
Ordinary Interactive Small-Step Algorithms, III

ANDREAS BLASS

University of Michigan

and

YURI GUREVICH

Microsoft Research

This is the third in a series of three papers extending the proof of the Abstract State Machine
Thesis — that arbitrary algorithms are behaviorally equivalent to abstract state machines — to
algorithms that can interact with their environments during a step rather than only between steps.
As in the first two papers of the series, we are concerned here with ordinary, small-step, interactive
algorithms. This means that the algorithms
(1) proceed in discrete, global steps,
(2) perform only a bounded amount of work in each step,
(3) use only such information from the environment as can be regarded as answers to queries, and
(4) never complete a step until all queries from that step have been answered.

After reviewing the previous papers’ definitions of such algorithms, of behavioral equivalence,
and of abstract state machines (ASMs), we prove the main result: Every ordinary, interactive,
small-step algorithm is behaviorally equivalent to an ASM.

We also discuss some possible variations of and additions to the ASM semantics.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of
Computation—Interactive and Reactive Computation

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Sequential algorithms, Interaction, Postulates, Equivalence
of algorithms, Abstract state machines

1. INTRODUCTION

The main purpose of this paper is to complete the proof that every ordinary, inter-
active, small-step algorithm is behaviorally equivalent to an abstract state machine
(ASM). The algorithms in question are those which do only a bounded amount
of work in any single computation step (small-step) but can interact with their
environments during a step, by issuing queries and receiving replies (interactive);
furthermore, they complete a step only after all the queries from that step have
been answered, and they use no information from the environment except for the

Authors’ addresses: Andreas Blass, Mathematics Department, University of Michigan, Ann Arbor,
MI 48109–1043, U.S.A., ablass@umich.edu; Yuri Gurevich, Microsoft Research, One Microsoft
Way, Redmond, WA 98052, U.S.A., gurevich@microsoft.com.
The work of the first author was partially supported by NSF grant DMS–0070723 and by a grant
from Microsoft Research. Much of this paper was written during visits to Microsoft Research.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 1529-3785/07/0600-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007, Pages 1–49.

2 · A. Blass and Y. Gurevich

answers to their queries (ordinary).
The first two papers of this series [Blass and Gurevich 2006; to appear] laid the

groundwork for this proof. The class of ordinary, interactive, small-step algorithms
was defined and studied in [Blass and Gurevich 2006] along with a suitable, quite
strong notion of behavioral equivalence for such algorithms. In [Blass and Gurevich
to appear], we defined the class of ordinary, interactive, small-step ASMs, and we
defined a formal semantics for these ASMs whereby they are ordinary, interactive,
small-step algorithms in the sense of [Blass and Gurevich 2006]. These papers thus
provide all that is needed for stating our main result, the ASM thesis:

Theorem 1.1. Every ordinary, interactive, small-step algorithm is equivalent to
an ordinary, interactive, small-step ASM.

Henceforth, we shall omit “ordinary, interactive, small-step” except when needed
for emphasis; we shall say simply “algorithm” and “ASM”.

In Section 2, we briefly review preliminary material from [Blass and Gurevich
2006] and [Blass and Gurevich to appear] and add a few related observations. In
Sections 3 and 4, we set up much of the technical machinery needed for the proof of
the theorem. Section 5 presents the construction leading from a given algorithm to
an equivalent ASM, and Section 6 establishes the correctness of the construction,
thereby completing the proof of the theorem. The final two sections concern possible
modifications of the ASM syntax and semantics. Section 7 is about variations in the
semantics of let-rules and how these interact with the possible variations, discussed
in [Blass and Gurevich to appear, Section 4], in the interpretation of repetitions
of queries. Section 8 concerns two additional constructs — sequential composition
and conditional terms — that could be added to the ASM syntax and semantics.
It is shown that, although these constructs would surely improve programming
convenience, they do not enlarge the class of algorithms that can be expressed.
Thus, according to our theorem, all ASM programs that involve these constructs
can be rewritten in terms of the ASM language as presented in [Blass and Gurevich
to appear].

This paper and its predecessors [Blass and Gurevich 2006; to appear] continue
the project, begun in [Gurevich 2000] and continued in [Blass and Gurevich 2003],
of analyzing natural classes of algorithms by first defining them precisely, by means
of suitable postulates, and then showing that all algorithms in such a class are
equivalent, in a strong sense, to ASMs. Further work on this project is under way
[Blass, Gurevich, Rosenzweig, and Rossman].

2. REVIEW OF PARTS I AND II

This section is intended to recapitulate just enough of the preceding two papers
in this series to allow for convenient reference later. We shall omit the extensive
explanations and justifications given in [Blass and Gurevich 2006; to appear] for the
concepts reviewed here. We shall be especially brief in the case of material from
[Blass and Gurevich 2006], since it is already available not only in its extensive
form in [Blass and Gurevich 2006] but in summary form in [Blass and Gurevich to
appear, Section 2].
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 3

2.1 Algorithms

Algorithms are defined to be entities that satisfy the States, Interaction, Update,
Isomorphism, and Bounded Work Postulates stated below. We intersperse with the
postulates the definitions of concepts used in them; for more details and motivation,
see [Blass and Gurevich 2006], especially Section 5.

States Postulate: The algorithm determines

—a nonempty set S of states,
—a nonempty subset I ⊆ S of initial states,
—a finite vocabulary Υ such that every X ∈ S is an Υ-structure, and
—a finite set Λ of labels.

Definition 2.1. A potential query for a state X is a tuple of elements of X t Λ.
A potential reply is an element of X. An answer function is a partial function from
potential queries to potential replies.

Interaction Postulate: The algorithm determines, for each state X, a relation,
called its causality relation, `X or just ` when X is clear, between finite answer
functions and potential queries.

Definition 2.2. Given an answer function α for a state X, we define the monotone
operator ΓX,α, or just Γα when X is understood, on sets of potential queries by

Γα(Z) = {q : (∃ξ ⊆ α ¹ Z) ξ `X q}.
Define Γα

∞ to be the least fixed point of Γα.

Iteration of Γα produces the sequence of sets

Γα
0 = ∅, Γα

n+1 = Γα(Γα
n).

Thanks to the Bounded Work Postulate, this iteration will continue for only a finite
number of steps before reaching the least fixed point Γα

∞; see [Blass and Gurevich
2006, Lemma 5.19].

Definition 2.3. When a state and therefore a causality relation are understood,
we write αn for α ¹ Γα

n. Similarly, α∞ = α ¹ Γα
∞.

Definition 2.4. A context for a state X is an answer function α for X such that
Dom(α) = Γα

∞. An answer function α is well-founded if Dom(α) ⊆ Γα
∞. A

causality relation ` is clean if whenever α ` q then α is well-founded.

The definition of “context” was different in [Blass and Gurevich 2006], but it
follows from [Blass and Gurevich 2006, Lemma 5.7] that the two definitions are
equivalent. Since we shall need to invoke that lemma and its corollary again, we
state them here (combined) for reference.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

4 · A. Blass and Y. Gurevich

Lemma 2.5. Let α be an answer function. If Γα
∞ ⊆ Dom(α) then α ¹ Γα

∞ =
α∞ is the unique context that is ⊆ α. If Γα

∞ 6⊆ Dom(α) then there is no context
⊆ α. In particular, α has at most one subfunction that is a context. Thus, if
α and β are two distinct contexts for the same state, then α(q) 6= β(q) for some
q ∈ Dom(α) ∩Dom(β).

Definition 2.6. An update for a state X is a triple 〈f,a, b〉 where f is an n-ary
dynamic function symbol (for some n), a is an n-tuple of elements of X, and b is
an element of X.

Update Postulate: For any state X and any context α for X, either the
algorithm provides an update set ∆+

A(X, α) whose elements are updates or it fails
(or both). It produces a next state τA(X, α) if and only if it doesn’t fail. If there is
a next state X ′ = τA(X, α), then it

—has the same base set as X,
—has fX′(a) = b if 〈f,a, b〉 ∈ ∆+

A(X,α), and
—otherwise interprets function symbols as in X.

It follows that, if two updates in ∆+
A(X,α) clash, meaning that they are 〈f,a, b〉

and 〈f,a, b′〉 with b 6= b′, then the algorithm must fail in (X, α), for the next state
would be subject to contradictory requirements.

Isomorphisms between states are extended in the natural way to apply to asso-
ciated entities such as queries, answer functions, and updates.

Isomorphism Postulate:

—Any structure isomorphic to a state is a state.
—Any structure isomorphic to an initial state is an initial state.
—Any isomorphism i : X ∼= Y of states preserves causality, i.e., if ξ `X q then

i ◦ ξ ◦ i−1 `Y i(q).
—If i : X ∼= Y is an isomorphism of states and if α is a context for X, then

—the algorithm fails in (X, α) if and only if it fails in (Y, i ◦ α ◦ i−1), and
—if the algorithm doesn’t fail, then i[∆+(X, α)] = ∆+(Y, i ◦ α ◦ i−1)

Here and in the rest of the paper, we use the following convention to avoid
needless repetition.

Convention 2.7. An equation between possibly undefined expressions (such as
∆+(X, α)) means, unless the contrary is explicitly stated, that either both sides are
defined and equal, or neither side is defined.

Definition 2.8. Two states X and X ′ are said to agree over a function α with
respect to a set W of terms if α is an answer function for both X and X ′, and each
term in W has the same values in X and in X ′ when the variables are given the
same values in Range(α).
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 5

Bounded Work Postulate:

—There is a bound, depending only on the algorithm, for the lengths of the tuples
that serve as queries. That is, the lengths of the tuples in Dom(α) are uniformly
bounded for all contexts α and all states.

—There is a bound, depending only on the algorithm, for the cardinalities |Dom(α)|
for all contexts α in all states.

—There is a finite set W of terms, depending only on the algorithm, with the
following properties. Assume that states X and X ′ agree over α with respect to
W . If α `X q, then also α `X′ q. In particular, q is a potential query for X ′. If,
in addition, α is a context for X (and therefore for X ′; see [Blass and Gurevich
2006, Section 5]), then
—if the algorithm fails for either of (X, α) and (X ′, α), then it also fails for the

other, and
—if it doesn’t fail, then ∆+(X, α) = ∆+(X ′, α).

Definition 2.9. A set W as required by the last part of the Bounded Work Pos-
tulate is called a bounded exploration witness for the algorithm.

We next summarize some easy consequences of the definitions and postulates.

Lemma 2.10. Suppose i : X ∼= Y is an isomorphism of states and α is an answer
function for X. Then, for each k,

i
(
Γα

k
)

= Γi◦α◦i−1
k,

where the Γ on the left side is calculated in X and that on the right in Y .

Proof Immediate from the Isomorphism Postulate. ¤

Remark 2.11. If W is a bounded exploration witness, then so is any set obtained
from W by renaming occurrences of variables, as long as distinct variables remain
distinct. Indeed, if two states agree over α with respect to the new set, then they
also agree with respect to the original W . It is permitted for two occurrences of the
same variable to be renamed as distinct variables. In particular, there is a bounded
exploration witness in which no variable occurs more than once.

Lemma 2.12. If X and X ′ agree over α and if α is a context for X, then it is
also a context for X ′.

Proof This was proved in the discussion following the Bounded Work Postulate
in [Blass and Gurevich 2006, Section 5]. ¤

Lemma 2.13. Every well-founded answer function is a subfunction of some con-
text. Therefore, the bounds, in the Bounded Work Postulate, on the number and
length of queries in all contexts apply also to all well-founded answer functions.

Proof See [Blass and Gurevich to appear, Lemma 2.24 and Corollary 2.25]. ¤

Lemma 2.14. If α ⊆ β then Γα
n ⊆ Γβ

n and αn ⊆ βn.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

6 · A. Blass and Y. Gurevich

Proof The first assertion follows from the definition of the Γ operators, and the
second is an immediate consequence. ¤

Lemma 2.15. For any answer function α, each αn is well-founded. α∞ is the
largest well-founded subfunction of α.

Proof See [Blass and Gurevich 2006] from Proposition 6.16 to Proposition 6.18.
¤

Lemma 2.16. If α and β are answer functions whose restrictions to Γα
n are

equal, then Γα
k = Γβ

k for all k ≤ n + 1, and αk = βk for all k ≤ n.

Proof This is Lemma 6.14 in [Blass and Gurevich 2006]. ¤

Corollary 2.17. Γαn
k = Γα

k for all k ≤ n + 1, and αk = (αn)k for all k ≤ n.

Lemma 2.18. Suppose that an answer function α includes both a context β with
respect to ` and an answer function η that is well-founded with respect to `. Then
η ⊆ β

Proof See [Blass and Gurevich to appear, Lemma 2.23]. ¤

2.2 Reachability and Equivalence

Definition 2.19. Fix a causality relation. A query q is reachable under an answer
function α if it is a member of Γα

∞. Equivalently, there is a trace, a finite sequence
〈q1, . . . , qn〉 of queries, ending with qn = q, and such that each qi is caused by some
subfunction of α ¹{qj : j < i}.

For the equivalence of the two versions of the definition, see [Blass and Gurevich
2006] from Definition 6.9 to Proposition 6.11.

Definition 2.20. Two causality relations are equivalent if, for every answer func-
tion α, they make the same queries reachable under α.

Lemma 2.21. Two causality relations are equivalent if and only if, for every
answer function α that is well-founded for both of the causality relations, the same
queries are caused by subfunctions of α. Moreover, if two causality relations are
equivalent then they give rise to the same Γα

n for all α and n. In particular, they
give rise to the same Γα

∞, the same well-founded answer functions, and the same
contexts.

Proof This is part of Proposition 6.21 and Corollary 6.22 in [Blass and Gurevich
2006]. ¤

Definition 2.22. Two algorithms are (behaviorally) equivalent if they have

—the same states and initial states,
—the same vocabulary and labels,
—equivalent causality relations in every state,
—failures in exactly the same states and contexts, and,
—for every state X and context α in which they do not fail, the same update set

∆+(X, α).

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 7

2.3 Abstract state machines

Ordinary, interactive, small-step ASMs were defined in [Blass and Gurevich to ap-
pear, Sections 3–5], to which we refer for the many things omitted from the following
brief summary. We adopt, without repeating them, the standard ASM conventions
about vocabularies and states; see [Blass and Gurevich 2006, Convention 5.2].

Definition 2.23. An ordinary ASM with the finite vocabulary Υ and the finite
label set Λ consists of

—an ASM program (see Definition 2.27 below) using vocabulary Υ together with
some vocabulary E of external function symbols and some set of output labels,

—a template assignment, i.e, a function assigning
—to each n-ary external function symbol f a template f̂ for n-ary functions and
—to each output label l a template l̂ for unary functions,
where the templates (see Definition 2.24 below) use labels from Λ,

—a nonempty set S of Υ-structures called the states of the ASM, such that S is
closed under isomorphisms and under the transition functions given by the ASM
semantics, and

—a nonempty isomorphism-closed subset I ⊆ S of states called the initial states
of the ASM.

Definition 2.24. A template for n-ary functions is a finite tuple whose compo-
nents are the placeholders #1, . . . , #n, occurring exactly once each, and elements
of Λ.

Definition 2.25. Terms are built just as in traditional first-order logic, using
function symbols from Υ ∪ E and variables. Boolean terms are defined to be the
Boolean variables and those compound terms that begin with relational function
symbols.

Definition 2.26. Rules are defined by the following recursion.

—If f is a dynamic n-ary function symbol in Υ, t1, . . . tn are terms, and t0 is a term
that is Boolean if f is relational, then

f(t1, . . . , tn) := t0

is a rule, called an update rule.
—If l is an output label and t is a term, then

Outputl(t)

is a rule, called an output rule.
—If k is a natural number (possibly zero) and R1, . . . , Rk are rules, then

do in parallel R1, . . . , Rk enddo

is a rule, called a parallel combination or a block. The subrules Ri are called its
components.

—If ϕ is a Boolean term and if R0 and R1 are rules, then

if ϕ then R0 else R1 endif

is a rule, called a conditional rule. We call ϕ its guard and R0 and R1 its branches.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

8 · A. Blass and Y. Gurevich

—If x1, . . . , xk are variables, if t1, . . . , tk are terms with each ti Boolean if xi is, and
if R0 is a rule, then

let x1 = t1, . . . , xk = tk in R0 endlet

is a rule, called a let rule. We call x1, . . . , xk its variables, t1, . . . , tk its bindings,
and R0 its body.

—Fail is a rule.

Definition 2.27. An ASM program is a rule with no free variables.

This concludes the syntax of ASMs. The semantics associates to each rule an
algorithm (for an appropriate vocabulary, with additional constant symbols as re-
placements for the rule’s free variables), and it associates to each term an entity
similar to an algorithm but having, in place of an update set, a possible value.
Because of the length of the definition, we refer the reader to [Blass and Gurevich
to appear, Section 5] rather than repeating it here.

In Subsection 7.4, we shall propose an addition to the ASM syntax, to bridge
the gap between the Lipari convention and the must-vary convention (explained
in [Blass and Gurevich to appear, Section 4]) for the interpretation of repeated
occurrences of function symbols. Until then, we proceed, as in [Blass and Gurevich
to appear], under the Lipari convention.

It is convenient to introduce the following syntactic sugar to abbreviate a couple
of commonly used constructions.

Convention 2.28. We use skip as an abbreviation for the empty block, i.e., the
parallel combination of no subrules (do in parallel enddo). We also abbreviate
if ϕ then R else skip endif as if ϕ then R endif.

3. PHASES AND MATCHING

We now begin working toward the proof of the ASM thesis, Theorem 1.1. So let
A be an ordinary algorithm, with vocabulary Υ, label set Λ, set of states S, set
of initial states I, causality relations `X (for all states X), update sets ∆+(X, α),
transition function τ , bound B on the number and length of queries in any state
and context, and bounded exploration witness W . We refrain from introducing a
special symbol for failure, but, as the Update Postulate requires, A also determines
the states and contexts in which it fails. (Conceptually, the bound on the number of
queries and the bound on their length are separate matters, but to simplify notation
we take B to be the larger of the two, so that a single B serves both purposes.) All
these aspects of A are assumed to satisfy the postulates in Section 2.

In this section, we first make some technical simplifications and observations.
Then we introduce an informal picture of the computation performed by the al-
gorithm in one step, starting in the state X and obtaining answers from the en-
vironment as given by the well-founded answer function α. After this, and after
introducing some convenient notation, we introduce a notion of “matching”, in-
tended to capture the idea that two states and associated answer functions behave
the same way for at least a certain part of a computation step.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 9

3.1 Preliminaries

We begin by making two simplifications, replacing A by equivalent algorithms.
First, we normalize the causality relation for every state, as described in [Blass and
Gurevich 2006, Section 6.3]. We recall the definition and essential properties of this
construction.1 The normalization ˜̀ of a causality relation ` is defined by letting
α˜̀q mean that α is well-founded and q is reachable under α (with respect to `).
It was shown in [Blass and Gurevich 2006] that ˜̀ is equivalent to `, and that two
causality relations are equivalent if and only if their normalizations are equal. This
almost implies that, if we replace, in our algorithm A, all the causality relations `X

by their normalizations ˜̀
X , then the resulting algorithm is equivalent to A. The

point of “almost” here is that we must check that the result of the replacement
is an algorithm, i.e., that it still satisfies the postulates. Most of this follows im-
mediately from the fact, proved in [Blass and Gurevich 2006, Corollary 6.22], that
equivalent causality relations have the same well-founded answer functions and the
same contexts. We must, however, still verify that the bounded exploration witness
remains correct.

Lemma 3.1. Let W be a bounded exploration witness for the algorithm A. Then
W is also a bounded exploration witness when all the causality relations `X of A
are replaced by their normalizations ˜̀

X .

Proof It suffices to check that W behaves correctly with respect to causality; its
behavior with respect to updates and failures automatically remains correct, be-
cause updates, failures, and contexts are unchanged by the normalization. Suppose,
therefore, that states X and X ′ agree over answer function α with respect to W
and that α˜̀

Xq. So, with respect to `X , α is well-founded and q is reachable under
α. The latter means (see Definition 2.19) that there is a trace, i.e., a finite sequence
〈q1, . . . , qn〉 of queries, ending with qn = q, and such that each qi in the sequence
is caused (with respect to `X) by the restriction of α to a subset of {qj : j < i}.
Because W is a bounded exploration witness for A, the same sequence is a trace
with respect to `X′ . So q is reachable under α with respect to ˜̀

X′ . Furthermore,
the same argument, applied with an arbitrary member of Dom(α) in place of q,
shows that α is well-founded with respect to ˜̀

X′ . Therefore, α˜̀
X′q, as required.

¤
Notice that normalization makes a causality relation clean. Indeed, if α˜̀q then α

is well-founded with respect to ` (by definition of the normalization ˜̀) and therefore
with respect to ˜̀ (since equivalent causality relations have the same well-founded
answer functions).

Our second simplification is that, by adding finitely many more terms to the
bounded exploration witness W , we can arrange that it contains a variable and
is closed under subterms. That is, it is normalized in the sense of [Blass and
Gurevich to appear, Section 5.2] insofar as that notion applies to rules. (The last
clause there is specific to terms and thus irrelevant here.) In addition, we arrange
that W contains true and false.

1In [Blass and Gurevich 2006], we used the notation `′ for the normalization of `. Since `′ is used
for other purposes in [Blass and Gurevich to appear], we change the notation for normalization
here to ˜̀.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

10 · A. Blass and Y. Gurevich

Proviso 3.2. Summarizing, we assume from now on, until the end of the
proof of Theorem 1.1 that A has clean (in fact, if we need it, normalized)
causality relations `X and that the bounded exploration witness W contains true,
false, and a variable, and is closed under subterms. We also fix the notations
Υ, Λ, S, I, `X , ∆+, B, and W as above.

Recall from Lemma 2.13 that the number and size of the queries in the domain of
any well-founded answer function are no larger than B. In particular, the number
and length of the queries involved in any cause are no larger than B.

Lemma 3.3. For any well-founded answer function ξ (for any state), Γξ
∞ =

Γξ
B+1, and ξ = ξB.

Proof Since Dom(ξ) has cardinality at most B, and since the subfunctions ξn

form a weakly increasing sequence (with respect to ⊆), there must be some k ≤ B
such that ξk = ξk+1. Then, since

Γξ
k+1 = {q : ζ ` q for some ζ ⊆ ξk},

and since the analogous formula holds with k replaced by k + 1, we have that
Γξ

k+1 = Γξ
k+2 and therefore ξk+1 = ξk+2. Proceeding by induction, we find that

Γξ
n = Γξ

∞ for all n ≥ k + 1 and that ξn = ξ ¹ Γξ
∞ = ξ for all n ≥ k. Since k ≤ B,

the proof is complete. ¤
This lemma admits the following slight improvement, changing B +1 to B in the

first part of the conclusion.

Lemma 3.4. For any well-founded answer function ξ (for any state), Γξ
∞ =

Γξ
B.

Proof Let ξ be a well-founded answer function, and suppose, toward a contra-
diction, that there is a query q ∈ Γξ

B+1 − Γξ
B . We already know that ξ = ξB , so

Dom(ξ) ⊆ Γξ
B , and in particular q /∈ Dom(ξ). Extend ξ to the properly larger an-

swer function ξ′ = ξ∪{(q, r)} for an arbitrarily chosen reply r. Since q is in Γξ
B+1, it

is reachable under ξ and, a fortiori, under ξ′; thus ξ′ is well-founded. By Lemma 3.3
and the definition of (ξ′)B , we have that Dom(ξ′) = Dom((ξ′)B) ⊆ Γξ′

B and there-
fore q ∈ Γξ′

B . Let k be the smallest integer such that q ∈ Γξ′
k+1; so k < B. By

induction on j, and remembering that q is the only element of Dom(ξ′)−Dom(ξ),
we find that, for all j ≤ k, Γξ′

j = Γξ
j . In particular, ξk = (ξ′)k. But q ∈ Γξ′

k+1,
so η ` q for some η ⊆ (ξ′)k = ξk. That means q ∈ Γξ

k+1 ⊆ Γξ
B , contrary to our

choice of q. ¤
We next recall and slightly improve some information from [Blass and Gurevich

2006] about critical elements of a state. First, recall the definition.

Definition 3.5. Let ξ be an answer function for a state X. An element of X is
critical for ξ if it is the value of some term in W for some assignment of values in
Range(ξ) to its variables.

In particular, since W contains a variable, all elements of Range(ξ) are critical
for ξ.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 11

Lemma 3.6. Let X be a state and suppose ξ `X q. Then all the components in
X of q are critical for ξ.

Proof It was shown in [Blass and Gurevich 2006, Proposition 5.23] that, if X is a
state, α a context, ξ a subfunction of αn for some n, and ξ `X q, then all components
of q are critical for αn. The proof, however, did not use the assumption that α is
a context; it works for any answer function.

In particular, it works when α = ξ. In order to use it for this choice of α, we
must know that ξ ⊆ ξn for some n. But in the situation at hand, since ξ `X q and
`X is clean, we have Dom(ξ) ⊆ Γξ

∞ = Γξ
n for sufficiently large n. Therefore, for

such n, ξ = ξn. Thus, we get that all components in X of q are critical for ξn = ξ.
¤

Lemma 3.7. Let α be a context for the state X, and let 〈f,a, b〉 ∈ ∆+(X, α).
Then b and all components of a are critical for α.

Proof This is proved in [Blass and Gurevich 2006, Proposition 5.24]. ¤

3.2 Phases

The informal picture promised above is as follows. The step begins with state X
and with no queries issued yet and thus no replies received yet. That is, the current
answer function is ∅ = α0. All queries caused by this are issued. We call this part
of the computation phase 0, since it uses only α0. Notice that the queries issued in
this phase of the computation are those in the set

{q : ∅ ` q} = {q : (∃ξ ⊆ α ¹∅) ξ ` q} = Γα(∅) = Γα
1.

Next, the algorithm receives whatever answers to these queries are given in α. It
is not guaranteed that all these queries are in the domain of α, so some of them
may remain unanswered. The replies received to the queries from phase 0, being in
accordance with α, are given exactly by the answer function α1.

In the next phase, called phase 1, the algorithm issues all the new queries caused
by these answers, i.e., all q not already issued such that ξ ` q for some ξ ⊆ α1.
Inspecting the definitions, we find that the set of queries issued so far is exactly
Γα

2. (This includes the queries from phase 0 as well as the current phase 1.) Next,
the algorithm receives α’s replies to (some of) these queries. The replies received
so far constitute exactly α2.

The computation continues in the same fashion for up to B phases. At the
beginning of any phase n < B, the algorithm has received the answers in αn. It
issues all the new queries caused by these answers, i.e., all q not already issued such
that ξ ` q for some ξ ⊆ αn. These are the queries in Γα

n+1 − Γα
n, so the set of all

queries issued up to this point is Γα
n+1. Next the algorithm receives α’s replies to

(some of) these queries, and the replies received up to this point constitute exactly
αn+1. Thus, the algorithm is ready to begin phase n + 1.

At the end of phase B − 1 (i.e., after B phases, because we started counting
with 0), the algorithm has issued all the queries in Γα

B = Γα
∞ ⊇ Dom(α). (The

equality here is Lemma 3.4 and the inclusion is the definition of well-foundedness.)
When it has received their answers and is ready to begin phase B, it has received

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

12 · A. Blass and Y. Gurevich

all the information it will ever get from α. If this does not include answers to
all the queries issued, i.e., if Dom(α) (Γα

∞, then the computation in this step
hangs. (Remember that an ordinary algorithm cannot complete a step unless all
its queries from that step are answered.) If, on the other hand, all the queries have
been answered, so Dom(α) = Γα

∞ and α is therefore a context, then the algorithm
completes this step by either failing or computing and executing the update set
∆+(X, α).

In what follows, we shall use this informal picture to guide our construction of
an ASM equivalent to the given algorithm A.

3.3 Uniformity across states and answer functions;
matching

We continue to work with a fixed algorithm, but in this subsection we shall consider
varying states and answer functions. As before, we let B be the bound on the
number and length of queries, and we let W be the bounded exploration witness,
provided by the Bounded Work Postulate, and normalized as above to be closed
under subterms and to contain true, false, and at least one variable.

The fact that W is a bounded exploration witness means that, if X and X ′ agree
over α then

—if α `X q then α `X′ q and
—if α is a context for X (and therefore also for X ′) then the algorithm fails in

both or neither of (X, α) and (X ′, α) and, if it doesn’t fail, then ∆+(X, α) =
∆+(X ′, α).

Recall also that, for any state X and well-founded answer function α, the iteration
of Γα leading to Γα

∞ has at most B steps. That is, Γα
B = Γα

∞ and αB = α; see
Lemma 3.4. The picture of the computation described in the preceding subsection
involves at most B + 1 phases, namely at most B phases for sending queries and
one final phase, if α is a context, for either failing or computing and executing the
transition (if any) to the next state. We now analyze how this computation depends,
phase by phase, on the state X and answer function α. To reduce repetition, we
adopt the following notational conventions.

Convention 3.8. Unless the contrary is stated explicitly, when we refer to a pair
(X, α) (possibly with primes), we intend that X is a state and α a well-founded
answer function for X. Furthermore, the notations Γα and αn, which were defined
with a fixed state in mind, are assumed to refer to the unique state X such that
(X, α) is under consideration. If several X’s are under consideration with the same
α, then we specify the intended one by writing ΓX,α or αn

X .

Definition 3.9. An isomorphism from a pair (X, α) as above to another such
pair (Y, β) is an isomorphism of structures, i : X ∼= Y , such that β ◦ i = i ◦ α.

Note that the equation β ◦ i = i◦α means that β is the answer function i◦α◦ i−1

to which i sends α.

Definition 3.10. We say that (X ′, α′) matches (X, α) up to phase n if

—X and X ′ agree over αn and
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 13

—αn = α′n.

In accordance with Convention 3.8, it is to be understood here that αn = αn
X and

α′n = α′nX′ . Notice that “matching up to phase n” is, for each n, an equivalence
relation on pairs (X, α) of a state and a well-founded answer function.

Although phases were introduced in the informal picture in the preceding sub-
section, the present definition of “matching up to a phase” is entirely formal. It is
intended to fit with the informal discussion but it does not depend on that discus-
sion.

Lemma 3.11. If (X ′, α′) matches (X, α) up to phase n, then

—αk = α′k for all k ≤ n, and
—Γα

k = Γα′
k for all k ≤ n + 1.

Proof The first assertion follows immediately from the assumption that αn = α′n

and Corollary 2.17. For the second, recall that, for each k > 0,

Γα
k = {q : (∃ξ ⊆ αk−1) ξ `X q}

and similarly,

Γα′
k = {q : (∃ξ ⊆ α′k−1) ξ `X′ q}.

Since k ≤ n + 1, the part of the lemma already proved gives αk−1 = α′k−1. So the
only difference between the right sides of the displayed formulas is that one uses
`X and the other uses `X′ . But this is no real difference; since W is a bounded
exploration witness and since X and X ′ agree over every ξ ⊆ αn, the same q’s
satisfy ξ `X′ q and ξ `X q. ¤

Corollary 3.12. If (X ′, α′) matches (X,α) up to phase B, then α = α′. If, in
addition, α is a context for X, then

—α is a context for X ′,
—A fails in (X, α) if and only if it fails in (X ′, α), and
—if it doesn’t fail then ∆+(X, α) = ∆+(X ′, α).

Proof By the lemma and our choice of B, we have

α = αB = α′B = α′.

If α is a context for X, then we have

Dom(α) = ΓX,α
B = ΓX′,α

B ,

so α is also a context for X ′. (We have included the subscripts X and X ′ since,
with α and α′ equal, we can no longer rely on the notation for them to indicate
which state is intended.) Finally, using the fact that W is a bounded exploration
witness, we have that failure in either of (X,α) and (X ′, α) implies failure in the
other and that, when there is no failure,

∆+(X, α) = ∆+(X ′, α).

¤
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

14 · A. Blass and Y. Gurevich

4. MORE UNIFORMITY; SIMILARITY

4.1 Informal picture

The preceding results show that, to tell what an algorithm will do in a particular
state X under a (well-founded) answer function α, it suffices to have partial in-
formation about (X,α), namely the values of terms in W when their variables get
values in Range(α). Our next goal is to show that, in a sense, far less information
suffices. Instead of knowing what these critical elements are, we need only know
which of them are equal. The reason is that, according to the Isomorphism Pos-
tulate, knowledge up to isomorphism is, in a sense, sufficient. The phrase “in a
sense” refers to the fact that, if we know the state (and answer function) only up to
isomorphism, then of course the queries and updates produced by the algorithm are
also determined only up to (the same) isomorphism. This will cause no difficulties,
since we already know from Lemmas 3.6 and 3.7 that the elements of the state
involved in queries and updates are among the critical values, so we can keep track
of the effect of the isomorphism on them.

We now begin to make these remarks precise. The proof will be based on that of
[Gurevich 2000, Lemma 6.9], but some additional work is needed to account for the
answer functions. So we begin with an informal discussion to motivate that work
and the definitions involved in it. The informal discussion will use the picture of
the computation proceeding in phases as discussed earlier.

Let (X, α) and (X ′, α′) be two states, each equipped with an answer function,
and consider first what happens in phase 0 of the algorithm’s execution in these
states. So the answer function being used in this phase is α0 = α′0 = ∅. Assume
that, for each two closed terms t1, t2 ∈ W , their values in X are equal if and only
if their values in X ′ are equal. Then there is a (Y, β) that is isomorphic to (X,α)
and matches (X ′, α′) up to phase 0. (Recall that by “isomorphic” we mean that
there is an isomorphism i : X ∼= Y such that β = i ◦α ◦ i−1.) The existence of such
(Y, β) is most easily seen if (the base sets of) X and X ′ are disjoint, for in this case
the required Y can be obtained from X by replacing the denotation in X of each
closed term t ∈ W by the denotation in X ′ of the same term t. Our assumption
about equalities between terms ensures that this replacement is well defined and
one-to-one. If X and X ′ are not disjoint, we can first replace X with an isomorphic
copy disjoint from X ′ and then proceed as before.

As a result, the queries issued by (Y, β) in phase 0 are, on the one hand, the same
as those issued by (X ′, α′) (because of the matching, thanks to Lemma 3.11) and,
on the other hand, related via the isomorphism to those issued by (X,α). Thus,
we find that (X, α) and (X ′, α′) issue, in phase 0, queries that are related by the
isomorphism X ∼= Y . The components of these queries, which are values of closed
terms from W by Lemma 3.6, are thus “the same” in the sense that the same closed
terms from W produce the corresponding queries in (X, α) and (X ′, α′).

Next, let us consider what happens in phase 1. The main idea is similar, but the
situation now differs from that in the preceding paragraphs, because we are dealing
with (possibly) nonempty answer functions α1 and α′1, and we must pay attention
also to β1 in our construction of the intermediate (Y, β). Where we mentioned
closed terms above, we will now have terms in which variables can occur and are
to be given values from the ranges of the answer functions.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 15

As before, we can arrange that X and X ′ are disjoint, and as before, we wish
to obtain Y by replacing certain elements of X by the corresponding elements of
X ′. The elements of X to be replaced are those that are critical for α1, the answer
function used during phase 1, and the corresponding elements of X ′ are the critical
elements there. What needs some care is determining which critical elements of
X correspond to which critical elements of X ′. Since the critical elements are
values of terms from W , when variables are given values in the range of the answer
function, corresponding critical elements should be values of the same term from
W , with corresponding values for the variables. And what are corresponding values,
in Range(α1) and Range(α′1) respectively, for the variables? They are α1(q) and
α′1(q′) where q and q′ are corresponding queries. Since the queries at this phase
are tuples whose components are either labels from Λ or critical elements for α0 =
∅ = α′0, there is a clear notion of “corresponding” queries: They have the same
length, the Λ components are the same, and the other components are values of
the same closed terms from W . Thus, we have, with some effort, determined which
elements of X should be replaced by which elements of X ′ to obtain Y . Obtaining
β is then easy, since we must have β = i ◦ α ◦ i−1 where i is the isomorphism
we constructed from X to Y . Of course, if several terms denote the same critical
element in X, then they should, with corresponding values for the variables, denote
the same critical element in X ′ also, and vice versa. This requirement is entirely
analogous to what was already assumed for closed terms in phase 0.

Once again, the isomorphism from (X, α) to (Y, β) and the matching up to phase
1 between the latter and (X ′, α′) ensure that the queries issued by (X, α) and
(X ′, α′) agree in the sense that corresponding components are values of the same
terms in W when the variables are replaced by corresponding values of the functions
α and α′, where “corresponding values” means that these functions are applied to
tuples made from values, in the two structures, of the same closed terms from W .

In phase 2, we can proceed analogously until we arrive at the question of when
two queries should be considered as corresponding. As before, they should have
the same length and the same components from Λ, but the requirement for the
components that are critical elements becomes a bit more complicated since these
elements are now values of the answer functions at queries made from values of
terms that are not necessarily closed (as they were before) but can have variables
assigned corresponding values in the ranges of α1 and α′1. So instead of requiring
components of q and q′ to be built (by means of terms in W) from values of answer
functions at values of the same closed term, we now require them to be built from
values of the answer functions at the values of the same term with corresponding
values of the free variables. Here “corresponding” refers to the concept for phase 1
as developed in the preceding paragraph.

For later phases, the same pattern continues, but expressing it becomes more and
more convoluted. We therefore organize it into an induction that avoids the need
for the most convoluted phrasings. Specifically, “corresponding” is defined by an
induction on phases; we have seen, for example, that the definition of this notion at
phase 2 depends on its availability for phase 1. For the construction of Y to succeed,
we must require that equality relations between terms from W , with corresponding
values for variables, be the same in X as in X ′. In the following, we shall give precise

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

16 · A. Blass and Y. Gurevich

definitions of these concepts and carry out the constructions without depending on
the informal picture of phases used in the preceding discussion.

4.2 Tags and their values

An important ingredient in a precise formulation of the preceding ideas is to define
the extent to which two (state, answer-function) pairs must resemble each other in
order to get a suitable correspondence between what they do up to phase n. Thus,
in our discussion of phase 0, we needed that the states should satisfy the same
equations between closed terms from W . In phase 1, we needed the analogous
hypothesis not only for closed terms but also for terms with variables, provided
the variables are given values that are obtained by applying the answer functions
to queries made from the corresponding values of some closed terms. In phase 2,
we needed it also when the variables are assigned values of the answer functions at
queries made from the corresponding values of some terms with variables wherein
these (second level) variables are assigned values of the answer functions at queries
made of values of closed terms. And so forth.

We begin with some definitions designed to handle this sort of bookkeeping. The
symbol ρ used here is intended to suggest “reply”; think of ρ(q) as meaning the
reply to the query q. The “element-tags” introduced in these definitions denote, at
phase n, those elements that must have the same equality relations in (X,α) as in
(X ′, α′) in order that the algorithms’ actions in phase n correspond properly.

Definition 4.1. An element-tag or e-tag is the result of taking any term in W
and replacing its variables by expressions of the form ρ(p) where the p’s are query-
tags. A query-tag or q-tag is a tuple, of length at most B, of elements of Λ and
element-tags.

Notice that this definition by simultaneous recursion has as its basis the e-tags
that are closed terms from W (needing no q-tags to substitute for variables) and
the q-tags that are tuples of elements of Λ (needing no e-tags for non-Λ compo-
nents). Notice also that the definition does not depend on any particular state or
answer function; tags are determined by the algorithm (and the specified bounded
exploration witness W).

There is an obvious notion of subtag; the following definition formalizes it and
adds terminology for keeping track of how many occurrences of ρ have a given
subtag in their scopes.

Definition 4.2. Any tag has itself as a subtag of depth 0. In addition:

—An e-tag of the form ρ(p) has, as subtags of depth d, all the subtags of p of depth
d− 1.

—An e-tag of the form f(t1, . . . , tn) has, as subtags of depth d, all subtags of depth
d in the e-tags ti.

—A q-tag has, as subtags of depth d, all the subtags of depth d in its e-tag com-
ponents.

The nesting level of a tag is the maximum depth of any subtag.

Notice that in the second clause all the ti are e-tags because W is closed under
subterms.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 17

Lemma 4.3. For any n, there are only finitely many tags of nesting level n.

Proof This follows immediately, by induction on n, from the finiteness of W , Λ,
and B. ¤

Except in degenerate situations, the total number of tags of all nesting levels is
countably infinite, but we shall never have any real need for tags of nesting level
greater than B, so there are only finitely many tags relevant for our purposes. In
fact, we shall occasionally say “all tags” or “arbitrary tags” when we really mean
only those of nesting level ≤ B.

Definition 4.4. Let α be an answer function for a state X. We specify the value,
in (X, α), of a tag at phase n by the following recursion on the natural number n.
These values are sometimes undefined. When defined, the values of e-tags will be
elements of X; the values of q-tags will be potential queries for X.

—The value at phase n of an e-tag of the form ρ(p) is obtained by applying αn to
the value at phase n− 1 of the q-tag p. It is undefined if the value of p at phase
n− 1 is either undefined or outside the domain of αn.

—The value at phase n of an e-tag of the form f(t1, . . . , tn) is obtained by applying
the interpretation fX of f in X to the values at phase n of the ti’s. It is undefined
if any of the ti have no value at phase n.

—The value of a q-tag at phase n is obtained by replacing those components that
are e-tags (i.e., that are not in Λ) by their values at phase n. It is undefined if
any of these components have no value at phase n.

We sometimes abbreviate “value at phase n” as n-value

Here (in the first clause, when n = 0) and below, values at phase −1 are to be
understood as always undefined. Thus, the only e-tags that have values at phase
0 are those that contain no ρ, i.e., those of nesting level 0. The following corollary
gives the analogous fact for higher phases.

Corollary 4.5. If a tag has a value at phase n then its nesting level is at most
n, and any subtag of depth k has a value at phase n− k.

Proof The second conclusion is proved by a routine induction on tags. The first
follows, because, if the nesting level were greater than n, i.e., if there were a subtag
of depth > n, then, by the second conclusion, this subtag would have a value at a
negative phase, which is absurd. ¤

Remark 4.6. Observe that the answer function α enters the definition of the n-
values of tags only via the well-founded subfunction αn. In particular, when dealing
with n-values of tags, we may consider α, αn, αm for any m ≥ n, and the well-
founded part α∞ interchangeably; see Corollary 2.17. In particular, we can safely
confine our attention to well-founded answer functions.

The following lemma makes precise the intuitively evident observation that, if a
tag has no value at a certain phase, then this undefinedness is ultimately caused by
some q-tag having a value that is outside the domain of the appropriate restriction
of α.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

18 · A. Blass and Y. Gurevich

Lemma 4.7. If, in (X,α), a certain tag has no n-value then there is a sub-q-tag
of some depth k that has an (n− k)-value outside Dom(αn−k+1).

Proof In the given tag, consider a minimal subtag that has no value at the phase
appropriate for its depth, i.e., for some j it has depth j and has no value at phase
n− j. Such a subtag exists, because the given tag is a candidate with j = 0. What
can this minimal subtag be?

It cannot be a q-tag, for then all its e-tag components would have the same depth
j, so by minimality they would have (n− j)-values, but then the q-tag itself would
have an (n− j)-value.

It cannot be an e-tag of the form f(t1, . . . , tk) for then all the ti would have the
same depth j, so by minimality they would have (n− j)-values, but then the e-tag
itself would have an (n− j)-value.

So it must be an e-tag of the form ρ(p). The subtag p has depth j + 1, so
minimality requires it to have an (n− j − 1)-value, say q. As ρ(p) has no (n− j)-
value, it follows that q /∈ Dom(αn−j). So we have the conclusion of the lemma,
with k = j + 1. ¤

We shall also need the rather evident fact that values of tags are preserved by
isomorphisms. Recall that we extended isomorphisms of states to act on potential
queries by acting on all the non-Λ components of a query. Recall also that i is
an isomorphism from (X,α) to (Y, β) if it is an isomorphism from X to Y and
β ◦ i = i ◦ α.

Lemma 4.8. Suppose that i is an isomorphism from (X, α) to (Y, β). Then any
tag that has an n-value v in (X, α) has n-value i(v) in (Y, β).

Lemma 4.9. If, in (X, α), a tag has n-value v, then it also has m-value v for all
m ≥ n.

Lemma 4.10. If (X, α) matches (X ′, α′) up to phase n, then any tag that has
an n-value in one of (X,α) and (X ′, α′) has the same n-value in the other.

All three of the preceding lemmas are proved by a routine induction on tags.

4.3 Tags suffice for queries and updates

In this subsection, we prove two lemmas saying that all of the queries issued and
all elements of updates performed, in a given state X under an answer function α,
are named by tags.

Lemma 4.11. For any (X, α), every member of Γα
k+1 is the k-value of some

q-tag.

Proof We proceed by induction on k, using as basis the vacuous case k = −1.
(There are no (−1)-values, but Γα

0 is empty.)
Consider an arbitrary q ∈ Γα

k+1. By definition of Γα
k+1 = Γα(Γα

k), we have
some ξ ⊆ αk with ξ `X q. By Lemma 3.6, all components in X of q are critical
for αk. That is, they are obtainable by evaluating terms in W with the variables
assigned values from Range(αk).

Look first at these values that are assigned to variables. They have the form
αk(q′) for certain queries q′ ∈ Dom(αk) ⊆ Γα

k. By induction hypothesis, these q′

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 19

are the (k − 1)-values of some q-tags p′. So the values αk(q′) that are assigned to
variables are the k-values of the e-tags ρ(p′).

Next, look at the critical values obtained, from terms t in W , by giving the
variables these values. These critical values are the k-values of the e-tags obtained
from the terms t by replacing each variable with the corresponding ρ(p′). So the
critical values that serve as components of q are k-values of some e-tags.

Finally, look at q. It is a tuple, of length at most B, whose components are either
members of Λ or these critical values. Replacing each of the critical values v by an
e-tag whose k-value is v, we obtain a q-tag whose k-value is q. ¤

We have the following analogous lemma for updates in place of queries.

Lemma 4.12. Suppose α is a context for X, and suppose 〈f,a, b〉 ∈ ∆+(X, α).
Then b and all components of a are B-values of e-tags in (X,α).

Proof By Lemma 3.7, each of the elements x under consideration is critical, i.e.,
it is the value of some term t ∈ W when the variables are given certain values
α(q) ∈ Range(α). Since α is a context, we have

Dom(α) = Γα
∞ = Γα

B .

Thus, by the preceding lemma, each of the q’s involved here is the (B− 1)-value of
some q-tag p. Let us replace, in the term t, each of its variables by the corresponding
ρ(p). (“Corresponding” means that the (B − 1)-value of p is a q such that α(q) is
the value given to that variable in obtaining x from t.) The result is an e-tag whose
B-value is x. ¤

4.4 Similarity

The following definition is intended to capture the amount of resemblance needed
between two state-answer-function pairs in order to ensure that they behave the
same way up to phase n, as in the informal discussion at the beginning of this
section.

Definition 4.13. (X, α) and (X ′, α′) are n-similar if, for each k ≤ n and each
pair of e-tags t1, t2, if t1 and t2 have k-values that are the same2 in one of (X,α)
and (X ′, α′), then they also have k-values that are the same in the other.

In particular, taking t1 and t2 in the definition to be the same e-tag t, we see
that similarity requires t to have a k value in both or neither of (X, α) and (X ′, α′).

Lemma 4.14. n-similarity is an equivalence relation with finitely many equiva-
lence classes.

Proof That n-similarity is an equivalence relation is clear from the definition.
According to Corollary 4.5, the only tags that need to be checked in the definition

of n-similarity are those of nesting level ≤ n; tags of higher nesting levels won’t have
k-values, for k ≤ n, in any state and any answer function. Since, by Lemma 4.3,

2Note that the meaning of “t1 and t2 have values that are the same in (X, α)” differs from
the meaning of Val(t1, X, α) = Val(t2, X, α), in that the latter would be true if both values are
undefined, while the former requires the values to be defined.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

20 · A. Blass and Y. Gurevich

there are only finitely many tags of any single nesting level, there are only finitely
many relevant tags and thus only finitely many similarity classes. ¤

The next two propositions will play a key role in the construction of an ASM
simulating the algorithm A. Intuitively, they tell us that what the algorithm does
in phase n — issuing queries or executing updates or failing — is determined by
the n-similarity class of the state and answer function. In view of Lemma 4.14,
this means that these actions of the algorithm are determined by finitely much
information about the current state and answer function. Of course, the actions in
question must, for this purpose, be described in a way that remains invariant when
(X, α) is replaced by an isomorphic copy; such a replacement won’t change the
n-similarity class, so it won’t change our description of the actions. Tags provide
the required, invariant way to describe the algorithm’s actions.

Proposition 4.15. Assume that (X,α) and (X ′, α′) are n-similar. Then for
all k ≤ n and all q-tags p, if p has a k-value in (X,α) that is in Γα

k+1, then it also
has a k-value in (X ′, α′) that is in Γα′

k+1.

Proof We proceed by induction on n. Since n-similarity trivially implies (n− 1)-
similarity, the induction hypothesis gives the required conclusion for all k < n, so
we consider only the case k = n. Let p be a q-tag with n-value q in (X,α) such
that q ∈ Γα

n+1. The assumption of n-similarity ensures that p also has an n-value
q′ in (X ′, α′). It remains to prove that q′ ∈ Γα′

n+1. It is here that we need the
idea from [Gurevich 2000, Lemma 6.9].

We begin by constructing an isomorphic copy (Y, β) of (X,α) as follows. Assume,
without loss of generality, that X is disjoint from X ′. (If this is not the case, replace
X with an isomorphic copy disjoint from X ′, replace α with the corresponding
context for this isomorphic copy, and work with the copy instead of X in the
following.) Obtain Y by replacing the n-value of each e-tag in (X, α) by the n-
value of the same tag in (X ′, α′). The assumption of n-similarity ensures that
this replacement is well-defined and one-to-one, so we obtain a state Y with an
isomorphism i : X ∼= Y . Define β to be i ◦ α ◦ i−1, so that i : (X, α) ∼= (Y, β).

We claim that (Y, β) matches (X ′, α′) up to phase n. Once this claim is proved,
the rest of the argument is as follows. By Lemma 2.10, from q ∈ Γα

n+1 we get
i(q) ∈ Γβ

n+1. By Lemma 3.11 we get that Γβ
n+1 = Γα′

n+1. By Lemma 4.8 we get
i(q) = q′. Putting these facts together, we have q′ ∈ Γα′

n+1, as required.
So it remains to prove the claim, namely that

(1) Y and X ′ agree over α′n, i.e., they give the same value to any term from W
when its variables are assigned values in Range(α′n), and

(2) α′n = βn.

Let us therefore begin by considering α′n. Its domain Γα′
n consists, by Lemma 4.11,

of (n − 1)-values v in (X ′, α′) of certain q-tags p. In view of the definition of Y
and i, which replaced n-values in (X, α) of e-tags by their n-values in (X ′, α′), and
in view of the fact that any (n − 1)-value is also an n-value, we have that these
elements v can also be described as the i-images of the (n− 1)-values in (X,α) of
the same tags p. But, since i is an isomorphism, these are also the (n − 1)-values
in (Y, β) of the same tags p. Thus, each element v ∈ Dom(α′n) is the (n− 1)-value
in (Y, β) of the corresponding q-tag p.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 21

Repeating the argument with ρ(p) in place of p, we find that α′n(v), the n-
value of ρ(p) in (X ′, α′), is also the n-value of ρ(p) in (Y, β), i.e., it is βn(v). This
establishes that α′n ⊆ βn. Symmetrically, we have βn ⊆ α′n. This completes the
proof of part (2) of the claim.

For part (1), consider any term t ∈ W and any assignment of values from
Range(α′n) to its variables. Obtain an e-tag u by replacing in t each variable
by an e-tag ρ(p) as above corresponding to the value assigned to that variable. So
the value that t gets, with these values for the variables, is the n-value of u, whether
in (X ′, α′) or in (Y, β). Repeating again the argument from two paragraphs ago,
this time with u in place of p, we find that the values in (X ′, α′) and (Y, β) are the
same. This proves (1), hence the claim, and hence the proposition. ¤

Corollary 4.16. Suppose α and α′ are well-founded answer functions for X
and X ′ respectively, and suppose that (X,α) and (X ′, α′) are B-similar. If α is a
context for X, then α′ is a context for X ′.

Proof We must show that Γα′
∞ ⊆ Dom(α′). Consider, therefore, an arbitrary

q′ ∈ Γα′
∞ = Γα′

B . By Lemma 4.11, q is the (B − 1)-value of some q-tag p. By
Proposition 4.15, p also has a (B − 1)-value q in (X, α), and q ∈ Γα

B . As α is a
context, q ∈ Dom(α). Thus, the e-tag ρ(p) has a B-value in (X,α). Our assumption
of B-similarity implies that ρ(p) also has a B-value in (X ′, α′). This means that
q′ ∈ Dom(α′), as required. ¤

The following proposition does for updates and failures what the previous one
did for queries.

Proposition 4.17. Assume that (X,α) and (X ′, α′) are B-similar, and assume
that α and (therefore) α′ are contexts.

—Suppose that 〈f,a, b〉 ∈ ∆+(X, α), where the aj and b are the B-values in (X,α)
of e-tags vj and w. Then in (X ′, α′) these tags have B-values a′j and b′ such that
〈f,a′, b′〉 ∈ ∆+(X ′, α′).

—If the algorithm fails in (X, α), then it also fails in (X ′, α′).

Proof We prove the first assertion; the proof of the second is similar but easier
as one can omit all considerations of aj , a

′
j , b, and b′.

The existence of the B-values a′j and b′ is given by the hypothesis of B-similarity.
What must be proved is that 〈f,a′, b′〉 ∈ ∆+(X ′, α′).

Exactly as in the proof of Proposition 4.15, with B in place of n, produce an
isomorphism i : (X, α) ∼= (Y, β) such that (Y, β) matches (X ′, α′) up to phase
B. Define a′j = i(aj) and b′ = i(b). By Lemma 4.8, each a′j is the B-value
of uj and b is the B-value of v in (Y, β). By Lemma 4.10, the same holds in
(X ′, α′). By the Isomorphism Postulate, 〈f,a′, b′〉 ∈ ∆+(Y, β). By Corollary 3.12,
〈f,a′, b′〉 ∈ ∆+(X ′, α′). ¤

5. CONSTRUCTING THE EQUIVALENT ASM

In this section, we describe the ASM that will be equivalent to the given algorithm
A. We first give an informal description of how the ASM is intended to function.
Then we set up the necessary notation and finally describe the actual ASM program.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

22 · A. Blass and Y. Gurevich

5.1 Informal discussion

Proposition 4.15 tells us that the collection of q-tags p whose n-values are in Γα
n+1

depends not on all the details of the state X and answer function α but only on
the n-similarity class of (X,α). Similarly, Proposition 4.17 tells us that failures
and updates are determined by the B-similarity class of (X, α) when α is a context.
Lemma 4.14 tells us that there are only finitely many n-similarity classes for n ≤ B.
These facts provide the following, fairly simple description of the operation of the
algorithm. In the description, we shall occasionally refer to the state X and the
answer function α, but the reader should observe that, in the discussion up to and
including phase n, we use only the information about (X, α) that is provided by its
n-similarity class.

In phase 0, no information from the environment is yet available. So the only
e-tags that can be evaluated are those without any ρ, i.e., those of nesting level 0.
The algorithm evaluates these finitely many e-tags and checks which of the values
are equal. The equalities and inequalities so found are clearly determined by the
0-similarity class of (X,α).

Furthermore, they determine the 0-similarity class. Recall that a 0-similarity
class specifies not only which equalities between 0-values of e-tags hold but also
which e-tags have 0-values at all. But this additional information, which e-tags
have 0-values, is easily available, since tags of nesting level 0 always have values
and tags of higher nesting level cannot have 0-values.

Having computed (the information needed to determine) the 0-similarity class
of (X, α), the algorithm knows, via Proposition 4.15, what queries to issue. More
precisely, it knows which q-tags p have 0-values that are in Γα

1. Exactly how it
finds these tags is irrelevant to our discussion since it will not affect the queries
issued, the updates performed, or failures. But, since there are only finitely many
0-similarity classes and each produces only finitely many p’s, we may imagine that
the algorithm has a table in which it can look up the p’s after it has calculated the
0-similarity class.

Having obtained the appropriate q-tags p and having computed the 0-values of
all e-tags of nesting level 0, the algorithm can produce the 0-values of these q-tags
p. This is because each p is also at nesting level 0 (because it has a 0-value) and is
therefore a tuple of members of Λ and e-tags of nesting level 0. So the algorithm
can compute and issue the queries in Γα

1. This completes phase 0.
The answer function α provides answers for some subset of these queries, in the

form of α ¹ Γα
1 = α1. Given these answers, the algorithm can proceed to phase 1 of

its computation. It knows which e-tags have 1-values, namely precisely those such
that, in every subtag of the form ρ(p), p has the same 0-value as one of the q-tags
used as queries in phase 0 and answered in α1. (Remember that the algorithm has
already computed which e-tags have the same 0-value, so it can easily check which
q-tags have the same 0-value.) So it can evaluate these e-tags and determine which
of them have equal 1-values. This, together with the information that the other
e-tags have no 1-values, suffices to determine the 1-similarity class of (X, α). Just
as in phase 0, the algorithm now has enough information to determine, perhaps by
table look-up, the q-tags whose 1-values are in Γα

2. As before, it computes the
1-values of these q-tags and issues the resulting queries, except for those that were
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 23

already issued at phase 0.
Again, the answer function provides, in the form of α2, the answers to some subset

of these queries. With this information, the algorithm begins phase 2. Again, it
knows which e-tags have 2-values, namely those whose q-subtags of depth 1 have
the same 1-values as the q-tags used as queries in phase 1 or phase 0 and answered
by α2. From here on, the pattern of phase 1 simply repeats for phase 2 and the
later phases, until phase B is reached, where there are no new queries to issue and
it is time to either perform the updates leading to the next state or fail.

In this final phase, the algorithm again knows already which e-tags will have B-
values. It computes and compares these values to determine the B-similarity class
of (X, α). According to Proposition 4.17, this information determines whether there
is a failure or an update set and, in the latter case, which e-tags uj and v have B-
values used in the updates to be performed. The algorithm finds those tags (again
perhaps by table-look-up), evaluates them, and performs the resulting updates.

The results of the preceding section show that this description matches the given
algorithm, with any state and answer function, insofar as issuing queries and failing
or executing updates are concerned. In the remainder of this section, we convert
this description into an ASM, which will be equivalent to the given algorithm.

5.2 The ASM: easy part

To prove Theorem 1.1, we must exhibit an ASM equivalent to a given algorithm.
This means that we must describe a set of states, a set of initial states, a vocabulary,
a set of labels, a template assignment, and a program.

Part of the description is trivial, as we must define the ASM to have the same
set S of states, the same set I of initial states, (therefore) the same vocabulary Υ,
and the same set Λ of labels as the given A. It remains to describe the template
assignment and (most importantly) the program Π of the ASM.

The template assignment is fairly easy to describe. Consider all the q-tags p
whose nesting level is at most B; recall that there are only finitely many of these.
Convert each one into a template by leaving its components from Λ unchanged
but replacing its e-tag components by the placeholders #i in order, from left to
right. It is possible that several p’s yield the same template, but we ignore such
multiplicities and consider simply the set of templates so obtained. Fix a one-to-one
correspondence between this set of templates and some set of symbols E, disjoint
from Υ t Λ, which will serve as the external function symbols for our ASM. If a
template is for k-ary functions (i.e., if the placeholders in it are #1, . . . , #k), then
the corresponding external function symbol in E is to be k-ary. This one-to-one
correspondence will serve as our template assignment. That is, for any f ∈ E, the
template f̂ will be the template that contributed f to E.

All that remains is to describe the program Π, but of course this is the hard part
of our task, and it will occupy the remainder of this section.

5.3 Terms for tags

The program Π will involve terms whose purpose is to denote the values of e-tags
or the replies to the potential queries that are values of q-tags. We introduce a
convenient notation for these terms, by recursion on tags.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

24 · A. Blass and Y. Gurevich

Definition 5.1. We define, for each tag t of nesting level ≤ B, a term t∗ as
follows.

—If t is an e-tag of the form ρ(p), then t∗ = p∗.
—If t is an e-tag of the form f(t1, . . . , tn), then t∗ = f(t∗1, . . . , t

∗
n).

—If p is a q-tag, then let f be the external function symbol associated (in our de-
scription of the template assignment) to the template arising from p, and let the e-
tag components of p be (in left-to-right order) t1, . . . , tk. Then p∗ = f(t∗1, . . . , t

∗
k).

Like the definition of tags, this recursion has as its basis the cases of e-tags that
contain no ρ, i.e., e-tags of nesting level 0, and q-tags consisting entirely of labels
from Λ. Note that, for e-tags t of nesting level 0, we have t∗ = t.

The following lemma says that tags and their associated terms have the same
semantics.

Lemma 5.2. Let X be a state, α an answer function for it, and k a natural
number.

—For e-tags t of nesting level ≤ k, the k-value of t in (X, α) equals the value of t∗

in (X, α).
—If p is a q-tag of nesting level ≤ k, let f be the external function symbol corre-

sponding to the template obtained from p (as in the definition of our template
assignment) — so p is f̂ with the placeholders #i replaced by some tags ti. Then
the k-value of p in (X, α) is the query f̂ [a], where the ai are the values of the t∗i
in (X, α). The reply to this query in α is the value of p∗ in (X,α).

Moreover, the values of terms in (X, α) mentioned here are the same as the values
of those terms in (X,αk).

Here, as usual, the assertion that two things are equal is to be understood as
implying, in particular, that if either of them is defined then so is the other.
Proof We proceed by induction on tags, for all k simultaneously. There are three
cases, depending on the type of tag under consideration. The state X and answer
function α remain fixed throughout the proof, so we sometimes omit mention of
them.

Suppose first that t is an e-tag of the form ρ(p), where p is a q-tag of nesting
level ≤ k− 1 (since t has nesting level ≤ k). Then the k-value of t, in either (X,α)
or (X,αk), is obtained by applying αk to the (k − 1)-value of p. By induction
hypothesis, this is the value of p∗. Since t∗ = p∗ in this situation, the proof is
complete in this first case.

Suppose next that t is an e-tag of the form f(t′) for some f ∈ Υ and some tuple
t′ of e-tags. The desired conclusion follows from the induction hypothesis and the
observation that the recursion clause defining values for e-tags of this form exactly
matches the recursion clause defining values of terms of the form f(t′).

Finally, suppose p is a q-tag, and use the notation f , t, and a from the statement
of the lemma. Since p is the template f̂ with the placeholders #i replaced by ti,
the k-value of p is, by definition, the template f̂ with each #i replaced by the
value of ti, namely ai. The induction hypothesis lets us use t∗i in place of ti here.
That confirms the first of the lemma’s assertions for this case. Since p∗ is f(t∗),
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 25

the second assertion follows by the definition of values of terms that begin with
external functions. ¤

5.4 Partial equivalence relations and their descriptions

The following (moderately standard) terminology will be convenient for dealing
with n-similarity.

Definition 5.3. A partial equivalence relation or per on a set S is an equivalence
relation ∼ on a subset of S, called the field of ∼. One such per, ∼ with field F , is
a restriction of another, ∼′ with field F ′, and ∼′ is an extension of ∼, if F ⊆ F ′

and, for all x, y ∈ F , x ∼ y ⇐⇒ x ∼′ y.

Definition 5.4. For any state X, answer function α, and natural number n, define
t ∼X,α,n t′ to mean “t and t′ are e-tags having n-values that are equal”.

Lemma 5.5. The relation ∼X,α,n is a per on the set of e-tags. Its field is the set
of e-tags that have n-values. If n ≤ m, then ∼X,α,n is a restriction of ∼X,α,m. Two
pairs, (X,α) and (X ′, α′), are n-similar if and only if the associated pers ∼X,α,k

and ∼X′,α′,k coincide for all k ≤ n.

Proof The first two sentences are obvious, the third follows from Lemma 4.9, and
the fourth just restates the definition of n-similarity. ¤

According to this lemma, the n-similarity class of any (X,α) can be completely
described by a tower of pers, 〈∼X,α,k〉k≤n, on the set of e-tags. We shall be inter-
ested in n-similarity only for n ≤ B, so we may regard these pers as being on the
finite set of e-tags of nesting level ≤ B, because tags of higher nesting level will not
have n-values when n ≤ B.

Definition 5.6. A per on e-tags of nesting level ≤ B is n-realizable if it is ∼X,α,n

for some state X and answer function α.

Remark 5.7. In view of Remark 4.6, replacing an answer function α by its well-
founded part α∞ or even by the smaller function αn will not change the per ∼X,α,n.
In particular, in the definition of n-realizability, we can safely require α to be well-
founded.

We need a technical lemma, allowing us to adjust the realizers of pers in certain
circumstances.

Lemma 5.8. Suppose ∼X,α,n is a restriction of ∼X′,α′,n. Then there is a sub-
function β of α′ such that ∼X,α,n coincides with ∼X′,β,n.

Proof We simply shrink α′ to β by removing from its domain those queries which,
according to ∼X,α,n, ought not to have replies. More precisely, whenever a q-tag p
has (n − 1)-values in both (X, α) and (X ′, α′), say q and q′ respectively, and ρ(p)
has an n-value in (X ′, α′) but not in (X, α) (so q′ ∈ Dom(α′) but q /∈ Dom(α)),
then delete q′ from the domain of α′.

What e-tags t have n-values in (X ′, α′) but lose those values in (X ′, β) as a result
of these deletions? According to Lemma 4.7, t must have a sub-q-tag p whose value
q′ (at an appropriate phase) was removed from the domain of α′ in forming β. Then

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

26 · A. Blass and Y. Gurevich

ρ(p) is a sub-e-tag of t. Our definition of the deletions used in producing β implies
that ρ(p) and therefore t had no n-value in (X,α). So t’s loss of its value in passing
from α′ to β is correct; it results in agreement with ∼X,α,n.

A similar argument, again using Lemma 4.7, shows that, conversely, all e-tags t
that have values in (X ′, α′) but not in (X,α) lose those values as a result of the
deletions leading to β. ¤

Using the terms associated to tags, we can write formulas describing, to some
extent, pers on the set of e-tags (of nesting level ≤ B, as usual).

Definition 5.9. Let ∼ be a per on the set of e-tags. Its description δ(∼) is the
conjunction of all the Boolean terms t∗1 = t∗2 for e-tags such that t1 ∼ t2 and all the
Boolean terms ¬(t∗1 = t∗2) for e-tags in the field of ∼ such that t1 6∼ t2.

Notice that tags not in the field of ∼ don’t contribute to δ(∼).

Lemma 5.10. Let X be a state and α an answer function for it. Let ∼ be a per
on the set of e-tags. Then the truth value of δ(∼) in (X,α) is:

—true if ∼ is a restriction of ∼X,α,B,
—false if the field of ∼ is included in that of ∼X,α,B but ∼ is not a restriction of
∼X,α,B,

—undefined if the field of ∼ is not included in that of ∼X,α,B.

Proof We prove the last part first. Suppose t is a tag that is in the field of ∼ but
not in that of ∼X,α,B . The latter means that t has no B-value. By Lemma 5.2, t∗

has no value in (X,α). But δ(∼) includes a conjunct t∗ = t∗; so δ(∼) also has no
value.

From now on, we assume that the field of ∼ is included in that of ∼X,α,B . That
is, every t in the field of ∼ has a B-value in (X, α), and so, by Lemma 5.2, t∗ has
a value in (X, α). Since δ(∼) is a conjunction of equations and negated equations
built from just these terms t∗, it has a value in (X, α).

It remains to determine when this value, necessarily Boolean, is true. There are
two requirements for that. First, whenever t1 ∼ t2, we must have that t∗1 = t∗2 is
true in (X,α). By Lemma 5.2, this means that the B-values of t1 and t2 agree, i.e.,
that t1 ∼X,α,B t2. The second requirement is that whenever t1 and t2 are in the
field of ∼ but t1 6∼ t2, then ¬(t∗1 = t∗2) is true. Such t1 and t2 are in the field of
∼X,α,B , and, arguing as above using Lemma 5.2, we need that their B-values are
distinct, i.e., that t1 6∼X,α,B t2. The two requirements together say exactly that ∼
is a restriction of ∼X,α,B , as desired. ¤

5.5 The ASM program

We are now ready to describe the program Π, in a top-down manner.
To begin, consider the set T0 of e-tags t of nesting level 0. Since they don’t

involve ρ and q-tags, they have 0-values in all (X, α), and these values depend only
on X, not on α. Consider all the equivalence relations ∼ on this set T0 of tags;
these can be regarded as pers on the set of all e-tags. Every state X will make
exactly one of their descriptions δ(∼) true, namely the one whose ∼ agrees with
the equivalence relation ∼X,α,0 on e-tags defined by equality of their 0-values in
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 27

X. This follows from Lemma 5.10, since there is no danger of undefined values for
tags of nesting level 0. Notice that two states satisfy the same δ(∼) if and only
if they are 0-similar. (Here and below, we slightly abuse notation by saying X
and X ′ are 0-similar to mean that (X,α) and (X ′, α′) are 0-similar for any answer
functions α and α′. The point is that for 0-similarity, in contrast to k-similarity for
larger k, the answer functions are irrelevant.) We say that a 0-realizable ∼ and also
its description δ(∼) describe the 0-similarity class consisting of those X for which
∼=∼X,α,0 (which is independent of α).

We construct the desired program Π as the parallel combination of components,
which we call the components for phase 0. Each of these components is a conditional
rule of the form

if δ(∼) then R∼ endif,

and there is one such rule for each equivalence relation ∼ on the e-tags of nesting
level 0 that is, as a per, 0-realizable. We shall refer to the pers ∼, the descriptions
δ(∼), and the rules R∼ as the pers, guards, and true branches at phase 0. (Recall
that conditional rules with no explicit else clause were defined as syntactic sugar
for rules containing else skip; so we could speak also of “false branches” at phase 0,
which would be simply skip.) To complete the definition of Π, it remains to say
what the true branches R∼ are that go with these equivalence relations. Until
further notice, we fix one of these pers, ∼0, and we work toward describing
the corresponding rule R∼0 .

Because of the definition of δ(∼0), the rule R∼0 that we intend to define will
be executed only in those states X that belong to one specific 0-similarity class,
namely that described by ∼0. By Proposition 4.15, all these states agree as to
which q-tags p will have 0-values in Γα

1. (In terms of our informal descriptions,
they agree as to what queries are issued in phase 0. Note that α, though needed
in the notation Γα

1, is irrelevant at this phase, since only α0 = ∅ plays a role, so
far.) Call such p relevant (for the fixed ∼0 under consideration).

Let T1 be the set of all e-tags of nesting level ≤ 1 in which all subtags of the form
ρ(p) have p relevant. These are the e-tags that would have 1-values if α provided
answers to all the queries in Γα

1. In particular, these tags will have 1-values if α
is a context, but not necessarily when α is an arbitrary answer function, not even
when it is well-founded.

We define R∼0 to be a parallel block, with one component for each extension
of ∼0 to a 1-realizable per ∼ whose field is a subset of T1. We call these the
components for phase 1. The component associated to such a per ∼ has the form

if δ(∼) then R∼ endif,

where we must still specify the rule R∼. We refer to these ∼, δ(∼), and R∼ as
pers, guards, and true branches at phase 1. Until further notice, we fix one of
these pers, ∼1, and we work toward describing the corresponding rule R∼1 .

Our present task, defining the true branches at phase 1, is analogous to our task
(still pending) of describing the true branches at phase 0. There are, however,
differences that we must be careful about. When we dealt with pers ∼ whose field
consisted only of the e-tags of nesting level 0, there was no possibility of their 0-
values being undefined. In particular, δ(∼) always had a truth value. Furthermore,

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

28 · A. Blass and Y. Gurevich

this value was true in exactly one 0-similarity class of states (or, more precisely, of
pairs (X, α)). Now, however, when we deal with pers ∼ whose field also contains
some tags of nesting level 1, their 1-values may be undefined in some (X, α) (if
the answer function α is not a context for the state X). As a result, the value of
δ(∼) may be undefined. In such a situation, the presence of the guard δ(∼) in our
program Π will cause the execution of Π to hang. Fortunately, this is the correct
behavior, because this situation arises exactly when the algorithm A has issued a
query that α doesn’t answer; thus α is not a context and the execution of A also
hangs.

Furthermore, the same (X, α) may satisfy several of our guards at phase 1, not
just a single guard as at phase 0. Lemma 5.10 tells us which guards δ(∼) are satisfied
by which (X, α). Thus, the true branch R∼1 currently under consideration will be
executed in several 1-similarity classes of (X, α)’s, not only the class described by
∼1 but also the classes described by its realizable extensions. Nevertheless, we
shall design R∼1 to work properly in the 1-similarity class described by ∼1. That
it causes no trouble when executed in the other 1-similarity classes described by
extensions of ∼1 will have to be verified as part of the proof that our Π is equivalent
to A.

Except for the differences just outlined, what we are about to do for ∼1 will be
just like what we did above for ∼0.

Let us, therefore, consider pairs (X, α) in the 1-similarity class described by ∼1.
By Proposition 4.15, all these (X, α) agree as to which q-tags p will have 1-values
in Γα

2. (In terms of our informal descriptions, they agree as to what queries are
issued in phase 1.) Call such p relevant (for the fixed ∼1 under consideration).

Let T2 be the set of all e-tags of nesting level ≤ 2 in which all subtags of the form
ρ(p) have p relevant. These are the e-tags that would have 2-values if α provided
answers to all the queries in Γα

2. In particular, these tags will have 2-values if α is
a context.

We define R∼1 to be a parallel block, with one component for each extension
of ∼1 to a 2-realizable per ∼ whose field is a subset of T2. The component (a
component at phase 2) associated to such a per ∼ has the form

if δ(∼) then R∼ endif,

where we must still specify the true branch R∼.
This specification follows the pattern begun above. For any particular ∼2 (a

2-realizable extension of ∼1), we let T3 be the set of e-tags of nesting level ≤ 3 all
of whose subtags of the form ρ(p) have p among the q-tags with 2-values in Γα

3

whenever (X, α) is in the 2-similarity class described by ∼2. Then we let R∼2 be a
parallel block of conditional rules (components at phase 3), with one block guarded
by each δ(∼), where ∼ ranges over 2-realizable extensions of ∼2 with field included
in T3.

Continue in this manner for B steps. At this point, there are no new relevant
q-tags. We need to define the true branches R∼B−1 at phase B − 1, where ∼B−1

describes a certain (B−1)-similarity class of pairs (X,α). (In terms of our informal
discussion earlier, we are considering phase B, where each (X,α) has finished issuing
queries and receiving answers, and is ready to either fail or update its state.)
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 29

As before, R∼B−1 is a parallel block of conditional rules

if δ(∼) then R∼ endif,

where ∼ ranges over extensions of ∼B−1 to B-realizable pers whose field is a subset
of TB . Here, just as before, TB consists of the e-tags of nesting level ≤ B all of
whose subtags of the form ρ(p) have p among the q-tags with (B−1)-values in Γα

B

whenever (X, α) is in the (B−1)-similarity class described by ∼B−1. But this time
the corresponding subrules, R∼, are different and indeed correspond to a different
aspect of the algorithm. Instead of issuing queries while evaluating guards δ(∼),
they will either fail or perform updates.

Consider (X, α) in the B-similarity class described by ∼. If α is not a context
for X, then, by Corollary 4.16, there is no pair (X ′, α′) in the same B-similarity
class where α′ is a context for X ′. In this situation, define R∼ to be skip.

Now consider the case that α is a context for X for (one and therefore all) (X,α)
in the B-similarity class described by ∼. In this case, Proposition 4.17 applies. In
particular, if the algorithm A fails in one such (X, α) then it fails in them all. In
this situation, we let R∼ be Fail.

Finally, when A doesn’t fail, Proposition 4.17 also tells us that, for any dynamic
function symbol f , all (X,α) in our B-similarity class agree about the e-tags v
and w for whose B-values a and b the update 〈f,a, b〉 belongs to ∆+(X, α). (The
elements a and b will be different in different states, but the tags v and w will be
the same.) In this situation, we define R∼ to be a parallel block whose components,
the components at phase B, are the update rules f(v∗) := w∗. This completes the
definition of the ASM program Π.

6. PROOF OF EQUIVALENCE

In the preceding section, we have constructed from an arbitrary algorithm A an
ASM which we shall call simply Π (even though technically it consists of the pro-
gram Π together with the template assignment, the set of labels, the set of states,
and the set of initial states). The present subsection is devoted to the proof that Π
is equivalent to the given algorithm A. Referring to Definition 2.22 of equivalence,
we see that the first two requirements, namely the agreement of states, initial states,
vocabulary, and labels, are immediate consequences of the definition of the ASM.
It remains therefore to verify the last three requirements, agreement of causality
relations (up to equivalence), failures, and updates.

We need a preliminary lemma, saying roughly that the tree-like structure of Π is
rich enough to contain branches executed in any state with any answer function.

Lemma 6.1. Let X be a state, α an answer function for it, and, for each k,
∼k =∼X,α,k the per describing the k-similarity class of (X, α). The program Π
contains a nested sequence of (occurrences of) components, one for each phase,
such that, for each k, the phase k component in the sequence has guard δ(∼k).

Proof Since every equivalence relation on the e-tags of nesting level 0 that is
0-realizable as a per gives rise to a phase 0 component, and since ∼0 is such an
equivalence relation, we have the required component at phase 0. Proceeding induc-
tively, for the step from k to k + 1, suppose we have obtained the desired sequence

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

30 · A. Blass and Y. Gurevich

of components through phase k. It ends with (an occurrence of)

if δ(∼k) then R∼k
endif.

We need only check that ∼k+1 is one of the pers that provide the components (at
phase k+1) in the parallel block R∼k

, for then the component it provides will serve
as the next term of the required sequence. Looking at the definition of Π, we find
that we must check the following.

(1) ∼k+1 is an extension of ∼k.
(2) ∼k+1 is (k + 1)-realizable.
(3) The field of ∼k+1 is a subset of Tk+1.

The first two of these are obvious in view of the definition of ∼k in the statement
of the lemma. To prove the third, recall that, by definition of Tk+1, what we must
show is that each element in the field of ∼k+1 is an e-tag of nesting level ≤ k+1 such
that all subtags of the form ρ(p) have p relevant for ∼k. Relevance of p was defined
in terms of any state and answer function in the k-similarity class described by ∼k.
In our present situation, there is an obvious representative of this k-similarity class,
namely the given (X, α). So relevance of p means that its k-value is in Γα

k+1. Now
if t is in the field of ∼k+1, then, by definition of this per as ∼X,α,k+1, t must be
an e-tag with a (k + 1)-value in (X,α), so in particular its nesting level must be
≤ k +1 (see Corollary 4.5). Furthermore, each subtag of the form ρ(p) must have a
(k+1)-value, and so p must have a k-value in Dom(αk+1) ⊆ Γα

k+1. This completes
the verification of item (3) and thus the proof of the lemma. ¤

To prove the equivalence of A and Π, we begin by considering their respective
causality relations `A

X and `Π
X . According to Lemma 2.21, we must show that, for

every state X and every answer function α that is well-founded for both `A
X and `Π

X ,
the same queries are caused, under these two causality relations, by subfunctions
of α. For this purpose, it will be useful to invoke the well-foundedness of α and
[Blass and Gurevich 2006, Proposition 6.19] to replace, in the case of `A

X , the phrase
“caused by a subfunction of α” with “reachable under α.” (The replacement would
be equally legitimate in the case of `Π

X , but it will not be useful there.) Thus, our
immediate goal is to prove the following.

Lemma 6.2. Let X be a state (for A and Π) and let α be an answer function
for X that is well-founded with respect to both A and Π. Then, for any potential
query q for X, the following two statements are equivalent.

—There is a subfunction ξ of α such that ξ `Π
X q.

—q ∈ ΓA,α
∞.

We have used the notation ΓA,α to distinguish it from ΓΠ,α, but from now on we
shall write simply Γα because there will be no need to refer to ΓΠ,α.

Proof of Lemma Fix X, α, and q as in the hypotheses of the lemma. We consider
how an answer function ξ ⊆ α could cause q with respect to Π. Inspection of the
definitions of the causality relations for ASMs in [Blass and Gurevich to appear,
Section 5] reveals that any instance of causality, like ξ `Π

X q, originates in either an
output rule or a term that begins with an external function symbol. For all other
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 31

rules and terms, the queries that ξ causes are simply copied from the causality
relations of subterms or subrules. Since our Π contains no output rules, all the
causality instances that we must analyze originate from subterms that begin with
external function symbols.

Such terms occur in two places in Π, namely the guards of the components at
various phases and the update rules at the final phase. Let us consider first the
terms occurring in the update rules. Recall that the update subrules of Π occur
only in the true branches at phase B, whose guards δ(∼) describe B-similarity
classes (Y, β) where β is a context for Y . (We changed the notation to (Y, β)
here because we have already fixed particular X and α.) The update rules are
of the form f(v∗) := w∗ where e-tags v and w have B-values a and b such that
〈f,a, b〉 ∈ ∆+(Y, β). For these B-values to exist at all, it is necessary that the
q-tags p whose ρ(p) occur in v and w have (B−1)-values in Dom(β) = Γβ

B . Thus,
v and w are members of TB , eligible to be in the field of a per at phase B. The per
∼ that describes (Y, β) will have these tags in its field, precisely because the tags
have B-values in (Y, β). Thus, for each component vi of the tuple v, the equation
vi = vi is among the conjuncts in δ(∼), and so is w = w. As a result, any queries
originating in the update rules in R∼ also originated in the guard δ(∼). This means
that, in analyzing the instances ξ `Π

X q, we may confine our attention to instances
originating in the guards at various phases.

How could the causality instance ξ `Π
X q originate from a particular guard, say

δ(∼) at some phase k? In view of the definition of the description δ(∼), our instance
would have to originate in a term t∗ where t is an e-tag in the field of the phase k per
∼. That field is, by definition, included in Tk, so the subtags of t of the form ρ(p) all
have p relevant with respect to the per ∼k−1 within whose true branch our δ(∼) is
located. Inspection of the definition of t∗ shows that the queries originating there in
fact originate from subterms ρ(p) (as these are the only source of external function
symbols in t∗) and have the form described in the second part of Lemma 5.2 (with
k changed to k − 1). Thus, q is the (k − 1)-value of one of these p’s.

Furthermore, for this guard δ(∼) to contribute any queries at all in (X, ξ), the
governing guard from the previous phase, δ(∼k−1), had to get the value true in
(X, ξ) and therefore in (X,α). According to Lemma 5.10, ∼k−1 must be a restriction
of ∼X,α,B . Since ∼k−1 is (k − 1)-realizable (as only realizable pers were used in
our construction of Π), Lemma 5.8 shows that α has a subfunction γ such that
∼k−1 =∼X,γ,k−1. Since the q-tag p is relevant with respect to ∼k−1, its (k − 1)-
value q is in Γγ

k ⊆ Γα
k ⊆ Γα

∞. This establishes the implication from the first to
the second of the allegedly equivalent statements in the lemma.

For the converse, consider any query q ∈ Γα
∞; fix some k such that q ∈ ΓA,α

k.
By Lemma 4.11, q is the (k − 1)-value in (X,α) of some q-tag p. So ρ(p) ∈ Tk.
Consider the nested sequence of components given by Lemma 6.1 for the state X
and answer function α. The component at phase k in this sequence has a guard
δ(∼k) that includes the conjunct ρ(p)∗ = ρ(p)∗. Furthermore, the components from
earlier phases, in whose true branches this δ(∼k) lies, all have guards that are true
in (X, α) (by Lemma 5.10). Thus, α contains enough replies to evaluate, in X,
all these earlier guards and all the proper sub-e-tags of p that begin with external
function symbols. Let ξ be the subfunction of α consisting of just what is used in

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

32 · A. Blass and Y. Gurevich

these evaluations. Then, by definition of the semantics of conditional and parallel
rules, ξ `A

X q. ¤
To complete the proof of equivalence between A and Π, it remains to consider

failures and updates. We assume, from now on, that α is a context for X, since oth-
erwise neither failures nor updates can occur in (X,α). (Note that, by Lemmas 6.2
and 2.21, A and Π have the same contexts in each state, so there is no ambiguity
in saying that α is a context for X.) The only sources of updates and failures in Π
are the update rules and Fail that are components at phase B. These occur in the
true branches of components guarded by δ(∼), where ∼ describes a B-similarity
class of state-context pairs.

Which such guards can get value true in (X, α)? By Lemma 5.10, ∼ would have
to be a restriction of ∼X,α,B . Being B-realizable (by construction of Π), ∼ would
have to be ∼X,β,B for some subfunction β of α. But ∼ describes a B-similarity
class of pairs whose second component is a context. So β is, on the one hand, a
subfunction of α and, on the other hand, a context for X. According to Lemma 2.5,
this requires that β = α and therefore ∼=∼X,α,B . So in (X, α) only one of the
phase B guards is true, namely δ(∼) for ∼=∼X,α,B .

Therefore, each of the following is equivalent to the next.

—Π fails in (X,α).
—The true branch R∼, for ∼=∼X,α,B , is Fail.
—A fails in any member of the B-similarity class described by ∼.
—A fails in (X,α).

This completes the verification that A and Π agree as to failures.
The argument for updates is similar. Suppose A doesn’t fail in (X, α). The

updates produced by Π in (X,α) are those produced by the phase B components
of R∼ where, as before ∼=∼X,α,B . These components were defined as update
rules f(v∗) := w∗, where v and w are e-tags whose B-values a and b (respectively)
participate in an update 〈f,a, b〉 produced by A in (X, α) (because (X, α) is in the
B-similarity class described by ∼). Since the values of v∗ and w∗ in (X, α) are also
a and b, by Lemma 5.2, we have that Π produces the same updates as A.

This completes the verification that A and Π are equivalent, so Theorem 1.1 is
proved.

Remark 6.3. We emphasize that the construction of the program Π in the pre-
ceding proof was intended only for the purpose of proving the theorem. We do
not advocate writing ASM programs that look like this Π. In practice, there will
almost surely be simpler ASMs equivalent to a given algorithm. In fact, algorithms
are usually described by being written in some programming language (or pseudo-
code, or something similar), and then it is advisable to convert this written form
of the algorithm into an ASM directly, without going through explicit definitions
of causality relations, updates, and failures.

Remark 6.4. Our proof of the main theorem did not use output or let rules.
We avoided output rules by simulating them with external functions. Specifically,
if an ASM uses output rules with a label l and associated template l̂, then our
proof provides a simulation in which, in place of l, there is a new, unary, external
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 33

function symbol f , assigned the same template. The role of Outputl(t) is now
played by if f(t) = f(t) then skip endif. The semantics is the same: if t gets
value a, then the query l̂[a] is caused.

The avoidability of let rules is a more complicated issue, which we explore in
Section 7.

7. LET RULES, REPEATED QUERIES, AND BINDING

7.1 Eliminating let

The let construct was never used in the ASM program constructed in the proof
of Theorem 1.1. So the theorem would remain true if we omitted let rules from
the definition of ASMs. It follows, in particular, that any ASM that uses let is
equivalent to one that doesn’t.

This situation may not surprise readers familiar with [Gurevich 2000, Section 7.3],
where let is introduced as syntactic sugar. Specifically, let x = t in R(x) endlet
is defined there as simply R(t). Here and below, we use the traditional notations
R(x) and R(t) to mean that the latter is the result of substituting the term t for
all free occurrences of the variable x in the former, renaming bound variables if
necessary to avoid clashes. Thus, the let construct in [Gurevich 2000] amounts to
a notation for substitution.

In the present paper, where algorithms interact with the environment within a
step, the interpretation of let is more subtle than mere substitution. Consider, for
example, the ASM

let x = p in if q = x then skip endif endlet,

where p and q are nullary, external function symbols, and compare it with the result
of substitution,

if q = p then skip endif.

These are not equivalent. The first one begins by issuing the query p̂ (where the
hat refers to the template assignment); if and when an answer is provided, then it
assigns that answer as the value of x and proceeds to evaluate the body of the let
rule. So it issues the query q̂ and, if and when it gets a reply, ends the step (with
the empty set of updates). The second ASM immediately issues both of the queries
p̂ and q̂; if and when it gets both replies, it ends the step. The difference is that
the first ASM will issue q̂ only after getting a reply to p̂ but the second will issue q̂
immediately. We can express the same observation more formally, in terms of the
definitions 2.20 and 2.22 of equivalence, by considering the empty answer function.
The query q̂ is reachable under ∅ for the second ASM but not for the first.

Our semantics for let x = t in R(x) endlet builds in some sequentiality; t must
be evaluated first, and only afterward does R become relevant. In contrast, R(t)
could evaluate t in parallel with other parts of R.

Even though our let is not eliminable by simple substitution, it is eliminable
with a little more work; we just have to ensure the appropriate sequentiality. A
suitable tool for this is provided by conditional rules, because their semantics also
involves sequentiality — the guard must be fully evaluated before the branches
become relevant. Thus, let can be simulated by means of conditional rules, in

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

34 · A. Blass and Y. Gurevich

which the binding of the let rule is put into the guard of a conditional to ensure
that it is evaluated first. Specifically,

let x1 = t1, . . . , xk = tk in R(x1, . . . , xk) endlet

is equivalent to

if
k∧

i=1

(ti = ti) then R(t1, . . . , tk) endif.

Of course, there is nothing to prevent us from introducing a different construct
into our ASM syntax as syntactic sugar for simple substitution in the style of
[Gurevich 2000]. We call this construct let-by-name and use the notation n-let for
it.

Remark 7.1. The corresponding terminology and notation for our standard let
would be “let-by-value” and v-let, because its semantics insists on having a value
for the terms ti and thus for the variables xi before proceeding. Let-by-name, in
contrast, is content to simply use the names ti in place of the variables.

If the answer function is insufficient for the evaluation of the bindings, an n-
let rule will execute as much of the body as it can with the partial information
provided. In contrast, an ordinary let rule (which means let-by-value) will not
even look at the body unless the bindings have been fully evaluated. Usually an
n-let rule’s attempt to execute its body in the absence of values for its bindings will
not lead to updates or failure, because an ordinary algorithm cannot finish a step
until all its queries have been answered, but it may well lead to additional queries
that would not have been produced under the standard interpretation of let. The
word “usually” in the preceding sentence cannot be replaced by “always.” In

n-let x1 = t1, . . . , xk = tk in R(x1, . . . , xk),

it could happen that the execution of R(t1, . . . , tn) does not require the evaluation of
all the terms ti; for example, they could be in the unexecuted branches of conditional
rules, or they might not occur at all. In such a case, the let-by-name computation
could finish the step even without enough answers to evaluate all the ti. With v-let
in place of n-let, the execution of the rule would evaluate all the ti, whether or not
they are needed.

7.2 Uneliminability of let

The preceding discussion about eliminating let depended crucially on the fact that
we adopted the Lipari convention of [Blass and Gurevich to appear, Subsection 4.3]
as our official understanding of repeated calls of an external function with the
same argument values. Had we adopted either of the alternative conventions, from
[Blass and Gurevich to appear, Subsections 4.4 and 4.5], the picture would be very
different. In this subsection, we briefly discuss the difference and the role of let
under these alternative conventions.

The key point is that x may occur many times in a rule R(x). Then the single oc-
currence of t as the binding in let x = t in R(x) becomes many occurrences of t in
R(t) (and even more if we adopt the technique outlined above for enforcing sequen-
tiality by means of conditionals). Any occurrence of an external function symbol in
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 35

t can thus become many occurrences in R(t). Under the flexible convention ([Blass
and Gurevich to appear, Subsection 4.5]), these many occurrences might produce
different queries; under the must-vary convention ([Blass and Gurevich to appear,
Subsection 4.4]) they definitely produce different queries. On the other hand, each
occurrence of an external function symbol in t produces only one query in let x = t
in R(x); the reply to that query is then used in a single evaluation of t, whose result
is used for all the occurrences of x in R(x).

In the case of the flexible convention, this discrepancy can be removed by suit-
ably defining the template assignment. (Recall that, under both the flexible and
the must-vary conventions, templates are assigned not to external function symbols
but to their occurrences.) When one occurrence of an external function symbol be-
comes many occurrences as a result of substitution, then whatever template was
originally assigned to the one occurrence must be assigned to all of the occurrences
it produces. With this additional explanation attached to the notion of substi-
tution, the elimination of let that we gave for the Lipari convention works also
for the flexible convention. Let-by-name would be subject to the same additional
explanation.

Under the must-vary convention, different occurrences of a function symbol must
always produce different queries. So the additional explanation that we used under
the flexible convention is not available. In fact, let is not eliminable under the
must-vary convention. For a specific example, let f be a binary, Boolean function
symbol in the vocabulary Υ, let p be an external, nullary function symbol, and
consider the ASM program

let x = p in if f(x, x) then skip else Fail endlet.

Without let there would be no way, under the must-vary convention, to issue the
query p̂ just once and use the answer for both arguments of f .

The program just exhibited certainly describes an algorithm (in fact, the same al-
gorithm under all three conventions, since no external function symbol is repeated),
but expressing it under the must-vary convention requires the use of let. Thus,
our proof of Theorem 1.1 would not work under the must-vary convention. To
repair it, one would have to use let rules, rather than the guards δ(∼), to produce
the queries. The guards would still have to be present, to control the flow of the
computation, but instead of containing external function symbols, they would use
variables bound by let to terms that begin with those external function symbols.

7.3 Let rules under the must-vary convention

In fact, the situation is yet more complicated under the must-vary convention. In
this subsection, we indicate, mostly by means of examples, the difficulties that arise
in attempting to adapt the proof of Theorem 1.1 to the must-vary convention.

Not only is let essential rather than eliminable, but ordinary let rules by them-
selves are not sufficient; let-by-name rules are needed. The following example shows
the problem.

Example 7.2. Consider an algorithm with the following causality behavior (in
all states). The empty answer function causes two queries, q1 and q2. Any answer
function that provides a reply r1 to q1 causes the query 〈r1, r1〉. Similarly, any

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

36 · A. Blass and Y. Gurevich

answer function that provides a reply r2 to q2 causes the query 〈r2, r2〉. Finally,
any answer function that provides replies ri to both qi’s causes the query 〈r1, r2〉.
We can set up appropriate external function symbols, say nullary p1 and p2 and
binary f , with templates p̂1 = q1, p̂2 = q2, and f̂ = 〈#1,#2〉. Under the Lipari
convention, the following program would have the specified causality relation. The
curious-looking conditionals of the form if t = t then skip endif are just a way
of issuing all the queries involved in the evaluation of t.

do in parallel
if f(p1, p1) = f(p1, p1) then skip endif
if f(p2, p2) = f(p2, p2) then skip endif
if f(p1, p2) = f(p1, p2) then skip endif

enddo

Under the must-vary convention, this would not work, since the many occurrences
of p1 would all produce different queries (and likewise for p2). The natural way to
prevent this multiplicity of queries would be to use let rules, binding some variables,
say x1 and x2, to the terms p1 and p2, and then using these variables to specify
the later queries as f(x1, x1), f(x2, x2), and f(x1, x2). But there are problems with
this approach. In the first place, this will have to be modified if the replies r1 and
r2 are equal, for then these later queries may be different when they ought to be
the same. This problem can be solved by testing for equality before issuing the
later queries. But even if r1 6= r2, there is a more serious problem: How should the
let-bindings be arranged?

A single let rule binding both variables won’t do. That is,

let x1 = p1, x2 = p2 in
do in parallel

if f(x1, x1) = f(x1, x1) then skip endif
if f(x2, x2) = f(x2, x2) then skip endif
if f(x1, x2) = f(x1, x2) then skip endif

enddo
endlet

does not have the right causality relation. If an answer function provides a reply
r1 to q1 but provides no reply to q2, then this program will never execute its body,
whereas it ought to issue the query 〈r1, r1〉.

Suppose, therefore, that we use let twice, once to bind each variable. Nesting the
two occurrences of let, as in
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 37

let x1 = p1 in
let x2 = p2 in

do in parallel
if f(x1, x1) = f(x1, x1) then skip endif
if f(x2, x2) = f(x2, x2) then skip endif
if f(x1, x2) = f(x1, x2) then skip endif

enddo
endlet

endlet

still doesn’t work correctly if the answer function contains a reply to one qi but not
to the other. The variation

let x1 = p1 in
do in parallel

if f(x1, x1) = f(x1, x1) then skip endif
let x2 = p2 in

do in parallel
if f(x2, x2) = f(x2, x2) then skip endif
if f(x1, x2) = f(x1, x2) then skip endif

enddo
endlet

enddo
endlet

is only slightly better. It works if q1 is answered, whether or not q2 is. But if q2 is
answered and q1 isn’t then it fails to issue 〈r2, r2〉.

Finally, if we try unnested occurrences of let, then the bodies of the two let rules
will be disjoint. But f(x1, x2) has to be in both bodies, since it involves both of
the bound variables.

One can make the ASM syntax sufficiently expressive to circumvent this coun-
terexample by introducing let-by-name. Indeed, the program written in the example
with a single let rule binding both x1 and x2 would become correct if we changed
let to n-let.

Actually, this assertion is vague, because let-by-name has been defined, as simple
substitution, only under the Lipari convention. Under the must-vary convention,
this definition is not what we want; multiple occurrences of the substituted terms
ruin the intended semantics, which should evaluate those terms only once. Indeed,
under the must-vary convention, let-by name would have to be defined as a primitive
construct in its own right, not as syntactic sugar. In this situation, one might want
to introduce another name for the construct, since let-by-name strongly suggests
simple substitution. Let us suppose, for the rest of this discussion, that we have
a semantics for let-by-name that captures, under the must-vary convention, the
desired intuitive meaning: The binding is evaluated (once) and its value is used
as the value of the corresponding variable in the body. If the answer function is
insufficient to evaluate all the bindings, proceed nevertheless to execute as much of

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

38 · A. Blass and Y. Gurevich

the body as possible, i.e., as much as does not involve the variables that have been
given no values.

The difference between let-by-name and traditional let (i.e., let-by-value) is that
the latter imposes sequentiality, by requiring the binding to be evaluated before
work on the body can begin, whereas n-let allows them to proceed in parallel. It
follows that v-let can be defined in terms of n-let, using conditionals to enforce
sequentiality just as we did when we eliminated let under the Lipari convention.
That is,

let x1 = t1, . . . , xk = tk in R endlet

is equivalent to

n-let x1 = t1, . . . , xk = tk in if
k∧

i=1

(xi = xi) then R endlet.

So it seems reasonable, if one wants to use the must-vary convention, to replace
let with n-let in the list of primitive ASM constructs. Unfortunately, as the
following example shows, the resulting ASMs are still insufficient to express all
ordinary algorithms (up to equivalence) as in Theorem 1.1.

Example 7.3. Consider an algorithm that begins (in any state) by issuing two
queries, a and b. When it gets a reply to a, it issues c (whether or not it got a
reply to b); when it gets a reply to b, it issues d (whether or not it got a reply to
a). When it gets replies r and s to both c and d, it sets F (r, s) and G(r, s) to true,
where F and G are dynamic, binary symbols. Formally, the algorithm is given,
under the Lipari convention, by

do in parallel
if a = a then if c = c then skip endif endif
if b = b then if d = d then skip endif endif
if a = a ∧ b = b then

if c = c ∧ d = d then
do in parallel F (c, d) :=true, G(c, d) :=true enddo

endif
endif

enddo,

where we have simplified notation by using the same symbols like a for an external
nullary function symbols and the associated query (which is technically â). An
attempt to express this under the must-vary convention using n-let exactly as in
the previous example leads to
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 39

n-let x = a, y = b, z = c, w = d in
do in parallel

if x = x then if z = z then skip endif endif
if y = y then if w = w then skip endif endif
if x = x ∧ y = y then

if z = z ∧ w = w then
do in parallel F (z, w) :=true, G(z, w) :=true enddo

endif
endif

enddo
endlet.

This contains a lot of irrelevant code, but, more importantly, it is too quick to
proceed to the body of let-rules. It will issue c and d and update F and G without
waiting for replies to a and b. The same error occurs if we arrange the uses of
n-let differently, for example by nesting them. Using ordinary let or, equivalently
as explained above, using conditionals to enforce sequentiality doesn’t work either.
The scopes of these let rules or conditionals would have to overlap, since the updates
of F and G must be in both of them. But then these scopes would be nested or
identical. As a result, it would not be possible for the evaluations of c and d to
wait independently for answers to a and b respectively.

A variation of this n-let attempt would work if, in place of nullary external
function symbols producing the queries c and d, we had unary function symbols
having the replies to a and b, respectively as their arguments. That is, if we had
c(x) in place of c and d(y) in place of d, then the following program would be
correct, because, despite the use of let-by-name, it could not begin to evaluate c(x)
until it had a value for x.

n-let x = a, y = b in
n-let z = c(x), w = d(x) in

do in parallel F (z, w) :=true, G(z, w) :=true enddo
endlet

endlet

We close this subsection with one additional example. Some ASM constructs
introduce parallelism into the computation: do in parallel, multiple bindings in
let, update rules, and even evaluation of terms. Others introduce sequentiality:
let, if− then− else, and again evaluation of terms. No other arrangements,
beyond parallelism and sequentiality are explicitly built in to the semantics. So
it may be useful to show how an ASM program can produce an arrangement of
queries that looks like the Wheatstone bridge, the simplest electrical circuit not
obtainable by parallel and series composition of elementary pieces. In the following
example, we describe this arrangement and exhibit two programs that express it,
one under the Lipari convention and one, using let-by-name, under the must-vary
convention.

Example 7.4. Consider an algorithm that works as follows. First, it issues
queries a and b. After it gets a reply to a, it issues c and d. After it gets replies to

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

40 · A. Blass and Y. Gurevich

? ?
a b

¡
¡

¡
¡ª

@
@

@
@R

c d

¢
¢

¢
¢

¢
¢

¢
¢

¢®

@
@

@
@@R

e

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Qs

?
F

Fig. 1. Control flow of the algorithm of Example 7.4

both b and d, it issues e. Finally, after it gets replies to both c and e it sets F to
true. See Figure 1.

Here is an ASM expressing this algorithm under the Lipari convention. Again,
we economize on notation by using a as an external function symbol assigned to
the template a; in other words, we identify a and â; similarly for the other queries.
We also economize by omitting the end-markers endif and enddo, relying, as many
programming languages do, on indentation to provide the right parsing.

do in parallel
if a = a ∧ b = b then

do in parallel
if c = c ∧ d = d then

if e = e then F :=true
if d = d then

if e = e then skip
if a = a then

if c = c ∧ d = d then skip

This ASM was obtained by going through the construction of Π in the proof of
Theorem 1.1 and omitting a great deal of extraneous code.

Here is an ASM expressing the same algorithm under the must-vary convention.
More precisely, here is an ASM that would do this job once let-by-name is properly
defined. We use the same economizing conventions as before, also omitting endlet.
(The correspondence between the external symbols like a and the variables like xa

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 41

is intended only as a memory aid; it has no formal significance.)

n-let xa = a, xb = b in
if xa = xa then

n-let xc = c, xd = d in
if xb = xb ∧ xd = xd then

n-let xe = e in
if xc = xc ∧ xe = xe then F :=true

7.4 Binding external function symbols

In this subsection, we introduce a way to avoid the problems, indicated above, with
the must-vary convention. The essential idea is to use must-vary as a default but to
allow the program to explicitly say that certain occurrences of an external function
symbol are to be assigned the same template. We present two ways to build this idea
into the syntax of ASMs; the first way is kept as simple as possible for theoretical
purposes, while the second is designed to be easier to use in programming.

The first way adds to the ASM syntax a new operator bind with the formation
rule saying that, if R is a rule and f is an external function symbol, then

bind f in R endbind

is a rule (in which we would omit endbind in situations where the intended scope
is made clear by other means, such as indentation). The intended interpretation of
this new rule is the same as that of R, but it imposes a constraint on the template
assignment accompanying the program, namely that all occurrences of f in R are
to be assigned the same template.

In more detail, consider an ASM program Π written in the enlarged syntax
with bind, and consider an external function symbol f occurring in Π. Call an
occurrence of f a virgin occurrence if it is either immediately after (an occurrence
of) bind or not in the scope of any bind. The must-vary convention applies to virgin
occurrences: they must be assigned templates different enough to ensure that they
will not issue the same query. (See [Blass and Gurevich to appear, Subsection 4.4]
for details about this.) Any occurrence of f in the scope of a bind is to be given
the same template as the virgin occurrence at the start of that bind construct.

Under this interpretation, a traditional ASM program, not using bind, would be
interpreted exactly as it would be under the must-vary convention.

At the other extreme, binding all the external functions at the beginning of a pro-
gram, with the matching endbinds at the end, would have the effect of interpreting
the program according to the Lipari convention. Given this way of simulating the
Lipari convention, and given Theorem 1.1, we see that the ASM thesis holds for
the “must-vary with bind” interpretation.

Between the two extremes, “must-vary with bind” allows much of the freedom of
the flexible convention described in [Blass and Gurevich to appear, Subsection 4.5].
Admittedly, it doesn’t allow quite as much freedom as the flexible convention —
for example, it would not allow some but not all of the occurrences of f in a single
term to have different templates — but such situations seem rather exotic. It seems
that bind allows the sort of flexibility that one often wants in programming, for

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

42 · A. Blass and Y. Gurevich

example the ability to issue a call to an external library just once, no matter how
often it is used, while requests for new elements, to be imported from the reserve,
are kept distinct.

For programming purposes, it seems useful to amplify the syntax of bind by
allowing an explicit specification, in the program, of the template to be used. That
is, a bind rule would have the form

bind f to t in R,

where t is a template (with the right number of placeholders), and where f and R
are, as before, an external function symbol and a rule.

If this is to reflect the must-vary convention, then one would, of course, have
to be careful that the specified templates prohibit collisions of external function
calls. But one could relax this requirement and use the bind − to construction
to indicate some of the templates to be used under the flexible convention.

Remark 7.5. While working on an implementation of some of the ideas of [Blass
and Gurevich 2006; to appear], for use in AsmL, Davor Runje found it useful to
think of queries as objects and therefore to separate the tasks of creating queries
and of issuing them. His suggestion of that separation was instrumental in leading
us to the bind construct.

8. ADDITIONAL ASM CONSTRUCTS

In this section, we present two constructs, which were omitted from the defini-
tion of ASMs in [Blass and Gurevich to appear] because they do not enlarge the
class of expressible algorithms, but which are very useful in actual programming.
We provide, for each of these constructs, a semantics in the style of [Blass and
Gurevich to appear, Section 5]. If, therefore, we added these constructs to our
definition of ASMs, the resulting ASMs would still define ordinary algorithms and
would, according to Theorem 1.1, be equivalent to ASMs that do not use the new
constructs.

8.1 Sequential composition

We add to the ASM syntax the construction rule that, whenever R1 and R2 are
rules (for vocabulary Υ), then so is

R1 seq R2 endseq,

which is called the sequential composition of its first stage R1 and its second stage
R2. A variable is free in the sequential composition if and only if it is free in at
least one of the stages.

The intended meaning of this sequential composition is that one first executes
R1 and then, in the new state resulting from this execution, executes R2.

We now present the formal semantics expressing this intention, and we verify
that it produces a clean algorithm. Let R be the sequential composition R1 seq R2

endseq. As in [Blass and Gurevich to appear, Section 5], we assume as an induction
hypothesis that R1 and R2 have already been interpreted as clean algorithms, with
all structures (of the right vocabulary) as states. Let v be a list that includes all
the free variables of R, and let X be an Υ ∪ v̇-structure.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 43

We begin by defining the causality relation `X attached to state X by the rule
R. It is the union `1 ∪ `′′ where `1 is the causality relation attached to X by R1

and where `′′ is defined by letting ξ `′′ q under the following circumstances. First,
ξ must be the union of a context ξ′ for `1 and another answer function η. Second,
R1 must not fail in (X, ξ′); so there is a well-defined state X∗ = τR1(X, ξ′), the
state obtained from X by executing R1 with context ξ′. Third, η `∗ q, where `∗ is
the causality relation attached to X∗ by R2.

We omit the proof that `X is clean, because it is entirely analogous to the proof
for conditional and let rules. We also get a characterization of contexts almost as
we did for conditional and let rules. The main difference from the earlier situation
is that R1 could fail and then R2 would not be executed; that accounts for item 1
in the following description of contexts.

Lemma 8.1. The contexts α for `X are of two sorts:

(1) α is a context for `1 and R1 fails in (X, α).
(2) α is the union ξ ∪ β of a context ξ for `1, such that R1 doesn’t fail in (X, ξ),

and a context β for `∗.
Here `1 and `∗ are as in the definition of `X . Furthermore, in Case 2, both ξ and
β are uniquely determined by α.

Proof We use the notations Γ, (Γ1), and (Γ∗) for the operators associated to the
causality relations `X , `1, and `∗, respectively.

Assume first that α is a context for `X . Since Dom(α) = Γα
∞ ⊇ (Γ1)α

∞,
Lemma 2.5 tells us that α includes a unique context ξ for `1.

Case 1: R1 fails in (X, ξ). In this case, we shall show that α = ξ and so we
have Condition 1 of the lemma. Suppose, toward a contradiction, that there is
some q ∈ Dom(α) − Dom(ξ) = Γα

∞ − Dom(ξ). Choose such a q that is in Γα
k+1

for the smallest possible k. By definition of Γα
k+1, there is some β ⊆ α ¹ Γα

k such
that β `X q. Because we chose k + 1 as small as possible, Γα

k ⊆ Dom(ξ). Thus,
β ⊆ ξ. Since β `X q, we have two subcases according to the definition of `X .

In the first subcase, β `1 q. This means that q ∈ (Γ1)ξ((Γ1)ξ
∞) = (Γ1)ξ

∞ =
Dom(ξ), contrary to our choice of q.

In the second subcase, β = ξ′ ∪ η where ξ′ is a context for `1, the rule R1 does
not fail in (X, ξ′), and several more conditions hold (which we won’t need). Since
ξ′ ⊆ β ⊆ ξ and since both ξ and ξ′ are contexts for `1, we conclude by Lemma 2.5
that ξ = ξ′. But our case hypothesis in Case 1 is that R1 does fail in (X, ξ), and
so we have reached a contradiction. This establishes Condition 1 of the lemma in
Case 1.

Case 2: R1 does not fail in (X, ξ). In this case, we get Condition 2 of the
lemma. The argument is exactly parallel to the proof of [Blass and Gurevich to
appear, Lemma 5.11], so we do not repeat it here.

For the converse, we must show that any α as in Conditions 1 and 2 is a context
for `X . Under Condition 2, the argument is again just like the proof of [Blass and
Gurevich to appear, Lemma 5.11], so we omit it. The argument under Condition 1
is easier, but we give it for the sake of completeness.

Suppose, therefore that α is a context for `1 and that R1 fails in (X,α). Then
Dom(α) = (Γ1)α

∞ ⊆ Γα
∞. All that remains is to prove the converse inclusion.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

44 · A. Blass and Y. Gurevich

Suppose, toward a contradiction, that there are queries in Γα
∞ −Dom(α), and let

q be such a query that is in Γα
k+1 for the smallest possible k + 1. By definition

of Γα
k+1, we have δ `X q for some δ ⊆ α ¹ Γα

k. By definition of `, there are two
subcases.

In the first subcase, δ `1 q. Then q ∈ (Γ1)α(Dom(α)). But, since α is a context
for `1, its domain is fixed by (Γ1)α. So q ∈ Dom(α), contrary to our choice of q.

In the second subcase, δ = ξ ∪ η where ξ is a context for `1, R1 doesn’t fail in
(X, ξ), and some additional conditions hold (which we won’t need). Since ξ ⊆ δ ⊆ α
and since both ξ and α are contexts for `1, Lemma 2.5 gives that ξ = α. But R1 fails
in (X,α) and not in (X, ξ), so the second subcase has also produced a contradiction.

Finally, we observe that the uniqueness of ξ and β in Case 2 also follows just as
in [Blass and Gurevich to appear, Lemma 5.11]. ¤

As in [Blass and Gurevich to appear, Section 5], this lemma immediately implies
that number and length of the queries in any context for `X are uniformly bounded,
namely by the sum of the bounds for R1 and R2.

To complete the definition of the semantics of sequential composition, we must
define updates and failures for states X and contexts α. We consider separately
the two types of contexts described in Lemma 8.1.

If α is a context for `1 and R1 fails in (X,α), then R = R1 seq R2 endseq
also fails in (X, α), and we leave ∆+

R(X,α) undefined. (One might prefer to set
∆+

R(X, α) = ∆+
R1

(X,α). Up to equivalence of algorithms, it doesn’t matter, since
∆+ of failing state-context pairs is irrelevant.)

Suppose now that α = ξ ∪ β as in Condition 2 of Lemma 8.1. So R1 does not
fail in (X, ξ) and produces a transition to X∗, and β is a context for the causality
relation `∗ of R2 in X∗. We define that R fails in (X,α) if and only if R2 fails in
(X∗, β). The update set ∆+

R(X, α) is the union of

—∆+
R2

(X∗, β) and

—the subset of ∆+
R1

(X, ξ) consisting of those updates that don’t clash with any
updates in ∆+

R2
(X∗, β).

Intuitively, this definition says that, to execute R in (X,α), first one executes R1

in (X, ξ), producing X∗ unless it fails, and then one executes R2 in (X∗, β). The
execution of R fails if either of the two stages fails. If it doesn’t fail, then the
resulting transition is to the state that the execution of R2 in (X∗, β) produces.
Thus, the update set for R consists of the updates performed by R1 (leading to
X∗) and the updates performed by R2 (leading to the final result), except that if
both algorithms update the same location, then the last update, the one done by
R2, prevails.

To complete the verification that the semantics of sequential composition pro-
duces an algorithm, we must produce a bounded exploration witness W . Let W1

and W2 be bounded exploration witnesses for R1 and R2, respectively. As usual,
we assume that these Wi are closed under subterms and contain true, false, and
at least one variable. W will be the union of W1, W2, and an additional set W̄ of
terms associated to the terms in W2 in the following way.

Each term t ∈ W2 may have numerous (but finitely many) associated terms in
W̄ . We require:
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 45

(1) Every variable is an associate of itself.
(2) If f(t1, . . . , tn) ∈ W2 and if t̄i is an associate of ti for 1 ≤ i ≤ n, then there are

terms t̃i, differing from the t̄i only in that their variables have been renamed so
that no variable occurs in two of them, such that f(t̃1, . . . , t̃n) is an associate
of f(t1, . . . , tn).

(3) If t ∈ W2 begins with a dynamic function symbol and if s ∈ W1, then s is an
associate of t.

In item 2, it is intended that, for each choice of f(t1, . . . , tn) and t̄i’s as there,
one particular renaming of variables is chosen, to produce t̃i with disjoint sets of
variables, for which f(t̃1, . . . , t̃n) is made an associate of f(t1, . . . , tn). Thus, item 2
contributes only finitely many terms to W̄ . When we refer below to the recursive
definition of associates, we mean the description above, made into an unambiguous
definition by some specification of which variables to use for the renaming at each
step.

Remark 8.2. The intention behind the notion of associates is the following; it
will be made precise in Lemma 8.8 below. In verifying bounded exploration, we
shall need to deal with the values in X∗ of terms t ∈ W2 when the variables are
given values in the range of an answer function α. These are not the same as the
corresponding values in X, because the dynamic functions can be different in X
and X∗. Nevertheless, the value of t in X∗ can be obtained as the value in X
of a suitably chosen term t̄, again with the variables getting values in Range(α).
The idea is to modify t by replacing subterms that begin with dynamic function
symbols, the subterms where the difference between X and X∗ makes itself felt,
by terms that describe in X the values in X∗ of those subterms. These modified
terms t̄ are the associates of t.

Remark 8.3. The idea behind the renaming of variables in item 2 is this. Sup-
pose we have, in some state X, certain elements ai that are the values of the
terms t̄i under certain assignments of values to the variables. It may happen that
fX(a1, . . . , an) is not the value of f(t̄1, . . . , t̄n) under any assignment of values to
variables. The problem is that, if a variable occurs in several of the terms ti, then
the assignments that produced the ai might disagree as to this variable’s value.
There might be no single assignment that simultaneously gives all the ti the corre-
sponding values ai. By renaming the variables in each term ti so that no variable
is used in both ti and tj with i 6= j, we prevent this problem from arising. That is,
although fX(a1, . . . , an) may not be the value of f(t̄1, . . . , t̄n) under any assignment
of values to variables, it will clearly be the value of f(t̃1, . . . , t̃n) under some such
assignment.

Remark 8.4. According to Remark 2.11, we can arrange that no variable is re-
peated in any term from W1 (or even in the whole set W1, if we are willing to
weaken the convention that W is closed under subterms by allowing renaming of
variables). If we assume that this has been done, then no variable will be repeated
in any associate, thanks to the renaming. In this situation, the recursive definition
of associates is equivalent to the following construction. To produce an associate of
a term t ∈ W2, first choose some (occurrences of) subterms ri that begin with dy-
namic function symbols and that are unnested (i.e., no ri is a subterm of another).

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

46 · A. Blass and Y. Gurevich

Second, replace each ri by a term si ∈ W1. Finally, if t wasn’t just a variable, then
rename (occurrences of) variables so that no variable occurs more than once. More
precisely, for each choice of renamings in either this construction or the recursive
definition, there is a corresponding choice of renamings in the other, producing the
same associate for t.

Remark 8.5. In our definition of W as W1 ∪ W2 ∪ W̄ , we could have omitted
W2, because every term t ∈ W2 is (up to renaming variables — possibly renaming
different occurrences of a variable as distinct variables) an associate of itself. The
presence in W of a variant of t with changed variables makes the presence of t itself
irrelevant to the notion of agreement with respect to W and thus to the question
whether W is a bounded exploration witness.

To see why W = W1 ∪W2 ∪ W̄ serves as a bounded exploration witness for the
sequential composition R, consider two states X and X ′ that agree, with respect
to W , over an answer function α. Recall that this means that each term in W gets
the same values in both states whenever the variables are given the same values
from Range(α).

Lemma 8.6. For any subfunction ξ of α, we have the following agreements be-
tween X and X ′.

(1) ξ causes the same queries under `1
X and `1

X′ .
(2) ξ is a context for both or neither of `1

X and `1
X′ .

(3) If ξ is a context, then R1 fails in both or neither of (X, ξ) and (X ′, ξ).
(4) If R1 doesn’t fail in these pairs, then ∆+

R1
(X, ξ) = ∆+

R1
(X ′, ξ).

Proof Since W1 ⊆ W and ξ ⊆ α, our two states agree with respect to W1 over
ξ. Now parts 1, 3, and 4 of the lemma follow from the fact that W1 is a bounded
exploration witness for R1. Part 2 follows by Lemma 2.12. ¤

Let us consider first the case that α does not include a context for `1
X . Then,

by Part 2 of the lemma, it doesn’t include a context for `1
X′ either. Therefore,

by Lemma 8.1, α is not a context for `X or `X′ , so we need only check that α
causes the same queries q with respect to `X and `X′ . But these are, by definition,
the queries caused by α with respect to `1

X and `1
X′ . These agree, by Part 1 of

Lemma 8.6, so the proof is complete in this case.
From now on, suppose instead that α includes a context ξ for `X . Then ξ

is uniquely determined as α ¹ ΓX,α
∞ (by Lemma 2.5) and is also a context with

respect to `X′ (by Part 2 of Lemma 8.6). The queries caused by α with respect
to `X are, according to the definition of this causality relation, of two sorts, those
caused by α under `1

X and those caused by some η under `∗, where `∗ is, as before,
the causality relation of R2 in the state X∗ obtained by executing R1 in (X, ξ), and
where α = ξ ∪ η. The same description applies with X ′ in place of X. The first
sort of causality is, as in the preceding paragraph, the same for X and X ′, because
W1 is a bounded exploration witness for R1. It remains to consider causality of
the second sort. Of course, such causality occurs only if R1 doesn’t fail (in one and
hence by Part 3 of Lemma 8.6 in both of the states). So we assume from now on
that R1 doesn’t fail in (X, ξ) and (X ′, ξ).

To complete the proof, we shall need the following result.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 47

Lemma 8.7. The states X∗ and (X ′)∗, obtained by executing R1 in (X, ξ) and
(X ′, ξ), agree with respect to W2 over α (and therefore over any η as in the second
sort of causality).

Once this lemma is established, the rest of the proof is easy, because W2 is a
bounded exploration witness for R2. Specifically, what is caused, with respect to
R2, by any η ⊆ α is the same in X∗ and (X ′)∗; so causality of the second sort
is the same in X as in X ′. In particular, the contexts with respect to R2 are the
same for X∗ and (X ′)∗, and so, by Lemma 8.1, the contexts with respect to R are
the same for X and X ′. If α is such a context, then R fails in both or neither of
(X, α) and (X ′, α) because R2 fails in both or neither of (X∗, η) and ((X ′)∗, η).
Similarly, the updates contributed by R2 are the same in both situations. Since
the updates contributed by R1 are also the same (Part 4 of Lemma 8.6), we obtain
that R produces the same update set in (X, α) and in (X ′, α). This completes the
proof that W is a bounded exploration witness for R provided Lemma 8.7 holds.

So it remains to prove this lemma. We shall obtain it as a consequence of the
following stronger result, in which we use the notation introduced above and also
the notation Val(t,X, σ) for the value of a term t in a state X when the variables
are assigned values by σ.

Lemma 8.8. Let t ∈ W2 and let the variables in t be assigned values in Range(α);
call the assignment σ. There is an associate t̄ of t and there is an assignment σ̄
of values in Range(α) to its variables such that Val(t,X∗, σ) = Val(t̄, X, σ̄) and
Val(t, (X ′)∗, σ) = Val(t̄, X ′, σ̄)

Proof We proceed by induction on t. This is legitimate because W2 is closed
under subterms.

If t is a variable, then we can take t̄ = t and σ̄ = σ.
Suppose next that t is f(t1, . . . , tn) where f is a static function symbol. By induc-

tion hypothesis, we have associates t̄i for ti and we have assignments σ̄i (possibly
different assignments for different i’s) such that Val(ti, X∗, σ) = Val(t̄i, X, σ̄i) for
each i and analogously with X ′ in place of X. (The t̄i and σ̄i are the same for X
and X ′.) By definition of associates, t has an associate t̄ = f(t̃1, . . . , t̃n), where the
t̃i are obtained from the t̄i by renaming the variables to be distinct. Because of the
renaming, we can find a single assignment σ̄ giving each t̃i the same value that σi

gave t̄i, both in X and in X ′. (Formally, if v is the variable in some (unique) t̃i
that replaced w in t̄i, then σ̄(v) is defined to be σ̄i(w).) With this choice of t̄ and σ̄,
the conclusion of the lemma is clearly satisfied, since fX = fX∗ and fX′ = f(X′)∗ .

Finally, suppose that t is f(t1, . . . , tn) where f is a dynamic function symbol.
Choose t̄i and σ̄i as in the case of static f . Let ai = Val(ti, X∗, σ) = Val(t̄i, X, σ̄i),
and, as usual, let a denote the n-tuple 〈a1, . . . , an〉.

Notice that we also have ai = Val(t̄i, X ′, σ̄i) = Val(ti, (X ′)∗, σ). The first equality
here comes from the facts that t̄i ∈ W̄ ⊆ W and that X and X ′ agree with respect
to W over α. The second comes from our choice of t̄i and σ̄i, which works for X ′

as well as for X.
We consider two cases.
Case 1: The update set ∆+

R1
(X, ξ) contains no update of the form 〈f,a, b〉

for any b. Then ∆+
R1

(X ′, ξ) also contains no update of this form, by Part 4 of
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

48 · A. Blass and Y. Gurevich

Lemma 8.6. Thus, the relevant values of fX and fX′ are unchanged, and we can
proceed exactly as we did in the case of a static function symbol.

Case 2: For some b, we have 〈f,a, b〉 ∈ ∆+
R1

(X, ξ). Of course b is unique, as
otherwise R1 would have failed in (X, ξ). By Part 4 of Lemma 8.6, we also have
〈f,a, b〉 ∈ ∆+

R1
(X ′, ξ). By Lemma 3.7, b is critical, with respect to R1, for ξ in X.

That is, it is Val(s, X, σ̄) for some term s ∈ W1 and some assignment σ̄ of values
in Range(ξ) to the variables. Because W1 ⊆ W and ξ ⊆ α, the agreement of X
and X ′ over α with respect to W implies that b is also Val(s,X ′, σ̄). Since s is
an associate of t, we can use it as our t̄; together with σ̄, it clearly satisfies the
conclusion of the lemma. ¤

Proof of Lemma 8.7 We must show that, for any t ∈ W2 and any assignment σ of
values in Range(α) to the variables, Val(t,X∗, σ) = Val(t, (X ′)∗, σ). By Lemma 8.8,
this amounts to showing that Val(t̄, X, σ̄) = Val(t̄, X ′, σ̄). But this follows from the
fact that t̄ ∈ W̄ ⊆ W and our assumption that X and X ′ agree with respect to W
over α. ¤

As we already showed, this concludes the verification that W is a bounded explo-
ration witness for R and thus the proof that the semantics of R defines an ordinary
algorithm.

8.2 Conditional terms

We introduce a conditional construction for terms,

if ϕ then t0 else t1 endif,

where ϕ is a Boolean term and t0 and t1 are arbitrary terms. The intended semantics
is entirely analogous to that of conditional rules.

Remark 8.9. It may seem that this conditional construction could be handled
simply by including, in all our vocabularies, a static ternary function symbol C, to
be interpreted in all structures by C(true, x, y) = x and C(false, x, y) = y. (The
value when the first argument isn’t Boolean is irrelevant.) Then if ϕ then t0 else
t1 endif could be represented by C(ϕ, t0, t1). This gives the right values for con-
ditional terms, but not the right causality relations. The evaluation of C(ϕ, t0, t1)
would begin by evaluating, in parallel, all three of ϕ, t0, and t1; then it would apply
C to the results. The intended interpretation of if ϕ then t0 else t1 endif, on
the other hand, would first evaluate only ϕ; then, depending on the value obtained,
it would evaluate just one, not both, of t0 and t1.

The formal semantics of if ϕ then t0 else t1 endif is exactly like that of con-
ditional rules, as far as causality is concerned, so we do not repeat it here. The
definition of Val is merely analogous, not identical, to the definitions of failures
and updates for conditional rules, so we write it out explicitly. Let t be the term
if ϕ then t0 else t1 endif, let X be a state, and let α be a context for t and X.
Then, by [Blass and Gurevich to appear, Lemma 5.11], α can be uniquely expressed
as ξ ∪ β with ξ a context for the causality relation `′ of ϕ and η a context for the
causality relation for t0 or t1 according to whether Val(ϕ,X, ξ) is true or false. If
Val(ϕ, X, ξ) = true then define Val(t,X, α) = Val(t0, X, η); if, on the other hand,
Val(ϕ, X, ξ) = false then define Val(t,X, α) = Val(t1, X, η).
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, III · 49

The verification that the postulates are satisfied, including the construction of
the bounded exploration witness, is just as for conditional rules.

REFERENCES

The AsmL webpage, http://research.microsoft.com/foundations/AsmL/.

Andreas Blass and Yuri Gurevich 2003. Abstract state machines capture parallel algorithms.
ACM Trans. Computational Logic 4:4 , 578–651.

Andreas Blass and Yuri Gurevich Ordinary Interactive Small-Step Algorithms, I. ACM
Trans. Computational Logic, vol. 7, no. 2 (April 2006).

Andreas Blass and Yuri Gurevich Ordinary Interactive Small-Step Algorithms, II. ACM
Trans. Computational Logic, to appear.

Andreas Blass, Yuri Gurevich, Dean Rosenzweig and Benjamin Rossman. General inter-
active small-step algorithms. In preparation.

Yuri Gurevich 1995. Evolving algebra 1993: Lipari guide. In Specification and Validation
Methods, E. Börger, Ed. Oxford Univ. Press, 9–36.

Yuri Gurevich 1997. ASM guide. Univ. of Michigan Technical Report CSE-TR-336-97. See
[Huggins].

Yuri Gurevich 2000. Sequential abstract state machines capture sequential algorithms. ACM
Trans. Computational logic, 1:1 , 77—111.

James K. Huggins. ASM Michigan webpage. http://www.eecs.umich.edu/gasm.

Received August 2004; revised April 2006; accepted April, 2006

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

