
SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 37, No. 2, pp. 425–459

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP∗

YURI GUREVICH† AND PAUL SCHUPP‡

Abstract. The modular group plays an important role in many branches of mathematics. We
show that the membership problem for the modular group is decidable in polynomial time. To this
end, we develop a new syllable-based version of the known subgroup-graph approach. The new
approach can be used to prove additional results. We demonstrate this by using it to prove that
the membership problem for a free group remains decidable in polynomial time when elements are
written in a normal form with exponents.

Key words. PSL2(Z), combinatorial group theory, folding, free group, geometric group theory,
membership problem, modular group, polynomial time, syllabic presentation, unimodular matrices

AMS subject classifications. 03B25, 03D40, 11U05, 14L35, 15A30, 15A36, 20F10, 20G99

DOI. 10.1137/050643295

1. Introduction. In this paper, a unimodular matrix is a 2 × 2 integer matrix
with determinant 1. The multiplicative group of unimodular matrices is known as
SL2(Z), the special linear group of 2×2 matrices over the ring of integers. The modular
group PSL2(Z), the projective special linear group of 2 × 2 matrices over integers,
is the quotient of the group SL2(Z) modulo the congruence relation that equates a

matrix
(a b
c d

)
with its negative

(−a −b
−c −d

)
. The modular group has numerous equivalent

characterizations in various parts of mathematics [2, section 1]. In particular, it is the
group of complex fractional linear transformations z �→ az+b

cz+d with integer coefficients
and ad− bc = 1.

Recall the membership problem for a group G: given elements h1, . . . , hn and
w, determine whether w belongs to the subgroup H generated by h1, . . . , hn. This
presumes a fixed representation form for group elements. In the case of the modular
group, group elements are represented by unimodular matrices. A matrix and its
negative represent the same group element. The entries are written in the standard
decimal notation. The size of an entry is the length of its decimal notation, and the
size of a unimodular matrix is the sum of the sizes of the four entries.

Remark 1.1 (uniformity). The membership problem above is sometimes called
uniform because the subgroup H is not fixed. The problem of deciding whether a given
element w of the group G belongs to a fixed subgroup H is called the membership
problem for H in G. We restrict attention to uniform membership problems and will
not use the adjective “uniform.”

The membership problem for the modular group, more exactly its bounded ver-
sion, was raised by Gurevich [4], who was looking for a hard-on-average [6, 3] alge-
braic NP problem with a natural probability distribution on the instances. In the
bounded version of the membership problem for a group G, in addition to a tuple
(h1, . . . , hn, w), one is given a positive integer B in the unary notation; the question
becomes whether w is a product of at most B of the elements hi and their inverses.

∗Received by the editors October 21, 2005; accepted for publication (in revised form) December
12, 2006; published electronically May 16, 2007.

http://www.siam.org/journals/sicomp/37-2/64329.html
†Microsoft Research, One Microsoft Way, Redmond, WA 98052 (gurevich@microsoft.com).
‡Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (schupp@math.

uiuc.edu).

425

426 YURI GUREVICH AND PAUL SCHUPP

After examining the bounded membership problem for the modular group (with an
appropriate natural probability distribution), Gurevich conjectured that the problem
is not hard on average.

In [2], Cai et al. proved that the bounded membership problem for the modular
group is indeed polynomial time on average. They also proved that the unbounded
membership problem for the modular group is polynomial time on average. Further-
more, consider the variant of the membership problem definition in which “subgroup”
is replaced with “submonoid.” The subgroup membership problem can be seen as a
special case of the submonoid membership problem where the set {h1, . . . , hm} is
closed under inverses. Cai et al. proved that both, bounded and unbounded, sub-
monoid membership problems for the modular group are polynomial time on average
[2, Theorem 1.1]. All their proofs are constructive: the desired decision procedures
are exhibited. In this paper, the proofs are constructive as well.

Proviso 1.2. In this paper, all proofs of the existence of algorithms are construc-
tive. The desired algorithms are exhibited.

As far as the worst-case analysis is concerned, Cai et al. established that the two
submonoid membership problems are NP-hard. The bounded membership problem
for the modular group was proved NP-hard in [1]. More precisely, it is the group
SL2(Z) that is called the modular group in [4, 1], and it is the bounded membership
problem for SL2(Z) that is proved NP-hard in [1]. But the same proof establishes also
the NP-hardness of the bounded membership problem for PSL2(Z).

Theorem 1.3 (main). The membership problem for the modular group is decid-
able in polynomial time.

Group membership problems tend to be undecidable [7]. The modular group is
atypical from that point of view. It is curious also that, in the case of the modular
group, the unbounded membership problem is easier than the bounded one.

We do not try to optimize the decision algorithm and minimize its running time.
This gives us freedom to ignore various details, most importantly the details related
to various data structures. It is clear though that the algorithm is feasible.

To solve the membership problem for the modular group, we develop a new version
of the subgroup-graph approach of combinatorial group theory. The subgroup-graph
approach, also known as the folding method, was originated by Stallings [10]. It was
employed and developed further in particular by Kapovich and Miasnikov [5] and
Schupp [9]. Our version of the approach is combinatorial. The closest version in the
literature is that of Kapovich and Miasnikov [5].

The subgroup graph in question is really a finite automaton, in general nonde-
terministic. We call it a subgroup recognizer or simply a recognizer. We call our
approach the syllabic recognizer approach or simply the syllabic approach. It is based
on the notion of a syllable. A recognizer reads words one syllable at a time. Another
distinctive feature of our approach is that we fold paths rather than edges.

In section 2, we introduce syllabic representations of abstract groups and explain
the basics of the syllabic approach. A syllabic presentation of an abstract group G
with a fixed finite set of generators is given by means of four items. First, there is
a finite alphabet with letters representing the generators and possibly some auxiliary
symbols. Second, there is a set of strings in the given alphabet. These strings are
called syllables. Finite concatenations of syllables are called words. The words with
the concatenation operation form a semigroup. Third, there is an involution on the
syllables called the inverse operation. It extends to words in the obvious way. Finally,
there is a congruence relation on the word semigroup with the inverse operation such
that the quotient algebra is isomorphic to G. Notice that words are strings in the given

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 427

alphabet. Accordingly the size of a word is the length of the string. Often it suffices
to describe the syllables, and the rest of the syllabic representation becomes obvious.

Example 1.4 (standard and succinct free groups). Consider the case in which G
is a free group and the fixed set of generators consists of the free generators of G. The
standard representation of G is obtained when the syllables have the form a or a−1,
where a is a free generator. Another, exponentially more succinct representation of
G is obtained when the syllables have the form ai, where a is a free generator and i is
a nonzero integer in decimal notation. For brevity we will speak about standard free
groups and succinct free groups meaning free groups in the standard representation
and free groups in the succinct representation, respectively.

Proviso 1.5 (the free group). We will study finitely generated free groups with
at least two free generators. The number of free generators will play an insignificant
role. To simplify terminology, we fix some integer ≥ 2 and restrict attention to that
particular free group.

The membership problem for the standard free group is decidable in polynomial
time [8, 7]. We construct a new decision algorithm for the problem in section 2. The
purpose of this is twofold: to illustrate the syllabic approach on a simple example and
to produce a proof template for sections 3–5.

In section 3 we prove that the membership problem for the free group remains
feasible when we go from the standard representation to the succinct.

Theorem 1.6 (succinct free group). The membership problem for the succinct
free group is decidable in polynomial time.

But the proof of polynomial time decidability is much harder in the case of the
succinct representation. One reason for this is that the number of syllables is infinite.
Another reason is that the classical edge-folding technique used in the standard case
is utterly inadequate in the succinct case. Instead we have to fold paths.

What has all this to do with the membership problem for the modular group?
The bridge is the following well-known fact [8, section 1.4, Exercises 18–24]. Recall
that, in the notation of combinatorial group theory, 〈g | gn〉 is a cyclic group of order
n with generator g.

Proposition 1.7 (modular group as a free product). The modular group is
isomorphic to the free product 〈s | s2〉 ∗ 〈t | t3〉.

Example 1.8 (standard 〈s | s2〉 ∗ 〈t | t3〉 and succinct 〈s | s2〉 ∗ 〈t | t3〉). We
give two syllabic representations of the group G = 〈s | s2〉 ∗ 〈t | t3〉 with the set s, t
of generators. (The symbols s, t allude to “second” and “third,” respectively.) The
standard representation of G is obtained when the syllables are s, t, t−1. Another,
exponentially more succinct representation of G is obtained when the syllables are s,
(ts)nt, and (t−1s)nt−1, where n is a natural number in decimal notation. For brevity
we will speak about the standard 〈s | s2〉 ∗ 〈t | t3〉 and the succinct 〈s | s2〉 ∗ 〈t | t3〉
meaning 〈s | s2〉 ∗ 〈t | t3〉 in the standard representation and 〈s | s2〉 ∗ 〈t | t3〉 in the
succinct representation, respectively.

In section 4, we prove that the membership problem for the standard 〈s | s2〉 ∗
〈t | t3〉 is decidable in polynomial time. The proof sheds some light on the membership
problem for the modular group but is not too useful all by itself.

Ideas and the terminology of sections 2–4 are used in the crucial section 5, where
we study the succinct 〈s | s2〉 ∗ 〈t | t3〉.

Theorem 1.9 (succinct 〈s | s2〉 ∗ 〈t | t3〉). The membership problem for the
succinct 〈s | s2〉 ∗ 〈t | t3〉 is decidable in polynomial time.

The proof closely follows that of Theorem 1.6, but new difficulties arise. The
main new difficulty is related to the fact that the role of free generators is played by

428 YURI GUREVICH AND PAUL SCHUPP

the string ts. This fake free generator is not atomic: it is the concatenation of t and
s. The atomicity of free generators was implicitly used in the proof of Theorem 1.6.

The main theorem is finally proved in section 6 where we give a polynomial time
reduction of the membership problem for the modular group to that for the succinct
〈s | s2〉 ∗ 〈t | t3〉. That reduction is relatively simple and is essentially independent
from the preceding sections.

The syllabic approach can be used to prove additional results. But this is a topic
for separate papers. Here we focus on the modular group.

The intended audience for this paper is computer scientists rather than group
theorists. Accordingly we do not presume the knowledge of group theory.

2. Syllabic recognizer approach: Basics and illustration. We explain the
basics of the syllabic recognizer approach and illustrate the approach by constructing
a new decision algorithm for the membership problem for the free group in standard
presentation. The construction is used as a template for generalization in sections
3–5.

2.1. Syllabic presentations of groups. The peculiarity of combinatorial/
geometric group theory, in comparison to abstract group theory, is that one has to
deal not only with group elements but also with their representations. The standard
group presentation form employs generators and relators [8, 7]. We introduce a new
group presentation form.

Definition 2.1 (syllabic group presentation). Let G be a group with a fixed
finite set of generators. A syllabic presentation of G with fixed generators is given by
means of four items: a finite alphabet, a set of syllables, an involution on syllables
called the inverse operation, and an equality relation on the semigroup of words built
from the syllables. We describe the four items in greater detail.

• Alphabet: The symbols of the alphabet split into two categories. First, there
are letters that represent the fixed generators, one letter per generator. We
call them original letters. We call the remaining symbols auxiliary. The
symbols of the alphabet are linearly ordered.

• Syllables: Syllables are strings in the alphabet described above. We reserve the
Greek letter σ to denote syllables. The number of syllables may be finite or
infinite. Finite concatenations of syllables are called words. The empty string
1 is a word. The words with the concatenation operation form a semigroup
called the word semigroup. It is in fact a monoid.

• Inverse operation: The inverse operation takes a syllable σ to another sylla-
ble σ−1. It is an involution, so that (σ−1)−1 = σ. We extend the inverse
operation to words in the obvious way: (σ1σ2 . . . σk)

−1 = σ−1
k . . . σ−1

2 σ−1
1 .

• Equality: The equality relation is a congruence of the word semigroup with
the inverse operation. In other words, it respects the concatenation operation
as well as the inverse operation:

(x1 = y1) ∧ (x2 = y2) −→ x1y1 = x2y2,

x1 = y1 −→ x−1
1 = y−1

1

for all words x1, x2, y1, y2. It is required that the quotient algebra is isomorphic
to G. So two words are equal if they denote the same element of G.

Finally, notice that words are strings in the given alphabet. Accordingly the size, or
length, of a word is the number of (the occurrences of) alphabet symbols in the word.

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 429

Remark 2.2 (equality vs. identity). Thus we have two competing relations on
words. One is the identity of words as strings in the given alphabet, and the other
is the equality of words (as names for the group elements). Notice that we saw the
distinction between identity and equality already, in the very beginning of the In-
troduction, when we recalled the definition of PSL2(Z). Elements of PSL2(Z) are
modular matrices, but every matrix is equated with its negative. For our purposes,
it is convenient to use an equality relation that is different from the identity relation.
We use a word as a name for a group element, and we don’t have to mention the
corresponding equivalence class of words all the time. But there is an obvious awk-
wardness in calling distinct words equal, and so we will have to be careful to avoid a
confusion.

In the rest of this subsection we consider the free group in the standard presen-
tation.

Definition 2.3 (standard free group). The standard free group is the free group
in the following syllabic presentation.

• Alphabet: The alphabet consists of original letters denoting the free genera-
tors and one auxiliary symbol −1. The alphabet is linearly ordered in some
way; it will play no role what order it is exactly.

• Syllables: Syllables are strings of the form a or a−1, where a is an original
letter and −1 is the auxiliary symbol.

• Inverses: Syllables a and a−1 are the inverses of each other.
• Equality: It is the least congruence for the word semigroup with the inverse

operation such that xx−1 ∼ 1 for every word x.
It is easy to see that the quotient of the word semigroup over the equality relation

is indeed isomorphic to the free group.
A combinatorial characterization of the equality relation. If a word x = x1σσ

−1x2,
we say that the word x1x2 is obtained from x by a single cancellation. (Recall that σ
ranges over syllables.) It is easy to see that words w1 and w2 are equal if and only if
there is a sequence of words x0, . . . , x� such that x0 is w1, x� is w2, and for every pair
xi, xi+1 of successive words, one is obtained from the other by a single cancellation.

Definition 2.4 (reduced words). A word w is reduced if no successive syllables
of w form an inverse pair.

Lemma 2.5 (word reduction).

1. Every word w is equal to a unique reduced word. That reduced word is called
the reduct of w.

2. There is a polynomial-time word reduction algorithm that transforms any
word w to its reduct.

These facts are well known [8, 7] and relatively easy to verify.

2.2. Recognizers and the construction algorithm.

2.2.1. Recognizers: Definitions.
Definition 2.6 (recognizer). A recognizer R is a nondeterministic finite state

automaton with the input alphabet Σ subject to the following conditions:
• Numerical states: The states are positive integers.
• Finiteness: R has only finitely many transitions.
• Reversibility: For every transition (u, σ, v), from state u on input symbol σ

to state v, there is an inverse transition (v, σ−1, u).
• Cyclicity: The initial state is the only final (or accepting) state.
• Connectivity: For every state u, there is a string s of input symbols such that

the computation of R on s ends at u.

430 YURI GUREVICH AND PAUL SCHUPP

Remark 2.7 (numerical states). What objects can serve as states of a recognizer?
Algebraically speaking, the nature of the states is of no importance. Algorithmically
speaking, it is important to have a reasonable representation of the states. We will
use in particular the fact that the states are linearly ordered.

Definition 2.8 (recognizer’s size). The size of a positive integer n is the size of
the standard decimal representation of n. The size of a transition (u, σ, v) is the sum
of the sizes of the three components. The size of the recognizer is the sum of the sizes
of its transitions.

Intuitively the size of the recognizer is the number of characters in a reasonable
representation of recognizers. The fact that we care only that our algorithms are
polynomial time gives us a large freedom in defining the sizes. We could have used
the unary notation for the states.

Definition 2.9 (recognizer’s subgroup). The initial state is also called the origin
and is denoted o. The language recognized by R, that is, the set of words accepted by
R, is denoted L(R). It is easy to see that L(R) is closed under concatenation and
under the inverse operation. Define Γ(R) to be the set of group elements w such that
the word w is in L(R). It is easy to see that Γ(R) is a subgroup of G. We will say
that R recognizes Γ(R).

Definition 2.10 (equivalence of recognizers). Recognizers R1 and R2 are equiv-
alent if Γ(R1) = Γ(R2).

2.2.2. A graph-theoretic view of recognizers. A recognizer R over Σ can
be viewed as a directed graph with a distinguished vertex o, the origin, where every
edge is labeled with an element of Σ and parallel edges are allowed. If e is an edge
with start-vertex u, end-vertex v, and label σ, then the triple (u, σ, v) is the profile of
e. It is required that

- R has finitely many vertices and edges;
- R is strongly connected so that there is a path from any vertex u to any other

vertex v;
- different edges have different profiles so that the profile of an edge identifies

it uniquely; and
- for every edge e = (u, σ, v), there is an inverse edge e−1 = (v, σ−1, u).

We will use both the automata-theoretic terminology as well as the graph-theoretic
terminology. Some graph-theoretic terms are used in different ways by different au-
thors. To fix some graph-theoretic terminology, we give the following definitions.

Definition 2.11 (paths). A path is a sequence 〈e1, e2, . . . , e�〉 of edges such that
the start-vertex of ei+1 is the end-vertex of ei. We do not distinguish between an edge
e and the single-edge path formed by e. Consider a path

π = 〈(u0, σ1, u1), (u1, σ2, u2), . . . , (u�−1, σ�, u�)〉.

The vertex sequence of π is 〈u0, u1, . . . , u�〉. The vertices ui with 0 < i < � are
internal. The string σ1σ2 . . . σ� is the label of π, and the triple (u0, σ1σ2 . . . σ�, u�) is
the profile of π. We use the + sign to indicate the concatenation of paths; if a path
π1 has 7 edges and a path π2 has 11 edges, then the path π1 + π2 has 18 edges.

While every edge is uniquely determined by its profile, this is not necessarily true
for paths. For example, you may have different paths 〈(u0, aa, u1), (u1, a, u2)〉 and
〈(u0, a, v), (v, aa, u2)〉 with the profile (u0, aaa, u2).

Definition 2.12 (branches, cycles, and nooses). Consider a path π = 〈e1, . . . , e�〉
with vertex sequence 〈u0, u1, . . . , u�〉, and assume that the nonfinal vertices u0, u1, . . . ,
u�−1 of π are all distinct.

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 431

- π is a branch if the final vertex u� differs from all nonfinal ones.
- π is a cycle at u0 if the final vertex coincides with the start-vertex u0.
- π is a noose if the final vertex coincides with an internal vertex ui.

If π is a noose and u� = ui, then π splits into the loop 〈ei+1, . . . , e�〉 and the tail
〈e1, . . . , ei〉 of the noose.

Definition 2.13 (path segments). If u, v are vertices on a path π and if there is
a contiguous segment of π with initial vertex u and final vertex v, then π[u, v] is the
shortest of such segments.

Definition 2.14 (disjoint paths). Paths π0 and π1 are internally disjoint if no
internal vertex of πi occurs on π1−i. Further, paths π0 and π1 are disjoint off a vertex
set U if all vertices that occur on both paths belong to U . If π0 and π1 are disjoint off
{ν}, we say that they are disjoint off the vertex ν.

2.2.3. Construction algorithm.
Lemma 2.15 (construction). There exists a polynomial-time construction algo-

rithm that, given arbitrary words h1, h2, . . . , hm, constructs a recognizer R such that
Γ(R) is the subgroup generated by the group elements h1, . . . , hm.

Proof. The desired recognizer R is a bouquet of m cycles labeled with h1, . . . , hm

and having only the initial state o in common. The desired algorithm is this. Start
with a naked origin vertex o. For each generator hj , put a cycle Cj with profile
(o, hj , o) around o. If hj = σ1 . . . σn and Cj = 〈(u0, σ, u1), . . . , (un−1, σn, un)〉, where
u0 = un = o and the internal vertices are new, then for each existing edge (u, σ, v),
create an inverse edge (v, σ−1, u). That completes the construction of R.

It is easy to see that L(R) is the least set of words that contains h1, h2, . . . , hm

and is closed under concatenation and the inverse operation.
Example 2.16. Suppose that G is the standard free group, a, b, and c are free

generators of G, m = 2, h1 = ab, and h2 = c−1b. Then R consists of three vertices
and eight edges. There is a unique a-labeled edge from o to a nonorigin vertex u. Call
the other nonorigin vertex v. Then the edges are

(o, a, u), (u, b, o), (o, c−1, v), (v, b, o)

and the inverses of these four edges. R accepts any concatenation x1x2 . . . x�, where
every xi ∈ {h1, h2, h

−1
1 , h−1

2 }. In particular, R accepts (ab)(c−1b)−1 = ac.
Remark 2.17 (nondeterministic algorithms). When we claim that there is a

polynomial-time algorithm, we mean a deterministic algorithm, of course. But the
algorithm described in the proof of the construction lemma is nondeterministic, and
so the description is incomplete. What is missing is how to determinize the con-
struction described in the proof. This easy task is left to the reader. The inessential
nondeterminism of that sort allows us to simplify proofs and will be used over and
over again.

2.3. Membership criterion and the reading algorithm for the standard
free group. In this section, we deal only with the standard free group. In particular
the notion of fat will be redefined again and again as we deal with other syllabically
presented groups.

Definition 2.18 (fat). Let R be a recognizer. For every syllable σ and every
vertex v, FatR(σ, v) = max(0, i − 1), where i is the number of σ-edges from v. The
subscript is omitted when the context uniquely defines the recognizer.

A recognizer is deterministic if and only if every Fat(σ, v) = 0.
Remark 2.19 (deterministic recognizers). When is a nondeterministic finite state

automaton deterministic? There are two common definitions in the literature. The

432 YURI GUREVICH AND PAUL SCHUPP

stricter definition requires that, for every label and every state u, there is exactly one
transition with that label from that state. The more liberal definition requires only
that, for every label and every state, there is at most one transition with that label
from that state. We adopt the more liberal definition.

Lemma 2.20 (membership criterion). Let R be a deterministic recognizer and
w a word. The group element w belongs to Γ(R) if and only if R accepts the reduct
of w.

Proof. If R accepts the reduct of w, then by the recognizer’s subgroup definition
in section 2.2, the group element w belongs to Γ(R).

Now suppose that the group element w belongs to Γ(R) so that R accepts at least
one word equal to w. Consider a shortest word w0 equal to w and accepted by R,
and let π be the accepting run. The word w0 is reduced. Otherwise π has the form

π1 + 〈(u1, σ, v), (v, σ
−1, u2)〉 + π2.

Since Fat(σ−1, v) = 0, we have u1 = u2. Accordingly π1 + π2 is a run that accepts a
word equal to w that is shorter than w0, which contradicts the choice of w0.

Lemma 2.21 (reading). There is a polynomial-time algorithm (called the reading
algorithm below) that, given a deterministic recognizer R and a word w, determines
whether the group element w ∈ Γ(R).

Proof. Use the word reduction algorithm of section 2.1 to compute the reduct w0

of w. By the membership criterion in section 2.3, Γ(R) contains the group element w
if and only if R accepts w0.

To determine whether R accepts w0, run R on w0. Let w0 = σ1 . . . σ� and v0 = o.
If, after reading an initial segment σ1 . . . σi of w0, R arrives to a state vi without an
outgoing edge labeled with σi+1, then R rejects w0. If R reads all of w0 and winds
up at a vertex v�, then R accepts w0 if and only v� is o.

In the remaining part of this section, we construct a polynomial-time algorithm
that transforms any recognizer to an equivalent deterministic recognizer.

2.4. Vertex identification and edge folding. We return to consider the
general situation. Recall that if H is a subgroup of G and g ∈ G, then the set
Hg = {hg : h ∈ H} is a (right) coset of the subgroup H.

Lemma 2.22. Let R be a recognizer and H = Γ(R). For every two paths (o, x, v)
and (o, y, v) from the origin to the vertex v, Hx = Hy.

Proof. The concatenation of (o, x, v) and (v, y−1, o) is an accepting run on xy−1,
so xy−1 ∈ H and Hx = Hy.

The lemma and the fact that, for every v, there is a path from o to v lead us to
the following definition.

Definition 2.23 (vertex’s coset). Let R be a recognizer R and H = Γ(R) and
v be a vertex of G. Coset(v) is the set Hw, where w is the label of any path from o
to v.

Lemma 2.24 (coset stability). For any path (u,w, v), Coset(v) = (Coset(u))w.
Proof. Let π be a path (o, x, u) and ρ be the given path (u,w, v). Then π + ρ

is a path with profile (o, xw, v). We have Coset(v) = H(xw) = (Hx)w =
(Coset(u))w.

Example 2.16 (continuation). Because of paths (o, a, u) and (u, b, o), we have
Coset(u) = Ha = Hb−1. Because of paths (o, c−1, v) and (v, b, o), we have Coset(v) =
Hc−1 = Hb−1. In particular Coset(u) = Coset(v).

Definition 2.25 (morphisms). Let R,S be recognizers with vertex sets U, V ,
respectively, operating on the same input alphabet Σ. A morphism from R to S is a
function μ : U → V satisfying the following conditions.

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 433

• V = {μ(u) : u ∈ U}, and μ(oR) = oS.
• S has an edge (v1, σ, v2) if and only if R has an edge (u1, σ, u2) with μ(u1) = v1

and μ(u2) = v2.
• If μ(u1) = μ(u2), then Coset(u1) = Coset(u2).

Lemma 2.26 (morphism lemma). If there is a morphism from a recognizer R to
a recognizer S, then Γ(R) = Γ(S).

Proof. Let H = Γ(R), I = Γ(S), and μ be a morphism from R to S. To simplify
notation, μ(u) is denoted u′. Any accepting run (o, w, o) of R gives rise to an accepting
run (o′, w, o′) of S. Thus L(R) ⊆ L(S) and H ⊆ I. Furthermore, any run (o, w, u) of
R gives rise to an accepting run (o′, w, u′) of S. Thus,

Coset(u) = Hw =⇒ Coset(u′) = Iw.

To prove the other inclusion, it suffices to establish the opposite implication:

Coset(v′) = Iw =⇒ Coset(v) = Hw.

Indeed suppose that w ∈ I. Then Coset(o′) = Iw. Hence H = Coset(o) = Hw and
w ∈ H.

We prove the implication by induction on the number � of edges in a shortest
path π from o′ to v′. The case � = 0 is trivial. Suppose that � > 0 so that the label
of π has the form xσ and Coset(v′) = Ixσ. We prove that Coset(v) = Hxσ. Since μ
is a morphism, the penultimate vertex on π has the form u′ for some R-vertex u. We
have Coset(u′) = Ix and, by the induction hypothesis, Coset(u) = Hx. Since μ is a
morphism, there is an edge (u0, σ, v0) with u′

0 = u′ and v′0 = v′. We have

Coset(v) = Coset(v0) = (Coset(u0))σ

= (Coset(u))σ = (Hx)σ = H(xσ).

The first equality is by the morphisms definition, and the second equality is by the
coset stability lemma.

Definition 2.27 (vertex identification). Let R be a recognizer with vertices U ,
and let v1, v2 be two vertices of R such that Coset(v1) = Coset(v2). To identify v1 and
v2 in R means to construct a recognizer S with vertices (U − {v1, v2})∪ {v}, where v
is different from any vertex in (U − {v1, v2}), such that the map

μ(u) =

{
v if u = v1 or v = v2,

u otherwise

is a morphism from R to S.
It is easy to see that the desired S exists and is unique up to isomorphism. Let

σ be any label u, be any vertex in (U −{v1, v2}), and i, j range over {1, 2}. S has an
edge (u, σ, v) if and only if R has an edge of the form (u, σ, vi). S has an edge (v, σ, u)
if and only if R has an edge of the form (vi, σ, u). And S has a loop v, σ, v if and only
if R has an edge of the form (vi, σ, vj).

Remark 2.28 (vertex identification). There are several ways to implement S.
One can remove v1, v2 and replace them with a fresh vertex v. One can remove one
of vertices v1, v2 and use the remaining one as v. Our preferred way to implement S
is this: view v1 and v2 as two names of the same vertex in S.

Lemma 2.29 (vertex identification). The identification of vertices u, v such that
Coset(u) = Coset(v) produces an equivalent recognizer.

434 YURI GUREVICH AND PAUL SCHUPP

Proof. Use the vertex identification claim and the morphism lemma.
Example 2.16 (continuation). Consider a recognizer S with two vertices o, v′ and

six edges:

(o, a, v′), (v′, a−1, o), (o, b−1, v′), (v′, b, o), (o, c−1, v′), (v′, c, o).

Since Coset(u) = Coset(v), there is a homomorphism μ of R onto D1 such that
μ(u) = μ(v) = v′. By the previous lemma, S is a recognizer for H. Note that S
accepts ac while R does not.

Full vertex identification, when all vertices with the same coset are identified,
reduces any recognizer R to a recognizer S where distinct vertices have different
cosets. By the morphism lemma, Γ(S) = Γ(R). Further, S is deterministic. Indeed
suppose that we have edges (u, σ, v1) and (u, σ, v2) in S. By the coset stability lemma,
Coset(v1) = (Coset(u))σ = Coset(v2), and so v1 = v2. But notice that the question
of whether Hw1 is equal to Hw2 is equivalent to the question of whether w1w

−1
2 ∈ H

which is an instance of the membership problem, the problem we want to solve in the
first place. We need to get around this difficulty.

If R is a recognizer and (u, a, v1), (u, a, v2) are edges in R, then by the coset sta-
bility lemma, Coset(v1) = (Coset(u))a = Coset(v2) in R. This justifies the following
definition.

Definition 2.30 (edge folding). Let (u, σ, v1) and (u, σ, v2) be edges in a recog-
nizer. To fold edges (u, σ, v1) and (u, σ, v2) is to identify the vertices v1 and v2.

Lemma 2.31 (edge folding). Folding edges does not change the recognizer sub-
group.

Proof. Use the vertex identification lemma.
Example 2.16 (continuation). S is obtained from R by folding edges (o, b−1, u)

and (o, b−1, v) together.

2.5. Fat reduction algorithm for the standard free group. In this section,
we deal exclusively with the standard free group.

Lemma 2.32 (fat reduction). There is a polynomial-time fat reduction algorithm
that transforms any recognizer R into an equivalent deterministic recognizer.

Proof. The desired algorithm repeatedly folds distinct edges of the current recog-
nizer with the same start-vertex u and the same label a until the recognizer becomes
deterministic. By the edge-folding lemma, the recognizer subgroup does not change.
It is easy to see that the algorithm works in polynomial time.

The question arises whether the reducer makes all possible vertex identifications.
Lemma 2.33. Let R be a deterministic recognizer for H. If (o, x, u) and (o, y, v)

are paths with Hx = Hy, then u = v.
It follows that distinct vertices of R have distinct cosets.
Proof. Induction on n = |x| + |y|. The basis of induction, when n = 0, is trivial.

Assume that n > 0. Without loss of generality, x and y are reduced. Indeed, suppose
that one of them, say x, is not reduced. Then x has the form x1σσ

−1x2. By the
determinacy of R, there is a path (o, x1x2, u). We have Hx1x2 = Hx = Hy. By the
induction hypothesis, u = v.

If x = 1 so that u = o, then Hy = H1 = H so that the group element y belongs
to H. By the membership criterion, R accepts y, and so v = o = u. The case y = 1
is similar. Thus we can assume that neither word is empty.

Let x = x′σ, y = y′τ , and let u′, v′ be the penultimate vertices in the paths (o, x, u)
and (o, y, v), respectively. If σ = τ , then Hx′ = Hxσ−1 = Hyσ−1 = Hyτ−1 = Hy′,
and so u′ = v′. Since R is deterministic, u = v. So we may assume that σ �= τ . Then

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 435

the word xy−1 is reduced. Also xy−1 ∈ H because Hx = Hy. So there is a cycle at
o with label xy−1. Since R is deterministic, there is a path (u, y−1, o), and therefore
there is a path (o, y, u). Since R is deterministic, the path (o, y, u) coincides with the
path (o, y, v), and so u = v.

2.6. Membership problem for the standard free group.
Theorem 2.34. There is a polynomial-time decision algorithm for the member-

ship problem for the free group G. More explicitly, there is an algorithm such that
(i) given words h1, . . . , hm and w representing elements of G, the algorithm de-

cides whether the subgroup H generated by h1, . . . , hm contains w, and
(ii) the algorithm runs in time polynomial in |h1| + · · · + |hm| + |w|.
Proof. Use the construction algorithm of section 2.2 to construct a recognizer

R1 for H. Use the fat reduction algorithm of section 2.5 to transform R1 into an
equivalent deterministic recognizer R2 for H. Finally, use the reading algorithm of
section 2.3 to check whether w ∈ H. Since the three algorithms are polynomial time,
the decision algorithm is polynomial time as well.

3. Succinct free group. We introduce an exponentially more succinct repre-
sentation of the elements of the free group and show that the membership problem
remains polynomial-time decidable.

3.1. Succinct free group: Definition and word reduction.
Definition 3.1 (succinct free group). The succinct free group is the free group

in the following syllabic presentation.
• Alphabet: The alphabet consists of original letters denoting the free generators

and 11 auxiliary symbols 0, 1, . . . , 9, and −. The alphabet is linearly ordered
in some way; it will play no role in what order it is exactly.

• Syllables: Syllables are strings of the form ai, where a is an original letter
and i is a nonzero integer in decimal notation.

• Inverses: Syllables ai and aj are the inverses of each other if i + j = 0. To
distinguish the representation of the free group from the standard representa-
tion, the new words will be called exponent words, and the old words will be
called unary words. Any exponent word w expands in the obvious way to a
unary word called the unary expansion of w. For example, a−3

1 a5
2 expands to

a−1
1 a−1

1 a−1
1 a2a2a2a2a2.

• Equality: Exponent words are equal if their unary expansions are equal in the
standard free group.

Obviously the quotient of the word semigroup over the equality relation is iso-
morphic to the free group.

Definition 3.2 (reduced exponent words). An exponent word w = ap1

1 ap2

2 · · · apk

k

is reduced if every ai+1 differs from ai.
Lemma 3.3 (exponent word reduction).
1. Every exponent word w is equal to a unique reduced exponent word. That

reduced exponent word is called the reduct of w.
2. There is a polynomial-time exponent word reduction algorithm that trans-

forms any word w to its reduct.
Proof. We describe the desired algorithm. If there are neighboring syllables ai, aj

with the same base a, do the following. If j = −i, then remove the substring aiaj ;
otherwise, replace the substring aiaj with the syllable ai+j . Keep doing this until the
exponent word is reduced.

436 YURI GUREVICH AND PAUL SCHUPP

3.2. Vertex creation and membership criterion.
Definition 3.4 (edges). An edge e of the form (u, ai, v) is an a-edge. We assign

to e the sign of i, so that e is positive (respectively, negative) if i is so. The length of
e is the number of syllables in the unary expansion of its label ai, so that the length
of an edge is exponentially larger than the size of its label.

Definition 3.5 (edge splitting). We define how to split an edge e = (u1, x, u2)
into two edges of lengths n1 and n2, respectively. It is presumed that n1 and n2 are
positive integers such that n1 + n2 = n. Let x1 be the prefix of x of length n1 and let
x2 be the corresponding suffix. Add a new vertex v and edges

(u1, x1, v), (v, x
−1
1 , u1), (v, x2, u2), (u2, x

−1
2 , v),

and remove edges e and e−1.
Definition 3.6 (vertex creation). We define how to create a new vertex on a

path π = 〈e1, . . . , ei〉 at distance n from the initial vertex u0. It is presumed that

Length(〈e1, . . . , ei〉) < n < Length(〈e1, . . . , ei+1)〉

for some i. Split ei+1 into two edges of lengths n − Length(〈e1, . . . , ei〉) and
Length(〈e1, . . . , ei+1〉) − n.

Lemma 3.7 (vertex creation). The creation of a new vertex preserves the recog-
nizer subgroup and the amount of fat.

Proof. It suffices to prove that splitting an edge preserves the recognizer subgroup.
Suppose that R is the given recognizer and a new recognizer S is obtained from R by
splitting an edge e of R into edges e1 and e2. Note that 〈e1, e2〉 is a path with the
profile of e. The amount of fat at the new vertex is 0, and the amount of fat at any
old vertex does not change, so Fat(R) = Fat(S).

If w ∈ L(R) and π is an accepting run of R on w, replace every occurrence of e in
π with 〈e1, e2〉, and replace every occurrence of e−1 in π with 〈e−1

2 , e−1
1 〉. The result

is an accepting run of S on a word equal to w. Suppose that w ∈ L(S), and let π be
an accepting run of S on w. The new vertex can occur only in the context 〈e1, e2〉,
which can be replaced by e, or in the context 〈e−1

2 , e−1
1 〉, which can be replaced

by e−1. The result of the replacements is an accepting run of R on a word equal
to w.

Definition 3.8 (paths). The length of a path π is the sum of the lengths of its
edges. For every original letter a, an a-path is a nonempty path composed of a-edges.
A positive a-path is composed of positive a-edges, and a negative a-path is composed
of negative a-edges. A partisan a-path is a positive or negative a-path.

In addition to the standard notion of acceptance, will we need a more liberal one.
Definition 3.9 (quasi transitions). Suppose that π is a path with profile (u, x, v).

If x is equal to a syllable or to 1, then π is a quasi transition and the syllable or the
empty word 1 is the quasi label of π. If τ is the quasi label of π, then (u, τ, v) is the
quasi profile of π.

Every a-path π is a quasi transition. If Label(π) = ai1ai2 . . . aik , then the quasi
label of π is aj , where j = i1 + · · · + ik.

Example 3.10. If q1, q2 are paths

〈(o, a2, u1), (u2, a
−3, u2), (u3, a

5, u3)〉,
〈(u3, b

−7, u4), (u4, b
11, u5), (u5, b

−13, o)〉,

respectively, then q1 is a quasi transition from o to u3 with quasi-label a4, and q2 is a

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 437

quasi transition from u3 to o with quasi-label b−9. According to the paths definition
in section 2.2, the labels of q1 and q2 are a2a−3a5 and b−7b11b−13, respectively.

Definition 3.11 (quasi runs). A sequence Q of quasi-transitions q1, . . . , q� is a
quasi run if the initial vertex of q1 is o, every qi+1 starts at the final state of qi, and
the final vertex of q� is o. The label of Q is the concatenation of the quasi labels of the
constituent quasi transitions. The concatenation q1 + · · · + q� of the paths q1, . . . , q�
is the associate run of Q.

Our definition of quasi runs is narrow in the sense that the initial state o is the
start and end of any quasi run. We will not need more general quasi-runs.

Corollary 3.12 (quasi-run labels). Let Q be a quasi run and π be the associate
run. Then π is an accepting run, and the label of π is equal, as a group element, to
the label of Q.

Definition 3.13 (tolerance). A recognizer tolerates an exponent word w if there
is a quasi run with label w.

Example 2.16 (continuation). The recognizer tolerates a4b−9. This is witnessed
by the sequence Q = 〈q1, q2〉. The concatenation q1 + q2 of the paths q1, q2 is the run

(o, a2, u1), (u2, a
−3, u2), (u3, a

5, u3), (u3, b
−7, u4), (u4, a

11, u5), (u5, a
−13, o)

that accepts the word a2a−3a5b−7b11b−13 equal to a4b−9 in G.
Lemma 3.14 (membership criterion). Consider a recognizer R, and let w be an

exponent word. The following are equivalent:
1. The group element w belongs to Γ(R).
2. R tolerates the reduct of w.

Proof.
2 → 1: Suppose that R tolerates w. Then w is the label of a quasi run of Q.

By the quasi-run labels corollary, the associate run of Q is accepting, and its label is
equal to w. Therefore w ∈ Γ(R).

1 → 2: Suppose that the group element w belongs to Γ(R). Without loss of
generality, w �= 1. By the recognizer’s subgroup definition in section 2.2, R accepts
an exponent word w′ equal to w. Since every accepting run is also a quasi run, R
tolerates w′. Let Q = 〈q1, . . . , q�〉 be a quasi run with the fewest number of quasi
transitions that tolerates an exponent word w0 equal to w. Due to the choice of
Q, every quasi label (qi) is a syllable (rather than 1). Accordingly w0 has the form
ap1

1 . . . ap�

� . We show that w0 is reduced.
If w0 is not reduced, then ai+1 = ai for some i. Let Q′ be the quasi run obtained

from Q by replacing 〈qi, qi+1〉 with a single quasi-transition qi + qi+1. The label of Q′

is equal to w0 but has fewer syllables, which contradicts the choice of Q.

3.3. Reading algorithm.
Definition 3.15 (fat). Let R be a recognizer. For every original letter a and

every vertex v,
• FatR(a+, v) = max(0, p − 1), where p is the number of positive a-edges from
v;

• FatR(a−, v) = max(0, n− 1), where n is the number of negative a-edges from
v;

• FatR(a, v) = max(0, p− 1) + max(0, n− 1);
• FatR(v) =

∑
a FatR(a, v) and Fat(R) =

∑
v Fat(v).

The subscript is omitted if the context uniquely defines the recognizer.
Definition 3.16 (lean recognizers). A recognizer is lean if, for every original

letter a and every vertex v, there is at most one positive a-edge and at most one
negative a-edge coming from v.

438 YURI GUREVICH AND PAUL SCHUPP

Obviously, lean recognizers are deterministic. However deterministic recognizers
are not necessarily lean. A deterministic recognizer may have two positive a-edges
coming from the same vertex if their labels are distinct syllables. Recall that inputs
are syllables, not letters.

Lemma 3.17 (partisan quasi transitions).
(A) If a lean recognizer R tolerates a reduced exponent word w, then there is a

quasi-run Q with label w such that every constituent quasi transition of Q is
partisan.

(B) Let R be a lean recognizer. For any state u and syllable aj, there is at most
one partisan quasi-transition q from u with quasi-label aj.

(C) There is a polynomial-time algorithm that, given a lean recognizer R, a state
u of R, and a syllable aj, determines whether there exists a partisan quasi-
transition q from u with quasi-label aj and, if yes, finds an appropriate q.

Proof. (A) Suppose that R tolerates a reduced exponent word w = ap1

1 · · · apk

k .
By the tolerance definition, there is a quasi run with label w. Let Q be a quasi-run
〈q1, . . . , qk〉 with label w such that the associate run of Q is as short as possible. If
some qi is not partisan, then it has successive ai-edges e, and f of different signs.
The end-vertex of e has outgoing ai-edges e−1 and f . Since R is lean, e−1 = f , and
therefore both edges can be removed from qi without changing the quasi profile of q.
This contradicts the choice of Q.

(B) Assume that j > 0; the case j < 0 is similar. By contradiction assume that
there exist distinct partisan quasi transitions with the same quasi-label aj from u.
Then we have two distinct positive a-paths of the same length from the same vertex
u. Since neither path can be a prefix of the other, there is a vertex v where the
two paths branch out. Then there are two distinct positive a-edges from v, which
contradicts the leanness of R.

(C) We describe the desired algorithm. Assume j > 0; the case j < 0 is similar.
Let u0 = u. Due to the fact that R is lean, for any nonnegative integer k, there is at
most one positive a-path πk of the form

〈(u0, a
p1 , u1), (u1, a

p2 , u2), . . . , (uk−1, a
pk , uk)〉.

Let k be the least number such that Length(πk) ≥ j or else πk does not exist. If
Length(πk) = j, then πk is the desired quasi transition; otherwise, the desired quasi
transition does not exist.

From the complexity point of view, one may worry about the case in which the
vertices ui are not distinct. In such a case, consider the very first vertex repetition
on πk. Let ui be the first πk vertex on the loop, � = Length(πk[u0, ui]), and m be the
length of the loop. The problem reduces to the case without vertex repetition where
ui plays the role of u0 and (j − �) mod m plays the role of j.

Lemma 3.18 (reading). There is a polynomial-time reading algorithm that, given
a lean recognizer R and an exponent word w, determines whether the group element
w belongs to Γ(R).

Proof. Use the exponent word reduction algorithm of section 3.1 to compute
the reduct w0 = ap1

1 . . . apk

k of w. By the membership criterion of section 3.2, Γ(R)
contains the group element w if and only if R tolerates w0. We need to determine
whether there is a quasi-run Q with label w0.

By the partisan quasi-transitions lemma, part (A), we may restrict attention to
quasi-runs Q = 〈q1, . . . , qk〉 such that every qi is partisan. By part (B) of the same
lemma, there is at most one such Q. Let A be the algorithm of part (C) of the same
lemma.

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 439

The reading algorithm iterates A and has at most k rounds. Assume that the
reading algorithm has performed i rounds and in the process has constructed an initial
segment 〈q1, . . . , qi〉 of the desired quasi-run Q. The assumption trivially holds in case
i = 0. If i = 0, let u0 = o; otherwise, let ui be the end-vertex of qi.

In case i < k, the reading algorithm starts round i+1 by applying A to R, ui, and
a
pi+1

i+1 . If A determines that there is no partisan quasi transition with a quasi label
from ui with a label of the form a

pi+1

i+1 , then the desired quasi-run Q does not exist.
Otherwise let qi+1 be the partisan quasi transition constructed by A.

In case i = k, the desired quasi-run Q exists if and only uk = o.
In the remaining part of this section, we construct a polynomial-time algorithm

that transforms any recognizer to an equivalent lean recognizer.

3.4. Path folding. In section 2 we used edge folding to reduce a recognizer to
a lean one. Now the situation is more involved, and edge folding is not going to do
the job. Instead we will be folding paths.

Recall the branches, cycles, and nooses definition in section 2.2, and fix an original
letter a.

Definition 3.19 (impasse). A nonempty partisan a-path is an impasse if it is
a branch and its end-vertex has no outgoing a-edges of the sign of π.

Definition 3.20 (closed path). A nonempty partisan a-path is closed if it is an
impasse, a cycle, or a noose.

Lemma 3.21 (closed path). Every a-edge e1 gives rise to a closed partisan a-path
π = 〈e1, . . . , ek〉 that continues e1. Furthermore, there is an algorithm that constructs
such a path in a time polynomial in the recognizer’s size.

Proof. The desired algorithm is iterative; we describe one round of it. Suppose
that we have already an a-path 〈e1, . . . , ei〉 with vertex sequence 〈u0, . . . , ui〉. If
ui ∈ {u0, . . . , ui−1} or if ui has no outgoing a-edge of the same sign as e1, then
halt. Otherwise let ei+1 be the lexicographically first a-edge from ui of the same sign
as e1.

As usual g.c.d.(m,n) is the greatest common divisor of positive integers m and
n. Define m = n mod ∞ to be equivalent to m = n.

Definition 3.22 (two-path divisor). For i = 1, 2, let πi be a branch or cycle of
length �i. We define the divisor as follows:

Div(π1, π2) =

⎧⎪⎨
⎪⎩
∞ if π1, π2 are branches,

�i if πi is a cycle and π3−i is a branch,

g.c.d.(�1, �2) if π1, π2 are cycles.

Definition 3.23 (entanglement). Suppose that π and ρ are nonempty partisan
a-paths of the same sign and with the same initial vertex ν, and suppose that either
path is a branch or a cycle. The two paths are entangled if there exist vertices u and
v on π and ρ, respectively, such that u �= v and

Length(π[ν, u]) = Length(ρ[ν, v]) mod Div(π, ρ).

Otherwise the two paths are disentangled.
Corollary 3.24 (entanglement algorithm). There is a polynomial-time algo-

rithm that, given a recognizer and two paths π and ρ as in the entanglement definition,
determines whether they are entangled. Furthermore, if the paths are entangled, then
the algorithm produces vertices u and v witnessing the entanglement and identifies
them.

440 YURI GUREVICH AND PAUL SCHUPP

We omit the pretty obvious proof.
Lemma 3.25 (entanglement). If π and ρ are entangled and vertices u and v

witness the entanglement, then the identification of u and v does not change the
recognizer subgroup.

Proof. Let d = Div(π, ρ), k = Length(π[ν, u]), � = Length(ρ[ν, v]), and H =
Coset(ν). We assume that π and ρ are positive; the negative case is similar. By the
coset stability lemma in section 2.4, Coset(u) = Hak, and Coset(v) = Ha�. By the
vertex identification lemma in section 2.4, it suffices to prove that Hak = Ha�. Since
u and v witness the entanglement, we have k = � mod d.

Case 1: Both paths are branches. Then k = �, and therefore Hak = Ha�.
Case 2: One of the paths is a branch, and the other is a cycle. Without loss of

generality, π is a circle, and ρ is a branch. Then Hak = H, and � = p · k for some
integer p. Then Ha� = H(ak)p = H = Hak.

Case 3: Both paths are cycles. Then Hak = Ha� = H. Since d = g.c.d.(k, �),
there are integers i and j such that ik+j� = d, and so Had = H(ak)i(a�)j = H. Since
k = � mod d, there is an integer p such that k = pd + �. Then Hak = H(ad)pa� =
Ha�.

Recall the disjoint paths definition in section 2.2.
Definition 3.26 (path folding). Suppose that π and ρ are nonempty partisan

a-paths such that
• they have the same sign and the same start-vertex ν,
• either path is a branch or a cycle,
• Length(π) ≥ Length(ρ) if both paths are branches, and
• Length(π) = Div(π, ρ) if both paths are cycles.

To fold ρ into π, execute the following folding algorithm:
1. Apply the entanglement algorithm to π and ρ. If the number of vertices is

reduced, then halt. Otherwise the paths are disentangled.
2. For each v on ρ, create a new vertex v′ on π such that

Length(π[ν, v′]) = Length(ρ[ν, v]) mod Div(π, ρ)

unless π has a vertex at this position already.
3. Identify every clone v′ with its original v.
4. Remove all edges of ρ and their inverses.

One of our referees suggested “path merging” instead of “path folding.”
Remark 3.27 (path folding). Concerning stage 2 of the folding algorithm, con-

sider the case in which π has a vertex u such that Length(π[ν, u]) = Length(ρ[ν, v])
mod Div(π, ρ). Since π and ρ are disentangled (otherwise we would not arrive at stage
2), we have u = v. Assume that π and ρ are internally disjoint. Then vertex v is
an extreme vertex on both paths. Consider the scenario in which v differs from the
initial vertex ν. Then v is the final vertex of both π and ρ, both π and ρ are branches,
and Length(π) = Length(π[ν, u]) = Length(ρ[ν, v]) = Length(ρ).

Lemma 3.28 (path folding). Let π and ρ be as in the path folding definition.
Folding ρ into π preserves the recognizer subgroup. If the algorithm halts at stage
1, then the number of vertices of the recognizer decreases. Otherwise the number of
vertices is unchanged, and the (amount of) fat changes as follows.

(BB) Suppose that π and ρ are branches of lengths m and n, respectively.
If m = n, then the fat decreases by 2.
If m > n and ρ is an impasse, then the fat decreases by 1.
If m > n but ρ is not an impasse, then the fat does not change.

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 441

(CB) Suppose that π is a cycle and ρ is a branch.
If ρ is an impasse, then the fat decreases by 1;
otherwise, the fat does not change.

(CC) Suppose that π and ρ are cycles. Then the fat decreases by 2.
Proof. We consider only the case in which π and ρ are positive; the case in which

they are negative is similar.
Let R be the given recognizer, and for p ≤ 4, let Rp be the recognizer obtained

from R by executing p stages of the folding algorithm, so that R0 = R. Let the vertex
sequence of π be 〈u0, . . . , uk〉. Let ρ = 〈f1, . . . , f�〉 and the vertex sequence of ρ be
〈v0, . . . , v�〉. Let d = Div(π, ρ). The case in which π and ρ are entangled is obvious.
Assume that π and ρ are disentangled. Then nothing happens at stage 1, and so
R1 = R0.

First we note that the vertices of R4 are those of R1. Indeed all vertices v′j created
at stage 2 are identified with the respective vertices vj at stage 3; thus, the vertices
of R3 are those of R1. And the vertices do not change at stage 4.

Second we show that Γ(R4) = Γ(R). By the vertex creation lemma, Γ(R2) =
Γ(R1). By the vertex identification lemma of section 2.4, Γ(R3) = Γ(R2). It remains
to show that Γ(R4) = Γ(R3). Let nj = Length(π[v0, vj]), rj = nj mod d, and
v′0 = u0. It suffices to show that for every edge fj of ρ, R4 has a path Pj with the
profile of fj . Indeed, suppose we have the desired paths Pj . Recall that the profile of
a path includes not only the label but also the initial and final vertices, so the desired
paths Pj match up appropriately to simulate ρ. It is easy to see that, for every vertex
v, Coset(v) computed in R3 is the same as the one computed in R4.

The profile of fj is (vj−1, a
p, vj), where p = nj − nj−1. In scenario (BB), the

desired path Pj is π[v′j−1, v
′
j]. In scenarios (CB) and (CC), p = d · q + (rj+1 − rj) for

some q. The desired path Pj starts at v′j−1 and ends at v′j . If rj ≤ rj+1, then π does
q full revolutions around π. If rj > rj+1, then q > 0, and π does q− 1 full revolutions
around π.

Finally we prove the claims about the fat. By the vertex creation lemma,
Fat(R2) = Fat(R1). Thus we need to examine only the evolution of the fat from
R2 to R4. Furthermore, it suffices to examine the evolution of the numbers Fat(a, vj).
Indeed, this will account for the vertices v′j identified with the corresponding vertices
vj at stage 3. If a vertex v of R2 differs from any vj , v

′
j , then the immediate vicinity

of v does not change. If an original letter b �= a, then Fat(b, vj) does not change. The
reason is that, upon the creation, the vertex v′j has no b-edges adjacent to it. As a
result the identification of vj with v′j creates no b-fat.

If 0 < j < �, then Fat(a, vj) does not change from R2 to R4. Indeed, as a result
of identification with v′j , the vertex vj acquires one outgoing positive a-edge and one
outgoing negative a-edge at stage 3, but then, at stage 4, it loses one outgoing positive
a-edge, namely, fj+1, and one outgoing negative a-edge, namely, f−1

j .
The vertex v0 does not acquire any outgoing edges at stage 3, and thus neither

Fat(a+, v0) nor Fat(a−, v0) increase at stage 3. It loses one positive outgoing edge,
namely, f0 at stage 4, and so Fat(a+, v0) decreases by 1 from R2 to R4. It does not
lose any negative outgoing edge in scenarios (BB) or (CB), and so Fat(a−, v0) does
not change in scenarios (BB) and (CB). Since v0 = v� in scenario (CC), it remains to
examine only the evolution of the numbers Fat(a+, v�) and Fat(a−, v�) in the three
scenarios.

(BB) In this scenario, we first suppose that m = n. Since π and ρ are disentangled,
uk = v� . The vertex v� does not acquire any outgoing edges at stage 3 and loses only
one outgoing edge, namely, the negative edge f−1

l , at stage 4. Thus Fat(a+, v�)

442 YURI GUREVICH AND PAUL SCHUPP

does not change, and Fat(a−, v�) decreases by 1. To summarize, Fat(a+, v0) and
Fat(a−, v�) decrease by 1 while Fat(a−, v0) and Fat(a+, v�) do not change. Hence
Fat(R4) = Fat(R2) − 2.

Second we suppose that m > n. At stage 3, v� acquires one positive and one
negative outgoing edge. At stage 4, v� loses no outgoing positive edges but loses f−1

� .
Thus Fat(a−, v�) does not change. If ρ is not an impasse, then Fat(a+, v�) increases
by 1; otherwise, Fat(a+, v�) remains zero throughout the process. We summarize. If
ρ is an impasse, then Fat(a+, v0) decreases by 1 while Fat(a−, v0), Fat(a+, v�), and
Fat(a−, v�) do not change, so that Fat(R4) = Fat(R2)−1. If ρ is not an impasse, then
Fat(a+, v0) decreases by 1, Fat(a+, v�) increases by 1, and Fat(a−, v0) and Fat(a−, v�)
do not change, so that Fat(R4) = Fat(R2).

(CB) This scenario is similar to the case m > n of scenario (BB). Let us just
point out that the vertex v� does not occur on π in R. Indeed suppose the opposite.
Since π and ρ are internally disjoint and uk = u0, we have v� = u0 = v0. But then ρ
is a cycle which contradicts scenario (CB).

(CC) In this scenario, v0 = v�, and thus Fat(a+, v�) decreases by 1. Fat(a−, v�)
does not change at stage 3 and decreases by 1 at stage 4 because f−1

� is removed.
To summarize, the overall change in the fat is this: both Fat(a+, v�) and Fat(a−, v�)
decrease by 1. Thus Fat(R4) = Fat(R2) − 2.

3.5. Weight reduction algorithm.
Definition 3.29 (recognizer weight). The weight of a recognizer R is a pair

(i, j) of natural numbers where i is the number of vertices of R and j = Fat(R).
The weights are ordered lexicographically with the number of vertices being the more
significant component.

Lemma 3.30 (weight reduction). There is a polynomial-time weight reduction
algorithm that reduces any recognizer to an equivalent lean recognizer.

Proof. We construct an iterative algorithm that transforms the given recognizer
by means of path folding; the algorithm halts when the recognizer is lean. By the
folding lemma, the algorithm preserves the recognizer subgroup.

We describe one round of the algorithm and show that the weight decreases at
each round. It will be obvious that the algorithm is polynomial time.

If the current recognizer R is lean, halt. Otherwise find a quadruple (a, ξ, e1, f1),
where a is an original letter, ξ is a vertex with Fat(a, ξ) > 0, and e1 and f1 are two
a-edges from ξ of the same sign. It could be the lexicographically first such quadruple,
for example. We consider only the case in which e1 and f1 are positive; the case in
which they are negative is similar. Use the algorithm of the closed paths lemma to
construct closed a-paths E and F continuing the e1 and e2, respectively. We consider
first the cases in which E and F are disjoint off ξ and then the other cases.

Part 1: Assume that E and F are disjoint off ξ.
Case 1: E and F are cycles.
If the cycles are of different lengths, let π be the shorter one; otherwise, let π be

either of the cycles. Let ρ be the other cycle, m = Length(π), and n = Length(ρ). If
m divides n, fold ρ into π. Otherwise, let d be the greatest common divisor of m and
n. Create a positive single-edge a-cycle λ of length d at ξ. Then fold π into λ, and
let π′ be the resulting cycle of length d. Then fold ρ into π′.

To examine the evolution of weight, we apply scenario (CC) of the folding lemma
to the following two subcases.

First suppose that m divides n. If π and ρ are entangled, then the number of ver-
tices drops. Otherwise the number of vertices is unchanged, but the fat decreases by 2.

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 443

Second suppose that m does not divide n. If π′ and ρ are entangled, then the
number of vertices drops. Suppose that π′ and ρ are disentangled. With the creation
of λ, the vertex ξ acquires one outgoing positive a-edge and one outgoing negative
a-edge, so that the fat increases by 2. The folding of π into λ decreases the fat by 2.
The folding of ρ into π′ decreases the fat by 2. Altogether the fat decreases by 2.

Case 2: One of the paths E and F is a cycle, and the other is an impasse.
Fold the impasse into the cycle. By scenario (CB) of the folding lemma, this

decreases the recognizer weight.
Case 3: One of the paths E and F is a cycle, and the other is a noose.
Let π be the cycle, ρ be the noose, and v be the end-vertex of ρ. Fold the tail

of ρ into π, and let π′ be the resulting cycle. Note that v occurs on π′. By scenario
(CB) of the folding lemma, this does not increase the recognizer weight. If the weight
dropped, then finish the round. Otherwise let π′′ be the cycle at v obtained from π′

by redefining the initial vertex as v. The loop of ρ is another cycle at v. Clearly the
two cycles at v are disjoint off ξ. Proceed as in case 1.

Case 4: E and F are impasses.
If the impasses are of different length, let π be the longer one; otherwise, let π be

either of the impasses. Let ρ be the other impasse. Fold ρ into π. By scenario (BB)
of the folding lemma, this decreases the recognizer weight.

Case 5: One of the paths E and F is an impasse, and the other is a noose.
Let π be the impasse, ρ the noose, τ the tail of ρ, λ the loop of ρ, m = Length(π),

and n = Length(τ). If m ≤ n, then fold π into τ ; by scenario (BB) of the folding
lemma, this decreases the weight. Suppose that m > n. Then fold τ into π, and let π′

be the resulting impasse. By the folding and weight corollary, this does not increase
the weight. If the weight decreases, finish the round. Otherwise let v be the final
vertex of τ and π′′ be the suffix π′ with initial vertex v. Obviously, λ is a cycle at v,
π′′ is an impasse with initial vertex v, and the two paths are disjoint off v. Proceed
as in case 2.

Case 6: E and F are nooses.
Let π be the noose with a shorter tail. If the two tails are of the same length, let

π be either noose. Let ρ be the other noose and u be the final vertex of π. Fold the
tail of π into the tail of ρ, and let R′ be the resulting recognizer. By the folding and
weight corollary, Weight(R′) ≤ Weight(R). If Weight(R′) < Weight(R), finish the
round. Otherwise let π′ be the loop of π and ρ′ be the suffix of ρ with initial vertex
u. π′ is a cycle at u, ρ′ is either a cycle at u or a noose with initial vertex u, and the
two paths are disjoint. If ρ′ is a cycle, proceed as in case 1. If ρ′ is a noose, proceed
as in case 3.

Part 2: Assume that E and F are not disjoint off ξ.
Case 7: At least one of the paths E and F is a cycle.
Let π be the cycle or one of the two cycles, and let ρ be the maximal initial

segment of the other path that is internally disjoint from π. The final vertex v of ρ
splits π into two segments π1 = π[ξ, v] and π2 = π[v, ξ]. Without loss of generality,
we may assume Length(π1) ≥ Length(ρ); otherwise, swap π1 and ρ in the remainder
of this case. Let m = Length(π1) and n = Length(ρ).

Fold ρ into π1, and let R′ be the resulting recognizer. If the weight decreases, then
end the current round of the algorithm. Suppose that the weight does not decrease.
Then, by the folding lemma, m > n. We have two internally disjoint cycles at v in
R′. One is formed by the suffix of length m − n of π1. The other is formed by the
concatenation of π2 and the prefix of length n of π1. Proceed as in case case 1.

Case 8: At least one of the paths E and F is a noose.

444 YURI GUREVICH AND PAUL SCHUPP

Let τ be a noose or one of the two nooses, τ1 and τ2 be the tail and loop of τ ,
respectively, and v be the final vertex of τ1. Recall that every path P gives rise to a
reverse path P−1. Let π be the cycle τ−1

2 at v. By an argument similar to the proof
of the closed path lemma, there is a closed path ρ that continues the path τ−1

1 . Thus
we have two closed paths, π and ρ, sharing the same initial vertex v and having the
same sign (that is both positive or both negative). If π and ρ are internally disjoint,
proceed according to the appropriate case of part 1. Otherwise proceed as in case 7.

Case 9: Both E and F are impasses.
Let F1 be the maximal initial segment of F disjoint from E. The final vertex

v of F1 splits E into the prefix E1 = E[ξ, v] and the corresponding suffix E2. If
Length(E1) ≥ Length(F1), let π = E1 and ρ = F1; otherwise, let π = F1 and ρ = E1.
Let m = Length(π) and n = Length(ρ). Fold ρ into π. If the recognizer weight
decreases, then finish the round of the algorithm. Suppose that the weight does not
decrease. Then, by the folding lemma, m > n. We have two internally disjoint closed
paths of the same sign with initial vertex v. One is the cycle formed by a suffix of
length m−n of π. The other is the impasse E2. Proceed as in case 2. This completes
the proof of the lemma.

3.6. The theorem. We restate the free groups with elements in exponent nor-
mal form theorem formulated in section 1.

Theorem 3.31. There is a polynomial-time decision algorithm for the member-
ship problem for the succinct free group. More explicitly, there is an algorithm such
that

(i) given exponent words h1, . . . , hm and w, the algorithm decides whether the
subgroup H generated by h1, . . . , hm contains w, and

(ii) the algorithm runs in time polynomial in |h1| + · · · + |hm| + |w|.
Proof. Use the construction algorithm of section 2.2 to produce a recognizer R1

for H. Then use the weight reduction algorithm of section 3.5 to transform R1 into a
lean recognizer R2. Finally use the reading algorithm of section 3.3 to check whether
the group element w belongs to H. Since all the constituent algorithms are polynomial
time, the decision algorithm is polynomial time.

4. The free product of (ZZZ/2ZZZ) and (ZZZ/3ZZZ). This auxiliary section aims to
clarify certain aspects of the membership problem for the modular group unrelated
to the matrix representation of the modular group.

In the notation of combinatorial group theory, 〈g | gn〉 is a cyclic group of order n
with generator g. It is isomorphic to the additive group Z/nZ of integers modulo n.
The modular group is isomorphic to the free product (Z/2Z)∗(Z/3Z); see [8] for a clear
explanation of this fact. We use the syllabic recognizer approach to give a polynomial
time decision procedure for the membership problem for the group 〈s | s2〉 ∗ 〈t | t3〉
in the following presentation.

Definition 4.1 (standard 〈s | s2〉 ∗ 〈t | t3〉). Standard 〈s | s2〉 ∗ 〈t | t3〉 is the
free group in the following syllabic presentation.

• Alphabet: The alphabet consists of original letters s, t and one auxiliary symbol
−1. The alphabet is linearly ordered in some way; it will play no role in what
order it is exactly.

• Syllables: Syllables are s, t, and t−1. The Greek letter ε is reserved to range
over {1,−1}, so that tε is always either t or t−1.

• Inverses: Syllables t and t−1 are the inverses of each other, and s is its own
inverse.

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 445

• Equality: It is the least congruence for the word semigroup with the inverse
operation such that ss = 1, tt−1 = 1, t−1t = 1, tt = t−1, and t−1t−1 = t.

It is easy to see that the quotient of the word semigroup is indeed isomorphic
to 〈s | s2〉 ∗ 〈t | t3〉. Consider the five equalities that appear in the definition of the
equality relation. Reading each of the five equalities from left to right gives us five
different reduction steps. It is easy to see that any two words w1, w2 are equal if and
only if there is a witness sequence of words x0, x1, . . . , x� such that x0 = w1, x� = w2

and, for every two successive words xi, xi+1, one is obtained from the other by a single
reduction step.

A word w is reduced if it does not contain any of the “forbidden” contiguous
substrings ss, tt−1, t−1t, tt, or t−1t−1. The group G in consideration is the quotient
of W with respect to the equality relation.

Lemma 4.2 (word reduction).

1. For every word w, there is a unique reduced word equal to w. The reduced
word is the reduct of w.

2. There is a polynomial-time word reduction algorithm that, given a word w,
produces the reduct of w.

We omit the proof of this well-known fact.
Definition 4.3 (irregular paths). There are two kinds of irregular paths.
• An s-irregular path has the form 〈(u0, s, u1), (u1, s, u2)〉, where u0 �= u2.
• An t-irregular path has the form 〈(u0, t, u1), (u1, t, u2), (u2, t, u3)〉, where u0 �=
u3.

Definition 4.4 (regular recognizers). A recognizer without irregular paths is
regular.

Lemma 4.5 (irregular paths). The identification of the end-vertices of an irreg-
ular path produces an equivalent recognizer.

Proof. Due to the vertex identification lemma of section 2.4, it suffices to show
that the end-vertices of the given irregular path π have the same associated coset.
To this end we use the coset stability lemma of section 2.4. If π has the form
〈(u, s, u1), (u1, s, v)〉, then Coset(v) = Coset(u)ss = Coset(u). And if π has the form
〈(u, t, u1), (u1, t, u2), (u2, t, v)〉, then Coset(v) = Coset(u)ttt = Coset(u).

Definition 4.6 (fat). Let R be a regular recognizer and u be a state of R.
For every syllable σ, FatR(σ, u) = max(0, n − 1), where n is the number of σ-labeled
transitions from u. The subscript may be omitted when the recognizer is uniquely
determined by the context.

A recognizer R is deterministic if every FatR(σ, u) = 0. Note that a deterministic
recognizer does not have s-irregular paths.

Definition 4.7 (triangles). A triangle in a recognizer is a cycle of the form
〈(u1, t, u2), (u2, t, u3), (u3, t, u1)〉. We allow the possible “degenerate” cases where
some of the edges coincide. In particular, if e = (v, t, v), then 〈e, e, e〉 is a trian-
gle. An incomplete triangle is a two-edge path 〈(u1, t, u2), (u2, t, u3)〉 such that there
is no edge (u3, t, u1).

Definition 4.8 (triangle complete). A recognizer is triangle complete if it does
not have any incomplete triangles.

Note that if a recognizer is triangle complete, then for any edges e1 = (u1, t
−1, u2)

and e2 = (u2, t
−1, u3), there is an edge e3 = (u3, t

−1, u1). Indeed, by the triangle
completeness requirement, applied to 〈e−1

2 , e−1
1 〉, there is an edge (u1, t, u3). But its

inverse is the desired (u3, t
−1, u1).

446 YURI GUREVICH AND PAUL SCHUPP

Lemma 4.9 (completing one triangle). Suppose that a deterministic regular rec-
ognizer R has an incomplete triangle 〈(u1, t, u2), (u2, t, u3)〉. Add a new edge (u3, t, u1)
and its inverse, and let S be the resulting recognizer. Then

1. S is equivalent to R;
2. S is deterministic;
3. S is regular.

Proof. Let e1 = (u1, t, u2), e2 = (u2, t, u3), and e3 = (u3, t, u1).
1. Obviously Γ(R) ⊆ Γ(S). We show that Γ(S) ⊆ Γ(R). If π is a run of S that

accepts a word w, replace every occurrence of e3 (respectively, e−1
3) in π with 〈e−1

2 , e−1
1 〉

(respectively, 〈e1, e2〉). The result is a run of R that accepts a word equal to w in G.
2. By contradiction assume that S is not deterministic. Taking into account

that R is deterministic and that e3 and e−1
3 are the only new edges of S, we have

FatS(t−1, u1) > 0 or FatS(t, u3) > 0. Either case leads to a contradiction. We consider
only the first case; the second case is similar.

Suppose that FatS(t−1, u1) > 0. Then vertex u1 has an outgoing edge of the form
(u1, t

−1, u0) in R. Let e0 = (u0, t, u1). Since R is regular, the end-vertices of the path
〈e0, e1, e2〉 coincide, so that u0 = u3 and e0 = (u3, t, u1), which is impossible because
〈e1, e2〉 is an incomplete triangle in R.

3. If S is not regular, then it has an irregular path π. We have proved already that
S is deterministic. It follows that π cannot be s-irregular. So π is t-irregular. Let
π = 〈f1, f2, f3〉. Since R is regular, π contains the new edge e3. We have three
different scenarios e3 = fi. Each of the scenarios leads to a contradiction.

We consider here only the scenario e3 = f2; the other scenarios are similar. Taking
into account that S is deterministic, we have that f1 = e2 and f3 = e1. But then u2

is the initial and final vertex of π, which contradicts the irregularity of π.
Corollary 4.10 (triangle completion). There is a polynomial-time triangle

completion algorithm that transforms an arbitrary deterministic regular recognizer
into an equivalent recognizer that is regular, deterministic, and triangle complete.

Proof. If there is an incomplete triangle 〈(u1, t, u2), (u2, t, u3)〉, then add a new
edge (u3, t, u1) and its inverse. Keep doing that until the recognizer is triangle
complete.

Lemma 4.11 (membership criterion). Let R be a triangle complete, deterministic,
regular recognizer, and let w be an arbitrary word. The subgroup Γ(R) contains the
group element w if and only if R accepts the reduct of w.

Proof. If R accepts the reduct of w, then w ∈ Γ(R) by the definition of recognizers.
Suppose that w ∈ Γ(R), and let w0 be a word with the fewest number of syllables
accepted by R. We show that w0 is reduced.

Let π be a run that accepts w0. If π has the form

π1 + 〈(v1, σ, v2)(v2, σ
−1, v3)〉 + π2,

then the middle segment can be removed from π. And if π has the form

π1 + 〈(v1, t
ε, v2)(v2, t

ε, v3)〉 + π2,

then the middle segment can be replaced by the edge (v1, t
−ε, v3). In either case, the

resulting run accepts a word that is equal to w and that has fewer syllables than w0,
which contradicts the choice of w0.

Lemma 4.12 (reading). There is a polynomial-time reading algorithm that, given
a deterministic regular recognizer R and a word w, determines whether w ∈ Γ(R).

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 447

Proof. Let R1 be the given recognizer. Use the triangle completion algorithm
to transform R1 into an equivalent recognizer R2 that is regular, deterministic, and
triangle complete. Use the word reduction algorithm to transform w to an equal
reduced word w0. By the membership criterion lemma, w ∈ Γ(R2) if and only if R2

accepts w0. To determine whether R2 accepts w0, run R2 on w0.
Lemma 4.13 (fat reduction). There is a polynomial-time fat reduction algorithm

that transforms any recognizer into an equivalent deterministic regular recognizer.
Proof. The desired algorithm is iterative. At every round it decreases the number

of vertices. We describe one round of the algorithm.
1. If there an irregular path, then identify the end-vertices of the path, and start

a new round.
2. If there are distinct edges with the same initial vertex and the same label,

then identify their final vertices, and start a new round.
3. Halt.

Obviously the algorithm halts, and when it does the recognizer is deterministic and
regular. By the vertex identification and edge folding lemmas in section 2.4, the
algorithm does not change the recognizer subgroup.

Theorem 4.14. There is a polynomial-time decision algorithm for the member-
ship problem for (Z/2Z) ∗ (Z/3Z).

Proof. Use the construction algorithm of section 2.2 to produce a recognizer R1

for H. Use the weight reduction algorithm to transform R1 to an equivalent recognizer
that is regular and deterministic. Finally use the reading algorithm to check whether
w ∈ Γ(S).

5. Succinct 〈s | s2〉 ∗ 〈t | t3〉. In the previous section, we proved that the
membership problem for standard 〈s | s2〉∗ 〈t | t3〉 is polynomial-time decidable. Here
we introduce an exponentially more succinct syllabic representation of the elements of
〈s | s2〉∗〈t | t3〉 and show that the membership problem for G remains polynomial-time
decidable.

5.1. Succinct 〈s | s2〉 ∗ 〈t | t3〉: Definition and word reduction.
Definition 5.1 (succinct 〈s | s2〉 ∗ 〈t | t3〉). Succinct 〈s | s2〉 ∗ 〈t | t3〉 is the

group 〈s | s2〉 ∗ 〈t | t3〉 in the following syllabic representation.
• Alphabet: The alphabet consists of original letters s and t and the following

auxiliary symbols: −1, left and right parentheses, and 0, 1, . . . , 9. The al-
phabet is linearly ordered in some way; it will play no role in what order it is
exactly.

• Syllables: The syllables split into three categories.
–Positive: strings (ts)kt, where k is a natural number in decimal notation,
–Negative: strings (t−1s)kt−1, where k is a natural number in decimal no-

tation,
–Neutral: the string s.

Positive and negative syllables are partisan. The Greek letter ε is reserved
to range over {1,−1}, so that tε is always either t or t−1. To distinguish
this representation of 〈s | s2〉 ∗ 〈t | t3〉 from the standard representation,
new words will be called exponent words, and the old words will be called
unary words. Any exponent word w expands in the obvious way to a unary
word called the unary expansion of w. For example, (t, s)4s(ts)4 expands to
tststststststststst.

• Inverses: Syllables (ts)kt and (t−1s)kt−1 are the inverses of each other, and
s is its own inverse.

448 YURI GUREVICH AND PAUL SCHUPP

• Equality: Exponent words are equal if their unary expansions are equal in the
sense of the standard 〈s | s2〉 ∗ 〈t | t3〉.

Obviously the quotient of the word semigroup over the equality relation is iso-
morphic to 〈s | s2〉 ∗ 〈t | t3〉.

As usual, the sign of an integer i is 1, 0, or −1 if i > 0, i = 0, or i < 0, respectively,
and |i| is the absolute value of i.

Definition 5.2 (T notation).

Ti =

⎧⎪⎨
⎪⎩

(ts)i−1t if i > 0,

(t−1s)|i|−1t−1 if i < 0,

1 if i = 0.

Lemma 5.3 (syllables). Let i, j be nonzero integers.
1. TisTj = Ti+j if sign(i) = sign(j).
2.

TiTj =

{
Ti−1s

αT−1s
βTj−1 if sign(i) = sign(j) = 1,

Ti+1s
αT1s

βTj+1 if sign(i) = sign(j) = −1,

where α =

{
1 if |i| �= 1,

0 if |i| = 1,
and β =

{
1 if |j| �= 1,

0 if |j| = 1.
3.

TiTj =

⎧⎪⎨
⎪⎩
sTi+j if sign(i) = −sign(j) and |i| < |j|,
1 if sign(i) = −sign(j) and |i| = |j|,
Ti+js if sign(i) = −sign(j) and |i| > |j|.

The proof is straightforward. We give here only a few examples.

T2sT3 = (tst)s(tstst) = (ts)4t = T5,

T−2sT−3 = (t−1st−1)s(t−1st−1st−1) = (t−1s)4t−1 = T−5,

T2T3 = (tst)(tstst) = (t)s(tt)s(tst) = T1sT−1sT2,

T1T3 = (t)(tstst) = (tt)s(tst) = T−1sT2,

T2T1 = (tst)(t) = (t)s(tt) = T1sT−1,

T−2T−2 = (t−1st−1)(t−1st−1) = (t−1)s(t−1t−1)s(t−1) = T−1sT1sT−1,

T2T−3 = (tst)(t−1st−1st−1) = st−1 = sT−1,

T3T−2 = (tstst)(t−1st−1) = ts = T1s,

T2t−2 = (tst)(t−1st−1) = 1.

Definition 5.4 (reduced exponent words). An exponent word is reduced if
(R1) every nonfinal neutral syllable is followed by a partisan syllable,
(R2) every nonfinal partisan syllable is followed by a neutral syllable,
(R3) any two partisan syllables separated only by a neutral syllable have different

signs.
For example, the exponent word T3sT−7sT2 is reduced.
Lemma 5.5 (exponent word reduction).
1. Every exponent word w is equal in G to a unique reduced exponent word. The

reduced exponent word is the reduct of w.

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 449

2. There is a polynomial-time exponent word reduction algorithm that, given
any exponent word w, computes the reduct of w.

Proof. It is easy to see that (i) if an exponent word is reduced, then its unary
expansion is reduced in the sense of section 4 and (ii) if two reduced exponent words
are equal, then the reduced unary expansions are equal. By the word reduction
lemma of section 4, equal reduced unary words are identical. It follows that equal
reduced exponent words have identical unary expansions. It is easy to see that equal
reduced exponent words are also identical as exponent words; that is, they have the
same syllables in the same order. This establishes the uniqueness part of the first
claim.

In the remainder of the proof, we construct polynomial-time algorithms A1, A2,
and A3 transforming any exponent word w to an equal exponent word in such a way
that A1(w) satisfies requirement (R1), A2(A1(w)) satisfies requirements (R1) and
(R2), and A3(A2(A1(w))) satisfies requirements (R1), (R2), and (R3) and thus is
reduced.

Taking into account that s2 = 1, A1 is obvious. Taking into account part 1 of the
syllables lemma, A3 is obvious. It remains to construct A2.

We say that two successive syllables of an exponent word w collide if both syllables
are partisan. Define rank(w) = (c, b), where c is the number of collisions in w and b is
the number of partisan syllables in w. Order ranks lexicographically. A2 is an iterative
rank-reducing algorithm. It is presumed that the input exponent word satisfies A1.
In the next paragraph, we describe one round of A2.

If w satisfies (R2) then halt. Otherwise w has the form xTmTny. If sign(m) =
sign(n), use part 2 of the syllables lemma to reduce the number of collisions. If
sign(m) = −sign(n), use part 3 of the syllables lemma to reduce the rank. If (R1) is
violated in the process, then apply A1.

5.2. Deficit reduction. Recognizers were introduced in section 2.2.
Definition 5.6 (edges). An edge of a recognizer is partisan or neutral if its

label is so. A partisan edge is positive if or negative if its label is so. The length of
an edge e with label σ is the number of symbols in the unary expansion of σ. Thus
Length(e) = 2|i| − 1 if σ = Ti, and Length(e) = 1 if σ = s.

Definition 5.7 (paths). The length of a path π is the sum of the lengths of its
edges. A path π is positive if

• it has at least one positive edge and no negative edges, and
• the positive and neutral edges of π alternate.

Negative paths are defined similarly. Positive and negative paths are partisan.
Definition 5.8 (fat). Let R be a recognizer and u range over the vertices of R.
• FatR(s, u) = max(0, n− 1), where n is the number of neutral edges from u.
• FatR(t, u) = max(0, n− 1), where n is the number of positive edges from u.
• FatR(t−1, u) = max(0, n − 1), where n is the number of negative edges from
u.

Further, FatR(u) = FatR(s, u)+FatR(t, u)+FatR(t−1, u), and Fat(R) =
∑

u FatR(u).
The subscript may be omitted if the context uniquely defines the recognizer.

Definition 5.9 (lean recognizers). It is lean if Fat(R) = 0.
As in section 3.3, lean recognizers are deterministic, but deterministic recognizers

are not necessarily lean. Recall the regular recognizers and the triangles definitions
in section 4.

Definition 5.10 (deficit). Let R be a recognizer. A vertex u2 of R is deficient
if there are positive edges (u1, Tm, u2) and (u2, Tn, u3) such that either m + n > 2 or

450 YURI GUREVICH AND PAUL SCHUPP

else m = n = 1 and 〈(u1, Tm, u2), (u2, Tn, u3)〉 is an incomplete triangle. The number
of deficient vertices is the deficit Δ(R) of R.

Lemma 5.11 (deficit decrement). There is a polynomial-time deficit decrement
algorithm that transforms any lean regular recognizer R with positive deficit to an
equivalent lean regular recognizer S with lesser deficit.

Proof. Find a deficient vertex u2 together with edges e1 = (u1, Tm, u2) and
e2 = (u2, Tn, u3) witnessing the deficiency of u2. Without loss of generality m ≥ n;
the case n ≥ m is similar. We consider various scenarios that arise and advise the
reader to draw diagrams.

Case 1: m = n = 1.
Case 1-00: u1 has no incoming positive edges, and u3 has no outgoing positive

edges. Add edges (u3, t, u1) and (u1, t
−1, u3). By the vertex creation lemma in sec-

tion 3.2, the resulting recognizer S is equivalent to R. Obviously S is regular and
lean. Δ(S) = Δ(R)−1 as one deficiency has been repaired without creating any other
deficiencies.

Case 1-11: u1 has an incoming positive edge e0 = (u0, T�, u1), and u3 has an
outgoing positive edge e3 = (u3, Tp, u4). Vertices u1, u2, and u3 are all deficient.
Since R is regular, we have �, p > 1. Split e0 and e3 into paths of the form

〈(u0, T�−1, u), (u, s, u′), (u′, t, u1)〉, 〈(u3, t, v), (v, s, v
′), (v′, Tp−1, u4)〉.

The resulting recognizer R′ is lean and equivalent to R. Δ(R′) = Δ(R). Note t-
irregular paths from u′ to u3 and from u1 to v. Identify u′ with u3 and u1 with v,
so that the edges (u′, t, u1) and (u3, t, v) become one edge (u3, t, u1), and the edges
(u1, t

−1, u′) and (v, t−1, u3) become one edge (u1, t
−1, u3). The resulting recognizer S

is regular, lean, and equivalent to R′. Δ(S) = Δ(R) − 3.
Case 1-01: u1 has no incoming positive edges, and u3 has an outgoing positive

edge e3 = (u3, Tp, u4). Since R is regular, we have p > 1. Vertices u2 and u3 are
deficient. Split e3 as in case 1-11. The resulting recognizer R′ is lean and equivalent
to R. Δ(R′) = Δ(R). Note a t-irregular path from u1 to v. Identify u1 with v, so that
the edge (u3, t, v) becomes (u3, t, u1) and the edge (v, t−1, u3) becomes (u1, t

−1, u3).
The resulting recognizer S is regular, lean, and equivalent to R′. Δ(S) = Δ(R) − 2.

Case 1-10: u1 has an incoming positive edge e0 = (u0, T�, u1), and u3 has no
outgoing positive edge. This case is dual (and similar) to case 1-01.

Case 2: m,n > 1. Split e1 and e2 into paths of the form

〈(u1, Tm−1, u), (u, s, u′), (u′, t, u2)〉, 〈(u2, t, v), (v, s, v
′), (v′, Tn−1, u3)〉.

The resulting recognizer R′ is regular, lean, and equivalent to R. Δ(R′) = Δ(R).
Continue as in case 1-00, with t-edges (u′, t, u2) and (u2, t, v) witnessing the deficiency
of u2.

Case 3: m > 1 and n = 1.
Case 3-0: u3 has no outgoing positive edges. Split e1 as in case 2. The resulting

recognizer R′ is lean and equivalent to R. Δ(R′) = Δ(R). Continue as in case 1-00
with edges (u′, t, u2) and (u2, t, u3) witnessing the deficiency of u2.

Case 3-1: u3 has an outgoing positive edge e3 = (u3, Tp, u4).
Case 3-11: p = 1. If u4 has no outgoing positive edges, then we have case 1-10

with the current u2, u3, and u4 playing the role of u1, u2, and u3 of case 1-10. If u4

has an outgoing positive edge, then we have case 1-11 with the current u2, u3, and u4

playing the role of u1, u2, and u3 of case 1-11.

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 451

Case 3-12: p > 1. Vertices u2 and u3 are deficient. Split e1 as in case 2, and
split e3 as in case 1-11. The resulting recognizer R′ is lean and equivalent to R.
Δ(R′) = Δ(R). Note a t-irregular path from u′ to v. Identify u′ with v. The
resulting recognizer S is regular, lean, and equivalent to R′. Δ(S) = Δ(R′)− 2.

Corollary 5.12 (deficit reduction). There is a polynomial-time deficit reduc-
tion algorithm that transforms any lean regular recognizer into an equivalent zero-
deficit lean regular recognizer

5.3. Membership criterion and the reading algorithm. The quasi-runs
definition, the quasi-run labels corollary, and the tolerance definition of section 3.2
remain valid. By Part 1 of the syllables lemma in section 5.1, every partisan path
that starts and ends with partisan edges is a quasi transition.

Definition 5.13 (standard quasi transitions). A quasi-transition q is partisan
if it is a partisan path that starts and ends with partisan edges. A partisan quasi
transition is positive (respectively, negative) if it is so as a path. A neutral quasi
transition consists of one neutral edge. A quasi transition is standard if it is partisan
or neutral.

The label of every standard quasi transition is a syllable (rather than 1).
Definition 5.14 (standard quasi runs). A quasi-run 〈q1, . . . , q�〉 is standard if

every quasi-transition qi is standard.
Lemma 5.15 (membership criterion). Suppose that R is a zero-deficit lean regular

recognizer, and let w be a reduced exponent word. The following are equivalent.
1. There is a standard quasi run with label w.
2. The group element w belongs to Γ(R).

Proof. 2 → 1: By the quasi-run labels corollary, the associate run of Q accepts a
word equal to w, and so w ∈ Γ(R).

1 → 2: Suppose that the group element w belongs to Γ(R). Without loss of
generality, w �= 1. By the recognizer’s subgroup definition in section 2.2, R accepts
an exponent word w′ equal to w. Let π be a run that accepts w′.

We claim that the partisan and neutral edges alternate in π. To prove that, we
assume that π has the form π1 +e+f +π2, where the edges e and f are both partisan
or both neutral, and we prove that there is a shorter run accepting a word equal to
w. Let v be the final vertex of e. If e and f are neutral, then by the regularity of R,
f = e−1, and so π1 + π2 is a shorter run accepting a word equal to w. So e and f are
partisan. Let Tm = Label(e) and Tn = Label(f). Without loss of generality, m > 0;
the case m < 0 is similar. If n < 0, then f = e−1 because Fat(t−1, v) = 0. Again,
π1 + π2 is a shorter run accepting a word equal to w. Thus n > 0. Since Δ(R) = 0,
the vertex v is not deficient. It follows that m = n = 1, and there is an edge g such
that 〈e, f, g〉 is a triangle. Then π1 + g−1 + π2 is a shorter run accepting an exponent
word equal to w.

Notice that π is a standard quasi run. Let Q = 〈q1, . . . , q�〉 be a standard quasi
run with the fewest number of quasi transitions that tolerates an exponent word w0

equal to w. Accordingly w0 has the form ap1

1 . . . ap�

� . We show that w0 is reduced.
Recall the definition of reduced exponent words in section 5.1. Obviously w0 satis-
fies the conditions (R1) and (R2). It remains to prove that it satisfies the condition
(R3). It suffices to prove that the positive and negative quasi transitions alternate
in Q.

By contradiction suppose that two partisan syllables σi and σi+2 of the same sign
are separated by a neutral syllable σi+1. Using the syllables lemma in section 5.1,
replace the segment 〈qi, qi+1, qi+2〉 with a single quasi transition whose quasi label

452 YURI GUREVICH AND PAUL SCHUPP

equals σiσi+1σi+2 in G. This gives a quasi-run Q′ with fewer quasi transitions that
accepts a word equal to w, which contradicts the choice of Q.

Lemma 5.16 (quasi transitions).
1. Let R be a zero-deficit lean regular recognizer and u be a vertex of R. For

every syllable σ, there is at most one standard quasi-transition q from u with
quasi-label σ.

2. There is a polynomial-time algorithm that, given a zero-deficit lean regular
recognizer R, a state u of R, and a syllable σ, determines whether there
exists a standard quasi transition with profile of the form (u, σ, v) and, if yes,
constructs the desired quasi transition.

Proof. 1. The case σ = s is obvious because R is regular. By contradiction
assume that there exist distinct standard quasi transitions with the same quasi-label
Tn from the same vertex u. We assume that n > 0; the case n < 0 is similar. Thus
we have two distinct positive paths of the same length 2n − 1 from u. Since neither
path can be a prefix of the other, there is a vertex v where the two paths branch out
which contradicts the leanness of R.

2. The case σ = s is obvious. Thus we may assume that σ = Tn for some n �= 0.
We assume n > 0; the case n < 0 is similar. Using the leanness of R, construct
a unique empty or positive path π such that Length(π) < 2n − 1 but π cannot be
extended to a longer positive path or such that Length(π) ≥ 2n − 1 and π is the
shortest such path. In the first case, the desired quasi transition does not exist.
Consider the second case. If Length(π) > 2n − 1, then the desired quasi transition
does not exists. But if Length(π) = 2n− 1, then we have the desired quasi transition.
Notice that π may cycle from some point on.

Lemma 5.17 (reading). There is a polynomial-time reading algorithm that, given
a lean regular recognizer R and a reduced exponent word w, determines whether the
group element w belongs to Γ(R).

Proof. Taking into account the deficit corollary in section 5.2, we may assume
without loss of generality that R is zero-deficit.

The reduced exponent word w is a concatenation σ1 . . . σ� of syllables where the
partisan syllables alternate with the neutral syllables and where, among the partisan
syllables, positive syllables alternate with negative syllables. By the membership
criterion lemma, it suffices to determine whether there exists a standard quasi-run
Q = 〈q1, . . . , q�〉 with label w. By the quasi-transition lemma, there is at most one
such quasi run.

Intuitively speaking, we use R to “read” w. Let u0 = o. Suppose that j ≤ � and
S has read the initial segment σ1 . . . σj of w and arrived at state uj . In the process
an initial segment q1 . . . qj of the desired Q has been constructed.

If j < �, then apply the algorithm of the quasi-transition lemma to (R, uj , σj+1). If
the algorithm determines that there is no appropriate qj+1, then w /∈ Γ(R). Otherwise
the algorithm produces the appropriate qi+1. Set uj+1 to be the final vertex of qj+1,
and proceed to read σj+2.

If j = �, then w ∈ Γ(R) if and only if u� = o.

5.4. Path folding. This section is similar to section 3.4, but we need to do a
little work to make the similarity apparent. The role of a fixed original letter a of
section 3.4 is played by the word ts in this section. The fact that the word ts is not
a single letter creates some difficulties.

Consider a regular recognizer R. Since R is regular, every vertex of R has at most
one outgoing s-edge.

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 453

Definition 5.18 (dual vertices). If a vertex u has an outgoing s-edge e, then
the end of e is the dual of the vertex u; otherwise, u is an s-orphan.

It will be convenient to pretend that orphans have dual vertices as well.
Definition 5.19 (virtual duals). With every orphan u, we associate an object v

outside of R in such a way that distinct objects are associated with distinct vertices.
These objects v are called virtual elements of R. The nature of virtual elements is of
no importance. If an orphan u is associated with a virtual element v, we say that u
and v are the duals of each other. Further, the triples (u, s, v) and (v, s, u) are called
virtual edges of R.

Recall that a partisan path has the following properties: partisan and neutral
edges alternate and all partisan edges have the same sign.

Definition 5.20 (regular paths). A regular path π is a nonempty partisan path
of the form 〈e1, f1, . . . , ek, fk〉 subject to the following restrictions.

• Edges ei are partisan.
• Edges fi are neutral, and the final edge fk may be virtual.
• The initial vertices of edges ei are all distinct.

If fk is virtual, then π is odd, and if fk is real, then π is even. Notice that the
sequence 〈e1, . . . , ek〉 completely determines the regular path π which will be denoted
RP(e1, . . . , ek).

Definition 5.21 (even vertices). Let π be a regular path 〈e1, f1, . . . , ek, fk〉,
where ei = (ui−1, σi, vi) and fi = (vi, s, ui). Notice that every Length(π[u0, ui]) is
even and every Length(π[u0, vi]) is odd. Call vertices ui even and vertices vi odd. So
the even vertices are the initial vertices of the partisan edges and the final vertices of
the neutral edges. The even vertex sequence of π is the sequence 〈u0, . . . , uk−1, uk〉.
By the definition of regular paths, even vertices u0, . . . , uk−1 are distinct.

In the following definition, we redefine the notion of branch and cycle and some
related notions to the case of regular paths. We will not apply the old versions of
these notions to regular paths. In fact, the old notions will not be used in the rest of
this paper, except that here and there we refer the reader to previous sections where
the old notions are in use.

Definition 5.22 (branches, cycles, etc.). Consider a regular path π = 〈e1, . . . , ek〉
with even vertex sequence 〈u0, u1, . . . , uk〉.

• π is a branch if uk /∈ {u0, . . . , uk−1}.
• π is an impasse if it is a branch and uk does not have an outgoing partisan

edge of the sign of π.
• π is a cycle at u0 if uk = u0.
• π is a noose if uk = ui for some positive i < k.
• If π is a noose and uk = ui, where i < k, then π splits into the loop

RP(ei+1, . . . , ek) and the tail 〈e1, . . . , ei〉 of the noose.
• π is closed if it is an impasse, a cycle, or a noose.

Lemma 5.23 (closed paths). Every partisan edge e gives rise to a closed regu-
lar path π = RP(e1, . . . , ek) with e1 = e. Furthermore, there is a polynomial-time
algorithm that, given (a regular recognizer and) a partisan edge e, constructs such a
path π.

Proof. The desired algorithm is iterative. At the first round, it constructs the
regular path RP(e1) with e1 = e. Suppose that we did i rounds and constructed a
regular path RP(e1, . . . ei). If it is closed, then halt. Otherwise RP(e1, . . . ei) is even.
Let ei+1 be the lexicographically first partisan edge from ui of the sign of e, and
construct RP(e1, . . . ei+1). The process converges because the number of vertices is
finite.

454 YURI GUREVICH AND PAUL SCHUPP

Definition 5.24 (edge splitting). Suppose that p, q, and r are positive integers
such that r = p + q. By the syllables lemma in section 5.1, Tr = TpsTq, and T−r =
T−psT−q. To split an edge e = (u, Tr, v) according to (p, q), create two new vertices
u′ and v′ and replace edges e and e−1 with six new edges: (u, Tp, u

′), (u′, s, v′), and
(v′, Tq, v) and their inverses. Splitting an edge e = (u, T−r, v) according to (p, q) is
defined similarly; just substitute Tp, Tq, and Tr with T−p, T−q, and T−r, respectively.

Lemma 5.25 (edge splitting). Edge splitting preserves the regularity of the rec-
ognizer, the recognizer subgroup, and the amount of fat of the recognizer.

Proof. The proof is obvious.
Definition 5.26 (vertex creation). Let π = RP(e1, . . . , ek), ν be the initial

vertex of π, and m be a positive even number such that m < Length(π) and there
is no even vertex of π with Length(π[ν, u]) = m. We explain how to create, on
π, a new even vertex v′ at distance m from ν as well as its dual u′ at distance m
from ν. Let L(i) = Length(RP〈e1, . . . , ei〉) for i = 0, . . . , k. Find the index i with
L(i−1) < m < L(i), and split the edge ei according to (p, q), where p = (m−L(i−1))/2
and q = (L(i) − m)/2. This creates, on π, the desired even vertex v′ as well as its
dual u′.

Corollary 5.27 (vertex creation). Vertex creation preserves the regularity of
the recognizer, the recognizer subgroup, and the amount of fat of the recognizer.

We adjust the entanglement definition of section 3.4 to fit our needs in this section.
The two path divisor definition of section 3.4 remains valid.

Definition 5.28 (entanglement). Suppose that π and ρ are regular paths of the
same sign and with the same initial vertex ν. Suppose further that either path is a
branch or a cycle. The two paths are entangled if there exist even vertices u and v
on π and ρ, respectively such that u �= v and

Length(π[ν, u]) = Length(ρ[ν, v]) mod Div(π, ρ).

Otherwise the two paths are disentangled.
The entanglement algorithm corollary of section 3.4 remains valid.
Lemma 5.29 (entanglement). If π and ρ are entangled and even vertices u and

v witness the entanglement, then the identification of u and v does not change the
recognizer subgroup.

Proof. Let d = Div(π, ρ), 2k = Length(π[ν, u]), 2� = Length(ρ[ν, v]), and H =
Coset(ν). We assume that π are ρ are positive; the negative case is similar. By the
syllables lemma in section 5.1, Label(π[ν, u]) = (ts)k, and Label(ρ[ν, v]) = (ts)�. By
the coset stability lemma in section 2.4, Coset(u) = H(ts)k and Coset(v) = H(ts)�.
By the vertex identification lemma in section 2.4, it suffices to prove that H(ts)k =
H(ts)�. Since u and v witness the entanglement, we have 2k = 2� mod d.

Case 1: Both paths are branches. Then k = �, and therefore H(ts)k = H(ts)�.
Case 2: One of the paths is a branch and the other is a cycle. Without loss of

generality, π is a cycle, and ρ is a branch. Then d = 2k, H(ts)k = H, and 2� = p · 2k
for some integer p. Then � = kp, and H(ts)� = H((ts)k)p = H = H(ts)k.

Case 3: Both paths are cycles. Then d = g.c.d.(2k, 2�), and H(ts)k = H(ts)� = H.
Clearly d is even; let δ = d/2 so that δ = g.c.d.(k, �). Since δ = g.c.d.(k, �), there are
integers i and j such that ik + j� = δ, and so H(ts)δ = H((ts)k)i((ts)�)j = H. Since
2k = 2� mod d, there is an integer p such that 2k = pd+2�, and therefore k = pδ+�.
Then H(ts)k = H((ts)δ)p(ts)� = H(ts)�.

Definition 5.30 (even vertex disjoint regular paths). Consider two regular paths
sharing the same initial vertex ν. The two paths are even vertex disjoint off ν if ν is
the only even vertex on both paths.

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 455

If two regular paths are even vertex-disjoint off their common initial vertex ν,
then the dual of ν is the only possible odd vertex on both paths. But it is possible
that an even vertex of one path appears as an odd vertex on the other path.

Definition 5.31 (path folding). Suppose that π and ρ are regular paths such
that

• they have the same sign and the same initial vertex ν,
• either path is a branch or a cycle,
• Length(π) ≥ Length(ρ) if both paths are branches, and
• Length(π) = Div(π, ρ) if both paths are cycles.

To fold ρ into π, execute the following folding algorithm:
1. Apply the entanglement algorithm to π and ρ. If the number of vertices is

reduced, then halt. Otherwise the paths are disentangled.
2. For each even vertex v on ρ, create, on π, a new even vertex v′ and its dual

such that

Length(π[ν, v′]) = Length(ρ[ν, v]) mod Div(π, ρ)

unless π has an even vertex at this position already.
3. Identify every clone v′ with its original v, and identify the dual of v′ with the

dual of v.
4. Remove all partisan edges of ρ and their inverses.

The path folding lemma of section 3.4 remains valid. Its formulation does not
change at all, and its proof requires only small adjustments. For the reader’s conve-
nience we give here all details.

Lemma 5.32 (path folding). Let π and ρ be as in the path folding definition.
Folding ρ into π preserves the recognizer subgroup. If the algorithm halts at stage
1, then the number of vertices of the recognizer decreases. Otherwise the number of
vertices is unchanged, and the (amount of) fat changes as follows.

(BB) Suppose that π and ρ are branches of lengths m and n, respectively.
If m = n, then the fat decreases by 2.
If m > n and ρ is an impasse, then the fat decreases by 1.
If m > n but ρ is not an impasse, then the fat does not change.

(CB) Suppose that π is a cycle and ρ is a branch.
If ρ is an impasse, then the fat decreases by 1;
otherwise, the fat does not change.

(CC) Suppose that π and ρ are cycles. Then the fat decreases by 2.
Proof. We consider only the case in which π and ρ are positive; the case in which

they are negative is similar.
Let R be the given recognizer, and let Rp be the recognizer obtained from R by

executing p stages of the folding algorithm, so that R0 = R. Let the even vertex
sequence of π be 〈u0, . . . , uk〉. Let ρ = RP(f1, . . . , f�) and the even vertex sequence
of ρ be 〈v0, . . . , v�〉. Let d = Div(π, ρ)/2. The case in which π and ρ are entangled is
obvious. Assume that π and ρ are disentangled. Then nothing happens at stage 1,
and so R1 = R0.

First we note that the vertices of R4 are those of R1. Indeed all vertices v′j and
their duals created at stage 2 are identified with the respective vertices vj and their
duals at stage 3; thus, the vertices of R3 are those of R1. And the vertices do not
change at stage 4.

Second we show that Γ(R4) = Γ(R). By the vertex creation lemma in section 2.4,
Γ(R2) = Γ(R1). By the vertex identification lemma in section 2.4, Γ(R3) = Γ(R2). It
remains to show that Γ(R4) = Γ(R3). Let nj = 1

2Length(π[v0, vj]), rj = nj mod d,

456 YURI GUREVICH AND PAUL SCHUPP

and v′0 = u0. It suffices to show that, for every partisan edge fj of ρ, R4 has a path
P with the profile of fj . The profile of fj is (vj−1, Tp, vj), where p = nj − nj−1. In
scenario (BB), the desired path P is π[v′j−1,Dual(v′j)]. In scenarios (CB) and (CC),
p = d · q + (rj+1 − rj) for some q. The desired path P starts at v′j−1 and ends at
Dual(v′j). If ri ≤ ri+1, then π does q full revolutions around π. If ri > ri+1, then
q > 0, and π does q − 1 full revolutions around π.

Finally we prove the claims about the fat. By the vertex creation lemma, Fat(R2) =
Fat(R1). Thus we need only to examine the evolution of the fat from R2 to R4.
Furthermore, it suffices to examine the evolution of the numbers Fat(t, vj) and
Fat(t−1,Dual(vj)). Indeed, v′j and its dual merge with vj and its dual, respectively,

at stage 3. Fat(t−1, vj) and Fat(t,Dual(vj)) do not change. And if a vertex v of R2

differs from any vj , from any v′j , and from their duals, then the immediate vicinity of
v does not change.

If 0 < j < �, then Fat(t, vj) and Fat(t−1,Dual(vj)) do not change from R2 to
R4. Indeed, as a result of identification with v′j , at stage 3, the vertex vj acquires one
outgoing positive edge, and Dual(vj) acquires one outgoing negative edge, but then,
at stage 4, vj loses one outgoing positive edge, namely, fj+1, and Dual(vj) loses one
outgoing negative edge, namely, f−1

j .
The vertices v0 and its dual do not acquire any outgoing edges at stage 3, and

thus neither Fat(t, v0) nor Fat(t−1,Dual(v0)) increase on stage 3. v0 loses one positive
outgoing edge, namely, f0, at stage 4, and so Fat(t, v0) decreases by 1 from R2 to R4.
Dual(v0) does not lose any negative outgoing edge in scenarios (BB) or (CB), and
so Fat(t−1,Dual(v0)) does not change in scenarios (BB) and (CB). Since v0 = v� in
scenario (CC), it remains only to examine the evolution of the numbers Fat(t, v�) and
Fat(t−1,Dual(v�)) in the three scenarios.

(BB) In this scenario, we first suppose that m = n. Since π and ρ are disentangled,
uk = v� . The vertices v� and its dual do not acquire any outgoing edges at stage 3
and lose only one outgoing edge, namely, the negative edge f−1

l , at stage 4. Thus
Fat(t, v�) does not change, and Fat(t−1,Dual(v�)) decreases by 1. To summarize,
Fat(t, v0) and Fat(t−1,Dual(v�)) decrease by 1 while Fat(t−1,Dual(v0)) and Fat(t, v�)
do not change. Hence Fat(R4) = Fat(R2) − 2.

Second we suppose that m > n. At stage 3, v� acquires one positive outgoing
edge, and Dual(v�) acquires one negative outgoing edge. At stage 4, v� loses no
outgoing edges while Dual(v�) loses f−1

� . Thus Fat(t−1,Dual(v�)) do not change. If
ρ is not an impasse, then Fat(t, v�) increases by 1; otherwise, Fat(t, v�) remains zero
throughout the process. We summarize. If ρ is an impasse, then Fat(t, v0) decreases
by 1 while Fat(t−1,Dual(v0)), Fat(t, v�), and Fat(t−1,Dual(v�)) do not change, so that
Fat(R4) = Fat(R2)−1. If ρ is not an impasse, then Fat(t, v0) decreases by 1, Fat(t, v�)
increases by 1, and Fat(t−1,Dual(v0)) and Fat(t−1,Dual(v�)) do not change, so that
Fat(R4) = Fat(R2).

(CB) This scenario is similar to the case m > n of scenario (BB). Let us just
point out that the vertex v� does not occur on π in R. Indeed suppose the opposite.
Since π and ρ are even vertex disjoint off their common initial vertex and uk = u0,
we have v� = u0 = v0. But then ρ is a cycle which contradicts scenario (CB).

(CC) In this scenario, v0 = v�, and thus Fat(t, v�) decreases by 1. Fat(t−1,Dual(v�))
does not change at stage 3 and decreases by 1 at stage 4 because f−1

� is removed. To
summarize, the overall change in the fat is this: both Fat(t, v�) and Fat(t−1,Dual(v�))
decrease by 1. Thus Fat(R4) = Fat(R2) − 2.

5.5. Weight reduction algorithm. The recognizer weight definition of sec-
tion 3.5 remains in force.

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 457

Definition 5.33 (recognizer weight). The weight of a recognizer R is a pair
(i, j) of natural numbers, where i is the number of vertices of R and j = Fat(R).
The weights are ordered lexicographically with the number of vertices being the more
significant component.

Lemma 5.34 (weight reduction). There is a polynomial-time weight reduction
algorithm that reduces any recognizer to an equivalent lean regular recognizer.

Proof. The proof is very close to the proof of the weight reduction lemma of
section 3.5. There is a slight difference in the beginning, and so we give here that new
beginning.

We construct an iterative algorithm that transforms the given recognizer by means
of path folding; the algorithm halts when the recognizer is lean. By the folding lemma
of section 5.4, the algorithm preserves the recognizer subgroup.

We describe one round of the algorithm and show that the weight decreases at
each round. It will be obvious that the algorithm is polynomial time.

If the current recognizer R is regular and lean, halt. If there exists an irregular
path, then identify the two ends of the path. This decreases the recognizer weight.
Irregular paths were defined in section 4.

If there is a vertex ν with Fat(ν) > 0, find a witness (tε, ν, e1, f1) for this fact,
where ε ∈ {1,−1}, ν is a vertex with Fat(tε, ν) > 0, and e1 and f1 are two tε-edges
from ν of the sign of ε. We consider only the case ε = 1; the case ε = −1 is similar.
Use the algorithm of the closed paths lemma to construct closed regular paths E and
F continuing the e1 and e2, respectively.

The rest of the proof mimics the corresponding part of the proof of the weight
reduction lemma of section 3.5.

5.6. The theorem.
Theorem 5.35. There is a polynomial-time decision algorithm for the member-

ship problem for the succinct 〈s | s2〉 ∗ 〈t | t3〉. More explicitly, there is an algorithm
such that

(i) given exponent words h1, . . . , hm and w, the algorithm decides whether the
subgroup H generated by h1, . . . , hm contains w, and

(ii) the algorithm runs in time polynomial in |h1| + · · · + |hm| + |w|.
Proof. We describe the desired decision algorithm. Use the construction algorithm

of section 2.2 to construct a recognizer R1 for H. Use the weight reduction algorithm
of section 5.5 to reduce R1 into a lean regular recognizer R2. Use the reading algorithm
of section 5.3 to check whether the group element w belongs to H. Since all constituent
algorithms are polynomial time, the decision algorithm is polynomial time.

6. Main theorem. We reiterate the main theorem formulated in section 1.
Theorem 6.1 (main). The membership problem for the modular group PSL2(Z),

with integer entries in the standard decimal notation, is polynomial-time decidable.
Proof. In the previous section, we proved the polynomial-time decidability of the

membership problem for the succinct 〈s | s2〉 ∗ 〈t | t3〉. Thus it suffices to prove that
the membership problem for the modular group is polynomial-time reducible to the
membership problem for 〈s | s2〉 ∗ 〈t | t3〉. We construct the desired reduction.

By the modular group as a free product proposition in section 1, the modular
group is isomorphic to 〈s | s2〉 ∗ 〈t | t3〉, where

s =

(
0 1
−1 0

)
and t =

(
0 1
−1 1

)
.

Recall that a matrix is identified with its negative in the modular group.

458 YURI GUREVICH AND PAUL SCHUPP

Consider the four basic elementary transformations over the columns of unimod-
ular matrices:

• subtract the first column from the second,
• subtract the second column from the first,
• add the second column to the first, and
• add the first column to the second.

Applying these transformations to the identity matrix, we get the basic elementary
matrices (

1 −1
0 1

) (
1 0
−1 1

) (
1 0
1 1

) (
1 1
0 1

)
.

Multiplying a unimodular matrix M on the right by a basic elementary matrix
E performs the corresponding column operation on M , and multiplying M by a Ek

performs the column operation k times. Check that

st =

(
1 −1
0 1

)
, st−1 =

(
1 0
−1 1

)
, ts =

(
1 0
1 1

)
, t−1s =

(
1 1
0 1

)
.

We need to transform an arbitrary unimodular matrix M into an exponent word
that represents M . Note that every exponent word w represents a unimodular matrix
and thus gives rise to an operation X �→ X ×w over unimodular matrices. It suffices
to construct a polynomial-time procedure that reduces any unimodular matrix

M =

(
a b
c d

)

to the identity matrix by means of such operations.
Without loss of generality a > 0, because we can work either with M or with

−M . To simplify exposition (though not the algorithm), we can assume that b > 0 as
well. Indeed, if b < 0, then replace M with M × (t−1s)k, where k is the least integer
such that ka > |b|.

If a ≥ b, then compute the number k such that 0 ≤ a − kb < b, and replace M
with M × (st−1)k, so that we have a mod b in the left upper corner of the resulting
matrix. Note that a mod b < a/2. Indeed, if b ≤ a/2, then a mod b < b ≤ a/2;
otherwise, b > a/2, and a mod b ≤ a− b < a/2. Similarly, if a < b, then compute the
number k such that 0 ≤ b− ka < a, and replace M with M × (st)k, so that we have
b mod a in the right upper corner of the resulting matrix. We have b mod a ≤ b/2.

Keep doing that until you have zero in one of the upper corners. In every two
steps, the entries in both upper corners are more than halved. It follows that this
iteration works in linear time.

Thus, without loss of generality, we may assume that the left upper entry a of
the given matrix M is zero; the case when the right upper entry b is zero is similar.
So

M =

(
0 b
c d

)
.

Further, we may assume without loss of generality that b = 1 and c = −1 because the
determinant of M is 1, and we can work with either M or its negative. Replace M
with (M × t−1s)d; the result is the matrix

s =

(
0 1
−1 0

)
.

MEMBERSHIP PROBLEM FOR THE MODULAR GROUP 459

Finally replace the resulting matrix s by s× s, and get (the negative of) the identity
matrix.

REFERENCES

[1] A. Blass and Y. Gurevich, Matrix transformation is complete for the average case, SIAM J.
Comput., 22 (1995), pp. 3–29.

[2] J.-Y. Cai, W. H. J. Fuchs, D. Kozen, and Z. Liu, Efficient Average-case algorithms for the
modular group, in Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, IEEE Press, Piscataway, NJ, 1994, pp. 143–152.

[3] Y. Gurevich, Average case completeness, J. Comput. System Sci., 42 (1991), pp. 346–398.
[4] Y. Gurevich, Matrix decomposition problem is complete for the average case, in Proceedings of

the 31st Annual Symposium on Foundations of Computer Science, IEEE Press, Piscataway,
NJ, 1994, pp. 802–811.

[5] I. Kapovich and A. Miasnikov, Stallings foldings and subgroups of free groups, J. Algebra,
248 (2002), pp. 608–668.

[6] L. Levin, Average case complete problems, SIAM J. Comput., 15 (1986), pp. 285–286.
[7] R. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin, 1977.
[8] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory: Presentations of

Groups in Terms of Generators and Relations, Dover, New York, 1976.
[9] P. E. Schupp, Coxeter groups, 2-completion, perimeter reduction and subgroup separability,

Geom. Dedicata, 96 (2003), pp. 179–198.
[10] J. R. Stallings, Topology of finite graphs, Invent. Math., 71 (1983), pp. 551–565.

