analog of Propo-
sition 23l averaging this chunk length over all files, is in general false, even for local chunking
methods. Here is a simple counterexample. Suppose PFE = {0, 1}, and let the chunking method
put cutpoints at both of the 1’s wherever the pattern 011 occurs in a file. (Formally, this is a
local chunking method with horizon h = 2 and criterion C consisting of the 8 sequences *011x
and 011 % x, where the stars represent either 0 or 1 independently.) The cutpoint probability is
1/4, and the expectation of the chunk length, as we have defined it, is 4. But the older definition,
using the first two non-negative cutpoints, results in the expectation of the chunk length being
only 7/4.

One can see, intuitively, what goes wrong in this example. The chunking method guarantees
that cutpoints occur in adjacent pairs. So half the chunks have length 1 (extending from the
first to the second 1 in a 011 pattern) while the other half are longer (of length at least 2 and
on average 7). Position 0 is considerably more likely to lie in one of the long chunks, so the next
chunk, the one between the first two non-negative cutpoints, is more likely to be a short one, of
length 1. And of course this drags down the expectation of this version of chunk length.

Another approach to assigning a chunk length to (almost) every file is to take the length of the
chunk that contains a specific position, say 0. This also fails to work properly, for similar reasons.
If there are chunks of different lengths (as there will be under non-trivial chunking methods) then
0 is more likely to lie in one of the longer chunks. A specific counterexample is even easier to
produce than for the “first two non-negative cutpoints” version. Let PFE = {0,1} again and
let the cutpoints be the positions where the file entry is 1. (This is a special case of the pure
point filter method discussed in more detail below.) Then the cutpoint probability is 1/2 and
the average chunk length is 2. But the expectation of the length of the chunk containing 0 is 3.

Typically a chunking method has parameters which can be manipulated so that the expected
chunk length E(L) is as desired. But the chunks in a particular file may be shorter or longer
than this average. As indicated earlier, both too short and too long chunks are undesirable. On
the one hand, the overhead of assembling and communicating the checksum of too short a chunk
may outweigh the cost of sending the chunk itself. On the other hand, excessively long chunks
are unlikely to match between the sender’s and recipient’s files. Therefore, one would prefer a
chunking method with lower deviation from the average chunk length.

In a sense, too long chunks create a smaller problem than too short chunks. If necessary, a
too long chunk can be subdivided by adding additional “artificial” cutpoints; all “indigenous”
cutpoints remain intact. For example, if the desired chunk length is L, then a chunk of size
cL 4+ d may be subdivided into ¢ — 1 chunks of size L, and one chunk of size L + d. In this way, a
sender never transmits a chunk of size larger than 2L. Of course, this method can run into the
same problem that motivated content-dependent chunking in the first place: Since the artificial
cutpoints are at fixed positions, inserting a single character into a file, near the beginning of a
long chunk, may disrupt agreement between the artificial subdivisions. There are more intrinsic
ways of subdividing long chunks. For example, in the case of local-maximum chunking method,
discussed in section [@, a long chunk can be subdivided by means of local maxima with smaller
horizon.

16 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

On the other hand, imposing a minimal length may require removing indigenous cutpoints.
The following example is admittedly extreme and improbable but it gives a good idea of a
discoordination that may result from removing indigenous cutpoints.

Ezxample 29. The indigenous cutpoints partition the recipient’s file F} into 2n distinct chunks
Ci,...,Cs, that are too small. By removing half of the cutpoints, we have n bigger chunks
C1Cy,...,C5,-1C5,. The sender’s file F, was obtained from F; by moving C; to the end.
The indigenous cutpoints partition F5 into 2n chunks Cs, ..., Ca,,Cy. By removing half of the
cutpoints, we get bigger chunks C5Cs, ..., C5,C1. But none of these bigger chunks occurs in F.

Lemma 30. No local chunking method can have an absolute guarantee that the chunks are not
too short and not too long.

Proof. Consider a doubly infinite file F' with the same entry in every position. Let h be the
horizon of the chunking method. Every position of F' has the same h-vicinity. It follows that
either every position of F' is a cutpoint, which violates the minimality requirement, or else no
position of F' is a cutpoint, which violates the maximality requirement. 1

Although files of the sort used in this proof form a set of measure zero, there is non-zero (albeit
small) probability for a file to have a very long finite stretch of identical entries. In such files one
will have either very short chunks (of length one) or a very long chunk (at least as long as the
stretch of identical entries minus twice the horizon).

The methods that we propose in Sections Bl and 6] below provide absolute lower bounds on the
chunk lengths. Upper bounds and stricter lower bounds hold with high probability. In practice,
absolute guarantees are not crucial; high probabilistic guarantees are almost as good.

3.3. Costs. How can one compare the efficiency of different chunking methods? The cost of
executing a remote differential compression protocol has several components, including

(1) The number of bytes sent over the wire (in each direction),
(2) The number of communication rounds.

(3) The cumulative time of hard-disk accesses.

(4) The computation complexity of finding the cutpoints.

In this section we concentrate on the first component. It is about minimizing the bandwidth
used by a file transfer. Components 2 and 3 are highly relevant as well, but they do not depend
on particular chunking methods. In particular, for any protocol that fits the rough outline in
Section[Il the number of communication rounds is three, namely steps 3, 5, and 6 of that outline.
(The number of communication rounds would increase to 2n + 1 if a protocol is used recursively
to depth n, as described in Remark [6l So one should, when using recursion in this way, keep in
mind the trade-off between the benefit in Component 1 and the cost in Component 2.)

Component 3 can be reduced by using multiple disks and carefully laying out data on disks.
A more detailed discussion of components 2 and 3 is however outside the scope of this paper.
Component 4 is addressed in subsequent sections in conjunction with the particular chunking
methods. In particular, we show in Section [§] that local maxima can be found efficiently.

We now turn to our primary topic, Component 1. What is sent over the wire in order to
transfer a file F5 from a sender to a recipient?

(S1) The chunk checksums sent to the recipient. Suppose that the chunks are By, ..., B, and
let E(L) be the expected chunk length. So n is usually close to |F3|/ E(L). All checksums
have the same length Chk. So the number of bytes sent is

n - Chk =~ (|Fy|/E(L)) - Chk

(S2) The indication, from the recipient, which of the chunks he wants to receive; the requested
chunks are the chunks of F5 that are not chunks of Fj.

(S3) The requested chunks B; sent to the recipient. If k is the number of F; chunks that are
also Fy chunks then the number of bytes sent is

Y IBjl=(n—k)-E(L)

B; is wanted

LOCAL MAXIMUM CHUNKING 17

The estimate in (S3) is necessarily a rough approximation because it assumes that the average
length of requested chunks is the same as the average length E(L) of chunks in general. In fact,
shorter chunks usually have a better chance of matching than long ones do. For an extreme
example, suppose Fy is obtained from F; by modifying every E(L)*™ symbol. Then no chunks of
length more than E(L) will match, and only chunks of length smaller than E(L) will ever have a
chance to match. In such a case the number of requested bytes will be larger than (n —k)-E(L).
Fortunately, for the purpose of the following discussion, the important part of the formula in (S3)
is not the questionable factor E(L) but the factor n — k which indicates that we should aim for
large k.

(S1) and (S2) do not depend much on the chunking method. (S1) just depends, as indicated
above, on the average chunk length and the size of the checksums, both of which can be chosen
independently of the choice of chunking method.

(S2) is negligible compared to (S1) + (S3).

As indicated earlier, (S1) + (S3) can be reduced by applying chunking methods recursively;
see Remark We shall, however, analyze and compare content-dependent chunking protocols
in a simple, non-recursive context. The comparisons carry over to the corresponding recursive
versions, as the benefits of recursion are essentially independent of the benefits of choosing a good
chunking method.

To minimize (S3) we would like to maximize the number k of common chunks. Consider a
maximal interval I common to the two files F} and F5, and assume that I is long enough to
contain at least one common chunk. I has the form S-C; ---C,, - S’ where C4, ..., C, are chunks,
S is a proper final segment of the preceding chunk, and S’ is a proper initial segment of the
subsequent chunk. The parts S and S’ of the agreement interval I are wasted in the sense that
the agreement of these segments of the two files doesn’t reduce the transmissions needed in (S3).
If I had not included any common chunks then the whole I would have been wasted.

Thus, the efficiency of a chunking method depends, in large part, on its ability to keep the
wasted agreements, the segments S and S’, small. In the next subsection, we introduce a mathe-
matically convenient way to assess this ability. In that discussion, we also take into account that,
although the interval I is common to the two files, its subdivision into chunks may be different
near the ends. This is because whether a position is a cutpoint depends on its h-vicinity, and
that may extend beyond I.

3.4. Slack from the Left. We introduce an idealized model of what happens near the beginning
of an interval of agreement between two files. The model uses two doubly infinite files Fy, Fy €
PFEZ that coincide at all non-negative positions but are independent elsewhere. We write F'T
for their common non-negative part (an element of PFEN) and F; and F, for their respective
negative parts. Thus, we envision a pair of doubly infinite files that start out independent but at
some point (position 0) merge and are identical thereafter.

Formally, we work with the probability space PFEM where M (the symbol stands for “merge”)
consists of all the non-negative integers and all pairs (i,1) and (i,2) for negative integers i. So
M = ((Z —N) x {1, 2}) UN. As with previous probability spaces, we use the product measure
derived from the uniform measure on PFE. Thus, the entries in a random file F € PFE™ are
chosen independently and uniformly from PFE. If F € PFEM then F determines a merging pair

of files (Fy, F3) by
Ry = {100 s
F(i) ifi > 0.
The extraction of the two files F}, from F amounts to a pair of projection functions
7, : PFEY — PFE” : F > F},.
Both of these projection functions are clearly measure-preserving; that is, Prob(m;~1(4)) =

Prob(A) for all events A C PFE”.

Remark 31. We think of position 0 as where the agreement between F} and Fb begins. Strictly
speaking, 0 is where agreement begins to be enforced by the definition of the model. It is possible
for the files to already have the same entry “accidentally” at —1; this happens with probability
1/|PFE|. And the actual interval of agreement may begin even earlier, though with even smaller

18 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

probability. Modifying the model to prohibit such coincidences would introduce additional cases
into our computations without significantly changing the results. So we abstain from such a
modification and use the model as presented above.

Although F} and F, are infinite, they are intended to serve as mathematically convenient
models for the behavior of a pair of real, finite files with an interval I of agreement as in the
discussion at the end of Section More precisely, they model the behavior near the beginning
of I, where the files agree to the right and are (as a mathematical idealization) independent to
the left. As indicated earlier, we would like our chunking method to minimize the wasted part S
of the interval of agreement. We also want to minimize the wasted part S” at the other end of
I, but that can be treated almost symmetrically (see Section below), so we concentrate, for
now, on S.

In our model, the wasted part extends at least from the merge point 0 to the first non-
negative position that is a common cutpoint of both files. (It may extend further, if, after the
first common cutpoint, the files have different cutpoints. This will not happen with any of the
chunking methods we consider.) That motivates the following definition.

Definition 32. Let a chunking method for doubly infinite files be given. The slack of any
F € PFE™, written Slack(F), is the smallest non-negative integer ¢ that is a cutpoint of both of
the derived files F; and F5.

Since the slack gives information about the behavior of a chunking method when one enters
an interval of agreement from the left end, we may refer to it as the —slack, especially if we need
to contrast it with the analogous «—slack defined below.

As with some previous definitions, we confess that the slack may not be defined for some F,
if the files F} and F, have no common cutpoint. For local chunking methods, the set of such
bad F' has probability zero and can therefore safely be ignored. Indeed, if & is the horizon of
the chunking method, then any cutpoint > h in either F} or F is also a cutpoint of the other,
since the h-vicinities agree. So the only way for F' to have undefined slack is for each Fj to
have no cutpoints > h. But we already saw that almost all files in PFE” have infinitely many
positive cutpoints, so, invoking the fact that 7 preserves measure, we conclude that almost all
F € PFE" have well-defined slack.

For non-local chunking methods, it is not so clear that the slack is almost everywhere defined,
but this will be the case for the one non-local method that we shall analyze and compare with
our local methods.

It is intuitively plausible that chunking methods with large chunks will have larger slack,
because chunks that start in the independent negative parts F)~ of the two files will extend
farther into the common positive part F*. Accordingly, it makes sense to measure slack relative
to expected chunk length.

Definition 33. The normalized slack of F € PFEM is defined as S(F) = Slack(F)/E(L).

As indicated by our discussion of (S3) above, remote differential compression benefits from a
chunking method with small slack. Accordingly, we shall use the expectation of the (normalized)
slack as one measure of the quality of chunking methods.

3.5. Slack from the Right. Recall that it is advantageous for a chunking method to waste as
little as possible from either end of an interval of agreement. That is, if two files coincide on a
long interval I, then the chunking method should produce a common cutpoint near the left end
and another common cutpoint near the right end of I. The slack measures how well a method
does at the left end. The situation at the right end is almost but not quite symmetrical. For
mathematical simplicity, we make the definitions exactly symmetrical. Afterward, we discuss
how reality deviates slightly from this perfect symmetry.
Symmetrical to M is the index set

D={eZ:i<0}U{(i,k) €Z x {1,2}:i>0}.
(The symbol stands for “diverge”.) An element F of PFE” amounts to two files F}, € PFE*

- [FG) iti<o
F’“(Z)_{F(i,k) ifi>0

LOCAL MAXIMUM CHUNKING 19

that coincide at non-positive locations but are independent at positive locations. The two pro-
jections
7, : PFEY — PFE” : F F}

preserve measure just as before. Symmetrically to the earlier notation, we write F'~ for the
common part of Fy and F3, i.e., the restriction of F' to non-positive integers, and we write F, ,:r
for the independent positive parts of the two files Fy.

Definition 34. Let a chunking method for doubly infinite files be given. The reverse slack, or
—slack, of any F € PFE”, which is written «Slack(F), is the smallest non-negative integer i
such that —i is a cutpoint of both of the derived files F; and F5.

The two files Fj, extracted from any F' € PFEP agree at all positions < 0, and the «—slack of
F measures how much of this agreement is wasted. This is intended to model what happens at
the right end of a long interval of agreement between two real files.

Remark 35. As a measure of wasted agreement, the «—slack suffers from a few small inaccuracies.
One was already pointed out in Remark[31]in connection with the —slack, namely that there is a
slight chance that the interval of agreement between F; and F is actually longer than what the
model enforces. Even though Fi(1) and F»(1) are independent, they might happen to coincide.
As with —slack, we choose to ignore this problem because it is unlikely to occur at all and even
more unlikely to have a significant influence (more than one or two positions) on the amount of
wasted agreement.

Two other inaccuracies arise from our convention that a cutpoint is included in the chunk to
its right, not the one to its left. Suppose the «slack of F' € PFE? is s. So the two files F; and
F5 have a common cutpoint at —s and no later common cutpoints < 0. Ordinarily (but see the
exception in the next paragraph), this means that the chunks of F7 and F» that begin at —s will
differ, either because they have different lengths or, if they have the same length, because they
extend to positive positions where the files differ. (Remember that, as discussed above, we are
ignoring possible accidental agreement at position 1.) So the agreement of F; and F5 at the s+ 1
positions —s, ..., 0 is wasted. The «slack s underestimates the waste by 1. Thus, were it not
for the next paragraph, this inaccuracy could be corrected by simply adding 1 to the «slack. In
most situations, this correction will be negligible; the slack is comparable to the average chunk
length, which is much larger than 1.

There is, however, an exceptional situation where s overestimates the waste. This occurs when
both F; and F, have a cutpoint at 1. Being > 0, this cutpoint has no influence on the «slack
s, but the chunk that begins at —s is [—s, 0], which lies entirely in the interval of agreement of
the two files. So there is no waste at all in this case. The correction needed in this case is (to
not add 1 as in the preceding paragraph and) to subtract s, i.e., to replace the «slack with 0.
This correction, though it may be large for an individual file, is usually negligible on average,
especially in comparison with the whole «—slack s, because the probability ¢ that 1 is a cutpoint
in both F and F» is so small (clearly ¢ < p and usually ¢ < p).

Because all the inaccuracies in the reverse slack are relatively small, we shall neglect them
and use the average reverse slack as a measure of a chunking method’s waste of agreement at the
right end of an interval on which two files coincide.

3.6. Quality of Chunking Methods. Recall the three desiderata for a chunking method: The
chunks should not be too short. The chunks should not be too long. And agreements between
parts of files should be promptly reflected in agreements between chunks. Of course, these
desiderata are interrelated. For example, the trouble with excessively long chunks is that a
long interval of agreement between files might not contain any whole chunks. Nevertheless, it is
convenient to consider the three desiderata separately, because the first two are somewhat easier
to deal with. We must not, however, be so focused on the first two that we ignore the third,
because the first two can be satisfied by using chunks of a single fixed length, and we have seen
that this chunking method can take two nearly identical files (differing by the addition of a single
character) and produce no agreements at all between chunks.

The chunking methods that we consider will have one or two adjustable parameters, so that we
can control, for example, the average chunk size, or the minimum chunk size, or sometimes both.

20 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

So it is not too difficult to achieve the first or second desideratum; it is the interplay between
the two that imposes a non-trivial requirement on a chunking method. This interplay can be
summarized by saying that we do not want too much variation in the chunk lengths.

An obvious measure, therefore, is the variance (or its square root, the standard deviation) of
the chunk length. Another possible measure for the same purpose is the ratio of the average to
the minimum chunk length. A third is the probability of finding no cutpoints in a long interval,
say an interval whose length is 5 or more times the average chunk length. We shall calculate or at
least estimate these three measures for all of the chunking methods that we treat in the following
sections, except that the variance of the local maximum method remains an open problem and
the probability of long chunks and the «<—slack of the interval filter are expressed not explicitly
but in terms of the smallest root of a certain polynomial equation.

The quality of a chunking method from the viewpoint of the third desideratum is, we propose,
reasonably measured by the slack and reverse slack. We shall therefore also compute or at least
estimate the —slack and <—slack of the methods in the following sections, except that we have
not been able to accurately estimate the slack of the local maximum method (in either direction
— they are the same by symmetry).

4. POINT FILTER METHODS

4.1. Pure Point Filters. The pure point-filter chunking is the most local chunking method: the
vicinity of a position ¢ that determines whether 4 is a cutpoint of F' consists of F(i) alone. This
chunking method has an integer ¢ > 2 as a parameter. In the following discussion, we consider ¢
as fixed and we identify PFE with the set of integers from 0 to |PFE| — 1.

Definition 36. Pure point filter chunking is the chunking method where the cutpoints of a file
F are those positions ¢ where F'(4) is divisible by c.

In practice, the number |PFE| of potential file entries (often hashes resulting from a rolling
hash) is usually a power of 2 and ¢ is a smaller power of 2. This simplifies the task of finding
cutpoints, because, instead of dividing F'(i) by ¢, one can just test whether the bit-pattern of
F(i) ends with enough 0’s.

When |[PFE| > ¢ are powers of 2, or more generally when ¢ divides |PFE|, then the cutpoint
probability is clearly 1/c. In general, it is

1 PPFEW

P=IPFE[| ¢

i.e., 1/c rounded up to the next larger multiple of 1/|PFE|. (Had we chosen PFE to start with 1
rather than 0, then we would round down rather than up.) In practice, the rounding is negligible
because |PFE| is much larger than c.

Remark 37. It is only a matter of practical convenience that the cutpoints are defined in terms
of divisibility. In practice, one uses divisibility by powers of two, because that can be checked by
inspecting a bit pattern, which takes just one CPU cycle. But our analysis applies equally well
to less efficient criteria. One could use an arbitrary subset C' of PFE, defining the cutpoints of a
file F' to be those positions ¢ where the value F'(i) belongs to C. Then the cutpoint probability
is p = |C|/|PFE|. All the following results, except for approximations involving ¢, hold in this
more general situation.

The probability distribution of the chunk length L is geometric with parameter p. That is, L
takes each positive integer ¢ as a value with probability

Prob(L =1i)=(1-p)"'p for i > 1.

(Recall that we defined chunk length only for files with a cutpoint at 0, so the probabilistic
notions here are all conditional on the event Cut0.) Using the formulas in Subsection [Z3] to sum
the relevant series, we obtain that the expectation of L is

E(L)=-=c¢
(L) 5

LOCAL MAXIMUM CHUNKING 21

in agreement with Proposition 28] that

and therefore that the variance of L is

Var(L) = B(L?) - B(L)? = P ~ &2

~c —ec
2
p

The slack is also geometrically distributed, but taking values starting with 0 rather than 1.
(The slack of F' € PFE™ can be zero; the chunk length of F € PFE” cannot.) We have

Prob(Slack = i) = (1 — p)'p for i >0

and therefore)
E(Slack) = - —1~c¢—1.
p
The expectation of the normalized slack is thus 1 —p ~ 1 — . Of course, the reverse slack has

(&
the same expectation, because of the left-right symmetry of the chunking method.

4.2. Point Filters Without Short Chunks. The pure point filter method allows chunks to
be as small as a single element of a file. To avoid excessively small chunks, a modification of
the method was proposed, in [20], forcing all chunks to be larger than a certain length h; we
refer to this modification as the LBFS chunking method. In [20], the parameters were chosen
to be h = 2 and ¢ = 2'3, but the chunking method can be applied with any desired h and c.
It proceeds as follows, given a file in PFE®~1 or in PFEV. Ignore the first h 4+ 1 positions (0
to h) because cutting there would produce an impermissibly small chunk. Beginning at position
h + 1, look for positions i where ¢ divides F'(i), and declare the first such i to be a cutpoint.
Then ignore the next h positions, i + 1 to i + h, again because cutting there would produce an
impermissibly small chunk. Starting at position ¢ + h 4 1, look again for a position where the
entry in F' is divisible by ¢, declare it to be a cutpoint, and so forth.

Because this chunking method was introduced as a part of LBFS (low bandwidth file system)
in [20], we shall refer to it as LBFS chunking. (LBFS includes other aspects in addition to
chunking, such as maintaining a system-wide database of chunks indexed by their hashes (see
remark [l), but we are concerned in this paper only with the chunking method.)

Definition 38. In connection with LBFS chunking applied to a file F', we call a position i a
candidate if ¢ divides F(i). The cutpoints are those candidates 7 such that ¢ > h and none of the
preceding h positions i — h,...,i— 1 is a cutpoint. If a candidate ¢ fails to be a cutpoint because
there was a cutpoint j in the range i — h < j < i — 1, then we say that j blocks i (from being a
cutpoint). We use the symbol k for the ratio h/c.

Notice that the candidates for the LBFS chunking method are exactly the cutpoints for the
pure point filter method with the same c.

We shall occasionally give particular attention to the case k = 1/4 that corresponds to the
choice of parameters proposed in [20].

Remark 39. The LBFS chunking method is not local (except, of course, when h = 0 and it
reduces to the pure point filter method). To see this, consider how to tell whether a position 7 is
a cutpoint. First, check whether ¢ divides F'(¢). If not, then you have the answer, “no.” But if ¢
does divide F'(4), then you still have to check whether any of i —1,...,7—h was a cutpoint, which
would block i. So check whether ¢ divides any of F(i — 1),..., F(i — h). If all the answers are
“no”, then you have the answer; 7 is a cutpoint. But if you find a candidate among i —1,...,71—h,
then you still need to check whether it was a cutpoint, which involves checking the preceding h
positions. And if you find a candidate there, then you have to check h positions farther back
from that candidate, and so forth. Thus, there is no a priori bound on how far back you might
have to look in order to decide whether i is a cutpoint. That is, the chunking method is not local.

We observed earlier that, for any local chunking method, almost every infinite file F' € PFE"Y
has infinitely many cutpoints. Since the LBFS method is not local, this observation cannot be
applied to it directly. Nevertheless, one can easily deduce the desired information, that the LBFS

22 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

method produces infinitely many cutpoints in almost all F' € PFEY, from the corresponding
result for the pure point filter method, which is local. To see this, consider an arbitrary position
i € N. For almost all F', the pure point filter method will have a cutpoint j > i + h. This j is a
candidate in the LBFS method, so either it is a cutpoint or it is blocked by some cutpoint in the
interval from j — h to j — 1. In either case, there is a cutpoint > i, either j or the one blocking
it. Since this holds with probability 1 for each ¢ (and since probability is countably additive),
almost all F' have infinitely many cutpoints under the LBFS chunking method.

Remark 40. We defined the LBFS method for finite and singly infinite files but not for doubly
infinite files. If one applies the same idea to doubly infinite files, it may fail to give a well-defined
set of cutpoints. That is, it may not really be a chunking method. The source of this problem is
the same as the source of non-locality in the previous remark. To determine whether a position
1 is a cutpoint, we may have to look farther and farther back in the file. In the case of doubly
infinite files, the process may never terminate, so there is no decision whether 7 is a cutpoint.

Consider, for example, a file F € PFE? such that F(i) is divisible by ¢ if and only if i is
divisible by h. So every h*" position is a candidate, but each such position, if it is a cutpoint, will
block the next candidate from being a cutpoint. It would be consistent with the LBFS method to
say that the cutpoints are all of the positions divisible by 2h, i.e., every second candidate. Each
of these candidates 2nh blocks (2n + 1)k, but then (2n + 2)h is unblocked and serves as the next
cutpoint. But it would be equally consistent to say that the cutpoints are the positions of the
form (2n + 1)k, the odd multiples of h. Each blocks the next even multiple of h, and then the
next odd multiple of h is unblocked and serves as the next cutpoint. The LBFS method gives no
way to choose between these two possible selections of cutpoints from among the candidates. One
could amplify the method by specifying the choice arbitrarily in all such situations; the result
would be a chunking method, but it would not be shift invariant.

Fortunately, the LBFS method works for almost all doubly infinite files. To see this, notice
first that, if a file has no candidates in some interval of length h, then the method will determine
the cutpoints to the right of that interval. Specifically, the first candidate to the right of the
interval is not blocked, because there is no candidate in the preceding h positions. So this first
candidate is a cutpoint. Knowing this, one can proceed to the right, inductively determining
which candidates are cutpoints and which are blocked. Furthermore, an easy calculation shows
that almost all files ' € PFE? have candidate-free intervals of length h arbitrarily far to the left.
So, in almost all files, all the cutpoints are uniquely determined.

From now on, we shall work with the LBFS method as though it were a genuine chunking
method even for doubly infinite files. That is, we shall ignore the measure-zero set of exceptional
files for which the method fails to determine the cutpoints.

Having made the LBFS chunking method applicable to doubly infinite files, by ignoring a set
of probability zero, we note that the method is clearly shift-invariant even though it is not local.

Remark 41. In the preceding remark, we used the fact that a candidate-free interval of length h
is a doubly infinite file is sufficient to disambiguate the choice of cutpoints to the right. There
are other intervals that would serve the same purpose. For example, if h = 3 and if a file contains
a segment of the form NCCCCNNC, where C means “candidate” and N means “non-candidate,
then the last candidate in this segment will be a cutpoint, and the chunking method to the right
of this segment is therefore well-defined. To see that the last C in NCCCCNNC is a cutpoint,
suppose not. Then it is blocked by a cutpoint at one of the h = 3 preceding positions, which can
only be the last of the four consecutive C’s. Then the preceding three C’s are not cutpoints, lest
they block the fourth one. But why is the third of the four consecutive C’s not a cutpoint? It’s
not blocked by the two preceding C’s (as they’re not cutpoints), nor by the initial N (as a non-
candidate is certainly not a cutpoint). This contradiction shows that the last C in NCCCCNNC
must be a cutpoint. It is clearly possible to devise analogous examples, and more complicated
ones, also for other values of h.

The LBFS chunking method clearly ensures that all chunks have length at least h + 1. The
following proposition gives basic probabilistic information about the behavior of this method.
The slack is more complicated and is treated in the next subsection.

LOCAL MAXIMUM CHUNKING 23

For notational simplicity, we assume henceforth that |PFE| is divisible by c¢. In the general
case, the following results are still approximately correct and would become exactly correct if ¢
were replaced with [PFE|/[|PFE|/c].

Proposition 42. The LBFS chunking method applied to (almost all) doubly infinite files has the
following properties.

(1) Each position is a candidate with probability 1/c independently.
(2) The expectation of the chunk length is h + ¢ = c¢(1 + k).

(3) Each point has the same probability to be a cutpoint, namely 1/(c+ h).

(4) Any interval of | < h+ 1 positions contains a cutpoint with probability 1/(c + h).

(5) The variance of the chunk length is Var(L) = ¢* — c.

Proof. Ttem 1 was already established in our discussion of the pure point filter method, since the
cutpoints of that method are exactly the candidates of LBFS.

In item 2, the summand h represents the blocked positions immediately after a cutpoint (at
0), and ¢ is the expected number of subsequent positions needed to reach a candidate.

That each point has the same probability of being a cutpoint is obvious by shift-invariance.
The value of the probability in item 3 follows from the expected chunk length via Kac’s theorem,
as applied in Proposition

For item 4, recall that an interval of length < h + 1 can’t contain more than one cutpoint. So,
as ¢ ranges over the [points in the interval, the events “i is a cutpoint” are mutually exclusive
and have probability 1/(c + h) each.

Finally, item 5 simply says that the variance of the chunk length is the same as for the pure
point filter method. Informally, this is true because waiting h steps before looking for candidates
increases chunk lengths by A but doesn’t affect differences between lengths. Formally, simply
observe that the probability that a chunk, starting at a particular cutpoint, has length ¢ is 0 for
i < hand (1 —21)7"=11 for i > h. That is, the probability distribution of the chunk lengths
is obtained from that of the pure point filter method by shifting h steps to the right. The shift
increases the expectation by A but has no effect on the variance. 0

For future reference, it will be convenient to express the variance of L in terms of the cutpoint
probability and the parameter h.

Corollary 43. For the LBFS method,

Var(L) = +h*+h.

1 2h+1
2

Proof. Substitute ¢ = 1—1) — h into item 5 of the proposition. O

Remark 44. The mutual exclusion used in the proof of item 4 can also be used to obtain the
probability 1/(¢+h) in item 3 without invoking Kac’s theorem. Letting p be the probability that
a particular position ¢ is a cutpoint, we find that

1
p= 2(1 — hp).

The first factor here, 1/¢, is the probability that ¢ is a candidate. The second factor is the
independent probability that it is unblocked. Indeed, for each of the h immediately preceding
positions j = i — h,...,7 — 1, there is probability p that j is a cutpoint, and these events are
mutually exclusive. So hp is the probability that 4 is blocked. Independence follows from the
observation that whether j is a cutpoint depends only on the file entries at j and to the left, not
on the entry at . Solving the equation above for p, we get 1/(c + h).

Of course it is also possible to get the expected chunk length by a direct computation (using
formulas from Section [23) and the probability distribution described in the proof of item 5.

Remark 45. The number of candidates skipped by the LBFS method, after it finds a cutpoint
and before it begins to look for the next candidate, is binomially distributed, for it is the number
of “successes” (candidates) in h independent “trials” (positions), each trial having success prob-
ability 1/c¢. Thus, the expected number of skipped candidates is h/c = k. The probability that

24 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

at least one candidate will be skipped, i.e., that the chunk is larger than what the pure point
filter method would produce, is
h
1
1—(1——) ~l—e®
c

for large c. If, for example, we want the minimum chunk size h+1 to be about half of the average
chunk size ¢+ h (as is the case for the local maximum method in Section [A]), then we would have
k = 1 and so the probability that LBFS skips a candidate is approximately 1 — (1/¢e) ~ 63%
— and the probability of skipping at least two candidates is &~ 26%. Thus in this situation, the
LBFS method and the pure point filter method differ on a large fraction of the chunks.

4.3. The Slack of LBFS Chunking. In this subsection, we shall estimate the expected slack
of the LBF'S method. Before proceeding, we must check that the notion of slack makes sense in
this context. Immediately after defining slack (Definition [32)), we observed that, although some
F e PFE™ may fail to have a slack, because the component files F; and F, have no common
non-negative cutpoint, the probability of this event is zero for any local chunking method. Since
the LBFS method is not local, a separate argument is needed here, but it is an easy one. With
probability 1, the common positive part '™ of Fy and F, will contain an interval of length h
with no candidates and therefore no cutpoints, and it will have a candidate to the right of this
interval. The first such candidate is a common cutpoint of F; and F5, and so Slack(F) is defined.
Since we are interested in the expected slack, we can ignore the measure 0 set of F’s whose slack
is undefined.

The exact value of the expected slack seems to be difficult to compute, so we shall estimate it
from below.

Consider a random F' € PFEM, giving rise to a merging pair of files F}, F, € PFEZ. The slack
depends on the location of candidates in the common part F* and also on any cutpoints that
may be present in I, and F, in the critical range of positions —h, —h+1,..., -2, -1, the last h
positions before the merge. These positions are called critical because a cutpoint there, in either
file, could block a candidate in F'™ from being a cutpoint of that file and could thus delay the
appearance of a common cutpoint.

With bad luck, the delay could be quite large. Suppose, for example, that '+ has candidates
at exactly the positions ¢,, = hn for all non-negative n, and suppose further that F} has a cutpoint
in the critical range but F, does not. The critical cutpoint in F; will block the candidate at 0, so
the next cutpoint of F; will be at h. That will, in turn, block 2h, so the next cutpoint is at 3h,
and so forth. In F5, on the other hand, 0 is not blocked, so it is a cutpoint, and it blocks h. The
next cutpoint in Fy is 2h, blocking 3h, and so forth. Thus, the cutpoints of Fy (resp. Fy) are hn
for odd (resp. even) n, and there are no common cutpoints. (The example doesn’t really depend
on the assumed precise spacing of the candidates. It would suffice that the distance 4,41 — i, be
< h and that i,42 — i, be > h for all n.) As indicated above, the probability of this situation
is zero, but there is a non-zero probability that this sort of alternation continues for a large (but
finite) number of steps.

We must take such situations into account when estimating the slack, because the delay in
getting the files to agree on a cutpoint can greatly increase the slack.

We shall take the delay into account, but only partially. In other words, we shall take too
optimistic a view of the possible delay. This is why our estimate of the slack will be low. More
specifically, we shall take into account that, if one or both files F} and F> have a cutpoint in the
critical range, then the last of these cutpoints, say at position —j (where 1 < j < h), blocks, in
at least one of the files, all candidates up to and including h — j. If one of the files has a cutpoint
z in [0, h — j] that is blocked in the other file, then there cannot be a common cutpoint until at
least position z + h + 1. We shall pretend that the next candidate after z +h in '™ is a common
cutpoint of the two files and is therefore the slack. In reality, it can happen as in the situation
described above that, while one of the files has its candidates up to z + h blocked, the other has a
cutpoint in that part of ', which blocks the candidate that we pretend is a common cutpoint.
That is why our pretense is too optimistic and our estimate of the expected slack too low.

We define Slack’(F), for almost all F € PFEM, to be

LOCAL MAXIMUM CHUNKING 25

e the first candidate > z + h in F'T if z > 0 is a cutpoint of one of the files F; and F, but
is blocked in the other file by a cutpoint in the critical range, and
e Slack(F) if there is no such z.

Thus, Slack’(F) is where we optimistically pretend to have the first common cutpoint of F; and
Fy. Tt is our low estimate of Slack(F). We write S’ for Slack’ /(¢ + h); it is our low estimate of
the normalized slack S = Slack /(¢ + h).

We compute the expectation of Slack’ by dividing the probability space PFEM (or rather the
measure one subset where the cutpoints of I} and Fy are well defined) into several pieces P,
computing for each piece its probability p, and the conditional expectation e, of Slack’, and
finally adding all the products p.e, to get the overall expectation E(Slack”), our lower bound for
E(Slack). There are six pieces, defined as follows; in each case, we describe the conditions on the
component files F} and F, that put F € PFE™ into that piece. Remember that Iy and F; are
the independent negative parts of F; and Fy while F'T is their common positive part. Remember
also that no two cutpoints of a file can be within a distance h of each other, so each of F; and
F5 has at most one cutpoint in the critical range.

(1) Neither Fy nor F; has a cutpoint in the critical range [—h, —1].
(2) Both F; and F» have a cutpoint at the same position —j € [—h, —1].
(3) Fy has a cutpoint —j € [—h, —1] and F'" has a candidate z that is a cutpoint of F, but
blocked by —j in Fj.
(4) Fy has a cutpoint —j € [—h,—1], F; has no cutpoint in [—j, —1], and there is no z as
in (3).
(5)-(6) Like (3)—(4) but with the roles of F; and F5 interchanged.

Before treating these pieces individually, we check that they constitute a partition of PFE
(minus, as always, the set of measure zero where the cutpoints are not well defined). It is clear
that (1) is disjoint from all the others. Observe that, in (3), no point in [—j, —1] can be a cutpoint
of Fy, because such a cutpoint would block z from being a cutpoint of F5. This observation and
the analogous one in (5) immediately show that all six pieces are disjoint. To see that they cover
(almost) all of PFEM, consider any F for which the cutpoints of F; and Fy are well defined. If it
is not in piece (1) or (2), then at least one of F; and F; has a cutpoint in [—h, —1] and, if both
do, then they are not at the same point. We can thus classify F' according to which of the files
has its critical cutpoint farther to the right. If this is F, then we clearly have (3) or (4), and if
it is Fy then, symmetrically, we have (5) or (6).

Now let us compute the probabilities p, and the conditional expectations e, of Slack’ for the
six pieces in turn. Of course there are only four computations, since (5) and (6) give the same
results as (3) and (4) by symmetry.

A preliminary observation will be useful in these computations. The first non-negative candi-
date in a random F € PFEM is exactly the slack of F under the pure point filter method. We
have already computed its expectation as ¢ — 1. More generally, the first candidate at a position
> ¢ in a random file has expectation ¢+ 4. This follows from the special case already done (where
1 is —1) by shift invariance.

Piece 1. By Proposition[d2] the probability that F3 has a cutpoint in the critical range of length
his h/(c+ h). So the probability that it has no cutpoint there is ¢/(c 4+ h), and similarly for F5.
Since the negative parts] and F,, are independent, we get

2
- c
b= (c—l—h) '

Because there are no cutpoints in [—h, —1], the first candidate in the non-negative part F'* will
be a common cutpoint of Fy and Fy. So the conditional expectation of the slack (and Slack’)
is the (conditional) expectation of the first non-negative candidate. We put “conditional” in
parentheses here, because the condition (1) makes no difference. The condition refers only to the
negative parts of the files while the candidate we seek is determined by the non-negative parts.
Thus, by the preliminary observation, we have

eg=c—1

26 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

and the contribution of piece (1) to the overall expectation is

Ae—1)

=R

Piece 2. We split piece (2) into h sub-pieces, according to the value of j € [1, h], and we compute
the probabilities pa(j), the expectations es(j), and the contributions to the overall expectation
separately for the sub-pieces.

Consider therefore, a fixed j € [1, h]. The probability that F; has a cutpoint at —j is, according
to Proposition[d2] 1/(c + h), and the same for Fy. Since these events refer only to the negative
parts F| and F, , they are independent, and so

. 1
p2(j) = m

When Fi; and F5 have cutpoints at —j, these cutpoints block candidates up to and including
h — j. So the slack (and Slack’) is the first candidate position > h — j. By the preliminary
observation, this has expectation

ea(j)=c+h—j.
The contribution of sub-piece j to the overall E(Slack’) is the product p2(j)e2(j), and summing
over all j we get the contribution of piece (2)

h

1)
p2e2 = Zm(c—l-h—])
j=1
h 1 h(h+1)

c+h (c+h)? 2
_ ch+3h®—h

(c+h)?
o h—1

We note that py has the simple formula h/(c+ h)?, and this combines with the preceding formula
for paes to give e = ¢+ (h — 1)/2. The latter has the intuitive interpretation that j, being
random in the interval [1, h] is on average (h+1)/2 and so the cutpoints at —j in both files block
candidates up to and including, on average, (h — 1)/2. So the first common cutpoint will be the
first candidate > (h —1)/2, and its expectation is, by the preliminary observation, ¢+ (h —1)/2.
Using the average j instead of considering each j individually can be justified, but the justification
ultimately amounts to the computation we did above, treating each j separately and adding the
resulting contributions.

Piece 3. With j and z as in (3), notice that 0 < z < h—j, because z is blocked in F; by —j. Since
z is a cutpoint in Fj, it blocks all candidates up to and including h + z. So to find a common
non-negative cutpoint of F; and Fy, we must look for candidates in F'" strictly to the right of
h + z. As indicated above, we will pretend that the first such candidate is a common cutpoint;
formally, this means that we deal with Slack’(F') instead of Slack(F).

As in the previous subsection, we split the piece under consideration into sub-pieces, this time
indexed by both j and z, where j ranges from 1 to h and z ranges from 0 to h — j.

We begin by computing the probability p3(j,z) of the sub-piece indexed by j and z. The
probability that F} has a cutpoint at —j is, by Proposition @2 1/(c + h). The probability that
F5 has a cutpoint at z is the same. And these two events are independent because the former
depends only on F;~ while the second depends only on Fb, i.e., on F; and F'*, and these parts
of F' are independent. We need not consider separately the requirement in (3) that z is blocked
by —j in Fi; this is already covered by the fact that j and z are in the appropriate ranges,
specifically that —j < z < h — j. So we infer that

. 1
p3(4,2) = m

LOCAL MAXIMUM CHUNKING 27

The conditional expectation of Slack’ is the expectation of the first cutpoint of F't strictly after
h + z, so, by our preliminary observation,

es(j,z) =c+h+z.
Thus, the contribution of this sub-piece to the overall E(Slack’) is

c+h+z

p3(j, z)es(d, z) = ICETER

To get the contribution of the whole piece (3) to E(Slack’), we must sum this over z from 0 to
h — j and then over j from 1 to h. Since the expression being summed is independent of j, we
prefer to carry out the sum over j first; converting the limits of summation to the new order, we
get

h—1h—z

pes = zsz,jz

Z (c+h+2)(h—2)
- (c+h)? '

We postpone simplifying the sum over z in order to make it easier to combine with the forthcoming
result from piece (4).

Piece 4. In the description of piece (4), the requirement that there is no z as in (3) is equivalent
to saying that F» has no cutpoint in the interval [0, h — j]. Indeed, a cutpoint in that interval
would be a candidate of F'™ and would be blocked in F; by —j, whereas a cutpoint farther to
the left would not be in F'™ while one farther to the right would not be blocked by —j.

Combining this requirement with the other requirement in (4) that F5 have no cutpoint in
[—7,—1], we find that we can restate (4) as follows: F} has a cutpoint —j in the critical range,
but F3 has no cutpoint in the interval [—j, h — j] of length h + 1.

As before, we divide our piece into sub-pieces, according to the value of j, and we do the
calculation for each j separately.

To calculate the probability ps(j) of the sub-piece indexed by j, we again apply Proposition 42l
The probability that F} has a cutpoint at —j is 1/(c+ h). The probability that F5 has a cutpoint
n [—j,h—jlis (h+1)/(c+ h), so the complementary probability, that it has no cutpoint in this
interval, is (¢ — 1)/(c+ h). Since F; is independent of the negative part Fy of Fy, it follows that
we can simply multiply the two probabilities to get

1 c—1 c¢—1
c+h c+h (c+h)?

pa(j) =

Notice that neither F; nor F; has a cutpoint in [—j 4+ 1, h — j]. We already pointed this out for
F5, with the slightly longer interval [—j, h — j], but it also holds for F; because this file has a
cutpoint at —j, which blocks the next h positions. Therefore, the next candidate in F't* strictly
to the right of h — j will be a common cutpoint and will thus be the slack (and Slack’) of F. The
expectation is, by our preliminary observation,

e (j)=c+h—1j.
Therefore, the contribution of this sub-piece to E(Slack’) is

(c=1)(c+h—37)
(c+h?

pa(j)ea(s) =

To get the contribution of piece (4) to E(Slack’), we must sum over j; it is convenient to postpone
actually doing this summation until after we combine the results from pieces (3) and (4), but
we prepare for the job of combining these pieces by changing the summation variable from j to
z = h — j. (In contrast to previous computations, z does not represent a position here. It is

28 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

merely a formal variable. We chose the letter z to facilitate combination with the sum from piece

(3)-)

h . h—1
N e=Dleth—j) - (e-Dletz)
e J; (c+h)? - ;0 (c+h?

Assembling the pieces. Since all the contributions to E(Slack’) computed above had (c + h)? in
their denominators, we put those denominators aside for the time being. That is, we assemble
the contributions to (c + h)? E(Slack’).

As indicated above, we first combine the contributions from pieces (3) and (4). We get

h—1 h—1
Z(c—i—h—l—z)(h—z)—i—Z(c— (c+z2)=
2=0 z=0

h—1
:Z(ch+h2+c2—c—z(z+1))

2=0
h
=ch2+h3+czh—ch—2m(m—1)
m=1
h—h
=ch?+h3+ch—ch— T

where we introduced the new summation variable m = z+ 1 and then applied one of the summa-
tion identities from Section 23 Simplifying slightly by combining the two h® terms, and doubling
the result so as to account for pieces (5) and (6) as well as (3) and (4), we get as the contribution
of these four pieces to (¢ + h)? E(Slack’)

4 2
2ch? + §h3 +2¢%h — 2¢h + gh.

Finally, adding the contributions ¢* — ¢ from piece (1) and ch + $h? — 1h from piece (2), and

restoring the (¢ + h)? denominator, we get
4 1 1
E(Slack’) = (2ch2 + gh3 +2¢%h — ch + sht A —c?+ §h2) /(c+h)?.

Recall that Slack’(F) < Slack(F) for all F', with the usual exception of a measure zero set
where the chunking method doesn’t work or too few cutpoints exist. Thus, our calculation proves
the following lower bound for the expected slack.

Proposition 46. The expectation of the slack E(Slack) of the LBFS method with parameters c
and h is greater than or equal to

4 1 1
<2ch2 + §h3 +2¢%h — ch + Eh +cE -2+ §h2> /(c+h)2.

The expectation E(S) of the normalized slack is the same except that the denominator (c+h)?
is replaced with (c+h)3, because, by Proposition[d2], ¢+ h is the expectation of the chunk length.

When, as is usually the case in practice, ¢ and h are fairly large numbers, then, since the
coefficients in our formulas are not particularly large, we can approximate the formulas by keeping
only the terms of highest degree.

Corollary 47. For large ¢ and h, the expectation of the normalized slack is asymptotically
bounded below by

4
<2ch2 + §h3 +2¢%h + 03) /(c+ h)®.
In terms of the parameter k = h/c, this asymptotic lower bound is

(§k3 + 2% + 2k + 1) J(1+Ek)>.

LOCAL MAXIMUM CHUNKING 29

In particular, for the LBFS method with k& = 1/4 (the choice proposed in [20]), we find that
the expectation of the normalized slack is asymptotically at least 0.842. Here is a table of values
of the asymptotic lower bound in the corollary, as k ranges from 0 to 1 in steps of 1/10.

k 0.1 {02 |03 |04 |05 |06 |07 [0.8 |09 |1.0
E(S) | 0.92|0.86 | 0.83]0.80|0.79 | 0.78 | 0.78 | 0.78 | 0.79 | 0.79

This function of k attains its minimum (over positive values of k) at k = 1/1/2, the minimum

value being
8 (1 — i) ~ 0.781049
3 7 . .

Corollary 48. For large ¢ and h, the expectation of the normalized slack of the LBFS method is
at least 0.781.

Remark 49. The preceding estimates do not imply that the normalized slack of the LBFS method
is optimized (i.e., minimized) by choosing k to be 1/v/2. This choice optimizes (for large ¢ and
h) the expectation of S’, but the difference between Slack’ and Slack, and thus also the difference
between the normalizations S’ and S, increase as k increases, and so we would expect the optimum
of E(S) to occur at a value of k somewhat smaller than 1/+/2.

To see why the difference between Slack” and Slack should grow with k, recall that Slack’ is
what Slack becomes if we pretend that files do not have cutpoints in a certain interval whose
length is, on average, about h/2. The probability that this pretense is an error, i.e., the probability
that there is a cutpoint in such an interval, is near

h/j2 k)2
c+h 1+K
which is an increasing function of k for positive k.

Remark 50. The preceding observations suggest the question of the behavior of E(S) as k — oo.
The lower bound E(S") computed above approaches 4/3, but we expect E(S) to be significantly
larger. Here is a rough argument to show that E(S) is approximately proportional to k? for large
k.

Since k is large, h is much larger than ¢, and so the cutpoints in a random file will be spaced
approximately h positions apart. Indeed, the LBFS method always skips h positions after a
cutpoint, but then it will very quickly, in about ¢ more steps, find a candidate, which will serve
as the next cutpoint. Notice that the h skipped positions will usually include a large number
(approximately k) of blocked candidates.

Thus, an interval of length & is very likely to contain a cutpoint, but where in the interval that
cutpoint lies, or equivalently the remainder of the cutpoint modulo h, is essentially random, being
determined by some event in the distant past (where there were h consecutive non-candidates
or some other special configuration of file entries that makes the LBFS cutpoints well-defined
thereafter) and the small (relative to h) differences between h and the actual chunk lengths.

In particular, in the model PFE™ of merging files, we expect F} and F> to have cutpoints
in the critical range [—h, —1], and we expect the location of these cutpoints to be uniformly
randomly distributed in this range. Now when two points are chosen at random from an interval,
the expectation of the smaller (resp. larger) is at the left (resp. right) trisection point of the
interval. So, on average, one of our files has a cutpoint at —2h/3 and the other at —h/3. (This
use of averages is one of several reasons why this is a rough argument.) The next cutpoints after
these will come about h positions later, i.e., near h/3 and 2h/3, respectively.

Our optimistic estimate for the slack takes into account that one file’s cutpoint at h/3 blocks
the other’s cutpoint at 2h/3 from being a common cutpoint, but it then assumes that the next
cutpoint of the former file, h units past the cutpoint at h/3, is a common cutpoint. So it pretends
to see a common cutpoint near 4h/3. This accounts, since the chunk length is essentially h, for
the value 4/3 that we found for the expectation of the normalized slack.

But the assumption that there is a common cutpoint near 4h/3 is usually wrong; one file has
a cutpoint near 2h/3 blocking any candidate near 4h/3. Were it not for random fluctuations,
the two files would alternate cutpoints, one having cutpoints near (n + %)h and the other near
(n+ %)h for all n, and there would never be a common cutpoint. In reality, the positions of the

30 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

cutpoints modulo i will slowly drift as we proceed farther to the right in the file. How long will
it take them to drift to a collision, i.e., to a common cutpoint?

The distance between the cutpoints is initially (i.e., just before the merge at position 0)
proportional to h; on average it is h/3. From one cutpoint to the next, each increases, modulo
h, by a random amount of size approximately c. So the distance between them increases or
decreases randomly, by amounts roughly proportional to ¢. So the number of steps needed for
the distance to become zero can be approximated by the number of steps needed for a random
walk, in steps of length roughly ¢ = h/k, to cover a distance proportional to h. But the distance
covered by a random walk is known to be proportional to the size of the step times the square
root of the number of steps. So the number of steps needed will be roughly proportional to k2.
Since each step of the random walk corresponds to advancing a distance roughly equal to the
chunk length in the file, the number of steps is approximately the normalized slack. Thus, we
expect the normalized slack, for large k, to be roughly proportional to k2.

4.4. The Reverse Slack of LBFS Chunking. The definition of the cutpoints in LBFS chunk-
ing is not symmetrical with respect to left and right, so there is no reason to expect the «—slack
of this chunking method to equal the —slack. We therefore calculate the reverse slack here. This
turns out to be easier than the preceding calculation of the —slack, in that we can obtain an
exact answer rather than only a lower bound. The reason the reverse slack is easier to compute is
that, when we have a candidate in the common part £~ of the two files F; and F5, the question
whether it is a cutpoint depends only on F'~, not on the diverged, independent F1+ and F;r . We
can therefore obtain simple formulas for the probability that the reverse slack of a file is s.

This probability is the product of two factors, namely the probability that —s is a cutpoint (in
F~) and the conditional probability, given that —s is a cutpoint, that there is no other cutpoint
in the interval [—s+ 1,0]. The first factor here is just the cutpoint probability, already computed
as 1/(c+ h) in Proposition[42l For the second factor, we must consider two cases, depending on
the relative size of s and h. If s < h, then the second factor is 1, because the interval [—s + 1, 0]
is within the range where —s blocks all candidates from being cutpoints. If s > h, however, then
—s blocks candidates only up to and including —s + h and so we must still consider possible
cutpoints in the interval [—s + h + 1,0]. Notice that there is a cutpoint in this interval if and
only if there is a candidate there, because the first candidate there, if any, will be a cutpoint.
Thus, the second factor for our computation can be expressed as the probability, conditional on
a cutpoint at —s, of having no candidates among the s — h positions in [—s 4+ h + 1,0]. But the
events “¢ is a candidate” for such positions ¢ are independent of each other and of the cutpoint
at —s. Each of these events has probability 1/c¢, so the probability that none of them occurs
is (1 — %)S_h. Therefore, the probability that s is the reverse slack is, when s > h, given by
(1- %)S_h/(c + h).

Therefore, the average «—slack for the LBFS chunking method is given by

h

1 > 1 "
Zsc+h+ > et h (1_E> '

s=0 s=h+1

A routine calculation, using the formulas in Section 23] yields the explicit form of the «slack:

h(h +1) te—l= h? — h+2¢* — 2c+ 2ch
20c+h) T 2(c+h)
The normalized reverse slack, obtained by dividing this result by the expectation ¢ + & of the
chunk length, is

h2—h+202—2c+2chNk2+2k+271+ 1
2(c+ h)? T2k +1)2 2 2(k+1)2

where k is, as before, h/c, and where the approximation is for large h and ¢ with fixed k.

In particular, when k = 1/4 as in [20]), the normalized reverse slack is approximately 0.82.

If we allow k to vary, the expected normalized «slack, as a function of k (for large h and c¢)
is monotonically decreasing, but there is no use choosing a large k in order to make the «—slack
small, for we have seen that this would make the —slack large. What we can reasonably do is
to compute the value of k£ that minimizes the sum of the normalized reverse slack and our lower

LOCAL MAXIMUM CHUNKING 31

bound for the normalized slack. That will provide a lower bound for the normalized —slack plus
«—slack over all possible values of k. That minimum occurs at (1 4+ +/17)/4 ~ 1.281, and our
lower bound for the sum of the two normalized slacks is approximately 1.41.

Corollary 51. The sum of the normalized — slack and «slack of the interval filter method, with
arbitrary k, is asymptotically (for large h and c) greater than 1.408.

5. INTERVAL FILTER METHODS

5.1. Definition of Interval Filter Chunking. Any local chunking method might be called an
interval filter method, because whether a position ¢ is a cutpoint of a file F' is determined by
applying some criterion (or filter) C' to the contents of F' in some interval [i — h,i + h] around
i. (The notations C' and h here are from Definition 2I1) But we shall use the phrase “interval
filter” in a more restrictive sense.

The first restriction is that whether ¢ is a cutpoint will depend on the contents of the file only
in an interval [i — h,4]. That is, when reading the file from left to right, one can recognize a
cutpoint when one gets to it, without having to read any farther in the file. (This presupposes,
for technical reasons, that we know where the file ends; see Remark 53] below.)

A second restriction concerns the particular form of the criterion for cutpoints. We assume
that the set PFE of potential file entries has been partitioned into two pieces, U and V', and that
the cutpoints of a file F' are the positions matching the V' in the pattern

U..UV.
————
h
More formally:

Definition 52. The interval filter chunking with horizon h determined by a partition of PFE
into U and V is the chunking method that declares a position ¢ to be a cutpoint of a file F' if and
only if

e ;| is an h-internal position in F.

e allof F(i —h),...,F(i—1) are in U, and

o F(i)e V.

This definition immediately shows that interval filter chunking is a local chunking method with
horizon h.

Remark 53. For i to be a cutpoint of F, the first clause in the definition requires that the whole
interval [¢ — h,i + h] be included in the domain of F, but the values of F' on the right part,
[i + 1,7+ h], of this interval are irrelevant. We could modify the first clause to require only that
[i — h,i] be included in the domain of F. Then there could be cutpoints within h of the end of
a finite file. The modification would have the advantage that one could determine whether i is a
cutpoint of F' by reading F' up to position ¢, without needing to know how much farther F' goes.
The modification would have the disadvantage of violating our definition of locality of chunking
methods (Definition 21I), which demands that all cutpoints be h internal. Both the advantage
and the disadvantage are quite small; in particular, one ordinarily knows where a file ends. It is
convenient for our purposes to use the definition as given, ensuring locality.

The particular form of the filter, h consecutive U’s followed by a V, ensures that no two
distinct cutpoints will be within h positions of each other. Consequently, all chunks have length
> h except that the first chunk (in a finite or singly infinite file) might have length only h.

5.2. Statistics of Interval Filter Chunking. In the following discussion of interval filter
chunking, we assume that not only PFE but also U, V, and h are fixed. We use the notations
U] V]
“=1pFg] ¢ Y “ = IPFE]|
for the probabilities that a random element of PFE is in U and V, respectively. The independence
of the entries at different positions in a random file immediately implies that an arbitrary position
is a cutpoint with probability p = uv. And then, by Proposition 28 the expectation of the chunk
length is E(L|Cut0) = 1/(u"v). The following computation will give us the variance of the chunk

32 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

length L; it will also give the expectation without the need for Kac’s theorem. Since we are
concerned here with the chunk length, which was defined only for files with a cutpoint at 0, the
probabilities, expectations, etc., in the following discussion are all conditional on the event CutO0.

Let S be the probability that the next cutpoint is at k& and therefore the chunk length is
k. Since the filter prevents cutpoints from being within h of each other, we have S = 0 for all
k < h. For larger k, we have

k—h—1
Se=ulv[1-) S
E=UuU"v j
Jj=0

The factor u"v here is the probability that & is a cutpoint. The remaining factor is the probability,
conditional on k£ being a cutpoint, that there is no earlier cutpoint after 0, i.e., that no j in the
range [1,k — 1] is a cutpoint. The upper limit on the sum is not k — 1 but &k — h — 1 because the
condition that & is a cutpoint already implies that no j € [k — h,k — 1] is a cutpoint. A priori,
the terms in the sum should be conditional probabilities of j being a cutpoint, conditional on k
being a cutpoint. Fortunately, the conditioning here doesn’t matter. Whether j is a cutpoint
depends only on file entries at positions < j < k— h — 1, while the condition that k is a cutpoint
depends only on entries in positions > k — h. Notice also that the lower limit 5 = 0 of the sum
could be replaced by j = h+1 or anything in between, as S; = 0 for j < h; the same observation
applies to other sums, like the one defining S(z) below.
To easily manipulate the formula for Sy, we introduce the generating function

S(z) = Z Sp2k.

k>h

Multiplying the formula for Sy, by z* and summing over k, we get

k—

S(z):uthzk—uth Z

h—1
k>h k>h j=0

k
sz .

The first term here involves a geometric series and thus simplifies to uvz"T1/(1—z). To evaluate
the sum in the second term, we interchange the order of summation; since the range of the
variables j and k is given simply by 0 < j < k — h, we get

i i szk

=0 k=h+j+1

Shti+l

;Sj 1—2z

h+1
z .
= — E SjZ]
1—24
j=0

Combining the two terms and remembering that u/v equals the cutpoint probability p, we get

h+1
Dz
S(z) = 1-5
()= 21 5(2)),
and solving for S(z) we get
h+1
— Pz
S(Z) - 1_Z+pzh+1'

The expectation of L is the derivative of S(z) evaluated at z = 1, so we compute

pz"(h+1— hz)
(1 =24 pzht1)2’

S'(z) =

LOCAL MAXIMUM CHUNKING 33

When z = 1, this reduces to 1/p, as predicted by Kac’s theorem via Proposition We get
E(L?) by multiplying S’(z) by z, differentiating again, and then setting z = 1, because

(25(2)) = (z Z Skkzk1>

!/
= (Z Skk2k>
k
_ Z Skk22k_l,
k
and setting z = 1 yields), Sxk? = E(L?). So we differentiate
p2" (W41 - h2)(1 — 2+ p2"tH) 2,

set z = 1 in the result, and simplify to get

2 2h+41
E(L*) = 5 — Ry
p p

Finally, the variance of the chunk length is

Var(L) = B(?) - B(L)? = - 2P P _ 1= @t lp
p p p
Comparing this to Corollary d3] we see that, for the same cutpoint probability p (hence the same
average chunk length 1/p) and the same minimum chunk length h, our interval filter method
gives a smaller variance Var(L) than the LBFS method. As indicated in the introduction,
smaller variance of the chunk length is generally desirable.

As explained earlier, there are other ways to assess desirability of chunking methods. The
slack and reverse slack, introduced for just this purpose, and also the probability of long chunks
will be considered below. But first, we look briefly at the the criterion that simply compares the
expected and minimum chunk lengths.

Having enforced a minimum chunk length of A by our choice of filter, it is reasonable to aim
next for chunks that are not too big, and one might do this by choosing the parameters v and v
(subject to u+v = 1 of course) so as to minimize E(L). To do this, it is convenient to work with
the reciprocal of E(L), namely u"v = u"(1 —), which we want to maximize. Differentiating it
with respect to u, we get hu~! — (h+1)u”, which vanishes at u = 0 and at u = h/(h+1). Unless
h = 0 (in which case we would be dealing with a pure point filter method), v = 0 minimizes u"v;
the maximum we want is at v = h/(h + 1), so v = 1/(h + 1). The cutpoint probability for this
choice of u and v is

, hh (1)h 1 1
vr==r-—-------=1- — -~ —
(h+ 1)h+1 h+1) h+1 eh’
and so the expected chunk length is approximately eh. The average chunk is approximately e
times the minimum possible chunk size.

5.3. Slack of the Interval Filter Method. Consider a random F' € PFEM, as in the definition
of slack, and use the notation Fy, Fy, F; , F; , F* as there. Write P for the probability that
the first common cutpoint > 0 of the files Fy and F; is at k. So E(Slack) = ", Pik.

For 0 < k < h, the probability that k is a common cutpoint is u?*~*v. The reason is that
for k to be a common cutpoint requires F'* (k) to be in V' (probability v), FT(j) to be in U for
j=0,1,...,k — 1 (k events of probability u each), and both F| (j) and F; (j) to be in U for
j=k—"h,...,—1 (2(h — k) events of probability u each). All these events are independent, so
we just multiply their probabilities. Furthermore, still assuming 0 < k < h, we know that, if k is
a common cutpoint, then it is the first one, because distinct cutpoints can never be within h of
each other. Thus,

P =u?Fy for 0 < k < h.

For k > h, on the other hand, the probability that k is a common cutpoint is given by the
simpler formula uv, since we just require F(k) to be in V and F(j) to be in U for the h values
k—h,...,k—1of j. But the probability that k is the first common cutpoint is more complicated,

34 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

since we must exclude the possibility of earlier common cutpoints. More precisely, when £ is a
common cutpoint, then none of k — h, ...,k — 1 can be a cutpoint (of either file), but we must
exclude the possibility of a common cutpoint j € [0,k —h — 1]. Note that, since we only consider
values of j smaller than k — h, the event that such a j is a cutpoint is independent of the event
that k is a cutpoint; indeed, the former depends on file contents at positions < j < k — h while
the latter depends on file contents at positions > k — h, and these are independent. Thus, we

have
k—h—1

P, = v Z for k > h.
7=0
Note that, although the events “j is a common cutpoint” for distinct values of j need not be
mutually exclusive (if the j values differ by more than h), the events “j is the first common
cutpoint” are mutually exclusive, so the sum in our formula correctly represents the probability
of their union — and this is precisely the probability that some j < k — h is a common cutpoint.
As before, manipulation of these formulas for P, becomes easier if we introduce the generating

function
(z) = Z P2k
k=0

If we take the formulas above for P, multiply by 2z* and sum over k, we get
k—h—1

h—1 oo
z) = E Rk 4 E ulvz? — E ulv E P;z".
k=0 k=h

We simplify each of the three terms on the right, and for notational convenience we remember
that the product u"v is the cutpoint probability, for which we have the shorter notation p. The
first term on the right side is

k AL
w3 (2) —purli) 21

We introduce the abbreviation

so that the first term on the right side of the formula for P(z) becomes pu”a(z). The second

term is
oo
szk _
k=h

In the third term, we interchange the order of summation, obtaining

Shti+l

h+1
uvz Z P; 2" —pZle ﬁz_zP(z).

=0 k=j+h+1

Inserting these simplifications into our formula for P(z) and multiplying by 1— z to clear denom-
inators, we get
(1—2)P(2) = (1 — 2)pua(z) + pz" — pz"*t1P(2).

The expectation of the slack is obtained by differentiating P(z) to get >, Ppkz*=1 and then
setting z = 1 to get >, Prk. To evaluate P'(1), we differentiate the last displayed formula with
respect to z and substitute z = 1 in the result. The differentiation is simplified by the observation
that, whenever a factor 1 —z in our formula survives in the derivative, it will be annihilated by the
substitution; in particular, we can ignore the term involving o/(z). The computation produces

—P(1) = —pu"a(1) + hp — (h + 1)pP(1) — pP'(1).
Remembering that P(1) =, P, = 1 and solving for P’(1), we get
L

P(1)= o u"a(1) — 1.

LOCAL MAXIMUM CHUNKING 35

The definition of «(z) gives

1\h h
N1 q1_
uha(l) =" (“1) I =3 ul .

Inserting this into the formula for P’(1), we finally get, using also that 1 —u = v,

1 1_,h 1 1 — bt
E(Slack):—— “1 ¢ v
P 5—1 p v

The expectation of the normalized slack is obtained by dividing by the expected chunk length,
i.e., multiplying by p = u"v, which gives

1 _ Uh 4 U2h+1.

If, as suggested at the end of the preceding subsection, we choose u = h/(h + 1), so as to
minimize the expected chunk length, then the normalized slack is, on average

h 2h+1
1 1 1 1
1—(1-—— 1—— Ml -4
< h—l—l) +< h+1> e T

where the approximation is good for large h.
On the other hand, one might want to choose u and v so as to minimize the expected normalized
slack. By differentiating, one finds that the minimum occurs when u" = (b +1)/(2h+1) =~ 1/2,

(/T d In2
u~ {/= andso v~ —.
2 h

The minimum value of the expected normalized slack is thus approximately 3/4.

5.4. Probability of Long Chunks. We estimate next the probability of getting long chunks
in the interval filter method. This estimate will be relevant later in two computations. One
concerns the probability of a long interval containing no cutpoints; the other concerns the right
slack of the method.

As before, we assume that u, v, and h are given, and we write p for the cutpoint probability
p = ulv.

Let gi be the conditional probability that there is no cutpoint in the interval [1, k] given that
there is a cutpoint at 0. Let Q(z) be the generating function

Qz) = Z qez".
k=0

Before proceeding to estimate g, we comment on the condition “there is a cutpoint at 0.” It
obviously implies that the file entry at 0 is in V. It implies more, namely that the h previous file
entries are in U, but this additional information has no effect on the probability of a cutpoint at
any positive position. To get a cutpoint at some k > 0, we need h consecutive elements of U at
positions k — h to k£ — 1 and, because of the element of V' at position 0, no positions farther to
the left can contribute to a cutpoint at k. Thus, ¢x could also be described as the probability
that a random file F' has a cutpoint at &, given that F(0) € V.

We have almost computed the probabilities ¢, in Section[5.2l We obtained there the generating
function S(z) for the probabilities Sy that the first positive cutpoint is at k, given a cutpoint at
0. This Sy can be described as the probability, given a cutpoint at 0, that there is no cutpoint
in [1,k — 1] but there is one in [1, k]. That is,

Sk = Q-1 — qx

for all k£ > 1. Multiplying this equation by z*, summing over all k > 1, and taking into account
that Sy = 0 and gy = 1, we find that

5(2) =2Q(2) - Q(z) + 1.
Solving for Q(z) and using the formula for S(z) computed in Section [5.2] we find that
1—-5(= 1
Q) =12

1—z 1— 2+ pzhtl’

36 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

Because this generating function is rational, one can, in principle, expand it in partial fractions,
expand those fractions as geometric series, and thus obtain explicit formulas for the probabilities
qx- This approach, unfortunately, presupposes that one knows the roots of the polynomial 1 —
z + pz"*1; these roots enter into the partial fraction expansion, and (unless there are multiple
roots) the formula for g is a linear combination (with constant coefficients) of the h 4+ 1 terms
wk, where w ranges over the reciprocals of the h 4 1 roots of the polynomial. In other words, w
ranges over the solutions of the equation w"** —w" + p = 0, which is most conveniently (for our
purposes) written as w" (1 —w) = p. For large k, the formula for g, will be dominated by the w*
term for the largest of the roots. Most of the rest of this section will be devoted to estimating
this largest root and thus estimating the rate at which g3 approaches 0 as k — oco. But first we
indicate, in the following remark, an alternative approach to the computation of gx; the reader
can safely skip it, as it will not be used directly in the subsequent work.

Remark 54. The inclusion-exclusion principle provides a formula for ¢ as follows. For each
subset A of {1,2,...,k}, let 7(A) be the probability that a random file with a cutpoint at 0
also has cutpoints at all the members of A (and possibly additional points as well). Notice that
r(A) = 0 if any element of A is < h or if any two distinct elements differ by < h, because no
file has two cutpoints separated by a distance h or less. For all other choices of A, the events of
having cutpoints at the various elements of A are independent of each other and of the condition
that there is a cutpoint at 0, so r(A) = pl4l. The inclusion-exclusion principle, applied to this

situation, says that
a= 3 (—)HAIn(a) = S (1PN,
AC{1,....k} 1

where NV is the number of [-element subsets of {1,2,...,k} that are good in the sense that they
have no elements < h and no two distinct elements a distance < h apart. Fortunately, these
good subsets are quite easy to count. Notice first that, if A = {a1 < a2 < -+ < a;} is good,
then 0 < a; — h (because A has no elements < h) and a1 —h < ag —2h < --- < a; — lh (because
a; and a;yq differ by more than h). Thus, we can compress A to a set of [positive integers
A = {a; —ih : 1 < i < I}, which is obviously a subset of {1,2,...,k — lh}. Conversely, any
l-element subset of {1,2,...,k — lh} arises as A from a unique good A. Therefore,

N, = (k—llh)

Lk —=1h
qk—zl:(1)'p (])
(The variable | can be allowed to range over all integers, but the binomial coefficient will vanish
unless [is in the range of reasonable values, 0 <1 < k/(h+1).) This formula for g, though quite
explicit, does not seem to be directly amenable to estimating the asymptotic behavior of the
sequence of ¢i’s, mainly because of cancellations between the positive and negative terms in the
sum. It leads, however, to a recursive formula that can be more useful for asymptotic estimates.
Indeed, the familiar Pascal-triangle identity for the binomial coefficients allows us to write

g = (1) (k - llh - 1> +) (-1 (k P Tl_ 1>-

l l

and

The first sum here is simply gx—1. The second can be rewritten, by factoring out —p and changing
the summation variable to m =1 —1, as

k—h—1—mh
-p Z(—l)mpm< > = —Pqk—h—1-
l

m
Therefore, we get the linear recursion equation

gk = qk—1 — Pqk—h—1-

The usual technique for solving such recursions, namely looking for constants A such that *
solves the recursion, forming a linear combination of such solutions for the various possible \’s,

LOCAL MAXIMUM CHUNKING 37

and choosing the constant coefficients in the linear combination to match initial conditions, leads
to the following equation for A:

)\h-‘rl _)\h —p.
This is exactly the equation whose roots w figured in the discussion preceding this remark. So we
have reached, via a different route, the same conclusion: The asymptotic behavior of g, for large k
is exponential, g, &~ constant-\¥, where) is the largest (in absolute value) root of w" (1 —w) = p.

We now turn to the task of estimating the largest root of w”(1 — w) = p. Recall that the
cutpoint probability p was obtained as p = u"v = u” (1 —u), so u is a root of our equation. Recall
also that, for a fixed h, the maximum possible value of p is pmax = h"/(h + 1)+, attained at
u=nh/(h+1).

To study the solutions of w" (1 —w) = p, let us concentrate first on non-negative real solutions,
and so let us consider the graph of the function f(w) = w"(1 —w). For non-negative w, it starts
at the origin, where it has a root of multiplicity h; it increases up to the point where w = h/(h+1)
and f(w) = h"/(h + 1)"*! (the maximum we computed earlier), and then it decreases to the
point where w = 1 and f(w) = 0. As w continues to increase, f(w) continues to decrease, i.e., to
become more and more negative.

Thus, for p in the range 0 < p < pmax, there are two non-negative real solutions w for
wh(1 — w) = p, both of which are simple roots except that when p = 0 the root w = 0 has
multiplicity h. Let us write w; for the larger and w_ for the smaller of these roots. For p = ppax,
there is a single non-negative real root, with multiplicity 2; we let both w4 and w_ denote this
root. Thus, both w4 and w_ are continuous functions of p in [0, pmax]. We can ignore any values
of p outside this interval, because they cannot arise as the cutpoint probability of the interval
filter method.

We propose now to show that w, is the root of largest absolute value for the equation w"(1 —
w) = p, not just among the non-negative real roots already considered but also among all roots
in the complex plane. Notice that there is no problem (and no interest) in the case p = 0; here
we know all the roots: an h-fold root at 0 = w_ and a simple root at 1 = wy. So we may
assume p € (0, pmax]. Temporarily fix p (and thus w;) and consider the following two disks in
the complex plane. The left disk is centered at the origin and has radius wy; the right disk is
centered at 1 and has radius 1 — wy. The situation is illustrated in Figure [l Notice that the
two disks are tangent at their common boundary point wy. Our ultimate goal is to show that
all the roots of w"(1 — w) = p lie in the left disk, but first we establish the easier result that all
these roots lie in the union of the two disks.

FIGURE 1. A cover for the roots of wh(1 —w) =p

To see this, suppose w is a root that lies outside the left disk. So |w| > wy and thus |w|" > w ",
But
lw|" -1 —w[=p=w""(1-wy),

38 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

and so we must have |1 — w| < 1 — wy. That is, w lies in the right disk.

To show that the roots actually all lie in the left disk, we allow p to vary and consider what
happens if p starts at 0 and gradually increases toward pmax. Of course, at each stage of the
process, there is a root wy at the point of tangency of our two disks. Our concern is with the
behavior of the other h roots. Initially, when p = 0, these roots are all at the center 0 of the
left disk. (The left disk is initially the unit disk and the right disk a single point.) Now as p
increases, the left disk shrinks, the right disk grows, and the roots we are interested in move
around continuously. Can they escape from the left disk? The preceding paragraph shows that
the only way to escape from the left disk is to enter the right disk. Since the disks touch only
at wy, an escaping root would have to coincide, at the moment of its escape, with wy. That is,
w4 would have to be (at least) a double root of our equation w” (1 —w) = p. But we know, from
our analysis of the non-negative real roots, that w4 is a simple root for p < ppax; it becomes a
double root only when p reaches pyax. Thus, the only possible moment when a root can escape
from the left disk is at the very end of the range of relevant p values. That is, for all p € [0, Pmax],
all the roots are still in the left disk.

This completes the verification of our claim that w; is always the largest root in absolute
value.

There remains the question of evaluating or at least estimating w4 as a function of p (where
we continue to regard h as fixed). The two following rough estimates will suffice for our purposes;
both are based on the fact that the function f(w) = w"(1 — w) has a negative second derivative
throughout the interval [h/(h 4+ 1),1] (in fact for all w > (h — 1)/(h + 1)). Recall that this is
the interval over which w; ranges as p = f(w) varies from ppax down to 0. Knowing that the
graph of f is concave, we have that this graph lies below its tangents and above its chords on
this interval.

The tangent to the graph of f at the point w = 1, p = 0 is the line p + w = 1, because
f'(1) = —1. Since the graph is below this tangent, we conclude that w; < 1 — p (with equality
only at p = 0).

The chord of the graph of f joining the point w = 1, p = 0 and the point w = h/(h+ 1), p =
Pmax has the equation w =1 — p/(pmax(h + 1)). Since the graph lies above the chord, we have

’LU+21— 1_6p5

S
pmax(h + 1)
where the approximation is good for large h. Figure[2illustrates the above estimations. (For the
sake of visibility, the figure is drawn with different scales along the two axes.)

f(w)

Pmax

FIGURE 2. A graph of f(w) for estimating wy as a function of p

Inserting these estimates of w, into our previous results concerning the probabilities ¢ of
chunks longer than k, we find that, for large k, g; lies between a constant multiple of (1 — ep)¥
and a constant multiple of (1 — p)*. The constant here arises from the partial fraction expansion
of the generating function Q(z). If we express k in terms of the average chunk length 1/p, i.e.,
if we set k = M/p, so that g is the probability that the chunk containing 0 is at least M times
the average length, then we can approximate

(1—ep)* = ((1 - ep)l/ep)eM ~ e M

LOCAL MAXIMUM CHUNKING 39

and .y
(1=p)f = (=pr) " me

Thus, as a function of M, the probability of a chunk M times as long as the average decreases
exponentially and lies between a constant multiple of e~ *™ and a constant multiple of e=™. The
actual factor in the exponent depends on p; the upper estimate e~ is more accurate for very
small p (where the graph of f is close to the tangent used in obtaining this estimate), while the
lower estimate e~ is more accurate for relatively large p, i.e., close to pmax-

One can, of course, obtain more accurate estimates of the decay rate of ¢; by estimating w
more accurately. For example, one can express w, as a Taylor series in 1 — p or as a Puiseux
series in P — Pmax-

5.5. Reverse Slack of the Interval Filter Method. The estimates of g in Section [5.4] enable
us to estimate the reverse slack of the interval filter method as follows. Consider a random
F € PFEP. The probability that its «slack is a particular natural number k is the product of
the probability of a cutpoint at —k and the conditional probability, given a cutpoint at —k, of
having no further cutpoints in [~k + 1, 0]. The former factor is p = u"v and the latter is, thanks
to shift-invariance, ¢;. (We are in the pleasant situation that neither factor is influenced by Fl+
and F5; only F~ is relevant, and so we are essentially dealing with a file in PFE”)
The expectation of the «slack is therefore

E(— Slack) = > kpgi, = pQ'(1),
k=0

where @ is the generating function obtained in Section [5.4]

o0 1
_ E_
Q) = Yot = T

Differentiating, we find
Q'(2) =—(1—z+pz"") 2 (=14 p(h + 1)2")
and so
Q1) =p~*(1 = p(h +1))
and

1
E(«— Slack) = = — (h 4+ 1).
p
The normalized «slack therefore has expectation 1 — p(h + 1).
If h is fixed, then the value of p that minimizes the normalized «slack is ppax = h"*/(h+1)
and the minimum of the normalized «slack is

ho\" 1
1= pmax(h+1)=1— [——) ~1-=
Pmax(h+1) <h+1> e

h+1
)

for large h.

6. LocAL MAXIMUM CHUNKING

As the name suggests, local maximum chunking selects, as the cutpoints of a file F', those
positions i where the entry F'(i) attains a local maximum. Recall that we fixed a linear ordering
of PFE, so the notion of (strict) maximum makes sense. “Local” means that F'(i) is a maximum
within a radius of h positions to either side. Here is the formal definition.

Definition 55. Local mazimum chunking with horizon h is the chunking method that declares
a position 7 to be a cutpoint of a file F' if and only if

e i is h-internal to F' and
e F(i) > F(j) for all j # i in the interval [i — h,i + h].

40 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

We refer to the interval [i — h, i+ h] as the window around i. Clearly (and fortunately for the
terminology), local maximum chunking is a local chunking method.

We shall often assume that the number |PFE| of potential file entries is much larger than the
horizon h. In applications, we might typically have |PFE| = 232 and h = 27, so the assumption is
justified in practice. The main purpose of the assumption is to excuse us from paying attention
to the strictness of the inequality F(i) > F(j) in the definition. Of course, if we had written
F(i) > F(j) instead, then there could be more cutpoints in a file, points that are tied for
maximum with some other point in their window. When [PFE| > h, ties for maximum become
very unlikely, so we can safely ignore them when estimating the statistical properties of local
maximum chunking. We shall use phrases like “ignoring ties” to refer to the assumption that
|[PFE| > h and to indicate how it is being used.

Remark 56. According to the so-called “birthday paradox”, one would need the stronger inequal-
ity |PFE| > h? to ensure that all ties are unlikely. This is no problem, for two reasons. First, the
typical values quoted above satisfy the stronger inequality. Second, we often don’t care about
avoiding all ties but only ties for maximum, and for this |[PFE| > h suffices.

6.1. Statistics of Local Maximum Chunking. It is clear from the definition of local max-
imum chunking that, if ¢ is a cutpoint, then no other point in its window can be a cutpoint.
Therefore, all chunks have length at least h + 1, except that the first chunk (in a finite or singly
infinite file) can have length h.

Ignoring ties, we easily see that the cutpoint probability for local maximum chunking is p =
1/(2h+1). Indeed, if i is any h-internal position of a file, then exactly one of the 2h+ 1 positions
in the window around ¢ must have the largest file entry in this window (because there are no ties
for maximum), and each of the positions has an equal chance, 1/(2h + 1).

It follows, by Kac’s theorem via Proposition 25 that the expectation of the chunk length is
2h + 1.

Remark 57. Abstaining from the assumption that there is no tie for the maximum, we still have
a formula for the cutpoint probability, namely

m—1 1 k 2h
-3 (L)
where we have abbreviated |PFE| as m, so PFE = {0,1,...,m — 1}. The term indexed by k in
this sum represents the probability that the file value at i is k (probability 1/m) and the other 2h
file values in the window are in the range [0,k — 1] (probability k/m for each position and thus
(k/m)2" for all 2h positions). As we saw in Section 23] this sum is approximately 1/(2h+ 1) for

large m, in agreement with the “no ties” estimate above. Also, we exhibited in Section the
more precise formula

2h

11 2h + 1 . 1 1k
_ B -k _ L
P m2h+12h+1kz_0< k) K Sht1 2m mE T

As m — o0, all terms except 1/(2h + 1) approach zero.

Unfortunately, we do not have good estimates for the slack of the local maximum chunking
method or for the variance of the chunk length. We briefly indicate in this section what we know
and where the difficulty arises in trying to go farther.

Consider first the slack. Because of the left-right symmetry of the local maximum method,
it is clear that the expectations of the slack and reverse slack are equal. We therefore confine
attention to the former.

Consider a random F € PFE™. What is the probability that its slack is a particular number
k > 0?7 For k < h, all that is required is that k£ be a common cutpoint of F} and Fy; it will be the
first non-negative cutpoint because cutpoints are never within a distance h of each other. The
windows centered at k in the two files together contain 3h — k+ 1 positions, namely the k+h+ 1
non-negative positions from 0 through k + h and 2(h — k) negative positions, k — h through —1
in each of the two files. Thus, the probability that k is the slack is 1/(3h — k + 1).

LOCAL MAXIMUM CHUNKING 41

Consequently, the probability that the slack is at most A is
h Bhl 4

2311_71“1 = > S~k 1) - Ineh) zlng.
k=0 j=2h+1

For k > h, however, the situation is more complicated. The probability that k is a common
cutpoint is actually simpler; it is 1/(2h + 1) because the window [k — h, k + h] lies entirely in the
common part F'T of the two files. What is difficult is finding the probability, given that k is a
cutpoint, that it is the first one > 0. The fact that k is a cutpoint gives some information about
the values of F'* in [k — h,k — 1]; they are more likely to be smaller than they would be if we
knew nothing about k, for all these values are < F'(k). And that increases the probability that
positions just to the left of this window (positions k—2h to k—h+1) are cutpoints; their windows
overlap the region where F'* has smaller than usual values, so they have a better chance of being
a local maximum. It is this indirect effect of the condition “k is a cutpoint” on the cutpoint
probabilities between h and 2h positions earlier that is difficult to compute and has prevented us
from estimating the slack of the local maximum method.

The problem of computing the slack is indirectly related to the problem of computing the
variance of the chunk length, as follows. Obeying Pélya’s dictum (as quoted by Halmos in [I4]),
“if you can’t solve a problem, then there is an easier problem that you can’t solve — find it!”
notice that the difficulty described above, which prevents us from computing the expected slack
of a random F € PFEM™, also affects the simpler case of a random file ' € PFEZ, if we consider
the obvious analog of the slack, namely the smallest non-negative cutpoint. We know that each
point k € Z has probability 1/(2h + 1) of being a cutpoint, but its probability of being the first
non-negative cutpoint is subject, when k£ > h, to the same complications encountered in trying
to compute the slack.

Instead of the first non-negative cutpoint of a doubly infinite file F', it is convenient to consider
the first positive cutpoint, which we call p(F"). The expectation is merely increased by 1, because
the chunking method is shift-invariant. The notation p matches that of Section 2.2] the number
of iterations of the Bernoulli shift needed to bring F' into the set Cut0O of files with a cutpoint
at 0. So the expectation of the first positive cutpoint is given by Proposition [l in terms of
the probability of CutO and the conditional variance of p, conditional on the event Cut0. The
probability of Cut0 is just the cutpoint probability, 1/(2h+1). And Var(p|A) is just the variance
of the chunk length.

Thus, the problem of computing the variance of the chunk length turns out to be equivalent
to a simplified version of the problem of computing the average slack. Note that this equivalence
is not specific to local maximum chunking but applies to any shift-invariant chunking method for
which the average chunk length is known.

7. PROBABILITY OF LONG CHUNKS

This section is about another measure of quality of local chunking methods, namely the prob-
ability of getting exceptionally large chunks. More precisely, we deal with the probability that a
long interval [1,] contains no cutpoints of a random, doubly infinite file. Since very large chunks
are undesirable, one wants this probability to be small. But one does not want to achieve this
by making all the chunks too small, since very small chunks are also undesirable. In order to
fairly compare different chunking methods, it is therefore reasonable to choose their parameters
so that the average chunk sizes agree and then to ask about the probabilities of significantly larger
chunks. In this section, we carry out a comparison of the chunking methods we have discussed,
computing the probability of finding no cutpoint in an interval [1,] where [is a specified multiple
of the average chunk size.

As we want to show that the probability of such a long cut-less interval is smaller (and thus
better) for the local maximum method than for its competitors, we shall estimate the former
from above and the latter from below.

The most complicated computation here will be for the local maximum method, so we arrange
our notation and conventions to maximize convenience there. As before, we let h be the horizon
for the local maximum method, so the expected chunk length is 2h + 1. We shall estimate the
probability of finding no cutpoints in the interval [1,2hM], which is essentially (glossing over the

42 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

distinction between 2h and 2h + 1) M average chunk lengths long. Here the multiplier M should
be larger than 1, but it need not be huge. M = 5 might be a reasonable choice; i.e., we might
want to have low probability that a particular chunk is more than 5 times the average length.

Our calculation will assume that there are no ties among the file entries in the interval under
consideration. Considerably weaker assumptions would suffice, but this one is easy to use and is
satisfied with high probability for typical values of the parameters.

7.1. Pure Point Filter Method. We first obtain a lower estimate for the probability of long
chunks in the pure point filter method. As indicated above, for a fair comparison, we adjust the
parameter ¢ of the pure point filter method to produce the same average chunk length 2h + 1 as
the local maximum method. Then each position in a random file has, independently, probability
1/(2h + 1) of being a cutpoint. Therefore, the probability of no cutpoint among 2hM points is

- 1 2h M
2h +1 '

We resist the temptation to approximate 1 — (1/(2h + 1)) by e~ */Z"+1) because this is an
approximation from above and we want one from below. Instead, we use that

2h+1 - 1 1/(2h)
5 —1+%<6 R
SO
1 2h
S o1/

1— =
2h+1 2h+1
and therefore the probability of no cut point in [1,2hM] in the pure point filter model is

1 2h M
1_ ~2hM/2h _ ~M
(2h+1> - e ¢

7.2. LBFS Method. We next perform the analogous computation for the LBFS chunking
method. That method had two parameters, previously called ¢ and h. The latter notation
is no longer usable, since we are now using h as the horizon of the local maximum method. For-
tunately, in our earlier discussion of the LBFS method, we introduced the notation k for the ratio
h/ec, and this letter is still available. So we shall carry out the computation for the LBFS method
with 1/c¢ as the probability of any position being a candidate and with kc as the horizon. We
think of & as fixed; for example k was 1/4 in the version of the LBFS method proposed in [20]. We
adjust ¢ to make the expected chunk length ¢+ k¢ match our 2h + 1. Thus, ¢ = (2h+1)/(k+1).

Now the probability that the interval [1, 2hM] contains no cutpoint is obviously bounded below
by the probability that this interval contains no candidate, namely

1\ 2hM 1\ M
1- = Y . .
c 2h +1

We estimate this from below by the same technique already used for the pure point filter method.

We have
2h—|—17 k+1 kt1

=1 < =
ok oot
and therefore
k+1 2h — k k1
— > e 2h—Fk,

241 2n41°7
Thus, the probability that there is no cutpoint in [1,2hM] is at least

o~ (k+1)2hM/(2h—k)

This estimate is useless for very large k, but for reasonable k, small compared to h, this lower
bound is essentially e~ (*+VUM For example, when k = 1/4, we have the lower bound e 5M/4,
More generally, as long as k < h, we get a lower bound that decreases only exponentially with
M.

LOCAL MAXIMUM CHUNKING 43

7.3. Interval Filter Method. Although our main goal is to show that the local maximum
method makes long intervals without cutpoints far less likely than the previously known LBFS
chunking method, we include also a rough estimate for the corresponding probability in the
interval filter method. As with the point filter and LBFS chunking methods, we shall find that
the probability of finding no cutpoint in a long interval decreases (only) exponentially with respect
to the interval’s length.

We already computed in Section[5.4lthe conditional probability ¢; of finding no cutpoint in [1,]
given that there is a cutpoint at 0. Now we shall compute the unconditional probability of finding
no cutpoint in [1,7]. We shall obtain it by combining conditional probabilities, the conditions
being the various possibilities for what happens at and shortly before position 0. Since we are
interested in long intervals, we shall assume that [> h.

For each j in the range 0 < j < h, let C; be the event that the entry F(—j) at position —j is
in V and all the entries in positions —j + 1 to 0 are in U. So Prob(C;) = vu?. The conditional
probability, given C}, of having no cutpoint in [1,1] is

h—j
ul + E w g,
i=1

The first term here is the probability that there is no element of V', and therefore certainly no
cutpoint, at any position in [1,{]. The term indexed by ¢ in the sum is the probability that V'
occurs somewhere in the interval [1, 1], that the first such occurrence is at 4, and that no cutpoint
occurs thereafter, in [i 4+ 1,1]. We restrict ¢ to range only up to h — j because, if the first positive
i where V occurs were at position h — j + 1 or later, then it would be preceded by at least h
consecutive U’s, from position —j + 1 to ¢ — 1 inclusive. Then this ¢ would be a cutpoint, so this
situation does not contribute to the probability we are computing.

Let D be the event that none of the C; occur, i.e., the event that all file entries from position
—h+1to 0 are U’s. This event has probability u” and the conditional probability, given D, of
finding no cutpoint in [1,{] is simply the probability that all [of the file entries from position 1 to
l are in U; the reason is that, if there were any V in this range, then the first one would, because
of D, be a cutpoint.

Thus, the probability of finding no cutpoint in [1,!] is given by

h—1 h—j
g wo | ul + g W log; | + Wl
§=0 i=1

The sum over j of u/vu! is just a finite geometric series; evaluating it and remembering that
1 —u = v, we find simply u! — u"*!. The second term here cancels the u"*! that arose from D,
so what remains is u!. The double sum over j and i can be simplified somewhat by reversing the
order of summation. The final result is that the probability that the interval [1,!] contains no

cutpoint is
h h
u' 4 Z qiu —p Z Q—i-
i=1 i=1

Note that ¢ ranges only up to h, so for large (compared to h) values of [, all the subscripts of
¢’s in this formula are large, so we can use the asymptotic estimates from Section [5.4l Thus, we
find that all terms in our formula decrease exponentially as [grows; specifically the probability
of finding no cutpoint in [1,(] is asymptotically a constant multiple of w!. From our rough
estimates of w4 in Section[5.4] we can infer that, if | = M /p, so that the interval [1,1] is M times
as long as an average chunk, then the probability that [1,[] contains no cutpoint is asymptotically
Ae=BM for some constants A and B, with B lying between 1 and e.

7.4. Local Maximum Method. In this subsection, we estimate from above the probability
that the local maximum method with horizon h produces no cutpoint in the interval [1,2hM].
Recall that we assume that |PFE| is so large that we can ignore the possibility of two relevant
positions having equal entries in a random file. Here the relevant positions are not just the
interval [1,2hM] but an additional h positions at either end, since these are within the windows
of positions 1 and 2hM and may thus affect cutpoints within [1,2hM].

44 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

Observe that whether a position ¢ is a local maximum depends only on the relative ordering
of the values of F on the interval [i — h,i + h], not on the actual values of F. Thus, we could
replace our probability space of random files with the finite space of all linear orderings of the
relevant interval of positions [1 — h, 2hM + h]; all of the (L + 2h)! orderings are equally probable.

Formally, this means that we use the function ® that assigns to each F' € PFEZ (without ties
in the relevant segment) the ordering induced on [1 — h,2hM + h] by

m<n <= F(m) < F(n),

we observe that our probability measure on PFEZ projects via ® to the uniform measure on the
set of orderings, and we observe that the notion of local maximum (as well as the other notions
that will play a role in our computations) depend on F' only via ®(F).

7.4.1. Splitting intervals without local maxima. To estimate from above the probability of the
event “no local maximum in [1,2hM]”, we first show that this event is included in some other
events whose probability is easier to estimate. That is, we analyze sequences F' that have no
local maximum in [1,2hM], and we establish some other properties that all such sequences must
have.

Accordingly, we consider a temporarily fixed F' with no local maximum in [1,2hM], and we
deduce some properties of F.

For each n € [1,2hM], define p1(n) to be the element of [n — h,n + h] where F has the largest
value. Since n is not a local maximum, u(n) # n. Partition [1,2hM] into two pieces according
to the relative order of pu(n) and n; that is, define

A={ne€[1,2hM]: p(n) <n} and B={nec[l,2AM]: u(n) > n}.
Lemma 58. A is an initial segment and B a final segment of [1,2hM].

Proof. By symmetry, it suffices to prove one of the two assertions; we choose the second. It suffices
to show that, if n € B and n < 2hM, then n+ 1 € B. In the window W = [n+1—h,n+ 1+ h]
centered at n+ 1, all the points to the left of n+1 are also in the window [n—h, n+ h] centered at
n and are distinct from p(n). They therefore have F-values smaller than F(u(n)). Furthermore
pu(n) € W. So the points of W to the left of n + 1 cannot serve as pu(n + 1). O

The argument in this proof extends easily to show that, when n € B and n < 2hM, then
wu(n + 1) is either p(n) or n + 1 + h, whichever has the larger F-value.

The lemma shows that an interval [1,2hM] without local maxima can be split into two subin-
tervals that are without local maxima in a stronger, one-sided sense. In A, every element n is
prevented from being a local maximum by something to its left in its window (i.e., something in
[n — h,n — 1], namely p(n)), while in B, everything is prevented from being a local maximum by
something to its right (i.e., in [n 4 1,n + h]).

7.4.2. Greedy Increasing Sequence. We temporarily confine our attention to the subinterval B of
[1,2hM] where (for our still fixed F') we have, for each n, a u(n) € [n+ 1,n + h] with a larger
F-value than n has. (To avoid possible confusion, we note that p(n) need not be in B; it could
be larger than 2hM.) Of course, what we do with B can also be done symmetrically with A.

Let (gr) be the —greedy increasing sequence in B for (the restriction to B of) the file F', as
defined in Section[Z4l Since giy1 is defined as the smallest n > g with F(n) > F(g;) and since,
by definition of B, u(gx) is such an n, we have

grt1 < plgr) < gr + h.

Thus, the greedy increasing sequence increases in steps of at most h and therefore has at least
[|B|/R] terms. (We can round |B|/h up to an integer, rather than down, because gq is the first
element of B and therefore gj is no larger than the kh + 15 element of B.) Notice that this fact
makes F' | B quite atypical. Indeed, as we saw in Section 2.4 the expectation of the length of the
greedy sequence in an interval of size |B| is approximately In |B|. So the greedy sequence for F
is far longer than expected when |B| is sufficiently large compared to h.

Recall from Proposition that the elements gi of the greedy sequence are exactly the
—maxima of F'in B.

LOCAL MAXIMUM CHUNKING 45

7.4.3. Good Cuts. By a cut in [1,2hM], we mean a partition of [1,2hM] into two subintervals
A’ and B’, with A’ lying to the left of B’. That is, A’ = [1,¢] and B’ = [¢ + 1,2hM], for some
¢ € |0,2hM]; this allows the possibility that A’ or B’ could be empty. We think of this cut as
being located between ¢ and ¢+ 1, and so we say that it lies just to the right of ¢ and just to the
left of ¢ + 1. We also use terminology like “consecutive cuts” in the same sense.

A cut (A, B’) will be called

e 7ight-good if B’ has at least one —maximum in every h consecutive elements,
e left-good if A’ has at least one «—maximum in every h consecutive elements, and
e good if it is both left- and right-good.

Our results above show that, when F has no local maximum in the interval [1,2hM], this
interval admits at least one good cut, namely the partition into the specific pieces A and B
defined above. It will be useful to know that, in fact, there are usually several good cuts

Lemma 59. At least one of the following three statements is true.
(1) The cut (@, [1,2hM]) is good.
(2) The cut ([1,2hM], @) is good.
(3) There are at least h + 1 consecutive cuts, all of which are good.

Proof. The cut (&, [1,2hM]) is vacuously left-good, so if it is right-good then we have the first
alternative of the lemma. So we assume for the rest of the proof that (&, [1,2hM]) is not right-
good. Symmetrically, we assume that ([1,2hM], &) is not left-good.

If a cut ([1,c],[c+ 1,2hM]) # ([1,2hM], @) is right-good, then so is the next cut to the right,
([1,c+ 1], [c + 2,2hM]), and therefore, by induction, so are all cuts further right. The reason
is that each —maximum for [c¢ + 1,2hM] except ¢ + 1 is also a —maximum for [¢ + 2,2hM].
(Note that a —maximum for [¢ 4+ 2,2hM] need not be a —maximum for [c + 1,2hM], because
its F-value may be smaller than F(c + 1).) Let p be the largest number in [1,2hM] such that
the cut just to the left of p is not right-good; this exists because the cut just to the left of 1, i.e.,
the cut (@, [1,2hM]), is not right-good. Since right-goodness is preserved when one moves a cut
to the right, we see that the right-good cuts are exactly those that are to the right of p. Because
our original cut (A, B) is good, we know that p € A.

Similarly, let ¢ be the smallest number in [1,2hM] such that the cut just to the right of ¢ is
not left-good, and observe that ¢ € B. In particular, p < ¢q. Also note that the left-good cuts are
exactly those that are to the left of q. Therefore, the good cuts are those that lie between p and
q. To show that there are at least h + 1 of these, suppose not. That means ¢ < p + h.

We assume, for the rest of the proof, that F(p) < F(g). This entails no loss of generality,
because the other case, F'(¢) < F(p), can be treated symmetrically.

Consider the —greedy increasing sequence in the interval [p, 2hM]. Tt begins with go = p, and
its next term g; is the first n € [p + 1,2hM] such that F(p) < F(n). Now ¢ is such an n, so
we have g1 < ¢ < p+ h. That is, the difference between the first two elements of this greedy
sequence is at most h.

All —maxima for [p + 1,2hM] that are to the right of ¢g; are also —maxima for [p,2hM].
Indeed, the only way a —maximum n for [p+ 1,2hM] could fail to be a —maximum for [p, 2hM]
is to have F((n) < F(p). But if n > g1, then its being a —maximum for [p + 1,2hM], which
contains gy, implies that F'(n) > F(¢g1) > F(p). So n cannot fail to be a —maximum for [p, 2hM].
Now the difference between any two consecutive —maxima for [p+ 1,2hM] is at most h because
the cut just to the left of p + 1 is right-good (by definition of p). So the difference between
consecutive —maxima for [p, 2hM| to the right of g; is at most h also. This fact, together with
the result of the preceding paragraph, shows that the cut just to the left of p is right-good,
contrary to the definition of p. This contradiction (together with the analogous contradiction, to
the definition of ¢, when F(p) > F(q)) completes the proof of the lemma. O

Corollary 60. There is a good cut (A', B") such that the cardinalities |A’| and |B'| are divisible
by h.

Proof. The conclusion of the corollary is obvious if either of the first two alternatives in the
lemma holds. Under the third alternative, we have h+ 1 consecutive good cuts (we actually need
only h), so one of them must be at a distance from the left end that is divisible by h. That is,

46 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

some good cut (A’, B') has |A’| divisible by h. |B’| has the same divisibility property because
2hM does. g

We summarize the preceding work as follows.

Proposition 61. For any F € PFE* (without ties) that has no local mazimum in [1,2hM],
there exists a ¢, with 0 < ¢ < 2M, such that the cut ([1,ch], [ch + 1,2hM]) is good.

7.4.4. Probabilities of — Maxima. We now un-fix F'; that is, F' will now be a random element of
PFEZ. Our ultimate goal is to estimate, from above, Prob(F has no local maximum in [1,2hM]).
In view of the results obtained above, we begin by estimating, for a fixed ¢, the probability that the
cut ([1,ch], [ch + 1,2hM]) is right-good, i.e., that every h consecutive elements of [ch + 1,2hM]
include at least one —maximum. There will be a similar estimate for the probability that
([1, ch], [ch+ 1,2hM]) is left-good, and afterward we shall combine these estimates and sum over
all ¢ to estimate the probability that there is no local maximum in [1,2hM].

Recall from Propositions [[4l and [that, as n ranges over the interval J = [ch + 1,2hM], the
events “n is a —maximum” are probabilistically independent and their probabilities are given by
1/(n — ch). We can now easily compute the probability that a given subinterval of length h in
[ch+1,2hM], say [ch +a+ 1,ch + a + h], contains a —maximum of J. Indeed, the probability
that this interval contains no —maximum for J is given by a telescoping product:

ﬁ L _ﬁa—i—i—l_ a
a+1 _i:I a+i a+h

i=1

So the complementary probability, that there is at least one —maximum of J in [ch+a+1,ch+
a+ hl,is h/(h + a).

Break the interval [ch + 1,2hM] into 2M — ¢ subintervals, which we call blocks, of length
h. The event that the cut ([1,ch],[ch + 1,2hM]) is right-good is included in the event that
each of these blocks contains a —maximum of J, and the probability of the latter event can
be computed by combining the computation in the preceding paragraph with the independence
result in Lemma [I7l Numbering the blocks from 1 to 2M — ¢, we can apply the computation from
the preceding paragraph, with a = (j — 1)h, to see that the j*® block contains a —maximum of
J with probability h/(h + (j — 1)h) = 1/j. Thus, by independence, the probability that every
block contains a —maximum of .J is

s
e i (2M —c)”

This probability therefore provides an upper bound for the probability that the cut ([1, ch], [ch +
1,2hM)) is right-good.

Similarly, the probability that the cut ([1,ch], [ch + 1,2hM]) is left-good is bounded above by
1/cl. Furthermore, all the events “n is a —maximum of [ch + 1,2hM] are independent of the
events “m is a «maximum of [1, ch|”. This is because the former events refer only to the relative
ordering of values of I’ at places > ch while the latter refer only to the relative ordering values
of F at places < ch. Therefore, the probability that ([1,ch], [ch + 1,2hM]) is good is bounded

above by
1 1 [2M\ 1
2M —¢)! ¢\ ¢)(@2M)"

The event that [1,2hM] contains no local maximum is included in the union of the events that
([1, ch], [ch + 1,2hM]) is good, where ¢ ranges from 0 to 2M. Thus, the probability of no local
maximum in [1,2AM] is bounded above by

2M

oM\ 1 92M
ZO(c)(2M)! ~2M)

c=

LOCAL MAXIMUM CHUNKING 47

7.4.5. Comparison With Other Methods. We compare the probability of unpleasantly long chunks
under the point filter, LBFS, interval filter, and local maximum chunking methods. Recall from
the preceding calculations that, when the parameters of all three methods are adjusted to produce
the same average chunk length 2h + 1, the probabilities of finding no cutpoints in the interval
[1,2hM] (approximately M average chunks) are

>e M for the pure point filter method
> e~ (RHDM/(1=k/2h) 1 o=(k+1)M for the LBFS method

> Ae”BM for the interval filter method

< 22M/(2M)! for the local maximum method,

where in the case of LBFS k = h/c is the expected number of candidates in a segment of length
equal to the horizon, and where in the case of the interval filter method 1 < B < e.

Notice that the pure point filter, LBFS, and interval filter methods give probabilities that
decrease “only” exponentially as M — oo, while the local maximum method gives a probability
that decreases more rapidly. This can be seen by comparing the logarithms of the probabilities,
using Stirling’s approximation for the factorial. The four logarithms are — M, —(k+1)M, —BM +
In A, and asymptotically —2M (In M — 1), respectively. The last is, for large enough M, much
smaller (i.e., more negative) than the others because of the In M factor.

Unfortunately, this comparison of behaviors as M — oo can be misleading. The reason is that
our computation for the local maximum method assumed that there are no ties, i.e., that no
file entry is repeated in the interval [1 — h,2hM + h|. That assumption is reasonable as long as
(2hM)? < |PFE|, but not as M — oo; in fact the assumption is obviously false once M is large
enough.

So a true comparison should use relatively small values of M. These are also the values of M
that are relevant for practical purposes. We would like to have small probabilities for cut-less
intervals of length, say, 5 average chunk lengths. The corresponding probabilities for very large
M will be too small to worry about.

It turns out that, once M > 4, our upper bound 22 /(2M)! for the local maximum method
is smaller than the lower bound e~ for the pure point filter method and also the lower bound
e~"M/4 for the LBFS method when k = 1/4. If we increase M to 7, the local maximum method
gives a probability smaller by almost a factor 1000 than the LBFS method with k£ = 1/4.

Remark 62. Our upper bound for the probability of no local maximum in [1,2hM] is rather
rough; we sacrificed a good deal of information by using only the fact that each of the 2M — ¢
blocks contains a —maximum, when in fact every interval of length h in J must contain a
—maximum. The reason for this sacrifice is to obtain independence and thereby facilitate the
computation. Because the blocks are pairwise disjoint, the events that they contain —maxima of
J are independent. If we used all subintervals of J of length h, rather than only the blocks, we
would lose the disjointness and thus the independence. If the computation could be completed
despite this loss, it would surely yield a tighter upper bound than the one we obtained.

8. COMPUTING LOCAL MAXIMA

In this section, we discuss ways of finding the local maxima in a (finite) file. For the other
chunking methods that we have discussed — point filter, LBFS, and interval filter — it is clear
that the cutpoints of a file F' can be found in a single pass through the file, performing some
elementary test (divisibility by a given ¢ or membership in U) on each file entry, and counting
(to see whether we are at a blocked location for LBFS or whether we have matched an interval
filter). The most obvious algorithm for determining local maxima, namely to compare each file
entry with each of the 2h others in its window, is far less efficient, as it requires 2h operations
per file position. Fortunately, there are better algorithms. We shall describe two of them. One is
rather straightforward and needs just two comparisons per file entry. That is, the total number
of comparisons needed is no more than twice the length of the file. The second algorithm is more

48 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

sophisticated and needs, on average, only

Inh 1
1+T+O<E>

comparisons per file entry. Since h is large, this amounts to barely more than 1 comparison per
file entry, so the local maximum chunking method does not require significantly more work than
others to find the cutpoints.

Remark 63. For operation on a modern CPU, the important metric is the number of branch
mispredictions encountered during chunk computation. Modern CPUs use advanced branch pre-
diction hardware to opportunistically continue computation assuming a branch predicate evalu-
ates to the same value as it did when it was previously encountered. This pays off as long as
branch predicates are biased to evaluate to the same value, but is of no help if branch predicates
evaluate to different truth values in random alternation. Counting the number of comparisons
per file entry provides an upper bound on branch mispredictions, and is therefore a good abstract
measure for the running time of the chunking methods.

We begin by describing the more straightforward of the two algorithms. The idea is to read
the file F', from left to right, producing a list of the local maximum positions, and keeping track
of the additional information that is relevant to the computation of later local maxima. More
precisely, the algorithm will keep track of pairs (¢, F'(i)) that might affect future decisions about
what is or is not a local maximum. Those pairs are of two sorts.

First, there are the pairs (i, F(¢)) that might turn out to be local maxima, but are not yet
known to be local maxima. This means that F'(i) is larger than the h immediately preceding
values of F' as well as the subsequent values that have been read so far, but the number of these
subsequent values is < h. So i looks as though it could be a cutpoint but some values in its
window remain to be read, so it may yet turn out not to be a cutpoint. Notice that pairs of this
sort must always have ¢ within the last h positions that have been read; once we read farther
than that, we will know whether ¢ is a cutpoint, so it will either be put on the output list of local
maxima or dropped from consideration.

Second, there are the pairs (i, F'(i)) that might prevent some position that we haven’t yet
visited from being a cutpoint. That is, we might in the future read F(j) at position j and
decide that j cannot be a cutpoint because F(i) > F(j). In principle, any of the pairs (i, F'(i))
among the last h that were read could play this role, but many of them can safely be ignored.
Specifically, suppose that we have read a larger value at a later position, say F'(i') > F (i) with
i’ > 4. Then any future j that is prevented from being a cutpoint by (i, F'(¢)) is also prevented
by (i/, F(i")). Indeed, we have F(i') > F (i) > F(j) and, if 4 is in the window of j, then so is ¢’
because i < i’ < j.

This means that the only ¢’s for which we have to remember (¢, F'(i)) because it might prevent a
future j from being a cutpoint are those 4, within the last h positions read, for which F'(7) is larger
than all later F-values already read. Proposition [I2] applied in the right-to-left direction, tells
us that these values of ¢ constitute the «greedy sequence in the interval of the last h positions
read.

Notice that, if there is an (i, F'(7)) of the first sort, a candidate for being a cutpoint, then it is
also of the second sort, since it is within the last h positions read and its F-value is larger than the
later ones. Summarizing, we see that our algorithm should maintain the following information
as it reads through the file F*:

e (i, F(i)) for i in the «—greedy subsequence of the interval of the last h positions read, and

e one additional bit, telling whether the leftmost position in the greedy sequence (the one
with the largest F-value) is a candidate for being a cutpoint, i.e., whether its F-value
exceeds the h immediately preceding F-values.

Thus, our algorithm acts as follows while reading the file from left to right. It maintains a list A
of pairs and a bit 7, and it (gradually) outputs a list of cutpoints. At position i, the algorithm
performs the following steps, in the given order.

(1) Read F(1).

LOCAL MAXIMUM CHUNKING 49

(2) Go through A, in order, deleting any pairs (j, F'(j)) with F(j) < F(i). Stop when and if
a pair is not deleted.

(3) If (i — h, F(i — h)) is in A, add it to the output list of cutpoints and set v := 0.

(4) Add (4, F(i)) to the beginning of A and, if A has no other elements, set v := 1.

(5) Delete (i — h, F(i — h)) from A (if it’s present).

When the algorithm has finished processing position ¢ in this manner, A contains (j, F'(j)) for j
in the «greedy sequence for [i — h + 1,4], v is 1 if and only if the last (leftmost) element of A is
still a candidate to be a cutpoint, and the output produced so far consists of all the cutpoints at
positions < i — h. Note that the algorithm maintains the property that the pairs (j, F(j)) in A
always occur in order of decreasing j and increasing F'(j). This is why the sentence beginning
“Stop” in instruction (2) is justified; the elements of A that are not inspected have F(j) at least
as large as the non-deleted one that triggered the stop, and so they should also not be deleted.

To estimate the number of comparisons performed (while executing instruction (2)) during
a run of this algorithm, we associate to each comparison a position in the file as follows. If
the comparison of the newly read F'(i) with an earlier F(j) results in the deletion of (4, F'(5))
from A (because F(j) < F\(i)), then associate position j to this comparison; we refer to this
as “association with deletion”. Otherwise, i.e., if F(j) > F(i), then associate position i to the
comparison; we refer to this as “association without deletion”.

Since any (j, F(j)) enters A just once, it is deleted at most once, and so j has at most one
comparison associated to it with deletion. Furthermore, because of the “stop” part of instruc-
tion (2), each ¢ has at most one comparison associated to it without deletion. So altogether, each
position has at most two comparisons associated to it. Thus, the total number of comparisons
performed by the algorithm is at most twice the length of the file.

Remark 64. We can be more precise about the number of comparisons. The only way a position
i can avoid having a comparison associated to it with deletion is to have F(i) > F(j) for all
j > in its window. Call such a point a right semi-maximum. The only way ¢ can avoid having
a comparison associated to it without deletion is to have F'(i) > F'(j) for all j < i in its window.
Call such a point a left semi-maximum. (Note the asymmetry: right semi-maxima satisfy a strict
inequality and left semi-maxima only a non-strict one. Of course, this doesn’t matter if PFE is
big enough and we ignore ties.) Thus, the number of comparisons performed by this algorithm
is twice the length of the file, minus the sum of the number of right and left semi-maxima.
Since a local maximum is both a right and a left semi-maximum, it follows that the number of
comparisons is at most twice the number of positions that are not local maxima.

We now turn to a more sophisticated algorithm, which, compared to the preceding one, cuts
the number of comparisons almost in half, on average.

The algorithm splits the file into blocks of length A 4 1, and it processes the blocks in order,
from the leftmost to the rightmost. For brevity, we ignore the trivialities arising if the length of
the file isn’t exactly divisible by h + 1.

For a position 7 to be a local maximum, it is necessary (but not sufficient) that F'(i) > F(j)
for all j in the block containing i, because all such j are in the window [i — h,i + h] centered
at i. We call i a candidate if it fulfills this necessary condition. For a candidate to be a local
maximum it must, in addition, have an F-value greater than that of any position within A in the
immediately previous and immediately following blocks. If the algorithm finds that a candidate
fails to satisfy this additional requirement, we shall say that it kills the candidate; we use the
phrase live candidate to mean a candidate that has not (yet) been killed.

When processing a block B, the algorithm will produce the following information:

(1) If, when it starts processing B, there is a live candidate in the immediately previous
block, it will decide whether that candidate is a local maximum.

(2) It will produce the «greedy sequence of B, in decreasing order of positions (and thus
increasing order of F-values).

(3) Tt will decide whether the last term in the «greedy sequence is a candidate.

(4) If the last term is a candidate, it will decide whether it is to be killed because of a larger
or equal F-value in the previous block (and within the candidate’s window).

50 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

Recall that, by Proposition[I2] (applied with right and left reversed), the «—greedy sequence in
item (2) consists of those positions in B where the F-value is greater than all later F-values in
B. It can thus be found by reading the F-values in the block B, from right to left, keeping track
of the highest value seen so far, and adding to the «greedy sequence any position where the
newly read value exceeds the largest previously seen value. Notice that the algorithm processes
the blocks in left-to-right order but processes the positions within any block in right-to-left order.

In connection with item (3), notice that the last element of the «—greedy sequence will always
have an F-value > all other F-values for the block B. But for a candidate, we need strict
inequality here. So item (3) amounts to checking for ties for the highest F-value in the block.

Most of the algorithm’s work goes into item (2), so we begin our description there. Notice
that, if we were just producing the «greedy sequence (and not doing anything about items (1),
(3), and (4)), this would involve h comparisons. Each position in the block, except the rightmost,
must have its F-value compared, at the time the algorithm reads it, with the F-value of the
currently last element of the sequence under construction. So this task requires approximately
one (exactly hLH) comparison per position in the file.

Item (3) can be handled simultaneously with the construction of the «greedy sequence. When-
ever a position is put into the sequence, call it a candidate (tentatively). If another position is
put in later (because it has a larger F-value) kill the old candidate while making the newly added
position a candidate. Also, if another position in the block is found to have the same F-value as
the current candidate, then kill the candidate (even though it remains in the «greedy sequence
and the later position with the same F-value is not added to the sequence). Thus, item (3)
requires no additional comparisons.

Let us refer to the process just described, running through B in reverse order to handle
items (2) and (3), the ordinary run through B. If, when we start processing block B, there is
no live candidate in the immediately previous block, then the ordinary run through B handles
item (1) vacuously and we need only consider item (4), which we shall do later. But if there is a
live candidate in the preceding block, then the ordinary run must be modified in order to handle
item (1), and we now describe this modification.

Suppose, therefore, that position m is a live candidate in the block just before B. Being a
candidate, it has a larger F-value than all other elements of its block. Furthermore, being live,
it has a larger F-value than all positions to its left in its window, i.e., in [m — h, m — 1], because
otherwise it would have been killed during the processing of its own block — see item (4). So it
will be a local maximum unless there is a larger or equal F-value at a position that is in B and
< m + h. Our task is to detect such an F-value, if there is one, and then kill m. And we must
do this without excessive comparisons of F-values.

Begin processing B by the ordinary run until you reach position m + h. (The point is that,
until this moment, you're working with positions outside the window of m and thus irrelevant
to item (1).) When you reach m + h, there is a branching according to whether the current last
position in the «greedy sequence, say g, has F(g) > F(m) or F(g) < F(m).

Suppose first that F'(g) > F(m). (To avoid confusion, notice that this case hypothesis doesn’t
kill m because g is beyond the right end of the window of m.) In this case, continue going leftward
through the block B, but, instead of comparing F-values with F'(g) (as the ordinary run would),
compare them with F(m). As long as they are < F(m), they can be ignored as they don’t kill
m and they don’t go into the «—greedy sequence (because F(g) > F(m)). If you find an F-value
equal to F(m), then that kills m, but the position still doesn’t go into the «greedy sequence;
once m is killed, resume the ordinary run from the next position on the left. Finally, it you find
an F-value strictly greater than F'(m), then kill m, and resume the ordinary run from the current
position. Notice that, in this last situation, one position has its F-value compared with both
F(m) and F(g). So the total number of comparisons will not be h as computed above for the
ordinary run but h + 1; that’s still an average of only one comparison per position in B.

Now consider the other case, where F(g) < F(m). In this case, continue with the ordinary
run but, whenever a position ¢’ is added to the «greedy list, check whether F(¢') > F(m). If
so, then kill m and continue with the ordinary run and no further comparisons with F(m). If,
on the other hand, F(¢') < F(m), then m remains live and the next addition to the «greedy
sequence will also need a comparison with F'(m). Notice that, if m should be killed, then this

LOCAL MAXIMUM CHUNKING 51

procedure will kill it. Specifically, if m should be killed, then there is an = in its window and in
B with F(x) > F(m), because, as noted above, any other reason for killing m would have done
so while the previous block was processed. The rightmost such x will be added to the «—greedy
sequence, will therefore have F(z) compared to F'(m) by our algorithm, and will thus kill m.

In the case just considered, it is possible for many positions to have their F-values compared
with the F-values at both m and the current last position in the «greedy list. Indeed, this
happens whenever a position < m + h is added to the «greedy list as long as m remains live. A
priori, the number of such occurrences is bounded by the length of the «greedy list, which is, as
we saw in Section 24l on average approximately In h. In fact, we shall get a much better bound,
on average, later, but first we finish the description of the algorithm by showing how to handle
item (4).

Item (4) is handled by a separate process after the completion of the run through B (either
the ordinary run or the modification to handle item (1)). Suppose, therefore that this run has
been completed and that it resulted in a candidate, namely the last term ¢ of the «greedy
sequence, and that this candidate hasn’t been killed yet (i.e., no point to its left in B had the
same F-value). For item (4), we must check whether some point z in the window of g and in the
previous block had a larger F-value, F(x) > F(g). The key observation is that, if this happens,
then the rightmost such z is in the «—greedy sequence of the previous block. Indeed, for all
y > x in that block, we have F(z) > F(g) > F(y). So to look for such an =z, it suffices to look
through the terms of the previously computed «greedy sequence of the preceding block. Since
the length of the «greedy sequence in any block is, on average, only approximately In h, we can
handle item (4) with only In % additional comparisons, i.e., only % comparisons per position,
on average.

This completes the description of the algorithm and most, but not all, of the estimation of
how many comparisons of F-values are needed. On average, we have, during the processing of a
block, at most

e) comparisons to handle items (2) and (3),

e Inh comparisons to handle item (1) in the case where F(g) < F(m) and F(¢') < F(m)
for many subsequent elements g’ of the «greedy sequence, and

e Inh comparisons to handle item (4).

We now show that the Inh associated to item (1) can be reduced greatly, namely to a constant.
Thus, the final estimate for the average number of comparisons will be i 4 1nh + O(1) per block
or 1+ % +O(%) per position. Notice that, even without this improvement, we already know
that the average number of comparisons per position is at most 1 4 %

Remark 65. Before proceeding with the proof, we give a rough, intuitive argument for why we
might expect the number of comparisons needed for (1) to be less than the estimate In h. If there
is a live candidate in the preceding block, its expected position is at the middle of that block,
and so our algorithm begins paying attention to item (1) around the middle of the current block.
Once it begins paying attention, it performs an extra comparison when adding an element to
the «greedy sequence. But, if attention begins at the middle of the block, then there is a 50%
chance that nothing will be added to the «—greedy sequence from that point on, because there is
a 50% chance that the largest F-value in the block is in the right half of the block, in which case
the «greedy sequence is already complete when the algorithm reaches the middle of the block.
Of course, a real proof must take into account that the live candidate in the preceding block isn’t
known to be at the midpoint, so its variability must be taken into account. That is what the
following argument does.

We wish to bound, from above, the expectation of the number X of additional comparisons
introduced by the part of the algorithm that handles item (1). To begin, we imagine some
changes in the algorithm, which make X worse, i.e., bigger, but which simplify the computation
of its expectation. Of course by bounding the expectation of the imagined, larger X, we obtain
a fortiori the same bound for the expectation of the actual X.

The first imagined change is that we pretend that the position m of a maximum of F' in the
preceding block is a live candidate, whether or not it really is one. This clearly increases the
number X of extra comparisons, because we will be doing comparisons for the sake of item (1) in

52 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

some cases where the actual algorithm can ignore item (1) because there is no live candidate. In
the case where the maximum is attained at several positions, we choose one of them at random to
serve as m. (This is one of the cases where there is really no live candidate.) Observe for future
reference that m is equally likely to be any of the h positions in the preceding block, and therefore
the place where our algorithm will begin doing extra work is equally likely to be immediately to
the left of any of the h + 1 positions in the current block B.

The second imagined change is that, once we get into the range where the extra work is done,
every element added to the «—greedy sequence contributes an extra comparison. This makes X
worse because in the actual algorithm the extra comparisons would end when and if the «greedy
sequence acquires a member g with F(g) > F(m).

With both imagined changes, X is simply the number of positions that are put into the
«—greedy sequence and are < m~+h. As noted above, m is a random variable uniformly distributed
in the preceding block, and so m + h is uniformly distributed in the range from the rightmost
element of the preceding block to the next-to-rightmost element of the current block B. (In other
words, the range of values of m + h is B shifted one step to the left.) Let us write r for the
location of m + h in this range, but counted from right to left (the direction that the algorithm
goes while processing B). Thus, » = 1 means the next-to-rightmost element of B; r = h + 1
means the rightmost element of the preceding block. All i + 1 values of r are equally likely. For
any particular r, the elements of the «greedy sequence that contribute to X are those whose
distance from the right end of B is > r. (For example, if 7 = 1 then all but the rightmost element
of B can contribute to X, while if » = h + 1 then nothing contributes to X.) The position at
distance j from the right end of B has probability 1/j of being in the «greedy sequence; see
Section 2.4l Therefore, the expectation of X (as increased by our imagined changes) is

h+1 h

ROODIL

h+1 r=1j=r+1 J
This double sum is easy to estimate by interchanging the order of summation. Specifically, for
any fixed j in the relevant range 2 < j < h, the fraction % occurs j — 1 times, namely once for
each r in the range 1 < r < j — 1. So these terms contribute Jj;l < 1. This happens for each of
the h — 1 values of j, so the double sum is < h —1 < h+ 1, and the expectation of X is therefore

< 1.

9. EVALUATION AND EXPERIMENTS

The chunking methods were at first developed and tested without a theoretical analysis. As
part of the initial development of RDC we conducted several measurements on different chunking
methods. Many of the experiments are reported in [28]. One immediately recognized advantage
with the local-maximum chunking method was that it only required to be configured with a
minimum chunk length, while the point-filter method required both a minimum length and a cut-
point probability (in the form of a bit-mask). However, the best configuration could potentially
be identified once and for all, making this advantage irrelevant. A more important advantage was
soon recognized experimentally: the local-maximum chunking method produced higher-quality
compression. Eventually we set out to develop a theoretical analysis of chunking methods whose
results are reported above. In this section, we report some experimental results.

In the experiments we measured the effect of chunking methods as well as other aspects of
RDC on a large corpus of internal Microsoft design documents as well as hard-disk file images
(known as virtual hard-disks). The design documents were mostly in the Microsoft Office Word,
Power-Point and Excel formats. This corpus of around 10,000 Microsoft Office files was chosen
to represent user scenarios for the RDC protocol. We used a smaller set of around 20 virtual
hard-disks for similar experiments. Each virtual hard-disk contains from a few hundred MB up to
10 GB of data. The experiments exercised RDC when the receiver could use chunks from several
other local files in addition to the file being transmitted; the use of multiple local files allows
RDC to reduce bandwidth usage. The initial evaluation therefore covered much more than just
the isolated effect of chunking methods. Nevertheless, some of the experiments have specifically
covered the efficiency of the chunking methods, and we recall and present some of the results

LOCAL MAXIMUM CHUNKING 53

in the next subsection. We then describe a few selected measurements that are targeted more
narrowly on evaluating the chunking methods.

9.1. Computation overhead. While developing the RDC protocol we were mainly interested
in measuring the combined overhead of chunking and other factors dominating file transfer.
And we measured the combined client and server overhead for file transmission. We studied
in particular the following two extreme scenarios. In one scenario, the client happens to have
the exact file being transmitted, and in the other scenario the client has none of the chunks
being transmitted. We compared RDC against RSYNC and two other widely available utilities
for differential compression, namely xdelta [19], and BSDiff [2I]. (The LBFS system is less
appropriate for such an experiment because normally it relies on a database that contains the
chunks of multiple files.) On a Pentium 3 machine we measured an average number of cycles per
byte of the transmitted file. In the first scenario we had 31 cycles for RDC, 45 for RSYNC, 39 for
xdelta, and 2580 for BSDiff. In the second scenario, we had 36 cycles per byte for RDC, 32 for
RSYNC, 410 for xdelta and 2780 cycles for BSDiff. Thus, RDC and RSYNC appear comparable
as far as the CPU overhead is concerned, while the two other utilities require much more CPU.
(In fact they require more memory as well.)

Early performance testing of the RDC protocol indicated that calculating chunk boundaries
and signatures (that is the hash values of the chunks) is a significant CPU bottleneck. Low-
level machine-architecture specific optimizations were used, with significant benefit, to boost
performance of the inner loops in the chunking routines.

We also used the optimization described below in Section That optimization results in
a chunking algorithm that is hash-less in the sense that it bypasses the rolling hash stage for the
local-maximum chunking method. To compare the hash-less algorithm with the one based on a
rolling hash we measured the average number of cycles required to compute the chunks. For the
expected chunk length of 256 bytes, a 64 bit Pentium 4 machine requires 8.4 cycles per byte for
the hash-less algorithm and 18.7 cycles per byte for the original local-maximum algorithm based
on a fast (and low quality) rolling hash. Our fast rolling hash uses just two bitwise xor operations
and one bitwise rotation per processed byte. The point-filter method cannot avoid the rolling
hash stage but it takes advantage of branch predicting hardware while determining cut-points.
As a result, it requires only 7.6 cycles per byte using the low quality hash. By definition low
quality hashing has too many collisions. From the point of view of collisions, the hash-less method
works as a perfect hash: there are no collisions. The point-filter method using the higher quality
Karp-Rabin hash took 15.8 cycles per byte.

Overall, the overhead of computing chunk boundaries based on the local-maximum method
seems reasonable for chunks of size 256 bytes and up. However we later noticed that the point
filter method was preferable in scenarios (different from RDC scenarios) where chunks of size
30-40 bytes should be generated with as little CPU overhead as possible. In the context of such
small chunks branch-predicting hardware is critical.

9.2. Intra-file Compression. In the following experiments we measure how the local maximum,
the interval filter and the non-pure point-filter chunking methods (used in LBFS) compare. We
observe the distribution of chunk sizes on real-world (non-random) files, and we measure the
compressibility of long chunks as well as the effectiveness of the chunking methods for identifying
repeated chunks in the same files.

Our experiments use three files from the RDC target domain. The first is the Outlook folder
file (.ost file) of the first author. It contains 2 years of email messages and its size is 1.17 GB.
The second file is a virtual hard disk (.vhd file) for Windows Server 2008, Enterprise edition.
The file contains a full operating system installation and its size is 1.71 GB. Our third file is an
11 MB power-point presentation (.ppt file).

For the local-maximum chunking method we set the horizon size to 90 so that the expected
chunk size is 181. For the interval-filter method we use a bit-mask with 6 bits so that the expected
chunk size is e - 26 = 173. And for the point-filter method we use a bit-mask with 7 bits and
a minimal chunk length of 20 so that the expected chunk length is 148 bytes. However, as the
experimental data show, the average chunk sizes vary depending on the files and tend to be
slightly higher than the expected chunk sizes based on random files.

54 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

The effectiveness of finding repeated chunks in the same file is reflected in the overall com-
pression ratio obtained by the methods. We observe that the local-maximum method finds up
to 10% more repeated bytes than the other methods. Our graphs in Figures Bl H and Bl also
give an indication of the distribution of chunk sizes. The horizontal line indicates chunk sizes.
The vertical scale shows the total number of bytes used by chunks of the size indicated by the
horizontal line.

9000000
8000000

6000000
5000000

2000000
1000000
0

7000000

4000000
3000000

7000000

6000000
5000000
4000000

3000000

2000000

1000000
0

AN M AN MAdRAN OO o
NS SRERTenREEN258YE AREnIERE288R8REER
Local maximum chunking Interval filter chunking
5000000 -
4500000 Chunking Average | Com-
4000000 .
3500000 Method Chunk | pression
3000000]
S oooooe ' Size Factor
2000000 Local-maximum | 188.68 | 34.28
1500000 -
1000000 Interval-filter 192.51 31.43
500000 n
o Point-filter 188.30 | 28.03

©o o
N
“ N

378
504

o
™M
©

756

o
Q0
Q

1008
1134
1260
1386
1512
1638
1764
1890
2016
2143
2271

2400

Point-filter chunking

FIGURE 3. Chunking-based compression of the Outlook folder file

9.3. Distribution of Long Chunks. In Section [5.4] we analyzed the probability of long chunks
for the three chunking methods. As an experimental counter-part, Figure [6] summarizes how
much of each file resides in chunks that are of size at most L, 2L, 3L, and up to 21L where
L is the expected chunk length. In all three figures, the local-maximum method contains more
chunk data close to the average chunk length; it is represented by the left-most and top-most
line. For example, for the Outlook folder file, 43% of the chunks are of length at most L, and 90%
of the chunks are of length at most 2L. The second best lines in all three figures represent the
interval-filter method. The lowest and right-most lines represent the point-filter method which
has more file data in longer chunks. For example, for Outlook, to cover 90% of the file data
requires including chunks of size up to 5L (as opposed to 2L in the local-maximum method).

9.4. Run-length compression. For the local-maximum method and the Outlook file, we fur-
thermore measured the compressibility of the chunks as a function of their size. We performed
two experiments. The first was inspired by Remark 8l We used a simple run-length encoder that
replaced repeated bytes and pairs of repeated bytes by a code. For example, it would replace the
string abababccecedf g by x3abydcz3df g, where x is used as a control character for double-byte rep-
etition, y for single byte repetition, and z is used otherwise. In the second experiment, we applied
the standard Lempel-Ziv compression algorithm on the chunks to measure the compressibility
more accurately.

Figure [[l summarizes the results. The z-axes of both histograms show the chunk lengths and
the y-axis show the compression ratio. A ratio of 1 indicates the perfect compression. Note
that practically all long chunks are highly compressed and that the run-length encoder is often
sufficient for the long chunks.

LOCAL MAXIMUM CHUNKING

55

10000000
9000000 7000000
8000000 6000000
2000000 5000000 -
6000000 4000000 -
5000000 3000000 -
4000000 2000000
3000000 1000000
2000000 04
1000000 M SN OO0 QN MWW
0 REELEEFEEEREY T
L B o == T o 5 Y= I T U RY o e IET~ e'
LR8TRFASIFEIR S
N o
Local maximum chunking Interval filter chunking
5000000 Chunking Average | Com-
4000000 Method Chunk | pression
3000000 | Size Factor
2000000 -
1500000 Local-maximum | 219.43 46.28
500000 7 Interval-filter 221.08 43.62
SRR R EEEE R R EE Point-filter 213.18 42.65
L I I I B B A o |

Point-filter chunking

FI1GURE 4. Chunking-based compression of the Windows Server virtual hard disk

79
11
203
265
327
389
451
513
575
637
700
772
847
971

1296
2396

Point-filter chunking

160000
140000 120000
o toowo
80000 80000
60000 o 60000
e S 1000 |
o - 20000
[= = T e~ I T =5 O S e LY = = L Y o N 0
SEN SOEEAGRO8EREREEE
Local maximum chunking Interval filter chunking
29000 Chunking Average | Com-
70000 Method Chunk | pression
60000 .
50000 Size Factor
40000 -
30000 | Local-maximum | 189.76 10.29
10000 Interval-filter 180.08 9.48
Point-filter 154.17] 9.01

F1GURE 5. Chunking-based compression of the Power-point file

10. RELATED WORK, VARIANTS, AND OPEN PROBLEMS

10.1. Previous Work. After we developed the main results on local maximum chunking, we
learned of a related technique proposed in [26]. That paper introduces the concept of local

algorithms for document fingerprinting.

56 NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

100

70 ’//
/

]

o
30 /

6 7 8 9% 1011

100

90 r’;7==i’>

[/

.

o |l
I

50

|

40

——

30

1 2 3 4 5 6 7 8 9 10 11 12

Outlook

PowerPoint

100

90

80

70

60

50

40

30

—

(/

/

[

e ———

12345678 9101112131415161718192021

F1GURE 6. Distribution of long chunks

Virtual Hard disk

o

03
08

o7

06
05

| |L"|Ii|||

04
03 1
0.2 7
0.1 7

210

330

450

570

690

810

930
1050
1170
1291
1411
1531
1654
1783
1921
2086
2246
2476
2728
3180
3657
3953
5131
7112
2728
3180
3657

co0O000 Qoo
e R e T
N mgin o ®oo -

e

1291
1411
1531
1654
1783
1921
2086
2246
2476
3953
5131
7112

Run-length Compressibility Lempel-Ziv Compressibility

F1Gure 7. Compressibility of file data by chunk lengths

In the situation treated in [20], at least one distinguished position, whose file entry (a hash
value) is to be part of the fingerprint, must be chosen within each interval of w consecutive
positions. The task of choosing these distinguished values is analogous to the task of choosing
cutpoints in remote differential compression. In both cases, the chosen positions should be neither
too close together nor too far apart, and in both cases agreements between substantial segments
of two files should result in corresponding positions being chosen in the two files. Because of
the analogy and for the sake of brevity, we shall write “cutpoint” to refer to the distinguished
positions, even though [26] does not envision actually cutting files there.

The winnowing method proposed in [26] chooses a cutpoint by considering each interval of
hashes with length w and selecting the index with the minimal hash value; if there is a tie, the
right-most position with minimal hash value is chosen. As a result, successive cutpoints may be
arbitrarily close to each other, but their distance never exceeds w. Winnowing is a local algorithm
because whether a position is a cutpoint depends only on hash values within w positions to both
sides of it. Analogously to the probability distribution of local maxima, the density of local
minima is computed as 2/(w + 1). It is also shown in [26] that any local scheme for choosing
distinguished points never farther than w apart must have density at least 114-—?1; It is also shown
in [26] that, for the pure point filter method or any impure variant thereof, if the method ensures
at least one cutpoint in every interval of length w, then the density of cutpoints is at least 1“%
Finally, [26] gives an algorithm for determining the cut-points.

Our results on local maximum chunking can be viewed as complementary: The winnowing
scheme of [26] imposes an absolute upper bound w on the distance between consecutive cutpoints
(which we’ll call the chunk length) and seeks to prevent the chunks from being too much shorter.
Our local maximum method imposes an absolute lower bound h + 1 on the chunk length and
seeks to prevent the chunks from being too much longer. This is why we strive for small slack
and for low probability of long chunks.

LOCAL MAXIMUM CHUNKING 57

Finally, we provide an analysis of the average number of file comparisons per file entry, which
translates into branch mispredictions.

10.2. Hash-less Local Maxima. All of the chunking methods we have considered relied on a
pre-processing step that uses a hash function to distill characters in an interval of length w into
machine representable numbers. This is useful when a cut-point can be determined by using
arithmetic or logical operations on the numbers that are directly supported by the CPU. In the
point filter, LBFS, and interval-filter chunking methods, these operations consisted of masking
selected bits to determine cut-points. In the local maximum approach, the relevant operation is
comparison.

It is however, possible to skip the pre-processing step in the local maximum method and treat a
block of w consecutive characters as an 8-w bit number. For numbers of this size, the comparison
operation is not directly provided by the CPU, and so we have to supply our own comparison
operation to find local maxima among these numbers.

On average, and in practice, it seems that even a naive procedure for finding locally maximal
substrings by means of lexicographic byte-wise comparisons is superior, in terms of running time,
to pre-processing | F'| with a rolling hash. While a lexicographic byte-wise comparison over words
with w bytes requires in the worst case w comparisons per position, it is likely that far fewer
comparisons (often just one) are required because the most significant byte of the largest number
so far is likely to be larger than a random byte.

One straightforward refinement of the naive procedure is to record the number of repeated
characters at the currently scanned position. This allows processing files consisting of large blocks
of the same characters independently of w, but it does not help in the case of files consisting of
large blocks of periodic patterns (longer than a single character). Obviously, the first refinement
may be generalized to also take periodic patterns into account. In general, it may be of theoretical
interest to consider variants of Boyer-Moore [13] 8, [3] string matching algorithms that avoid
repetitive scanning of the same characters. In contrast to Knuth-Morris-Pratt and Boyer-Moore
string matching algorithms, this problem is not that of finding a fixed pattern, and we cannot
rely on a one-pass pre-processing step.

10.3. Open Problems. Our calculations leave several problems open:

e What is the slack of the local maximum method? Is it smaller than (our lower bounds
for) the slack of the point filter and LBFS chunking methods?

e What is the variance of the chunk length for the local maximum method?

e Replace our estimates for the probabilities of long cutpoint-free intervals by exact values
(or tighter estimates).

Another natural question concerns the ratio of expected chunk size to minimum chunk size.
We would like this ratio to be as small as possible. The absolute minimum value, 1, is attainable
but only by chopping the file into chunks of constant size, and we have seen that this is a bad
method because adding one character to a file can destroy all agreement between chunks. The
LBFS method can attain ratios arbitrarily close to 1 by taking h > ¢ (i.e., k > 1), but we
have seen that this also makes agreement between chunks difficult to attain; recall in particular
Remark A reasonable question is how small the ratio can be for local chunking methods.
(Locality excludes both constant-length chunks and the LBFS chunking method with A > 0.)
The interval filter attains a ratio approaching e (for large h), and the local maximum method
does somewhat better with a ratio approximately 2. Can a local method do better yet?

ACKNOWLEDGEMENTS

We are indebted to Dan Teodosiu for initiating and driving the development of the RDC
protocols. Joe Porkka developed RDC and its associated protocols that are included in the DFS
replication system. Laci Lovasz and Yuval Perez helped drawing our attention to ergodic theory.
We are also thankful for numerous interactions with Mark Manasse, Akhil Wable and Le Wang
on RDC.

58

NIKOLAJ BJORNER, ANDREAS BLASS, AND YURI GUREVICH

REFERENCES

(1] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer Verlag, 2001.
[2] M. Ajtai, R. Burns, R. Fagin, D. D. E. Long, and L. Stockmeyer. Compactly encoding unstructured inputs

with differential compression. Journal of the ACM, 49(3):318-367, May 2002.

| C. Charras and T. Lecroq. Ezact string matching algorithms. King’s College London Publications, 2004.
| Microsoft ~ Corporation. Distributed file system replication, 2006. More information on

DFSR is available from http://msdn.microsoft.co/library/en-us/| |stgmgmt/fs/distributed
_file system replication__dfsr_.asp!

| Microsoft Corporation. MSN IM 8 http://www.msn.com, 2006.
| Microsoft Corporation. Remote differential compression reference, 2006.

http://windowssdk.msdn.microsoft.com/en-us/library/ms715305.aspx.

| Microsoft Corporation. Windows Meeting Space, Windows Vista, 2007. More information is available from

http://www.microsoft.com/windows /products/windowsvista/features|/details/meetingspace.mspx.

| M. Crochemore, C. Hancart, and T. Lecroq. Algorithmique du texte. Vuibert, 2001.
| M. Drinic and D. Kirovski. PPMexe: PPM for Compressing Software. In IEEE Data Compression Conference,

pages 192-201, 2002.

[10] P. Erdés and G. Szekeres. A combinatorial problem in geometry. Compos. Math., 2:464-470, 1935.
[11] W. Feller. An Introduction to Probability Theory and Its Applications. John Wiley & Sons, third edition,

1968.

[12] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, 1994.
[13] D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press, Cambridge, UK, 1997.
[14] P. Halmos, E. Moise, and G. Piranian. The problem of learning to teach. Amer. Math. Monthly, 82:466-476,

1975.

[15] J. W. Hunt and T. G. Szymansky. A fast algorithm for computing longest common subsequences. Commu-

nications of the ACM, 20(5):350-353, May 1977.

[16] J.W. Hunt and M.D. Mclllroy. An algorithm for differential file comparison. Computer Science Technical

Report 41, Bell Labs, June 1976.

[17] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms. IBM Journal of Research

and Development, 31(2):249-260, 1987.

[18] J. Langford. Multiround RSYNC. Technical report, Dept. of Computer Science, Carnegie-Mellon University,

2001. The report can be obtained from http://www.cs.cmu.edu/~jcl/research/mrsync/mrsync.psl

[19] J. MacDonald. File system support for delta compression. Master’s thesis, Department of Electrical Engi-

neering and Computer Science, University of California at Berkeley, 2000.

[20] A. Muthitacharoen, B. Chen, and D. Mazieres. A Low-Bandwidth Network File System. In Proceedings of

the 18th ACM Symposium on Operating Systems Principles, pages 174—187, 2001.

[21] C. Percival. Naive differences of executable code. Technical report, Oxford Computing Laboratory, University

of Oxford, 2002.

[22] K. Petersen. Ergodic Theory. Cambridge University Press, 1983.
[23] M. O. Rabin. Fingerprinting by random polynomials. Technical Report TR-15-81, Harvard University, Center

for Research in Computing Technology, 1981.

[24] D. Rasch and R. C. Burns. In-place RSYNC: File synchronization for mobile and wireless devices. In USENIX

Annual Technical Conference, FREENIX Track, pages 91-100. USENIX, 2003.

[25] M. J. Rochkind. The source code control system. IEEE Transactions on Software Engineering, SE-1(4):364—

370, December 1975.

[26] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: Local algorithms for document fingerprinting. In

A.Y. Halevy, Z. G. Ives, and A. Doan, editors, SIGMOD Conference, pages 76-85. ACM, 2003.

[27] T. Suel and N. Memon. Algorithms for delta compression and remote file synchronization. In Khalid Sayood,

editor, Lossless Compression Handbook. Academic Press, December 2002.

[28] D. Teodosiu, N. Bjgrner, Y. Gurevich, M. Manasse, J. Porkka, and A. Wable. Optimizing File Replica-

tion over Limited-Bandwidth Networks using Remote Differential Compression. Technical report, Microsoft
Corporation, August 2006.

[29] W. F. Tichy. RCS — a system for version control. Software — Practice and Experience, 15(7):637-654, 1985.
[30] D. Trendafilov, N. Memon, and T. Suel. zdelta: An efficient delta compression tool. Technical Report TR-

CIS-2002-02, Polytechnic University, Brooklyn NY., June 2002.

[31] A. Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis, The Australian National

University, February 1999.

CONTENTS

(L. Introduction

:Ann]i(’abﬂitq

B Preliminaried
El Filed

~J Ot Ut Ut =

http://msdn.microsoft.co/library/en-us/
stgmgmt/fs/distributed
_file
_system
_replication__dfsr_.asp
http://www.msn.com
http://windowssdk.msdn.microsoft.com/en-us/library/ms715305.aspx
http://www.microsoft.com/windows
/products/windowsvista/features
/details/meetingspace.mspx
http://www.cs.cmu.edu/~jcl/research/mrsync/mrsync.ps

LOCAL MAXIMUM CHUNKING

:3 5. Slack from the Right]

[3.6. Quality of Chunking Methodd
4. Point Filter Methodd

T .

15, _Interval Filter Methodd

[5.3._Slack of the Interval Filter Method
(5.4, Probability of Long Chunks
[5.5. _Reverse Slack of the Interval Filter Method

[[.L_ Pure Point Filter Metho
79 LBFS Metho
[.4.Local Maximum Method

[0.1. Computation 0verhea§
[9.2. Tntra-file Compression
19.4. _Run-length compression

[l0.1. Previous Worﬁ

[10.2. Hash-less Local Maxima

IeT——

eferences

59

10
12
12
13
16
17
18
19
20
20
21
24
30
31
31
31
33
35
39
39
40
41
42
42
43
43
47
52
53
53
54
54
95
55
57
57
o7
o8

MICROSOFT RESEARCH, ONE MICROSOFT WAY, REDMOND, WA 98052, U.S.A.
E-mail address: nbjorner@microsoft.com

MATHEMATICS DEPARTMENT, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109-1043, U.S.A.
E-mail address: ablass@umich.edu

MICROSOFT RESEARCH, ONE MICROSOFT WAY, REDMOND, WA 98052, U.S.A.
E-mail address: gurevich@microsoft.com

	1. Introduction
	Applicability

	2. Preliminaries
	2.1. Files
	2.2. Ergodic Theory
	2.3. Useful Formulas
	2.4. Greedy Increasing Sequences

	3. Chunking Methods and Slack
	3.1. Chunking Methods and Locality
	3.2. Length of Chunks
	3.3. Costs
	3.4. Slack from the Left
	3.5. Slack from the Right
	3.6. Quality of Chunking Methods

	4. Point Filter Methods
	4.1. Pure Point Filters
	4.2. Point Filters Without Short Chunks
	4.3. The Slack of LBFS Chunking
	4.4. The Reverse Slack of LBFS Chunking

	5. Interval Filter Methods
	5.1. Definition of Interval Filter Chunking
	5.2. Statistics of Interval Filter Chunking
	5.3. Slack of the Interval Filter Method
	5.4. Probability of Long Chunks
	5.5. Reverse Slack of the Interval Filter Method

	6. Local Maximum Chunking
	6.1. Statistics of Local Maximum Chunking

	7. Probability of Long Chunks
	7.1. Pure Point Filter Method
	7.2. LBFS Method
	7.3. Interval Filter Method
	7.4. Local Maximum Method

	8. Computing Local Maxima
	9. Evaluation and Experiments
	9.1. Computation overhead
	9.2. Intra-file Compression
	9.3. Distribution of Long Chunks
	9.4. Run-length compression

	10. Related Work, Variants, and Open Problems
	10.1. Previous Work
	10.2. Hash-less Local Maxima
	10.3. Open Problems

	Acknowledgements
	References

