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A GEOMETRIC ZERO-ONE LAW

ROBERT H. GILMAN, YURI GUREVICH, AND ALEXEI MIASNIKOV

Abstract. Each relational structure X has an associated Gaifman graph, which endows X with the

properties of a graph. If x is an element of X , let Bn(x) be the ball of radius n around x. Suppose that

X is infinite, connected and of bounded degree. A first-order sentence φ in the language of X is almost

surely true (resp. a.s. false) for finite substructures of X if for every x ∈ X , the fraction of substructures

of Bn(x) satisfying φ approaches 1 (resp. 0) as n approaches infinity. Suppose further that, for every finite

substructure, X has a disjoint isomorphic substructure. Then every φ is a.s. true or a.s. false for finite

substructures of X . This is one form of the geometric zero-one law. We formulate it also in a form that

does not mention the ambient infinite structure. In addition, we investigate various questions related to

the geometric zero-one law.

§1. Introduction. Fix a finite purely relational vocabulary Υ. From now on
structures are Υ structures and sentences are first-order Υ sentences by default. By
substructure we mean the induced substructure corresponding to a subset of ele-
ments. All relationships between the elements are inherited, and other relationships
are ignored.
According to the well known zero-one law for first-order predicate logic, a first-
order sentence φ is either almost surely true or almost surely false on finite struc-
tures [7], [9]. In other words if a structure is chosen at random with respect to the
uniform distribution on all structures with universe {1, 2, . . . , n}, then the proba-
bility that φ is true approaches either 1 or 0 as n goes to infinity.
There is another version of the zero-one law in which instead of choosing a struc-
ture uniformly at random from the set of structures with universe {1, 2, . . . , n} one
chooses an isomorphism class of structures uniformly at random from the set of
isomorphism classes of structures with universe of size n. This second version is
known as the unlabeled zero-one law. The first version, which has received the
greater share of attention, is called the labeled zero-one law. It holds for models of
parametric axioms, graphs for example, i.e., undirected graphs without loops. For
an introduction and surveys see [5], [6, Chapter 3], [10], and [13].
There are many extensions of the zero-one law to different logics and different
probability distributions. In this article we consider another kind of extension. We
show in Theorem 3 that under certain circumstances there is a zero-one law for the
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finite substructures of a fixed infinite structure; Theorem 5 gives a variation on this
theme which does not refer to the ambient infinite structure. Theorem 6 shows that
our results can yield zero-one laws for classes of structures to which neither the
labeled nor unlabeled law applies.
Let X be a fixed infinite structure. If X were finite, a natural way to compute the
probability that a finite substructure satisfied a sentence φ would be to divide the
number of substructures ofX satisfyingφ by the total number of substructures ofX .
As X is infinite, this simple approach does not work; but there is a straightforward
extension which does. To explain it we need a few definitions.
Recall that the Gaifman graph [8] of X has the elements of X as its vertices
and an undirected edge between any two distinct vertices, x, y, for which there is
a relation R ∈ Υ and elements z1, . . . zℓ in X such that R(z1, . . . , zℓ ) is true in X
and x, y ∈ {z1, . . . zℓ}. Denote the Gaifman graph of X by [X ].
If X is a graph, we may identify X with [X ]. In any case we extend some stan-
dard graph-theoretic terminology from [X ] to X . The distance, d (x, y), between
x, y ∈ X is the length of the shortest path from x to y in [X ] or ∞ if there is no
such path. For any Y ⊆ X , d (x,Y ) is the minimum distance from x to a point
in Y , and Bn(Y ) is the substructure of X supported by the elements a distance at
most n from Y . Bn(x) is an abbreviation of Bn({x}). The ambient structure X to
which Bn(Y ) and Bn(x) refer will be clear from the context.
Two substructures of X are said to be disjoint if their intersection is empty and
there are no edges between them in [X ]. The disjoint union of structures is defined
in the obvious way. Substructures corresponding to the connected components of
[X ] are called components ofX , and substructures which are unions of components
are called closed. A structure with just one component is said to be connected. If
all vertices of [X ] have finite degree, X is locally finite; and if the vertex degrees
are uniformly bounded, X has bounded degree. Finally if the vertex degrees of all
structures in a collection C are uniformly bounded, we say that C has bounded
degree.

Definition 1. SupposeX is an infinite, connected, locally finite structure. A sen-
tence is almost surely true for finite substructures ofX if for every x ∈ X the fraction
of substructures ofBn(x) forwhich the sentence is true approaches 1 asn approaches
infinity. Likewise a sentence is almost surely false if that fraction approaches 0 as n
approaches infinity.

The balls Bn(x) mentioned in Definition 1 are finite because X is locally finite.

Definition 2. A structure X has the duplicate substructure property if for every
finite substructure there is a disjoint isomorphic substructure.

Theorem 3. Let X be an infinite connected structure of bounded degree and pos-
sessing the duplicate substructure property. Then any sentence is either almost surely

true or almost surely false for finite substructures of X .

We may think of the structure X from Theorem 3 as inducing a zero-one law on
the collection, C (X ), of its finite substructures. Conversely every collection C of
finite substructures which satisfies Hypothesis 4 below obeys a zero one law of this
type. (Observe that C (X ) satisfies Hypothesis 4.)
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Hypothesis 4. The following conditions hold.

1. C is closed under taking substructures.
2. C has bounded degree.
3. If F1 and F2 are (not necessarily distinct) elements of C , then there exists an
element of C isomorphic to the disjoint union F1 ∪ F2.

4. C is pseudo-connected in the sense that for every F ∈ C there is an embedding
of F into a connected member of C .

Theorem 5. Let C be a class of finite structures satisfying Hypothesis 4, and let S
be the disjoint union of all members of C . We have:

1. There is an infinite structure X , called an ambient structure for C , such that X
satisfies the hypotheses of Theorem 3, and the finite substructures of X are the
same as the elements of C up to isomorphism.

2. Let Xbe any ambient structure forC . Then an arbitraryfirst-order sentence is al-
most surely true for finite structures of X if and only if it holds in S. Consequently

all ambient structures give the same same zero-one law on C .

The proof of Theorem 3 proceeds along a well known path. We show that certain
axioms are almost surely true for finite substructures of X and that the theory
with those axioms is complete. Section 3 contains the proofs of Theorems 3 and 5
including a discussion of the almost sure theory of the finite substructures of X .
In Section 4, we consider when the almost sure theory is decidable. In Sections 5
and 6 we show that random substructures of X are elementarily equivalent but
not necessarily isomorphic. A random substructure of X is obtained by deleting
each element of X with some fixed probability strictly between 0 and 1. The
random substructure is the one supported by all the remaining elements. Random
substructures are related to the theory of percolation. See [1, 2].
Now we present some examples. It is straightforward to check that Theorem 3
applies to the following structures.

1. The Cayley diagram of a finitely generated infinite group. Here Υ consists of
one binary relation for each generator.

2. An infinite connected vertex-transitive graph of finite degree. For example the
graph obtained from aCayley diagramof the type just mentioned by removing
all loops and combining all edges between any two distinct vertices joined by
an edge into a single undirected edge. See [11] for non-Cayley examples.

3. The Cayley diagram of a free finitely generated monoid.
4. The full binary tree; i.e., the tree with one vertex of degree two and all others
of degree three. More generally the full k-ary tree for k ≥ 1.

5. An infinite connected locally finite and finite dimensional simplicial complex
whose automorphism group is transitive on zero-simplices. There is one n+1-
ary relation for each dimension n.

We conclude this section with an example of a class of structures which satisfies
the geometric zero-one law, but for which neither the labeled nor unlabeled law
holds. For this purpose a unary forest is defined to be a directed acyclic graph such
that each vertex has at most one incoming edge and at most one outgoing edge.
A unary tree is a connected unary forest; that is, a directed graph consisting of
a single finite or infinite directed path. C is the class of finite unary forests with
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edges labeled by 0 and 1; Υ consists of two binary relations, one for each edge label.
C is closed under isomorphism, disjoint union, and restriction to components.

Theorem 6. C , the class of finite unary forests with edges labeled by 0 and 1, obeys
the geometric zero-one law but does not obey either the labeled or unlabeled law.

Proof. Pick an infinite labeled unary tree, X , such that all finite sequences of 0’s
and 1’s appear as the labels of subtrees ofX ; observe thatX satisfies the hypotheses
of Theorem 3. Thus C obeys the geometric zero-one law.
To show that C does not satisfy the labeled or unlabeled law, we apply [4, The-
orem 5.9]. Let An be the set of structures in C with universe {1, 2, . . . , n}, andBn
a set of representatives for the isomorphism classes of structures in An. The car-
dinalities of An andBn are denoted an and bn respectively. It follows immediately
from [4, Theorem 5.9] that if

∑∞
n=1

an
n! t
n has finite positive radius of convergence,

then C does not obey the labeled zero-one law. Likewise if
∑∞
n=1 bnt

n has radius of
convergence strictly between 0 and 1, then C does not obey the unlabeled zero-one
law.
Consider a single unary tree with n vertices. The 2n−1 different ways of labeling
the edges of this tree yield pairwise non-isomorphic labeled trees; and for each
labeled tree, the n! different ways of labeling the vertices yield different structures
on {1, 2, . . . , n}. Thus 2n−1 ≤ bn and 2n−1n! ≤ an. On the other hand each unary
forest of size n is isomorphic to a structure obtained by labeling the edges of a unary
tree of size n with letters from the alphabet {0, 1, 2} and then deleting all edges with
label 2. It follows that 2n−1 ≤ bn ≤ 3n−1 and 2n−1n! ≤ an ≤ 3n−1n!. By the results
mentioned above neither the labeled nor unlabeled zero-one law holds for C . ⊣

Acknowledgment. We thank Andreas Blass for useful discussions related to Sec-
tion 6.

§2. A sufficient condition for elementary equivalence. The main result of this
section is that two structures which satisfy the following condition are elementarily
equivalent.

Definition 7. Two structures satisfy the disjoint ball extension condition if when-
ever either structure contains a ball Bn(x) disjoint from a finite substructure F , and
the other structure has a substructure F ′ isomorphic to F , then the other struc-
ture also contains Bn(y) disjoint from F ′ isomorphic to Bn(x) by an isomorphism
matching x to y.

Lemma 8. Let X and X ′ be structures and Y a substructure of X . If α is an
isomorphism of Bn(Y ) to a substructure of X ′, the following conditions hold.

1. If x1 ∈ Bn−1(Y ) and x2 ∈ Bn(Y ) are joined by an edge in [X ], then α(x1) and
α(x2) are joined by an edge in [X ′].

2. For any x ∈ Bn(Y ), d (x,Y ) ≥ d (α(x), α(Y )).
3. α(Bn(Y )) ⊆ Bn(α(Y )).
4. If α maps(Bn(Y )) onto Bn(α(Y )), then for any x ∈ Bn(Y ), d (x,Y ) =
d (α(x), α(Y )).

Proof. If x1, x2 are as above, then R(t1, . . . , tk) is true for some relation R ∈ Υ
and elements t1, . . . , tk ∈ X with x1, x2 ∈ {t1, . . . , tk}. It follows that d (x1, ti ) ≤ 1
for all i , which implies {t1, . . . , tk} ⊆ Bn(Y ). As α is an isomorphism,
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R(α(t1), . . . , α(tk)) holds in X
′. Thus the first part is proved. The first part

implies the next two, and the last one holds by symmetry. ⊣

Lemma 9. Let X and X ′ be structures. Suppose that for some n ≥ 1 and sub-
structures Y ⊆ X , Y ′ ⊆ X ′ there is an isomorphism α : Bn(Y ) → Bn(Y ′) with
α(Y ) = Y ′. Then for any substructure Z of X with Bm(Z) ⊆ Bn−1(Y ), α maps
Bm(Z) isomorphically to Bm(α(Z)).

Proof. First suppose that Bm(α(Z)) ⊆ Bn−1(Y ′). Lemma 8(3) applied to α
and α−1 yields α(Bm(Z)) ⊆ Bm(α(Z)) and α−1(Bm(α(Z))) ⊆ Bm(Z). It follows
immediately that α maps Bm(Z) isomorphically to Bm(α(Z)) as desired.
Thus it suffices to show that Bm(α(Z)) ⊆ Bn−1(Y ′). Assume not. As α(Z) ⊆
Bn−1(Y ′), there must be an element α(x) ∈ Bn(Y ′) − Bn−1(Y ′) with
d (α(x), α(Z)) = k ≤ m. Consequently there is a path in [X ′] from some
α(z) ∈ α(Z) to α(x) of length at most m and with all vertices of the path in
Bm(α(Z)). Without loss of generality assume that α(x) is the first point on that
path not in Bn−1(Y ′). But then Lemma 8 implies x ∈ Bm(Z) − Bn−1(Y ) contrary
to hypothesis. ⊣

Theorem 10. If two locally finite structures satisfy the disjoint ball extension con-

dition, then they are elementarily equivalent.

Proof. Let X and X ′ be the two structures. We show that for each n the
duplicator can win the n-step Ehrenfeucht game by constructing isomorphisms αi
from a substructure Fi ⊆ X to a substructure F ′

i ⊆ X
′, where Fi and F ′

i consist of
the elements chosen by the spoiler and the duplicator in the first i steps. Each αi will
be the restriction of an isomorphism, also called αi , from B5n−i (Fi) to B5n−i (F

′
i ).

We argue by induction on i . Suppose i = 1. By symmetry we may suppose that
the spoiler picks x ∈ X . By hypothesis there is an isomorphism α1 : B5n−1(x) →
B5n−1(x

′) ⊆ X ′ with x′ = α1(x). The duplicator chooses x′.
Assume αi : B5n−i (Fi) → B5n−i (F

′
i ) is an isomorphism for some i < n. Again

by symmetry the spoiler picks x ∈ X . We have Fi+1 = Fi ∪ {x}. If B5n−i−1(x) ⊆
B5n−i−1(Fi), then we take αi+1 to be the restriction of αi to B5n−i−1(Fi+1) and
set x′ = αi(x), F ′

i+1 = F
′
i ∪ {x′}. By Lemma 9, αi+1 maps B5n−i−1(Fi+1) onto

B5n−i−1(F
′
i+1).

Otherwise B5n−i−1(x) is not a subset of B5n−i−1(Fi). Some y ∈ B5n−i−1(x) must
be a distance at least 5n−i from Fi . Thus the distance of every vertex z ∈ B5n−i−1(x)
from Fi is at least 5n−i − d (y, z) ≥ 5n−i − 2(5n−i−1) ≥ 3(5n−i−1) from Fi . It
follows that B5n−i−1(x) and B5n−i−1(Fi) are a distance at least 3(5

n−i−1)− 5n−i−1 ≥
2(5n−i−1) ≥ 2(50) = 2. Thus B5n−i−1(x) and B5n−i−1(Fi) are disjoint.
By hypothesis there is an isomorphism â : B5n−i−1(x)→ B5n−i−1(x

′) with â(x) =
x′ and B5n−i−1(x

′) disjoint from αi(B5n−i−1(Fi)). Combining the restriction of αi
to B5n−i−1(Fi) with â , we obtain αi+1. ⊣

§3. The almost sure theory. Fix an infinite connected structure X of bounded
degree satisfying the duplicate substructure property. Let C be the collection of
all structures isomorphic to finite substructures of X . By construction C is closed
under passage to substructures. By the duplicate substructure property of X , C is
closed under disjoint union.
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LetA be a set of representatives for the isomorphismclasses of all finite structures,
and define sentences óF , F ∈ A , as follows. For F ∈ A ∩ C , óF says that there
is a closed substructure isomorphic to F ; for F ∈ A − C , óF says that there is no
substructure isomorphic to F . Define T to be the theory with axioms óF , F ∈ A .
Observe that the disjoint union of {F | F ∈ A ∩ C } is a model of T .

Lemma 11. The following conditions hold for any model Y of T .

1. Every finite substructure of Y is isomorphic to a closed substructure.
2. For any two finite substructures, there is a finite substructure isomorphic to their
disjoint union.

3. The union of all finite closed substructures of Y is a model of T and consists of
infinitely many disjoint copies of each finite substructure of X .

Proof. Item (1) and the first part of (3) hold by construction of T . For (2)
observe that as C is closed under disjoint union, for any F1, F2 ∈ A ∩ C there is an
F3 ∈ A ∩ C isomorphic to the disjoint union of F1 and F2. Finally the last part
of (3) follows from (1) and (2). ⊣

Lemma 12. T is complete.

Proof. It suffices to show that any two models of T are elementarily equivalent.
Up to isomorphism the finite substructures of anymodel of T are the same as those
of X . Thus models of T have bounded degree. By Theorem 10 it suffices to show
that any two models Y , Y ′ of T satisfy the disjoint ball extension condition.
Suppose that F is a finite substructure of Y and Bn(y) ⊆ Y is disjoint from F ,
and F is isomorphic to F ′ ⊆ Y ′. Bn(y) is a finite substructure of Y and hence
isomorphic to a finite closed substructureZ′ ⊆ Y ′. ByLemma11wemay assumeZ′

is disjoint from F ′. Let y′ be the image of y under this isomorphismmappingBn(y)
to Z′. By Lemma 8, Z′ ⊆ Bn(y′). As Z′ is closed, it follows that Z′ = Bn(y′). ⊣

Lemma 13. Each axiom óF is almost surely true for finite substructures of X .

Proof. If óF says there is no substructure isomorphic to F , then F is not isomor-
phic to any substructure of X . Hence óF holds for all substructures of every ball
in X . In the remaining case óF says that there is a closed substructure isomorphic
to F . It follows that F is isomorphic to a substructure F1 of X .
Choose F1 such thatG1 = B1(F1) has maximum possible size, k. This is possible
because the vertex degree of [X ] is bounded. G1 has 2k subsets, one of which
supports F1. Further our choice of F1 guarantees that if G ′ is any substructure
isomorphic toG1, thenG ′ = B1(F ′) for some substructure F ′ isomorphic to F . By
Lemma 11 there are denumerably many substructuresG2, G3, . . . isomorphic to G1
and disjoint from G1 and each other. Each Gi is B1(Fi) for a substructure Fi of Gi
isomorphic to F .
Consider balls Bn(x) for some x. It follows from the connectedness of X that for
any m, B = Bn(x) will contain at least m of the Gi ’s if n is large enough. For each
Gi ⊆ B, the fraction of substructures of B whose restriction to thatGi is not Fi is at
most 1− 2−k . Thus the fraction whose restriction to some Gi in Bn(x) equals Fi is
at least 1− (1− 2−k)m, which is arbitrarily small whenm is large enough and hence
when n is large enough. Further when the restriction of a substructure of B to Gi
is Fi , then because the substructure does not contain any points of B1(Fi)− Fi , Fi
is closed in the substructure. ⊣
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Now we complete the proofs of Theorems 3 and 5. Let ó be an arbitrary first-
order sentence. Since T is complete, it follows that either ó or ¬ó is derivable from
a finite set of axioms of T . Clearly the conjunction of this finite set of almost surely
true sentences is almost surely true for finite substructures ofX . It follows that ó or
¬ó, whichever one is derivable from T , is almost surely true for finite substructures
of X . The proof of Theorem 3 is complete.
To prove the first claim of Theorem 5 construct X as follows. Let {Fi | i =
1, 2, . . . } be a set of representatives of the isomorphism classes of elements of C . It
follows from Part (4) of Hypothesis 4 that F1 lies in a connected structureG1 which
is isomorphic to an element of C . By Parts (3) and (4), for each i ≥ 2 the disjoint
union Fi ∪ Gi−1 lies in a connected structure Gi isomorphic to an element of C .
Define X to be the union of ascending series G1 ⊂ G2 ⊂ · · · .
Since eachGi is connected, so isX . By Part (2),X has uniformly bounded degree.
The construction of X together with Part (1) implies that the finite substructures of
X are exactly those in C up to isomorphism. The duplicate substructure property
for X follows from Part (3). Thus X satisfies the conditions of Theorem 3.
Let X be any ambient structure for C . The axioms for the almost sure theory T
defined above with respect to X assert that every finite substructure is isomorphic
to a substructure of X , and that every finite substructure of X is isomorphic to
a closed substructure. As the finite substructures of X are the same as the elements
of C up to isomorphism, the definition of S implies that S is a model of T . Hence
the second claim of Theorem 5 holds.

§4. Decidability. In this and subsequent sections we develop our theme further.
From now on X is any structure satisfying the hypotheses of Theorem 3, and T is
the almost sure theory for finite substructures of X .

Definition 14. X is locally computable if for every natural number n one can
effectively find a set of representatives of the isomorphism classes of balls of radius n.

Notice that by hypothesisX is of bounded degree. Thus for any n there are up to
isomorphism only a finite number of balls of radius n.

Lemma 15. T is decidable if and only if X is locally computable.

Proof. AssumeX is locally computable. Toprove thatT is decidable, it suffices to
show that the axioms for T are computable. Indeed if the axioms are computable,
then T is recursively enumerable; and because T is complete, enumeration of T
produces either ó or ¬ó for every sentence ó. Thus T is decidable.
The axioms of T are computable if we can decide for any finite structure F
whether or not F is isomorphic to a substructure of X . If [F ] is connected, then
any isomorphic substructure F1 of X must lie in some ball of radius at most equal
to the size of F . By hypothesis we can examine the finitely many representatives of
the isomorphism classes of these balls to check if F is isomorphic to a substructure
of X .
If [F ] is not connected, we can check as above if its connected substructures
are isomorphic to substructures of X . If some connected substructure fails the
test, then F cannot be a substructure of X . If they all pass, then by the duplicate
substructure property they can be embedded into X in such a way that they are
a distance at least 2 from each other. It follows that their union is isomorphic to F .
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To prove the converse suppose that T is decidable. For any finite structure F one
can write down a formula which says that there is an element u for which the ball
of radius n around u is isomorphic to F . Hence one can decide whether or not F is
isomorphic to a ball of radius n in X . As X has bounded degree, only finitely many
F ’s have to be checked in order to generate a complete list of isomorphism types of
balls of radius n in X . ⊣

Corollary 16. If X is the Cayley diagram of a finitely generated groupG , then T
is decidable if and only if X has solvable word problem

Proof. Recall that there is one binary predicate for each generator of G . If the
word problem is decidable, one can construct the ball of radius n around the identity.
Since all balls of radius n are isomorphic, X is locally computable. Conversely if
X is locally computable, T is decidable by Lemma 15. For any word w in the
generators ofG , the binary relationRw(x, y) which holds when there is a path with
label w from x to y in X is definable. Thus we can decide if ∃x Rw(x, x) is true, i.e.,
if w defines the identity in G . ⊣

§5. Random substructures. Let X be a structure satisfying the hypotheses of
Theorem 3. For a fixed p, 0 < p < 1, we may imagine generating a random
substructure of X by deleting each element of X with probability 1 − p. The
random substructure is the one supported by all the remaining elements. We will
show that almost all random substructures are elementarily equivalent but not
necessarily isomorphic.
A more precise definition of random substructures of X is obtained by first
defining a measure on cones. For each pair, S,T , of disjoint finite subsets of
elements of X , the corresponding cone consists of all subsets of elements which
include S and avoidT . The measure of this cone is defined to be p|S|q|T |, where |S|
and |T | are the cardinalities ofS andT respectively, and q = 1−p. By a well known
theorem of Carathéodory the measure on cones extends uniquely to a probability
measure, ì, on the ó–algebra generated by the cones.

Lemma 17. Let F be a finite substructure of X . With probability 1 a random
substructure of X contains a closed substructure isomorphic to F .

Proof. The proof is just a modification of the proof of Lemma 13. Fix F ,
and pick a substructure F1 of X which is isomorphic to F and for which B1(F1)
is maximal. By the duplicate substructure property X has denumerably many
pairwise disjoint and isomorphic substructures H1 = B1(F1),H2,H3, . . . . For any
i there is an isomorphism αi : H1 → Hi carrying F1 to Fi = α(F1). By Lemma 8
Hi ⊆ B1(Fi). By maximality of B1(F1) we haveHi = B1(Fi).
Let Y be a random substructure of X . If Y ∩B1(Fi) = Fi , then Y contains Fi as
a closed substructure. By disjointness the denumerably many events Y ∩ B1(Fi) 6=
Fi are independent. As each of these events has the same probability, and that
probability is less than 1, we conclude that the probability of a random graph
containing at least one of the Fi ’s as a closed substructure is 1. ⊣

Now define X ∗ to be the structure consisting of the disjoint union of a denumer-
able number of copies of each finite substructure of X . It is clear thatX ∗ is a model
of T .
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Lemma 18. With probability 1 a random substructure of X contains a closed sub-
structure isomorphic to X ∗.

Proof. The duplicate substructure property and Lemma 17 together guarantee
that the set of substructures with the desired property is the intersection of a count-
able number of sets of measure 1. ⊣

Theorem 19. With probability 1 a random substructure of X is a model of T . In
particular, almost all random substructures of X are elementarily equivalent.

Proof. By Lemma 18 it suffices to show that if a substructure X0 of X con-
tains a union of connected components isomorphic to X ∗, then X0 is elementarily
equivalent to X ∗. The argument used in the proof of Lemma 12 applies. ⊣

§6. Random subgraphs of trees. In this section we sharpen the results of the
preceding section in the case of random subtrees of trees. Let Γk , k ≥ 1, be the
full k-ary tree, that is, the tree with one vertex, the root, of degree k and all others
of degree k + 1. As we noted earlier, Theorem 3 applies to Γk . We maintain the
following notation fromSection 5: p is a number strictly between 0 and 1, q = 1−p,
and ì is the corresponding measure on subgraphs of Γk .
A descending path in Γk is onewhich starts at any vertex and continues away from
the root. Let pn be the probability that a random subgraph admits no descending
path of length n starting at a fixed vertex v. A moment’s thought shows that p0 = q,
and pn+1 = q + ppkn . In particular pn is independent of the choice of v. The
probability that a random subtree contains an infinite descending path starting at
a particular vertex v is 1− limn→∞ pn.

Lemma 20. The probability that a random subtree contains an infinite descending

path starting at a particular vertex v is 0 if p ≤ 1/k and strictly between 0 and 1
otherwise.

Proof. Define f(x) = q + pxk . Observe that f(0) = q = p0, f(f(0)) = p1,
etc. Further f maps the unit interval to itself and is strictly increasing on that
interval. Thus p0, p1, p2, . . . is an increasing bounded sequence which converges to
a fixed point of f. When k = 1, f is linear with a single fixed point (on the unit
interval) at x = 1. Otherwise f is concave up and has a single fixed point at x = 1
if p ≤ 1/k and two fixed points if p > 1/k. Let x0 be the least fixed point of f
on the unit interval. Since f is increasing, 0 ≤ x0 implies that every point in the
forward orbit of 0 under f is no greater than x0. Thus p0, p1, p2, . . . converges to
x0. As 0 < q ≤ x0, we are done. ⊣

We observe that the statement that there is an infinite descending path starting at
the root of a full k-ary tree can be formulated in monadic second-order logic, in fact
in existential monadic second-order logic. Thus we have evidence that Theorem 19
does not extend to this more powerful logic.
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[11] R. Jajcay and J. Siráň, A construction of vertex-transitive non-Cayley graphs, Austalas. J. Com-

bin., vol. 10 (1994), pp. 105–114.
[12] Ph.G. Kolaitis, H.J. Promel, and B.L. Rotschild, Kl+1–free graphs: asymptotic structure and

a 0–1 law, Transactions of the American Mathematical Society, vol. 303 (1987), pp. 637–671.
[13] P. Winkler, Random structures and zero-one laws, Finite and infinite combinatorics in sets and

logic (N.W. Sauer et al., editor), NATO Advanced Science Institutes Series, Kluver, 1993, pp. 399–420.

DEPARTMENT OFMATHEMATICAL SCIENCES

STEVENS INSTITUTE OF TECHNOLOGY

HOBOKEN, NJ 07030, USA

E-mail: rgilman@stevens.edu

MICROSOFT RESEARCH

ONEMICROSOFTWAY

REDMOND,WA 98052, USA

E-mail: gurevich@microsoft.com

DEPARTMENT OFMATHEMATICS AND STATISTICS

MCGILL UNIVERSITY

MONTREAL, QUEBECH3A 2K6, CANADA

E-mail: alexeim@math.mcgill.ca


