
Ordinary Interactive Small-Step Algorithms, II

ANDREAS BLASS

University of Michigan

and

YURI GUREVICH

Microsoft Research

This is the second in a series of three papers extending the proof of the Abstract State Machine
Thesis — that arbitrary algorithms are behaviorally equivalent to abstract state machines — to
algorithms that can interact with their environments during a step rather than only between steps.
As in the first paper of the series, we are concerned here with ordinary, small-step, interactive
algorithms. This means that the algorithms
(1) proceed in discrete, global steps,
(2) perform only a bounded amount of work in each step,
(3) use only such information from the environment as can be regarded as answers to queries, and
(4) never complete a step until all queries from that step have been answered.

After reviewing the previous paper’s formal description of such algorithms and the defini-
tion of behavioral equivalence, we define ordinary, interactive, small-step abstract state machines
(ASM’s). Except for very minor modifications, these are the machines commonly used in the ASM
literature. We define their semantics in the framework of ordinary algorithms, and we show that
they satisfy the postulates for these algorithms.

This material lays the groundwork for the final paper in the series, in which we shall prove the
Abstract State Machine Thesis for ordinary, intractive, small-step algorithms: All such algorithms
are equivalent to ASMs.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of
Computation—Interactive and Reactive Computation

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Sequential algorithms, Interaction, Postulates, Equivalence
of algorithms, Abstract state machines

1. INTRODUCTION

In the first paper [Blass and Gurevich 2006] of this series, we defined, by means of
natural postulates, the class of ordinary, interactive, small-step algorithms. These
are algorithms that do only a bounded amount of work in any single computation

Authors’ addresses: Andreas Blass, Mathematics Department, University of Michigan, Ann Arbor,
MI 48109–1043, U.S.A., ablass@umich.edu; Yuri Gurevich, Microsoft Research, One Microsoft
Way, Redmond, WA 98052, U.S.A., gurevich@microsoft.com.
The work of the first author was partially supported by NSF grant DMS–0070723 and by a grant
from Microsoft Research. Much of this paper was written during visits to Microsoft Research.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 1529-3785/07/0600-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007, Pages 1–39.

2 · A. Blass and Y. Gurevich

step (small-step) but can interact with their environments, by issuing queries and
receiving replies, during a step (interactive); furthermore, they complete a step
only after all the queries from that step have been answered, and they use no
information from the environment except for the answers to their queries (ordinary).
We shall briefly review the definition and the associated strong notion of behavioral
equivalence in Section 2.

The purpose of the present paper is to introduce the corresponding abstract state
machines (ASMs). The syntax of ASM programs is defined in Section 3; it differs
very little from the syntax presented in [Gurevich 1995] and widely used in the ASM
community (see for example [Huggins] and the literature linked there). Sections 4
and 5 define the semantics of ASMs by showing how to construe them as algorithms
of the sort defined in [Blass and Gurevich 2006]. This detailed, formal semantics
of ASMs prepares the ground for the final paper [Blass and Gurevich to appear
(b)] in this series, in which we shall prove the ASM thesis for ordinary, interactive,
small-step algorithms: All such algorithms are equivalent to ASMs.

This series of papers continues the project, begun in [Gurevich 2000] and contin-
ued in [Blass and Gurevich 2003], of analyzing natural classes of algorithms by first
defining them precisely, by means of suitable postulates, and then showing that all
algorithms in such a class are equivalent, in a strong sense, to ASMs. Further work
on this project is under way [Blass, Gurevich, Rosenzweig, and Rossman (a); (b)].

2. ORDINARY ALGORITHMS AND BEHAVIORAL EQUIVALENCE

In this section, we briefly review the definitions, conventions, and postulates from
[Blass and Gurevich 2006] that will be needed in the present paper. We do not,
however, repeat the extensive explanations, motivations, and commentary given in
[Blass and Gurevich 2006]. So readers who wonder about the reasons for our pos-
tulates, definitions, and conventions should consult [Blass and Gurevich 2006] for
those aspects that deal with interaction and [Gurevich 2000] for those aspects com-
mon to all small-step algorithms. We also record some general information, much
of it from [Blass and Gurevich 2006], about the interaction mechanism described
by our postulates.

2.1 Algorithms

We consider a fixed algorithm A. We may occasionally refer to it explicitly, for
example to say that something depends only on A, but usually we leave it implicit.

States Postulate: The algorithm determines

—a nonempty set S of states,
—a nonempty subset I ⊆ S of initial states,
—a finite vocabulary Υ such that every X ∈ S is an Υ-structure, and
—a finite set Λ of labels.

If X is a state, or indeed an arbitrary structure, we also write X for its base
set. We adopt the following conventions, mostly from [Gurevich 1995], concerning
vocabularies and structures.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 3

Convention 2.1. —A vocabulary Υ consists of function symbols with specified
arities.

—Some of the symbols in Υ may be marked as static, and some may be marked as
relational. Symbols not marked as static are called dynamic.

—Among the symbols in Υ are the logic names: nullary symbols true, false, and
undef; unary Boole; binary equality; and the usual propositional connectives.
All of these are static and all but undef are relational.

—In any Υ-structure, the interpretations of true, false, and undef are distinct.

—In any Υ-structure, the interpretations of relational symbols are functions whose
values lie in {true, false}.

—The interpretation of Boole maps true and false to true and everything else
to false.

—The interpretation of equality maps pairs of equal elements to true and all other
pairs to false.

—The propositional connectives are interpreted in the usual way when their ar-
guments are in {true, false}, and they take the value false whenever any
argument is not in {true, false}.
Definition 2.2. A potential query in state X is a finite tuple of elements of XtΛ.

A potential reply in X is an element of X. An answer function is a partial map
from potential queries to potential replies.

The use of the disjoint union X tΛ here means that if X and Λ are not disjoint
then they must be replaced by disjoint copies. (One could, of course, leave one of
the two sets, say Λ, alone and change only the other, to make them disjoint.) For
notational simplicity, we suppress mention of the copies, pretending in effect that
X and Λ are always disjoint.

An answer function α represents, from the algorithm’s point of view, the replies
obtained from the environment. α(q) is the reply to query q. Since we deal only
with ordinary algorithms, everything the algorithm does is determined by its pro-
gram, its state, and an answer function representing the previous interaction with
the environment. Thus, for our purposes, answer functions completely model the
environment.

Interaction Postulate: The algorithm determines, for each state X, a relation
`X , or just ` when X is clear, between finite answer functions and potential queries.
This relation, which can be quite arbitrary, will be called the causality relation of
the algorithm.

The intuitive meaning of α `X q is that, if the algorithm’s current state is X and
the answers received from the environment, during the current step, include those
described by α, then the algorithm issues the query q.

We use the standard notations α ¹ Z and β ⊆ α to mean, respectively, the restric-
tion of an answer function α to the set Z and the statement that β is a restriction
of α.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

4 · A. Blass and Y. Gurevich

Definition 2.3. A context for a state X is an answer function that is minimal
(with respect to ⊆) among answer functions closed under causality. More explicitly,
it is an answer function α with the following properties:

—For all answer functions ξ and all potential queries q, if ξ `X q and ξ ⊆ α, then
q ∈ Dom(α).

—For any Z ⊆ Dom(α), if

∀ξ ∀q [if ξ `X q and ξ ⊆ α ¹ Z then q ∈ Z],

then Z = Dom(α).

See [Blass and Gurevich 2006], especially the paragraphs following Definition 5.5,
for a detailed discussion of the notion of context, including in particular the second
clause in the definition.

Given an answer function α for a state X, we define a monotone operator ΓX,α,
or just Γα when X is understood, on sets of potential queries by

Γα(Z) = {q : (∃ξ ⊆ α ¹ Z) ξ `X q}.
This is the set of queries that the algorithm would issue if it has already issued the
queries in Z (and no other queries) and received the answers given by α ¹ Z (and
no other answers).

For monotone operators Γ in general, we define the iteration of Γ by

Γ0 = ∅, Γn+1 = Γ(Γn).

In general, this iteration would continue transfinitely, taking unions at limit ordinal
stages. It was, however, shown in [Blass and Gurevich 2006, Lemma 5.19] that for
the operators Γα the iteration stabilizes after a finite number of steps. That is, for
these operators, there is a finite n such that Γn is the least fixed point Γ∞ of Γ.
Recall that the least fixed point of a monotone operator Γ is also the smallest set
that is closed1 under Γ, i.e., the smallest Z such that Γ(Z) ⊆ Z.

Definition 2.4. A location in a state X is a pair 〈f,a〉 where f is a dynamic
function symbol from Υ and a is a tuple of elements of X, of the right length to
serve as an argument for the function fX interpreting the symbol f in the state
X. The value of this location in X is fX(a). An update for X is a pair (l, b)
consisting of a location l and an element b of X. An update (l, b) is trivial (in
X) if b is the value of l in X. We often omit parentheses and brackets, writing
locations as 〈f, a1, . . . , an〉 instead of 〈f, 〈a1, . . . , an〉〉 and writing updates as 〈f,a, b〉
or 〈f, a1, . . . , an, b〉 instead of (〈f,a〉, b) or (〈f, 〈a1, . . . , an〉〉, b).

The intended meaning of an update 〈f,a, b〉 is that, at the end of the step, the
interpretation of f is to be changed (if necessary, i.e., if the update is not trivial)
so that its value at a is b. This intention is formalized in the following postulate.

Update Postulate: For any state X and any context α for X, either the
algorithm provides an update set ∆+

A(X, α) whose elements are updates or it fails
(or both). It produces a next state τA(X, α) if and only if it doesn’t fail. If there is
a next state X ′ = τA(X, α), then it

1sometimes called pre-fixed

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 5

—has the same base set as X,
—has fX′(a) = b if 〈f,a, b〉 ∈ ∆+

A(X,α), and
—otherwise interprets function symbols as in X.

It follows from the Update Postulate that, if ∆+
A(X, α) clashes, i.e., if it contains

two distinct updates of the same location, then A must fail in state X and context
α, because the next state, being subject to contradictory requirements, cannot
exist. Similarly, if the structure X ′ described in the postulate is not a state of the
algorithm, then the algorithm must fail.

Definition 2.5. If i : X ∼= Y is an isomorphism of states, extend it to act on
potential queries by applying i to components from X and leaving components
from Λ unchanged. Also extend it to act on locations, by acting componentwise on
the tuple of elements of X and leaving the dynamic function symbol unchanged.
Finally, extend it to act on updates by acting on both components, the location
and the new value. We use the same symbol i for all these extensions, mapping the
potential queries, locations, and updates of X bijectively to those of Y .

Notice that any isomorphism i : X ∼= Y of states, induces a one-to-one corre-
spondence between answer functions for X and answer functions for Y ; the corre-
spondence sends any ξ to i ◦ ξ ◦ i−1 (where, as usual, composition works from right
to left).

Isomorphism Postulate:

—Any structure isomorphic to a state is a state.
—Any structure isomorphic to an initial state is an initial state.
—Any isomorphism i : X ∼= Y of states preserves causality, i.e., if ξ `X q then

i ◦ ξ ◦ i−1 `Y i(q).
—If i : X ∼= Y is an isomorphism of states and if α is a context for X, then

—the algorithm fails in (X, α) if and only if it fails in (Y, i ◦ α ◦ i−1), and
—if the algorithm doesn’t fail, then i[∆+(X, α)] = ∆+(Y, i ◦ α ◦ i−1)

Here and in the rest of the paper, we use the following convention to avoid
needless repetition.

Convention 2.6. An equation between possibly undefined entities (like ∆+(X, α))
means, unless the contrary is explicitly stated, that either both sides are defined
and equal, or neither side is defined.

It follows from the last part of the Isomorphism Postulate that, under the assump-
tions there, if τ(X,α) is defined, then so is τ(Y, i◦α◦ i−1), and i is an isomorphism
from the former to the latter.

Bounded Work Postulate:

—There is a bound, depending only on the algorithm A, for the lengths of the
tuples that serve as queries. That is, the lengths of the tuples in Dom(α) are
uniformly bounded for all contexts α and all states.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

6 · A. Blass and Y. Gurevich

—There is a bound, depending only on A, for the cardinalities |Dom(α)| for all
contexts α in all states.

—There is a finite set W of terms, depending only on A, with the following prop-
erties. Assume that
—X and X ′ are states,
—α is an answer function for both X and X ′, and
—each term in W has the same values in X and in X ′ when the variables are

given the same values in Range(α).
If α `X q, then also α `X′ q. In particular, q is a potential query for X ′. If,
in addition, α is a context for X (and therefore for X ′; see [Blass and Gurevich
2006, Section 5]), then
—if the algorithm fails for either of (X, α) and (X ′, α), then it also fails for the

other, and
—if it doesn’t fail, then ∆+(X, α) = ∆+(X ′, α).

Definition 2.7. A set W of terms with the properties required in the last part
of the Bounded Work Postulate is called a bounded exploration witness for the
algorithm A.

We shall often have to deal with the hypotheses considered in the last part of the
Bounded Work Postulate, so we introduce the following abbreviated terminology.

Definition 2.8. If

—X and X ′ are states,
—α is an answer function for both X and X ′, and
—each term in W has the same values in X and in X ′ when its variables are given

the same values in Range(α),

then we say that X and X ′ agree over α with respect to W .

When we use this terminology, we often omit “with respect to W” because it will
be clear what set W is under consideration. Notice that if X and X ′ agree over α
then they also agree over any subfunction of α.

Definition 2.9. An ordinary, interactive, small-step algorithm is any entity satis-
fying the States, Interaction, Update, Isomorphism, and Bounded Work Postulates.
We sometimes omit “interactive, small-step” and write simply ordinary algorithm;
sometimes we even omit “ordinary”.

2.2 Reachability and equivalence

For a fixed algorithm A and a fixed state X, and therefore a fixed causality relation
`, we define reachability of queries with respect to an answer function and well-
foundedness of answer functions as follows.

Definition 2.10. A query q is reachable under α if it is a member of Γα
∞. Equiv-

alently, there is a trace, a finite sequence 〈q1, . . . , qn〉 of queries, ending with qn = q,
and such that each qi is caused by some subfunction of α ¹{qj : j < i}.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 7

For the equivalence of the two versions of the definition, see [Blass and Gurevich
2006] from Definition 6.9 to Proposition 6.11.

Definition 2.11. An answer function α is well-founded if Dom(α) ⊆ Γα
∞.

As explained in [Blass and Gurevich 2006], the intuition behind this definition is
that α could actually arise at some point during a computation step; it does not
answer queries that the algorithm does not ask. But α need not be the complete
answer function for a whole step. The complete answer functions in this sense are
the contexts, and they satisfy the equality Dom(α) = Γα

∞ in place of the inclusion
that defines well-foundedness. Thus, for example, the empty function is always
well-founded, but it is a context only if it causes no queries.

Definition 2.12. Two causality relations are equivalent if, for every answer func-
tion α, they make the same queries reachable under α.

Proposition 6.21 of [Blass and Gurevich 2006] gives some equivalent character-
izations of equivalence of causality relations. We shall need only the following
consequence, which is Corollary 6.22 in [Blass and Gurevich 2006].

Corollary 2.13. If two causality relations are equivalent then they give rise to
the same Γα

n for all α and n. In particular, they give rise to the same Γα
∞, the

same well-founded answer functions, and the same contexts.

Definition 2.14. Two algorithms are (behaviorally) equivalent if they have

—the same states and the same initial states,
—the same vocabulary Υ and the same set Λ of labels,
—equivalent causality relations in every state,
—failures in exactly the same states and contexts, and,
—for every state X and context α in which they do not fail, the same update set

∆+(X, α).

In the tradition of [Gurevich 2000] and [Blass and Gurevich 2003], this is a very
strict notion of equivalence. It implies, in particular, that equivalent algorithms
simulate each other step-for-step. Since the main result in [Blass and Gurevich to
appear (b)] will be that every ordinary, interactive, small-step algorithm is equiva-
lent to an ASM, the stricter our notion of equivalence, the stronger the theorem.

Remark 2.15. The requirement that equivalent algorithms have the same vo-
cabulary is redundant, because Υ is uniquely determined by any Υ-structure, in
particular by any state. This remark is the only use we make of the assumption, in
the States Postulate, that S is not empty.

Remark 2.16. The requirement, in the definition of equivalence, that the two
algorithms have the same states could plausibly be weakened to require only that
they have the same reachable states. Here, “reachable” means starting with ini-
tial states and repeatedly executing the algorithm’s transition function with some
answer functions. We refrain from adopting this alternative definition for three
reasons. First, as indicated above, our stricter notion of equivalence makes our
main theorem stronger. Second, in practice it is often easy to check whether some-
thing is a state but harder (or impossible) to check whether it is reachable. Third,

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

8 · A. Blass and Y. Gurevich

we prefer to continue in the tradition of [Gurevich 2000] and [Blass and Gurevich
2003], where equivalence required the states to be the same.

Remark 2.17. Our definition of equivalence is based on a view of algorithms op-
erating in isolation, except that the outside world answers their queries. Consider,
for example, an algorithm A whose causality relation, in any state, consists of just
a single instance, {(q, r)} ` q′. (See [Blass and Gurevich 2006, Example 6.2].) De-
spite this instance, the algorithm A, running alone, will issue no queries; the cause,
{(q, r)} cannot be realized because there is no way for A to issue q.

But imagine A running in parallel with another algorithm B that issues q. Then
an answer r to that query might be construed as causing our original algorithm A
to issue q′.

Our notion of equivalence makes A equivalent to an algorithm with empty causal-
ity relation because, although q′ has a cause, it is not reachable. It would seem
that, in order to treat algorithms running in combination (parallel or sequential)
with other algorithms, we should modify the definition of equivalence to take into
account the algorithm’s response to “unsolicited” information like the reply r to a
query q that the algorithm never asked (and never could ask).

A solution to this problem is implicitly contained in [Blass and Gurevich 2006,
Section 2]. Unsolicited information can affect the algorithm’s computation only if
the algorithm pays attention to it, and the act of paying attention can be construed
as an implicit query. In general, the algorithm will not “know” what sort of unso-
licited information it may receive, but we can imagine a general implicit query q0

asking for whatever relevant information may be available. (“Relevant” here can be
taken to mean “appearing among the causes of the algorithm’s causality relation.”)
Imagine, for example, a person doing a computation (implementing an algorithm),
but nevertheless able to react to sufficiently loud, sudden noises (like a knock on
the door). An algorithm modeling all the possibilities could represent the person’s
sensitivity to unexpected noises (and other sensory input) as a query. This is the
sort of thing we mean by a general implicit query for relevant information. The
reply to such a query could then be of the form (q, r) (if tuple-coding is available
in the state), meaning “some agent asked q and the reply is r.” (In the absence of
tuple-coding, the same effect could be achieved by a longer conversation between
the algorithm and the environment.)

In general, given an algorithm with a non-well-founded causality relation, such as
the one with {(q, r)} ` q′ discussed above, it may not be obvious whether the pres-
ence of the unreachable query is merely a result of sloppy programming or whether
the author of the program really intended that query q′ be issued if some other
process were to issue q and get reply r. The use of a general query can remove
this ambiguity. If this instance {(q, r)} ` q′ was really intended, then the causality
relation should include, in place of this instance, the instances {(q0, (q, r))} ` q′

and ∅ ` q0 to make the intention clear. Similarly, one can modify other non-well-
founded causality relations to make them well-founded and express the intention
that the originally non-well-founded parts should become active if, as a result of
another process’s queries, their causes are realized. If, on the other hand, the
non-well-founded part of the original causality relation was just junk, it should be
deleted. In general, whenever an algorithm is to be used as a component of a larger
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 9

system, it should be augmented by the necessary general queries and ways of han-
dling the replies, so that it behaves as intended in the presence of other components.
The intention may be suggested by non-well-founded parts of a causality relation,
but for actual use it should be made explicit, not merely suggested.

The use of general queries presupposes some integrity constraints on the environ-
ment. First, when it provides an answer r to a query q, the environment must also
provide the answer (q, r) to any general query seeking this information. Second, if
the answer to the general query “what relevant information is out there” is “noth-
ing,” i.e., if the environment has not provided any answers of the sort sought by q0,
then q0 should get a reply saying “nothing.” This is needed because an ordinary
algorithm cannot complete its step until all its queries have been answered.

We do not explore further the details of general queries (e.g., how many should
be issued, when should a reply to one trigger a new one, etc.). For our present
purposes, they are to be treated no differently than any other queries. An algorithm
can specify them and their use just as it does for more traditional queries. Nothing
we do requires a distinction between general and traditional queries (and in fact
one can imagine fuzzy borderline cases).

In the case of interactive components, it makes good sense to study the phe-
nomenon of non-well-founded causality relations in greater depth. This is done in
[Blass, Gurevich, Rosenzweig, and Rossman (b)].

2.3 Answer functions and their approximations

In this subsection, we collect for later use some facts about answer functions.
Though they seem fairly technical and will be used for technical purposes, we hope
that they may also help to guide intuition. Much of this material is from [Blass and
Gurevich 2006], and we do not repeat proofs from there. Unless otherwise specified,
we deal with a fixed causality relation `, meaning `X for a fixed state X.

Lemma 2.18. Let α be an answer function. If Γα
∞ ⊆ Dom(α) then α ¹ Γα

∞

is the unique context that is ⊆ α. If Γα
∞ 6⊆ Dom(α) then there is no context

⊆ α. In particular, α has at most one subfunction that is a context. Thus, if
α and β are two distinct contexts for the same state, then α(q) 6= β(q) for some
q ∈ Dom(α) ∩Dom(β).

Proof See Lemma 5.7 and Corollary 5.8 in [Blass and Gurevich 2006]. ¤

Definition 2.19. For any answer function α and natural number n, we write αn

for α ¹ Γα
n. Similarly, α∞ = α ¹ Γα

∞.

Remark 2.20. In [Blass and Gurevich 2006], we used the notation αn instead,
but we shall need that notation for other purposes here, so we have lifted the n to
be a superscript, matching the n in Γα

n.

Lemma 2.21. If α ⊆ β then Γα
n ⊆ Γβ

n and αn ⊆ βn for all natural numbers n.

Proof The first assertion follows from the definition of the Γ operators, and the
second is an immediate consequence of the first. ¤

Lemma 2.22. For any answer function α, each αn is well-founded. α∞ is the
largest well-founded subfunction of α.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

10 · A. Blass and Y. Gurevich

Proof See [Blass and Gurevich 2006] from Proposition 6.16 to Proposition 6.18.
¤

Lemma 2.23. Suppose that an answer function α includes both a context β with
respect to ` and an answer function η that is well-founded with respect to `. Then
η ⊆ β

Proof Since both η and β are restrictions of α, it suffices to prove that Dom(η) ⊆
Dom(β). Since η is well-founded, it suffices to prove Γη

∞ ⊆ Dom(β), and for this
purpose we prove, by induction on k, that Γη

k ⊆ Dom(β).
This inclusion is vacuously true for k = 0. Suppose it is true for a certain k, and

suppose q ∈ Γη
k+1 = Γη(Γη

k). This means that there is δ ⊆ η ¹ Γη
k such that δ ` q.

By induction hypothesis, δ ⊆ β. Therefore, q ∈ Γβ(Dom(β)) = Dom(β), where the
last equality comes from the assumption that β is a context. ¤

Lemma 2.24. Every well-founded answer function is a subfunction of some con-
text.

Proof Let ξ be any well-founded answer function for a state X. Let β be an arbi-
trary extension of ξ to an answer function whose domain contains all the potential
queries for X. Then, since Γβ

∞ consists of queries, it is included in Dom(β). By
Lemma 2.18, there is a context α ⊆ β. By Lemma 2.23, ξ ⊆ α, as desired. ¤

Corollary 2.25. The Bounded Exploration Postulate implies that there is a
bound, depending only on the algorithm, for the number and length of the queries
in any well-founded answer function for any state.

3. ABSTRACT STATE MACHINES — SYNTAX

3.1 Informal description of ASMs

In this section, we describe the syntax of abstract state machines. This syntax is
nearly the same as in [Gurevich 2000, Section 6]; the only differences are that we
include

—outputs,
—a let construction for remembering values, and
—an explicit failure instruction.

There will also be a critical difference in the semantics, namely that interaction with
the environment (especially via external functions) can take place within steps, not
only between steps as in [Gurevich 2000], but we postpone discussion of semantics
to Sections 4 and 5.

Except for the explicit failure instruction (on which we shall comment further
below), the differences from [Gurevich 2000, Section 6] are not new here. Sequential
ASMs with outputs were defined in [Blass and Gurevich 2003]. We slightly extend
that definition by allowing several output channels. The let construction also
occurs briefly in a remark in [Gurevich 1995] at the end of Subsection 3.1; a fuller
presentation is in [Gurevich 2000, Subsection 7.3]. We extend it by allowing several
variables to be bound by a single use of let, rather than requiring nesting of several
let rules.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 11

To distinguish the ASMs defined here from other classes of ASMs, it is natural to
call them ordinary, interactive, small-step ASMs, but, as they are the only ASMs
considered in this paper, we just call them ASMs here.

As is standard in the recent ASM literature (see for example [Gurevich 1997])
and for the most part also in older ASM literature (like [Gurevich 1995]), we take
the vocabulary Υ and the states of an ASM to be subject to Convention 2.1. Thus,
static logic names are available and interpreted correctly in all Υ-structures, in
particular in all states.

Our ASMs interact with the environment in two ways, outputs and external func-
tions, both of which involve additional “symbols” (beyond those in the vocabulary
Υ). For outputs, an ASM determines a finite set of output labels, which we think
of as corresponding to different output channels, such as a computer screen or a
printer or an e-mail server. The program of the ASM can contain commands of the
form Outputl(t) where l is an output label and t a term; the meaning of this com-
mand is to output the value (in the current state) of t on channel l. This extension
of basic ASMs to allow output was introduced in [Blass and Gurevich 2003, Sec-
tion 2]. The official definition there omitted output labels, in effect allowing only
one output channel. This involved no real loss of generality, since the structures
used in [Blass and Gurevich 2003] always included enough set-theoretic background
to permit any desired labels to be coded as part of the term t. In the present paper,
we do not need so much background for other purposes, so, to avoid an artificial
restriction of generality, it is better to allow several output channels.

The external function symbols of an ASM constitute a second vocabulary E,
disjoint from the ASM’s own (“internal”) vocabulary Υ. The symbols of E can be
used along with those of Υ in forming terms, but their interpretations are not part
of the ASM’s state. Rather, the meaning of the external function symbols is given
by the environment. Thus, if f ∈ E, if f(t1, . . . , tn) is to be evaluated in the course
of execution of the ASM’s program, and if the ti have already been evaluated as
elements ai of the state, then the required value of f(a1, . . . , an) is obtained from
the environment.

We note that this use of external functions goes beyond that in [Gurevich 1995]
by allowing nesting of external function symbols. Such nesting is useful in applica-
tions, and it also reflects our purpose in this paper, namely to study environmental
interactions that occur during a step, rather than between steps, of a computation.

3.2 Syntax of ASMs

The preceding discussion introduces the three main classes of symbols used by
our ASMs: the function symbols of the state vocabulary Υ, the external function
symbols, and the output labels. In addition, ASMs use a few keywords and symbols
(see the definitions of terms and rules below) and variables of two kinds, general
variables and Boolean variables.

The two categories of meaningful expressions in ASM programs are terms and
rules.

Definition 3.1. Terms are built just as in traditional first-order logic, using func-
tion symbols from Υ ∪ E and variables.

Note that external function symbols are allowed alongside the function symbols
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

12 · A. Blass and Y. Gurevich

of the states’ vocabulary with no restrictions on nesting. The Boolean terms are
the Boolean variables and those compound terms whose outermost function symbol
is relational.

Definition 3.2. Rules are defined by the following recursion.

—If f is a dynamic n-ary function symbol in Υ, t1, . . . tn are terms, and t0 is a term
that is Boolean if f is relational, then

f(t1, . . . , tn) := t0

is a rule, called an update rule.
—If l is an output label and t is a term, then

Outputl(t)

is a rule, called an output rule.
—If k is a natural number (possibly zero) and R1, . . . , Rk are rules, then

do in parallel R1, . . . , Rk enddo

is a rule, called a parallel combination or a block. The subrules Ri are called its
components.

—If ϕ is a Boolean term and if R0 and R1 are rules, then

if ϕ then R0 else R1 endif

is a rule, called a conditional rule. We call ϕ its guard and R0 and R1 its branches.
—If x1, . . . , xk are variables, if t1, . . . , tk are terms with each ti Boolean if xi is, and

if R0 is a rule, then

let x1 = t1, . . . , xk = tk in R0 endlet

is a rule, called a let rule. We call x1, . . . , xk its variables, t1, . . . , tk its bindings,
and R0 its body.

—Fail is a rule.

Free and bound variables are defined as usual, with let as the only variable-
binding operator. Specifically, in let x1 = t1, . . . , xk = tk in R0 endlet, the ex-
hibited occurrences of the xi’s and all their occurrences in R0 are bound. An ASM
program is a rule with no free variables.

Remark 3.3. If a variable xi of a let rule let x1 = t1, . . . , xk = tk in R0 endlet
occurs in a binding tj , then (whether or not i = j) these occurrences are free in
the rule. This situation would be excluded if we adopted the convention that no
variable can have both free and bound occurrences in a rule and that no variable
can be bound twice in a rule. This convention, analogous to a convention often
made in first-order logic, is sometimes convenient, but we shall have no need for it
here.

Remark 3.4. Other versions of ASM notation, for example in [AsmL] and [Gure-
vich 1995], avoid the need for end-markers like endif and enddo by using conven-
tions about indentation of lines in programs. We do not impose such conventions
here, so some markers are needed to ensure unique parsing. Readers are free to
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 13

adopt other marking systems; outside this remark, we shall pay no attention to this
issue.

Remark 3.5. Previous definitions of ASMs have not included the rule Fail. We
have added it in order to be able to simulate, with ASMs, algorithms that may
fail, i.e., that may have τ(X, α) undefined for certain states X and contexts α. In
almost all situations, we can do without Fail. Indeed, the semantics for ASMs,
defined below, makes an algorithm fail if it attempts two conflicting updates. Thus,
if the vocabulary Υ contains a nullary, dynamic symbol d, then

do in parallel d := true, d := false enddo

is equivalent to Fail. If there is no such d but there is a dynamic f of higher
arity, then there is a similar replacement for Fail, using, say, f(true, . . . , true)
instead of d. So the only time we really need Fail is when we are dealing with a
vocabulary having no dynamic symbols. Such a situation may seem strange, but
it is not entirely silly. An algorithm without dynamic symbols cannot update its
state, but it can still interact with its environment by asking queries.

4. QUERIES AND TEMPLATES

4.1 Interaction via external functions

In this section, we prepare for the definition of the semantics of ASMs by discussing
the main aspect not already treated in [Gurevich 1995; 2000], namely the interaction
with the environment. Our ASMs interact with the environment by means of
external functions and output rules. We treat the case of external functions first
and afterward deal with outputs.

The basic idea here is simply that when the execution of an ASM program needs
the value of a term f(t1, . . . , tn) that begins with an external function symbol f , it
first evaluates the subterms ti, obtaining values ai, and then sends a query asking
the environment for the value of f(a1, . . . , an).

An important question that is not resolved by this basic idea is what to do if the
same external function f occurs several times in the program and its arguments get,
during the execution of the program, the same values at several of these occurrences.
Much of this section is devoted to this question. Another question that we must
address is what the queries actually are. Recall from our definition of algorithms
that a query is a tuple of elements from the disjoint union of the (base set of the)
state X and the fixed set Λ of labels. How, exactly, is a query of this sort to be
assigned to the request for the value of f(a1, . . . , an)?

The simplest answer to this last question would be that the query is 〈f, a1, . . . , an〉,
where we have included all the external function symbols f among the labels (i.e.,
E ⊆ Λ) so that this is a legitimate query.

Unfortunately, there are two problems with this answer. The first is that it
pre-judges the question of how to treat repeated occurrences of the same external
function symbol with the same values for its arguments. In such a situation, the
query 〈f, a1, . . . , an〉 would be the same for all the occurrences. Any reply to this
query, given by an answer function, would be used as the value of f at all these oc-
currences. In effect, this means that, no matter how often f occurs with arguments
a, only one query is issued; the answer to this query is remembered and used at all

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

14 · A. Blass and Y. Gurevich

occurrences. This is a reasonable convention, and in fact we shall adopt it, but the
adoption should and will be based on a serious consideration of alternatives, not
merely on an arbitrary decision about the representation of queries.

A second and even more serious problem with the 〈f, a1, . . . , an〉 representation
of queries is that, under this convention, not all ordinary algorithms (in the sense
defined in Section 2) are equivalent to ASMs. An ASM operating under this con-
vention would issue only queries of the special form 〈f, a1, . . . , an〉 in which a label
from Λ occurs in the first position and elements of the state occur in all subsequent
positions (and similar queries resulting from output rules). Any algorithm issuing
queries of a more general form, say with several components from Λ, would not be
equivalent to an ASM, because equivalence of algorithms requires them to issue the
same queries under the same circumstances. Thus, our main goal in defining ASMs,
namely to model all ordinary, small-step algorithms, cannot be achieved under the
〈f, a1, . . . , an〉 convention.

Most of this section will be devoted to the solution of the problems just indicated.
A final subsection will extend the discussion to output rules.

Remark 4.1. The decision in [Blass and Gurevich 2006] to allow queries of a
rather general form, rather than the special form 〈f, a1, . . . , an〉, has motivation in
actual practice. Queries frequently look like

〈print file x on printer y at resolution z〉
or

〈insert x at position y in file z〉,
where the labels (everything but x, y, z) are spread throughout the query, not con-
fined to the first position.

4.2 Templates

As indicated above, in order to simulate all ordinary algorithms, our ASMs must be
able to ask queries of the same general form allowed in these algorithms, arbitrary
tuples of elements from X t Λ; see Definition 2.2. These queries must, for the
most part, result from the evaluation of external functions, since the other sort of
interaction in our ASMs, via output rules, produces only queries of the trivial sort
for which no reply is used by the algorithm. (As discussed in [Blass and Gurevich
2006, Section 2], such a query is regarded as having an automatic, uninformative
“OK” as its reply.)

A minimal modification of the simple 〈f, a1, . . . , an〉 proposal above is to assign
to each n-ary external function symbol f (or to each occurrence of such a symbol)
what we shall call a template, a tuple consisting of labels from Λ and place-holders
#1, . . . , #n for the arguments of f . The query asking for the value of f(a1, . . . , an)
is then obtained by replacing each #i in the template by ai. This approach provides
the necessary flexibility in the format of the queries issued by an ASM. Further-
more, by attaching templates to occurrences of external function symbols rather
than to the symbols themselves, we can accommodate the possibility that different
occurrences of the same f with the same arguments a produce different queries.

Remark 4.2. Our use of templates may seem too simplistic in that all the Λ
components of a query are determined by the (occurrence of the) function symbol
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 15

and all the X components of the query are the arguments of the function. Why
couldn’t some Λ components be determined by the arguments, and why couldn’t
some of the X components be determined by the function symbol?

An easy answer is that this extra complexity is not needed. Our approach is, as
we shall prove in [Blass and Gurevich to appear (b)], adequate to provide ASMs
equivalent to all ordinary algorithms.

Furthermore, deviations from our approach lead to intuitively unnatural situa-
tions. For example, suppose a Λ component of the query is to be determined by
the arguments. That would involve a (possibly small but non-vacuous) computa-
tion, to determine which element of Λ corresponds to a given argument tuple. If
such a computation is to be done, it would be better to include it explicitly in
the program, rather than hiding it in the conversion of external function calls to
queries. Our approach makes this conversion trivial: take the template and plug in
the arguments.

A similar comment applies to the idea of having an X component of the query
determined by the function symbol rather than by the arguments. If the component
in question is specified as the value of some term, then the production of the query
hides the task of evaluating that term.

Finally, if one tries to specify a component a ∈ X of the query directly, rather
than as the value of a term, then in order to satisfy the Isomorphism Postulate,
there would have to be such a specification for every state (or at least every state
isomorphic to X). That would be, in effect, interpreting (as a) a hidden constant
symbol, not present in Υ but nevertheless available in the computation.

Definition 4.3. For a fixed label set Λ, a template for n-ary function symbols is
any tuple in which certain positions are filled with labels from Λ while the rest are
filled with the placeholders #1, . . . , #n, occurring once2 each. We assume that these
placeholders are distinct from all the other symbols under discussion (Υ ∪ E ∪ Λ).
If t is a template for n-ary functions, then we write t[a1, . . . , an] for the result of
replacing each placeholder #i in t by the corresponding ai.

The intended meaning of a template is a format for queries about n-ary external
functions. The query for f(a1, . . . , an) using template t is obtained from t by
replacing each of the placeholders #i with the corresponding ai. Thus, the template
tells, for each position in the resulting query, whether it should contain a label or
an element of the state; if it should contain a label, then the template specifies the
label; if it should contain an element of the state, then the template specifies (using
one of the placeholders) which argument of the external function should be there.

In the following subsections, we shall discuss various possible conventions gov-
erning whether the same query can result from several occurrences of an external
function symbol in an ASM program. In this discussion, it will be useful to have
a short way to say that two template assignments could, given appropriate values
for the arguments, produce the same query. That is the reason for the following
terminology.

2In principle, we could allow templates in which the same placeholder occurs several times. That
would complicate the definition of “collide” below (if it is to retain its intuitive meaning), and it
would not increase the expressive power of ASMs.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

16 · A. Blass and Y. Gurevich

Definition 4.4. Two templates collide if they have the same length and have
the same labels from Λ in the same positions. That is, they differ at most by a
permutation of the placeholders #i.

It is clear that two templates collide if and only if it is possible to produce the
same query by replacing their placeholders #i by elements of a state (possibly
different replacements for the two templates).

We now turn to the discussion of various conventions for the variability of queries
associated to the same external function symbol with the same values for its argu-
ments.

4.3 No variation — the Lipari convention

We consider first the convention used in the Lipari guide, [Gurevich 1995, Sec-
tion 3.3.2], where it was formulated as follows: “[T]he oracle should be consistent
during the execution of any one step of the program. In an implementation, this
may be achieved by not reiterating the same question during a one-step execution.
Ask the question once and, if necessary, save the result and reuse it.”

In our present context, this means the following. Suppose an ASM program con-
tains several occurrences of terms f(t) that begin with the same external function
symbol f (but may involve different tuples t of argument terms). Suppose further
that, when the ASM program is executed in a particular state X with a particular
answer function, the values of these argument terms are, at all the occurrences
under consideration, the same tuple a of elements of X. Then only a single query
is produced by the evaluation of all these occurrences. The environment’s reply to
this query is used as the value of all these subterms f(t).

Another way to express this Lipari convention is that the same template is used
at all occurrences of any one external function symbol. That is, we assign templates
to external function symbols, not to their occurrences.

Notice that, for an ASM program to describe an algorithm, it must be accompa-
nied by a template assignment, telling how to produce the queries that correspond
to external function calls. The Lipari convention facilitates the syntactic descrip-
tion of the template assignment. One can simply append to an ASM program a
table of its external function symbols and their associated templates.

The Lipari convention has, however, a serious disadvantage: In practice, one
needs external functions whose value can be different for different occurrences within
the same step of a computation. A typical example is the nullary external function
symbol new, whose intended interpretation is an element chosen from the reserve
(to be imported as a new element of the active part of the state; see [Gurevich 1995,
Section 3.2] for information about reserve and importing, although new is not used
there). The essential property of new is that it produces a different value each time
it is evaluated. This directly contradicts the Lipari convention.

Also for other external function symbols, it frequently happens in practice that
the value of such a function at a certain argument tuple changes during a step
of the computation. For example, in a distributed computation, each agent can
be regarded as an algorithm whose environment includes all the other agents. If
an agent reads a value written by another agent, then this amounts to obtaining
the value of an external function of the reading agent. Because the agents work
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 17

asynchronously, such a value may well change in the middle of the reading agent’s
step. It may even change several times during one step, if the writing agent works
faster than the reading agent. (For simplicity we assume here that reads and writes
are atomic and thus non-interfering operations.)

Such behavior can, however, be modeled within the Lipari convention, namely by
replacing the various occurrences of such a “varying” external function symbol with
different function symbols, perhaps by attaching subscripts or otherwise tagging
them. Then one has a separate template for each of the new external function
symbols. For the sake of human readability, it may be useful to precede such
a modified ASM program with a preamble telling which of the external function
symbols in the program correspond to which of the “intended” (untagged) symbols.

Remark 4.5. In fact, for the purpose of writing actual programs under the Li-
pari convention, it seems useful to automate the subscripting process by introducing
syntactic sugar of the following sort. Allow the preamble to say that certain ex-
ternal function symbols (like new) are “vary-query,” which means that the query
to be issued varies every time the function symbol is evaluated. That is, each oc-
currence of such a symbol in the program is to be regarded as a different function
symbol. The compiler should automatically attach different subscripts to all these
occurrences. There would have to also be a convention for assigning templates to
these subscripted symbols. For example, one could specify, for each vary-query
function symbol, a template with one component left blank; then the subscripts
could be automatically filled in for the blank components to form the templates for
the subscripted function symbols.

As another practical matter, it may be useful to adopt a default convention for
template assignments. In the case of a (non-vary-query) external, n-ary function
symbol f , a reasonable default would be the template 〈f, #1, . . . , #n〉. For an
output label l the default could be 〈l, #1〉. Then only deviations from these defaults
would have to be explicitly indicated along with the program.

Alternatively, the traditional way of writing function symbols before their argu-
ments could be augmented by notations that make the query explicit, as mentioned
in Remark 4.1. That is, instead of function symbols, one would use the templates
themselves, and the arguments would be written in place of the placeholders #i.

4.4 Mandatory variation — the must-vary convention

At the opposite extreme from the Lipari convention is the must-vary convention.
Under this convention, reflecting the treatment of procedure calls and new object
creation in current standard programming practice, all occurrences of external func-
tion symbols are required to produce distinct queries. This means that templates
must be assigned not to the external function symbols but to their occurrences in
the program. Furthermore, the assignment must be such that there is no possibility
of issuing the same query from different places in the program. This means that, if
two of the assigned templates collide, then either at most one of them is actually
used in the execution of the program (for example if the relevant occurrences are
on different branches of a conditional rule) or the values of the arguments must be
such that the resulting queries differ. In general, this requirement is an undecid-
able, run-time property of the program, but one can ensure it with fairly simple

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

18 · A. Blass and Y. Gurevich

syntactic requirements. For example, one can require that, if two occurrences have
colliding templates and are not in different branches of any conditional rule, then
they must occur within the scope of guards that guarantee enough distinctness of
the arguments to make the queries distinct. Nevertheless, the requirements on the
templates are fairly complicated.

It is also a bit complicated to describe the template assignment syntactically. If
we wanted to append it as a table, just as we did for the Lipari convention, then
we would have to indicate, in each row of the table, not just an external function
symbol but a specific occurrence of such a symbol, for example by indicating its
location in the program. Alternatively, we could write each template into the
program, immediately after the relevant occurrence of an external function symbol.
Both approaches work, but neither is as simple as the table available under the
Lipari convention.

The main advantage of the must-vary convention is that it easily and automat-
ically handles external function symbols like new whose values must change, and
other external function symbols whose values may change, in mid-step. In view of
the relevance of such behavior to distributed computation, one may expect that the
must-vary convention will be useful for modeling distributed systems.

The question arises whether this convention can also handle the situation where
only one query should be issued despite repeated occurrences in the program. That
is, can it simulate the Lipari convention? In many cases, it can, by using let. For
a simple example, consider the program

do in parallel
a := e, b := f(e, e)

enddo

in which e is external and the other function symbols are internal. Under the
must-vary convention, this would issue three queries about e, possibly getting three
different values. But the Lipari convention’s interpretation of this program, where
all three e’s necessarily get the same value, can be simulated under the must-vary
convention by the program

let x := e in
do in parallel

a := x, b := f(x, x)
enddo

endlet

Thanks to let, this program mentions e only once, so there is just one query about
e.

Unfortunately, let does not suffice to handle all patterns of repeated use of the
result of a single query. Consider, for example, the following scenario.

—An algorithm begins by issuing two queries, say q and q′.
—After receiving any reply r to q, it computes (without waiting for a reply to q′)

two things that depend on r, say f1(r) and f2(r) and issues new queries that
depend on these.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 19

—Similarly, after receiving any reply r′ to q′, it computes (without waiting for a
reply to q) f1(r′) and f2(r′) and issues new queries that depend on these.

—Finally, if it gets answers to both q and q′, then it uses them to compute some
g(r, r′) and issues a query that depends on this.

We can simulate the first part of this, the part that uses only r, with a rule that
begins let x = e in . . . , where e is an external function symbol producing the
query q. Similarly, the part involving only r′ can be handled by let x′ = e′ in
. . . . But the computation of g(r, r′) would require the program to have g(x, x′)
in the scope of both occurrences of let. That could be achieved only by nesting
the two occurrences or by combining them into let x = e, x′ = e′ in Either
way, at least one of the two earlier parts, either the r part or the r′ part, will not
be executed until after both q and q′ are answered. So the causality relation of
the ASM is inequivalent to that of the given algorithm and thus the ASM is not
behaviorally equivalent to the given algorithm. (See, however, the discussion of “let
by name” in [Blass and Gurevich to appear (b), Section 7].)

Because of such difficulties, we do not adopt the must-vary convention in this
paper.

4.5 Flexible variation

Having treated the two extremes, the Lipari and must-vary conventions, we now
consider a compromise, namely to put no a priori constraints on the interpretation
of multiple occurrences of an external function symbol with the same argument
values. This flexible convention allows the programmer to decide, in any ASM
program, which occurrences of an external function symbol should be allowed to
produce the same query (if the arguments agree) and which occurrences should be
required to produce distinct queries. More precisely, we allow an ASM program
to be accompanied by any assignment of templates to the occurrences of external
function symbols. There are no restrictions concerning equality or collisions of the
templates assigned to different occurrences.

This convention has the advantage that it can clearly simulate anything that
either of the previous conventions can produce.

Its main disadvantage is that, like the must-vary convention, it makes it awkward
to write the template assignment syntactically. Probably the cleanest syntax is to
put the desired template immediately after any occurrence of an external function
symbol. Notice that in this situation the external function symbols have very little
significance; one could erase them, leaving only the templates, and the execution
of the program would be unaffected. In fact, this syntax practically brings us back
to the Lipari convention, with the templates here playing the role of the external
function symbols there.

4.6 Reduction to the Lipari convention

In view of this consideration, we shall use in this paper the Lipari convention. A
reader who prefers the flexible convention can pretend that our external function
symbols are his templates and our template assignments are simply the identity
map on templates. What, in our picture, corresponds to such a reader’s external
function symbols? Nothing. And this causes no problem, because his external

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

20 · A. Blass and Y. Gurevich

function symbols play no role in the execution of a program; only the templates are
relevant.

4.7 Different external functions

In the preceding subsections, we discussed conventions for interpreting multiple
occurrences of the same external function symbol. We did not discuss occurrences
of different function symbols. Could they produce the same query? That is, could
they be assigned the same template or colliding templates? Intuitively, it seems
that the answer should be no, but fortunately it is not necessary to decide this
issue.

On the one hand, we shall define the semantics of ASMs in enough generality
to cover even the “strange” template assignments where different external function
symbols are assigned colliding templates. In fact, the semantics of such an ASM will
be the same as for the ASM obtained by (1) replacing any symbols with colliding
templates by a single symbol and (2) permuting the arguments of these symbols to
match the permutations of the #i’s involved in the definition of colliding templates.
For instance, if f is assigned the template (l1, #1, l2, #2, #3) and g is assigned the
template (l1,#2, l2, #3,#1), then g(x, y, z) can be replaced with f(y, z, x).3

On the other hand, when we prove that every ordinary algorithm is equivalent
to an ASM, we shall not use such strange template assignments.

Thus, all our work will make sense whether or not one allows these strange
template assignments.

4.8 Outputs

Most of the preceding discussion of external function symbols also applies, with
trivial changes, to output rules. The execution of Outputl(t) should produce a
query that contains, as one of its components, the value of t. The other compo-
nents should be labels, determined by l (Lipari convention) or by the particular
occurrence of Outputl (flexible convention), in the latter case possibly subject to a
non-collision constraint (must-vary convention). The advantages and disadvantages
of the various conventions are analogous to those already discussed for external
functions.

One difference between the output situation and the external function situation
is that we could, if we wanted, insist on the simplest form for the output queries,
namely 〈l, a〉 where a is the value of t. This is a very strong form of the Lipari
convention. In the case of external functions, we could not insist on the analogous
form 〈f,a〉, because we needed ASMs to be able to produce queries of the general
form permitted by Definition 2.2. We don’t need to match these general queries
with output rules, simply because our construction of an ASM equivalent to any
given ordinary algorithm will not use output rules at all.

We shall not avail ourselves of the option of insisting on the 〈l, a〉 form for the

3Had we allowed repetitions of placeholders in our templates, eliminating collisions would in-
volve increasing the arities of function symbols. For instance, if f is assigned the template
(l1, #1, l2, #2, #1) and g is assigned the template (l1, #2, l2, #2, #1), then we would want to
introduce an external function symbol h with template (l1, #1, l2, #2, #3), so that f(x, y) can be
replaced with h(x, y, x) and g(x, y) can be replaced with h(y, y, x).

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 21

queries produced by output rules. Instead we shall, for the sake of uniformity,
adopt for output rules the same Lipari convention already adopted for external
function symbols. Each of the output channels is to be assigned a template for
unary functions; the query produced by Outputl(t) will be the result of substituting
the value a of t for the (unique) placeholder #1 in the template associated to l.

As before, we do not insist that the templates assigned to output channels are
distinct from each other or from those assigned to unary external function symbols,
even though such a constraint seems intuitively justified. Our results in this paper
apply equally well with or without this constraint. (Notice, by the way, that two
templates for unary functions collide if and only if they are equal.)

5. ABSTRACT STATE MACHINES — SEMANTICS

5.1 General features of ASM semantics

The semantics of ASMs will be defined by associating to each ASM an ordinary
algorithm. As a first step, we must say exactly what an (ordinary) ASM is; it is
more than just a program.

Definition 5.1. An ordinary ASM with the finite vocabulary Υ and the finite
label set Λ consists of

—an ASM program using vocabulary Υ together with some vocabulary E of exter-
nal function symbols and some set of output labels,

—a template assignment, i.e, a function assigning
—to each n-ary external function symbol f a template f̂ for n-ary functions and
—to each output label l a template l̂ for unary functions,
where the templates use labels from Λ,

—a nonempty set S of Υ-structures called the states of the ASM, such that S
is closed under isomorphisms and under the transition functions to be defined
below, and

—a nonempty isomorphism-closed subset I ⊆ S of states called the initial states
of the ASM.

This definition incorporates the Lipari convention discussed in Section 4, because
templates are assigned to external function symbols and to output labels, not to
their occurrences in the program.

According to this definition, an ASM trivially satisfies the States Postulate and
the first two parts (dealing with states and initial states) of the Isomorphism Postu-
late. We shall define, for any ASM, the causality relations `X , the update function
∆+, and the failure conditions in such a way as to satisfy the remaining postulates
for algorithms. Once the definitions are given, the Interaction, Update, and Iso-
morphism Postulates will clearly be satisfied, but the Bounded Work Postulate will
require verification.

Our definitions of `X , ∆+, and failure will be formulated as though all Υ-
structures were states. To get the definitions for the actual family S of states,
we need only restrict `X , ∆+(X, α), and the failure criterion to the situation where
X ∈ S.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

22 · A. Blass and Y. Gurevich

Our definition of the algorithm associated to an ASM will proceed by recursion
on the syntactic structure of the program. This has two consequences that should
be observed before we begin the definition.

First, although a program has, by definition, no free variables, the subrules from
which it is constructed may well have free variables. So we need to associate
algorithms not only to programs but to arbitrary rules. If a rule R has free variables
among v1, . . . , vk, then its interpretation involves not only an Υ-structure X but
also values for the variables vi. It will be convenient to accommodate this situation
by regarding these n values as the values of n new constant (i.e. static nullary)
symbols, one for each vi. We shall use v̇ for the constant symbol associated to a
variable v. Thus, we expand the vocabulary Υ by adding the constant symbols
v̇1, . . . , v̇n, and we interpret R in any structure for this expanded vocabulary by
using the value of v̇i as the value of vi.

Remark 5.2. It is tempting to ignore the distinction between the variable vi and
the constant symbol v̇i. In fact, we chose the dot notation because dots are easier
to ignore than most other symbols. Nevertheless, one should be somewhat careful
if one wants to ignore the distinction entirely. At the very least, one should then
insist that no variable occur both free and bound and that no variable be bound
twice in a rule.

The second consequence of building algorithms by recursion on the syntactic
structure of an ASM is that, to start the recursion, before even getting to rules,
we must define the semantics of terms. Since terms can contain external function
symbols, their evaluation can involve the issuance of queries. We shall describe
this by associating to each term and each state a causality relation, just as in the
Interaction Postulate. Notions of context, reachability, and well-foundedness can
be derived from these causality relations exactly as from the causality relations
attached to algorithms. The semantics of terms will thus be quite analogous to
that of rules; the difference is that in place of an update set and possible failure,
what is associated to a term in a state and context is a value, an element of the
state.

5.2 Semantics of terms

In view of the preceding discussion, we intend to define the following for any term
t with free variables among v = v1, . . . , vn and any Υ ∪ v̇-structure X:

—a causality relation `t
X between finite answer functions and potential queries,

—for any context α, a value Val(t,X, α).

If we think of the semantics of a term as being analogous to an algorithm, but with
Val replacing ∆+ (and with no mention of failures), then what we have said so far
amounts to a promise to satisfy the analogs of the States, Interaction, and Update
Postulates. (In the States Postulate, we have Υ∪ v̇ in place of Υ, and all structures
count as initial states.) In fact, we shall also satisfy the analogs of the remaining
postulates. For the Isomorphism Postulate, this means:

Isomorphism Postulate for Terms:

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 23

—Any isomorphism i : X ∼= Y of states preserves causality, i.e., if ξ `t
X q then

i ◦ ξ ◦ i−1 `t
Y i(q).

—If i : X ∼= Y is an isomorphism of states and if α is a context for X, then
Val(t, X, α) = Val(t, Y, i ◦ α ◦ i−1).

For the Bounded Work Postulate, it means:

Bounded Work Postulate for Terms: There are uniform bounds for the
cardinalities of the contexts and the lengths of the queries that occur in them.
Furthermore, there is a bounded exploration witness, i.e., a finite set W of terms
with the following properties. Assume X and X ′ are states that agree for W over
an answer function α. If α `t

X q, then also α `t
X′ q. If α is a context for X, then

Val(t, X, α) = Val(t,X ′, α).

It will be convenient to normalize our bounded exploration witnesses to have the
following additional properties.

—W contains a variable.
—W is closed under subterms.
—The bounded exploration witness for a term t contains the variant of t obtained

by replacing its variables v by the associated constants v̇ and replacing subterms
that begin with external function symbols with new, distinct variables.

We shall also arrange for our causality relations — both for terms and for rules
— to be clean in the following sense.

Definition 5.3. A causality relation ` is clean if its domain consists only of well-
founded functions.

Remark 5.4. The technical value of working with clean causality relations will
become clear in the proofs given below, but the intuitive value can be easily ex-
plained by considering the simplest example of an unclean causality relation. This
relation ` has only a single instance, {(q, r)} ` q′. It says that q′ is to be issued if
the answer r has been received for the query q, but it provides no way for q to be
issued in the first place. Thus, the unique context for this ` is the empty function;
an algorithm or term having this causality relation (in some state) will issue no
queries.

Suppose, however, that such a term or algorithm is being used in parallel with
another (for instance if the term is one of the ti in f(t1, . . . , tn) and is therefore
being evaluated in parallel with the other tj ’s). And suppose one of those other
computations produces the query q and the environment answers with r. Then
the causality relation ` would result in the issuance of q′. That is, our term or
algorithm is not operating independently of the others but is producing a query q′

on the basis of the answer r to their query q.
Notice that the problem arises from the uncleanness of `. The cause {(q, r)} is

not well-founded because it uses q without providing a cause for q to be issued.
(More formally, this cause ξ has q ∈ Dom(ξ) but q /∈ Γξ

∞ = ∅.) For a clean
causality relation, the only causes that could lead to a query (like q′) would also

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

24 · A. Blass and Y. Gurevich

explain how the term or algorithm itself (rather than some other parallel process)
came to issue all the queries involved in the cause.

This completes our discussion of the requirements to be satisfied by our semantics
of terms. We now present the semantics itself. As already mentioned, we proceed
by recursion on the structure of the terms.

For a variable v, the causality relation `v
X is empty and the value Val(v, X, α) is

simply the value assigned by the structure X to v̇. The Isomorphism and Bounded
Work Postulates are clearly satisfied, with ∅ being the only context and with
{v̇} serving as the bounded exploration witness. The requirement of cleanness is
vacuously satisfied.

Consider next a term t of the form f(t1, . . . , tn) where f ∈ Υ. As always, we
write v for a list of variables that includes all the variables of t and v̇ for the
associated constants. Since v includes all the variables of each ti, the corresponding
causality relations and values can be taken as already defined and satisfying all our
requirements. Let us write `i to abbreviate `ti , and let us write ` for the causality
relation `t that we must define for t. (Here and in much of the following, we suppress
mention of X when only a single state is under consideration.) The definition is
very simple; we just take the union of the `i. That is, ξ ` q if and only if ξ `i q for
some i.

This clearly satisfies the part of the Isomorphism Postulate referring to causality.
As for the Bounded Work Postulate, we take as our bounded exploration witness W
the union of the witnesses for the ti augmented by the variant of t itself described
in the last part of our normalization of bounded exploration witnesses. (The aug-
mentation is needed only for the sake of the normalization.) It is clear that this
choice of W behaves as required with respect to causality. The part of the Bounded
Work Postulate concerning the number and length of queries is also satisfied, as
will become clear once we determine, in Lemma 5.6 below, what the contexts are.

Lemma 5.5. If all the `i are clean, then so is their union `.
Proof Let us write Γξ and (Γi)ξ for the Γ operators associated, as in Section 2, to
the answer function ξ and the causality relations ` and `i, respectively. Notice that
Γξ(Z) =

⋃
i(Γi)ξ(Z) for any set Z. In particular, for each i, we have (Γi)ξ(Z) ⊆

Γξ(Z) and therefore (Γi)ξ
∞ ⊆ Γξ

∞.
Now suppose ξ ` q. So for some i, ξ `i q. As `i is clean, ξ is well-founded with

respect to `i. So we have Dom(ξ) ⊆ (Γi)ξ
∞ ⊆ Γξ

∞, as required. ¤
Before defining the values Val(t,X, α), we need to know what the contexts α are.

The following lemma gives the answer; its proof is the main reason for requiring
our causality relations to be clean. The reader may want to check that the unclean
example in Remark 5.4 would violate the conclusion of this lemma.

Lemma 5.6. Let ` be the union of the clean causality relations `i. Then an
answer function α is a context for ` if and only if it is the union of subfunctions
αi that are contexts for the respective `i’s. Furthermore, these subfunctions are
uniquely determined.

Proof Suppose first that α =
⋃

i αi, where each αi is a context for the correspond-
ing `i. This means that, in the notation of the preceding proof, Dom(αi) = (Γi)αi

∞.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 25

As a result, we have

Dom(α) =
⋃

i

Dom(αi) =
⋃

i

(Γi)αi

∞ ⊆
⋃

i

(Γi)α
∞ ⊆ Γα

∞.

Here, the first inclusion comes from the fact that each αi ⊆ α and the second was
established in the preceding proof. To finish the proof that α is a context, it suffices,
by Lemma 2.18, to prove the reverse inclusion,

Γα
∞ ⊆

⋃

i

(Γi)αi

∞ = Dom(α).

Suppose, toward a contradiction, that there are elements q ∈ Γα
∞ that are not in

(Γi)αi

∞ for any i. Choose such a q that is in Γα
n+1 for as small an n as possible.

(Remember that Γ0 = ∅ always, so it is correct to write the exponent as n + 1.)
So q ∈ Γα(Γα

n), which means that there is ξ ⊆ α ¹ Γα
n such that ξ ` q. Fix such

a ξ and, in view of the definition of `, fix i such that ξ `i q. Because `i is clean,
ξ is well-founded with respect to it, and by Lemma 2.23, since both ξ and αi are
restrictions of α, it follows that ξ ⊆ αi. So we have

Dom(ξ) ⊆ (Γi)ξ
∞ ⊆ (Γi)αi

∞
.

But then

q ∈ (Γi)αi((Γi)αi

∞) = (Γi)αi

∞
,

contrary to our choice of q. This completes the proof that
⋃

i αi is a context for `.
It remains to prove that every context for ` is of this form and that the relevant
αi are unique.

Let α be any context for `. Then for each i we have

(Γi)α
∞ ⊆ Γα

∞ = Dom(α).

According to Lemma 2.18, the subfunction αi defined by restricting α to (Γi)α
∞

is a context for `i. Since α ⊇ ⋃
i αi, it remains only to prove that this inclusion

is in fact an equality. But both sides of the inclusion are contexts for `, the left
side by assumption and the right side by the part of the lemma already proved. By
Lemma 2.18, these two contexts cannot be distinct.

Finally, the uniqueness of the αi follows immediately from Lemma 2.18. ¤
Observe that, as promised earlier, the lemma’s characterization of contexts imme-

diately implies that the number and length of the queries in a context are bounded,
as required by the Bounded Work Postulate, provided this was so for the `i’s.

Lemma 5.6 also enables us to complete the definition of the semantics for terms
t of the form f(t1, . . . , tn) with f ∈ Υ by defining Val(t,X, α) whenever α is a
context for ` in the state X. By the lemma, α is the union of uniquely determined
contexts αi for the causality relations `i associated in state X with the terms ti.
So we can define

Val(t,X, α) = fX(Val(t1, X, α1), . . . Val(tn, X, αn)).

It is clear that this definition satisfies the Isomorphism Postulate and the Bounded
Work Postulate, using the same bounded exploration witness W that we used for
the causality relation.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

26 · A. Blass and Y. Gurevich

It remains to define the semantics of terms t of the form f(t1, . . . , tn) where f is
an external function symbol. We begin with the causality relation. The idea here
is to proceed first just as in the case where f ∈ Υ, obtaining a causality relation
whose contexts suffice to provide values ai for all the terms ti. Then, in contrast to
the previous case, one further query is needed to obtain the value of f(a1, . . . , an)
(previously provided, in fX , by the state X).

Given the causality relations `i associated to the subterms ti in state X, let `′
be their union. Our discussion in the preceding case, where the term t began with
a function symbol from Υ and where this union was the desired causality relation
for t, shows that `′ is clean and satisfies the relevant parts of the Isomorphism and
Bounded Work Postulates. Since our present t begins with an external function
symbol f , the required causality relation ` is a bit larger than `′, for it must also
produce the final query, asking for the appropriate value of f . Specifically, we define

` = `′ ∪ `′′,
where ξ `′′ q means the following: First ξ is required to be a context for `′.
According to Lemma 5.6, ξ =

⋃
i ξi for uniquely determined contexts ξi for `i. Let

ai = Val(ti, X, ξi). Then q is required to be f̂ [a1, . . . , an]. (Recall that the square-
bracket notation here means to substitute the elements ai for the placeholders #i
in the template f̂ that the ASM assigns to the symbol f .)

The causality part of the Isomorphism Postulate is clearly satisfied by `. Using
the same bounded exploration witness W as for `′, we see that it behaves properly
also with respect to `. This uses the fact that W contains a variable so that the
environment’s reply to the new query f̂ [a1, . . . , an] will be the same in the two states
X and X ′ considered in the Bounded Work Postulate. The rest of the Bounded
Work Postulate will be verified after we describe the contexts and define Val.

First, however, we check that ` is clean. Note that if ξ ` q then either ξ `′ q in
which case ξ is well-founded for `′ since `′ is clean, or else ξ `′′ q in which case ξ is
a context for `′. Since contexts are always well-founded (as is clear by inspection
of the definitions), we have, in either case, that ξ is well-founded with respect to
`′. As `′ ⊆ `, it follows that (with Γ′ and Γ associated to `′ and `)

Dom(ξ) ⊆ Γ′ξ
∞ ⊆ Γξ

∞,

and so ξ is well-founded also with respect to `.
As before, we need to know what the contexts for ` look like before we can

reasonably discuss the value assigned to t in a context. Recall that we already
know, from Lemma 5.6, what the contexts ξ for `′ look like; they are the unions of
contexts ξi, one for each `i.

Consider now an arbitrary context α for `. We have (with notation as above)

Dom(α) = Γα
∞ ⊇ Γ′α

∞
,

and so, by Lemma 2.18, there is a unique subfunction of α that is a context for
`′, namely ξ = α ¹ Γ′α

∞. So ξ =
⋃

i ξi for unique contexts ξi for `i. Let ai =
Val(ti, X, ξi) and let q be the query f̂ [a1, . . . , an]. So ξ ` q and therefore

q ∈ Γα(Γ′α
∞) ⊆ Γα(Γα

∞) = Γα
∞ = Dom(α).

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 27

So α includes ξ ∪ {(q, r)} for some reply r. We shall show that Dom(ξ ∪ {(q, r)}) is
closed under Γα. Then it follows that

Dom(α) = Γα
∞ ⊆ Dom(ξ ∪ {(q, r)}) ⊆ Dom(α)

and therefore α = ξ ∪ {(q, r)}.
To verify the claim about being closed, suppose

q′ ∈ Γα(Dom(ξ ∪ {(q, r)})) = Γα(Dom(ξ) ∪ {q}).
So there is β ⊆ ξ ∪ {(q, r)} such that β ` q′. There are now two cases to consider.

Suppose first that β `′′ q′. Then, by definition of `′′, β must be a context for `′.
But ξ is the unique such context that is a subfunction of α, so β = ξ. Then it follows,
by inspection of the definitions, that q′ = q and in particular q′ ∈ Dom(ξ∪{(q, r)}),
as desired.

The other possibility is that β `′ q′. If β ⊆ ξ then, since ξ is a context for
`′, we have q′ ∈ Γ′ξ(Dom(ξ)) = Dom(ξ) ⊆ Dom(ξ ∪ {(q, r)}) as required. So we
may assume that q ∈ Dom(β). Since `′ is clean, β is well-founded for `′, and so
q ∈ Γ′β

∞. Let n be the smallest integer such that q ∈ Γ′β
n+1. So β ¹ Γ′β

n ⊆ ξ, and
some subfunction δ of this has δ `′ q′. But then

q ∈ Γ′ξ(Γ
′
β

n) ⊆ Γ′ξ(Γ
′
ξ
∞) = Γ′ξ

∞ = Dom(ξ).

So Dom(β) ⊆ Dom(ξ) ∪ {q} ⊆ Dom(ξ) and we are back in the case treated at the
beginning of this paragraph.

This completes the proof that every context for ` has the form ξ∪{(q, r)} where
ξ is a (uniquely determined) context for `′ and q = f̂ [a1, . . . , an], the ai being the
values of the ti with respect to the (unique) contexts ξi for `i whose union is ξ.

Conversely, every such ξ ∪ {(q, r)} is a context for `. To see this, notice first
that, by the argument given above, Dom(ξ ∪ {(q, r)}) is closed under Γγ for any
γ that includes ξ ∪ {(q, r)}; we choose in particular γ = ξ ∪ {(q, r)}. Since Γγ

∞

is the smallest set closed under Γγ it is included in Dom(γ). By Lemma 2.18,
there is a (unique) α ⊆ γ that is a context for `. By what we already proved,
this context includes a context for `′, which can only be ξ because a single answer
function γ cannot include two different contexts for the same causality relation `′
(see Lemma 2.18). The rest of our analysis of what a context for ` must look like
shows that q ∈ Dom(α). Thus, Dom(γ) = Dom(ξ) ∪ {q} ⊆ Dom(α). Since α ⊆ γ,
we conclude that γ is equal to α, which is a context for `. This completes the proof
that ξ∪{(q, r)} is a context for ` and thus completes our description of all contexts
for `.

Thus, contexts for ` are larger than contexts for `′ by at most one element (q, r),
where q is obtained by instantiating the template f̂ . Since, by induction hypothesis,
the number and length of the queries in a context for `′ are bounded, the same
holds for `, as required by the Bounded Work Postulate.

With the description of contexts available, we are ready to define Val(t,X, α)
when α is a context for the causality relation ` attached to state X and term
t = f(t1, . . . , tn). Since α includes a unique context ξ for `′, which is in turn a
union of unique contexts ξi for the `i (associated to the ti), there are well-defined
elements ai = Val(ti, X, ξi). Furthermore, the query q = f̂ [a1, . . . , an] is in Dom(α).
We define Val(t,X, α) to be α(q).

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

28 · A. Blass and Y. Gurevich

This definition clearly satisfies the Isomorphism Postulate and the Bounded Work
Postulate, using the same bounded exploration witness that we used above for the
causality relation `.

This completes the definition of the semantics of terms, i.e., the associated causal-
ity relations and Val functions, along with the verification of the postulates for terms
and the cleanness of the causality relations.

Remark 5.7. The intention behind the notions of relational symbols and Boolean
variables and terms is that their values (when they exist) should always be true
or false. Unfortunately, the environment may not cooperate with this intention;
it may provide a non-Boolean reply to a query f̂(t) when f is a relational external
function symbol. As indicated in the discussion of failure in [Blass and Gurevich
2006, Section 5], this situation can cause the algorithm to fail. Our definitions of the
semantics of rules will produce failures whenever non-Boolean replies to Boolean
queries cause a problem that prevents the computation from continuing. One such
situation is an attempt to update a relational function to take a non-Boolean value.
This would result in a “next state” that is not really a state because it is not even
a structure; Convention 2.1 requires the values of relational function symbols of Υ
to be true or false. The other such situation is a non-Boolean value for a guard
in a conditional. Here the conditional would no longer make sense.

Our semantic definitions could be modified (at the cost of some additional com-
plexity) to make the algorithm fail whenever the environment gives a non-Boolean
reply to a Boolean query, whether or not it causes such a serious problem that
the computation cannot continue. Alternatively, without changing our semantic
definitions, one can incorporate “fail on all bad replies” behavior into programs, by
using conditionals of the form if ¬Boole(t) then fail else

Note that this whole discussion of non-Boolean replies to Boolean queries would
be irrelevant if no function symbols of the external vocabulary were declared to
be relational. In fact, the proof in [Blass and Gurevich to appear (b)] that all
algorithms are equivalent to ASMs will not require the use of external, relational
function symbols. So the reader will not lose anything essential by (1) pretending
that such symbols are prohibited and (2) therefore ignoring all the clauses, in the
semantics of rules below, that refer to the pathological situation of non-Boolean
replies to Boolean queries.

5.3 Semantics of rules

In this section, we complete the definition of the semantics of ASMs. Given a
rule R, written with state vocabulary Υ and some external vocabulary and output
labels, having free variables among v, and given a template assignment using labels
in Λ, we shall define an algorithm AR with vocabulary Υ ∪ v̇, with label set Λ,
and with all Υ-structures as initial states. As indicated earlier, we can then get the
semantics of an ASM, in whose program, by definition, no free variables occur, as
an algorithm with Υ and Λ, and with the desired sets of states and initial states,
simply by restricting the algorithm to the given states.

Our definition of AR will be by recursion on the structure of R. Although the
algorithm AR depends not only on R but also on the template assignment, we do not
indicate this explicitly in the notation, since the template assignment will remain
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 29

fixed during the recursion. As before, we write f̂ for the template assigned to an
n-ary external function symbol f and we write f̂ [a1, . . . , an] for the query obtained
by replacing the placeholders #i in f̂ by the elements ai of a state. Similarly, l̂ is
the unary template assigned to an output label l, and l̂[a] is the result of replacing
#1 with a.

By recursion on rules R, we shall define the causality relations `X , the failures,
and ∆+. As already mentioned, all structures for Υ ∪ v̇ will serve as states and as
initial states. Here v is a list of variables that includes all the free variables of R
and v̇ is the corresponding list of constant symbols. (Technically, we associate an
algorithm not just to R but rather to R together with a template assignment and a
choice of the list v of variables. Most of the time, these additional parameters can
safely be suppressed.) In each case, the States, Interaction, Update, and Isomor-
phism Postulates will be obviously satisfied. To be more precise about the Update
Postulate, although we shall define only failures and ∆+ explicitly, the transition
function τ required in the Update Postulate can simply be defined by the require-
ments in the postulate itself. Notice that this presupposes the following connection
between updates and failures: If ∆+(X, α) contains two conflicting updates (i.e.,
distinct updates of the same location) then the algorithm must fail in (X, α). Our
definitions of updates and failures will be such that this connection obviously holds.

In each case of our recursion, we shall verify that the causality relation is clean.
Furthermore, we shall establish an explicit description of the contexts, from which
the first two items in the Bounded Work Postulate — bounding the numbers and
lengths of queries in any context — will follow. Finally, we shall present, in each
case, a bounded exploration witness verifying the remaining parts of the Bounded
Work Postulate

Update rules. The intuition here is that an update rule issues just the queries
needed to evaluate the terms that occur in it. Given enough answers from the
environment (a context) to evaluate these terms, it produces the single specified
update. The following definition formalizes this idea.

Let R be an update rule f(t1, . . . , tn) := t0. We define its causality relation, in
any state X, to be the union of the causality relations `i of all the ti (0 ≤ i ≤ n) in
state X. We already considered such unions in our discussion of the semantics of
terms of the form f(t) with f ∈ Υ. The discussion there carries over to the present
situation and establishes that ` is clean and that its contexts are just the unions
of (uniquely determined) contexts for the `i. As before, the bounds on the number
and length of queries in any context follow immediately, since such bounds hold for
the `i.

It remains to define failures and ∆+ for f(t1 . . . , tn) := t0, and this is easy. An
update rule f(t1, . . . , tn) := t0 fails if and only if f is relational but the value of
t0 is not Boolean. (This can happen only if the environment gave a non-Boolean
answer to a query for a relational function symbol.) If it does not fail, then its
update set ∆+(X,α), for a state X and context α, consists of a single update
〈f, 〈a1, . . . , an〉, a0〉, where each ai is the value Val(ti, X, αi) and the functions αi

are the unique contexts for the respective `i whose union is α.
For the bounded exploration witness, it suffices to take the union of the bounded

exploration witnesses assigned to the terms ti. It is then easy to check that the
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

30 · A. Blass and Y. Gurevich

Bounded Work Postulate holds.

Output rules. The intuition is that an output rule first issues enough queries to
evaluate the term occurring as its argument. Once it has enough information from
the environment to evaluate this term, it issues one more query, namely the output
itself. Recall from [Blass and Gurevich 2006, Section 2] that outputs are regarded
as queries that receive an automatic and uninformative answer OK. Here is the
formal definition.

Let R be Outputl(t). The causality relation for R is the union of the causality
relation `′ of t and the relation `′′, where ξ `′ q means the following. First ξ is
required to be a context for `′. Let a = Val(t, X, ξ). Then q is required to be l̂[a].
(Recall that the square-bracket notation here means to substitute a for the unique
placeholder #1 in the template l̂ that the ASM assigns to the output label l. Recall
also that we feel free to omit mention of the state X when it is fixed in a particular
discussion.)

This causality relation is clean, and its contexts are exactly the answer functions
of the form ξ ∪ {(q, r)} where ξ is a context for `′ and q = l̂[Val(t,X, ξ)]. The
proof of this is a slightly simplified version of what we did for the causality function
of a term f(t) when f is an external function symbol. The notations `′ and `′′
are used here just as they were there, so it is easy to transcribe the proof. The
only difference is that in the present situation we can work with ξ directly, while
the previous argument required us to consider the pieces ξi. Thus, the present
argument is a bit simpler, just because the n of the earlier argument is now 1.

Finally, we specify, in agreement with intuition, that an output rule never fails
and that its update set, for any state and context, is empty.

Parallel blocks. A parallel block should issue all the queries and perform all the
updates produced by any of its components. It should fail if either one of its
components fails or two of its components produce conflicting updates. Here is the
formal definition.

Let R be the rule do in parallel R1, . . . , Rn enddo. For each component Ri,
let `i be the associated causality relation and ∆+

i the associated update function.
The causality relation ` for R is defined to be the union of the causality relations `i

of its components. We have already seen, in discussing the semantics of terms f(t)
with f ∈ Υ, that such a union is clean and that its contexts are simply the unions
of contexts for the `i’s. If we take, as in previous such situations, the bounded
exploration witness W to be the union of the bounded exploration witnesses for
the components Ri, then all parts of the Bounded Work Postulate that concern
causality are verified.

To define ∆+ for R, let α be a context, with respect to `, for the state X. So α
is the union of uniquely determined contexts αi for the `i. Define

∆+(X,α) =
n⋃

i=1

∆+
i (X, αi).

This satisfies the ∆+ part of the Bounded Work Postulate with the same W as
above.

Finally, define that R fails in state X and context α if either some Ri fails in X

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 31

and αi or ∆+(X, α) contains two distinct updates of the same location.

Remark 5.8. The parallel block with no components is often denoted by skip.
Taking n = 0 in the previous definition, we find that skip has the expected se-
mantics. Its causality relation is empty; its update set in any state (and with the
unique context ∅) is empty; and it doesn’t fail.

A parallel block R consisting of a single rule R1 is equivalent to R1. The ver-
ification of this fact is by inspection of the definition of parallel block semantics,
with n = 1, keeping in mind that an algorithm that produces conflicting updates
for some (X, α) must fail there. (The issue here is that if R1 produced conflict-
ing updates without failing, then R would rectify this error by failing and would
therefore differ from R1.)

Conditional rules. A conditional rule should first issue whatever queries are
needed for the evaluation of its guard. When enough answers have been received for
this evaluation, the algorithm should continue by executing the appropriate branch.
If, because of absurd answers from hte environment, the guard has a non-Boolean
value, the conditional rule should fail. Here is the formal definition.

Let R be the rule if ϕ then R0 else R1 endif. Write `′ for the causality rela-
tion associated (in a tacitly understood state X) to the Boolean term ϕ, and write
`i for the causality relations associated to the branches Ri. Then the causality
relation ` associated to R is the union of `′ and a second causality relation `′′
defined by letting ξ `′′ q mean that ξ is the union of a context ξ′ with respect to
`′ and an answer function η such that either Val(ϕ,X, ξ′) = true and η `0 q or
Val(ϕ, X, ξ′) = false and η `1 q. This construction is rather similar to what we
did for terms beginning with an external function symbol and for output rules, but
it is a bit more complicated in that the second part, `′′, involves causes ξ that are
not simply contexts for `′. We therefore verify the necessary properties of ` here.

Lemma 5.9. ` is clean.

Proof Suppose ξ ` q; we must show that ξ is well-founded with respect to `.
If ξ `′ q then, by induction hypothesis, ξ is well-founded with respect to `′ and
therefore with respect to the larger relation `.

Assume, therefore, that ξ = ξ′∪η where ξ′ is a context for `′, where Val(ϕ,X, ξ′) =
true, and η `0 q. (The other possibility, that Val(ϕ,X, ξ′) = false, and η `1 q, is
handled analogously.) Since ξ′ is a context for `, we have

Dom(ξ′) = Γ′ξ′
∞ ⊆ Γξ′

∞ ⊆ Γξ
∞.

(As before, Γ′ is the operator induced by the causality relation `′, while Γ is induced
by `.) So it remains to prove that Dom(η) ⊆ Γξ

∞.
Since η `0 q and since `0 is clean by induction hypothesis, we have Dom(η) ⊆

(Γ0)η
∞, where we have, as before, written Γ0 for the operator associated to the

causality relation `0. So the proof of the lemma will be complete if we show that
(Γ0)η

∞ ⊆ Γξ
∞. For this purpose, it suffices to show that Γξ

∞ is closed under (Γ0)η,
since this operator’s smallest closed set is (Γ0)η

∞.
Consider, therefore, an arbitrary q′ ∈ (Γ0)η(Γξ

∞). This means that δ `0 q′ for
some δ ⊆ η ¹ Γξ

∞. Then we have ξ′ ∪ δ ` q′ by the definition of `, and we have
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

32 · A. Blass and Y. Gurevich

ξ′∪δ ⊆ ξ ¹ Γξ
∞ because η ⊆ ξ and because we already checked that Dom(ξ′) ⊆ Γξ

∞.
Therefore, q ∈ Γξ(Γξ

∞) = Γξ
∞, as required. ¤

As in previous cases, we intend to characterize the contexts for `. We begin
with a consequence of Lemma 2.23, making use of the cleanness of our causality
relations.

Corollary 5.10. Suppose ` is a clean causality relation and suppose that a
certain answer function α includes both a context β with respect to ` and an answer
function η such that η ` q for a certain q. Then η ⊆ β and q ∈ Dom(β).

Proof Since ` is clean, η is well-founded. So Lemma 2.23 gives us that η ⊆ β.
Then from η ` q we infer that q ∈ Γβ(Dom(β)) = Dom(β). ¤

With this corollary available, we are ready to characterize contexts for the causal-
ity relation ` associated to a conditional rule. We use the same notation as in the
definition of this ` above.

Lemma 5.11. The contexts for ` are of three sorts:

—Unions ξ ∪ β where ξ is a context for `′, Val(ϕ,X, ξ) = true, and β is a context
for `0,

—Unions ξ∪β where ξ is a context for `′, Val(ϕ, X, ξ) = false, and β is a context
for `1, and

—Contexts ξ for `′ such that Val(ϕ, X, ξ) is not Boolean.

Furthermore, in the first two cases, ξ and β are uniquely determined.

The third case in the lemma arises only in the pathological case that the envi-
ronment gives a non-Boolean reply to a Boolean query.
Proof Assume first that α is a context for `. We shall produce the ξ and (in the
non-pathological cases) β required by the lemma. As before, we use the notations
Γ, Γ′, and Γi (i = 0, 1) for the operators associated to the causality relations `, `′,
and `i.

Since Dom(α) = Γα
∞ ⊇ Γ′α

∞, we know by Lemma 2.18 that α includes a unique
context ξ for `′.

Let us first dispose of the pathological case, where Val(ϕ, X, ξ) is not Boolean. In
this case, we shall show that ξ itself is a context for ` and therefore, by Lemma 2.18,
α = ξ. By the same lemma, it suffices to check that Dom(ξ) is closed under Γξ,
so consider any q ∈ Γξ(Dom(ξ)). So there is ζ ⊆ ξ with ζ ` q. If ζ `′ q, then
q ∈ Γ′ξ(Dom(ξ)) = Dom(ξ) because ξ is a context for `′. It remains to consider
the possibility that ζ `′′ q. By definition of `′′, this requires ζ to include a context
for `′; as ξ is a context for `′ and cannot properly include another, we must have
ζ = ξ. But then the case hypothesis, that Val(ϕ, X, ξ) is not Boolean, implies that
we cannot have ζ `′′ q. This completes the argument in the pathological case.

We now assume that Val(ϕ, X, ξ) = true; the case of false is handled in the
same way.

We show next that Dom(α) is closed under (Γ0)α. Suppose q ∈ (Γ0)α(Dom(α)).
Thus, δ `0 q for some δ ⊆ α. Then ξ ∪ δ ` q. Since ξ ∪ δ ⊆ α, we conclude that
q ∈ Γα(Dom(α)) = Dom(α), where the last equality comes from the assumption
that α is a context for `.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 33

Since (Γ0)α
∞ is the smallest set closed under (Γ0)α, we have (Γ0)α

∞ ⊆ Dom(α).
Again invoking Lemma 2.18, we infer that α includes a unique context β for `0.
Notice that, at this point, we have established the uniqueness assertion in the
lemma.

So we have contexts ξ and β for `′ and `0, such that α ⊇ ξ ∪ β. To show that
this inclusion is in fact an equality, it suffices to show that Dom(ξ ∪ β) is closed
under Γα, because Dom(α) is the smallest such closed set. Suppose, therefore, that
we have δ ` q and δ ⊆ α ¹ Dom(ξ ∪β) = ξ ∪β. We must show that q ∈ Dom(ξ ∪β).

Consider first the case that δ `′ q. Apply Corollary 5.10 to the clean causality
relation `′, the context ξ for `′, and the fact that δ `′ q. The corollary gives that
q ∈ Dom(ξ) ⊆ Dom(ξ ∪ β) as required.

There remains the case that δ `′′ q. This means that, first, δ includes a context
for `′, which can only be ξ since at most one context for `′ can be a subfunction
of α. Then, since Val(ϕ,X, ξ) = true, there must be some η such that η `0 q and
δ = ξ ∪ η. Apply Corollary 5.10 to the clean causality relation `0, the context
β for this causality relation, and the fact that η `0 q. The corollary gives that
q ∈ Dom(β) ⊆ Dom(ξ ∪ β) as required.

This completes the proof that Dom(ξ ∪ β) is closed under Γα and therefore
α = ξ ∪ β. Thus, every context for ` has the form specified in the lemma. It
remains to prove that every answer function of the specified form is a context for
`.

The argument for the pathological case is contained in the argument already
given. We showed there that any context ξ for `′ that gives ϕ a non-Boolean value
is also a context for `. So we may now confine our attention to the normal situation,
where ϕ gets a Boolean value.

Suppose, therefore, that α = ξ∪β where ξ is a context for `′, where Val(ϕ,X, ξ) =
true, and where β is a context for `0. (The case where Val(ϕ,X, ξ) = false and
β is a context for `1 is handled analogously.) The argument given in the preceding
paragraphs shows that Dom(α) is closed under Γα. Thus, by Lemma 2.18, α
includes a context α′ for `. That context must, by what we have already proved,
have the form ξ′ ∪ β′ where ξ′ and β′ are contexts for `′ and the appropriate `i,
respectively. Since α can include at most one context for `′, we have ξ′ = ξ. In
particular, the appropriate `i is `0. Since α can include at most one context for
`0, we have β′ = β and therefore α′ = α. Thus, α is a context for `. ¤

From this characterization of the contexts for `, it is clear that the number and
length of queries in any context are bounded, provided the same is true of `′, `0,
and `1. Taking W to be the union of bounded exploration witnesses for ϕ, R0, and
R1, we find that the parts of the Bounded Work Postulate that refer to causality
are satisfied for the conditional rule R.

We define failures and updates for R in the natural way. Let a state X and a
context α for it be given, and apply Lemma 5.11 to α. In the pathological third case,
where α is a context for `′ giving ϕ a non-Boolean value, let R fail and produce no
updates. In the other cases, write α = ξ ∪ β where ξ and β are as in Lemma 5.11.
Also, let i be 0 or 1 according to whether Val(ϕ,X, ξ) is true or false. So β is
a context for the causality relation `i associated to Ri. Then R fails in X and α
if and only if Ri fails in X and β. The update set ∆+(X,α) is defined to be the

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

34 · A. Blass and Y. Gurevich

update set of Ri in state X and context β.
It is now easy to verify that the bounded exploration witness described above

in connection with causality also works with respect to updates. Thus, all the
postulates hold for conditional rules.

Let rules. Consider a let rule R, say

let x1 = t1, . . . , xk = tk in R0 endlet.

The intended execution of R in a state X consists of two phases. In the first phase,
the terms ti are evaluated in X. In the second phase, R0 is executed in the state
X∗ that differs from X only in that each ẋi has the value that was obtained, in the
first phase, for ti.

Before formalizing this, it is useful to consider the vocabularies involved. R is to
be evaluated in a state X for the vocabulary Υ ∪ v̇. Here v is a list of variables
that includes all the free variables of R. Since the xi are not free in R, they need
not be among the v’s, but some (or all) of them may be. We write v ∪ x for the
union, without repetitions, of the lists v and x = x1, . . . , xk. This list includes all
the free variables of R0, so we know, by induction hypothesis, that the semantics
of R0 is already defined for any Υ ∪ v̇ ∪ ẋ-structure.

Given an Υ ∪ v̇-structure X and given k elements a1, . . . , ak of X, we write
(X but x 7→ a) for the structure with the same base set as X and the same inter-
pretations of all function symbols except that each ẋi is interpreted as the corre-
sponding ai, whether or not ẋi had a value in X (i.e., whether or not ẋi ∈ Υ∪ v̇)4.

We define the causality relation `X associated to R in an Υ ∪ v̇-structure X as
follows. (In contrast to previous cases, we do not suppress X from the notation,
because we shall also have to consider another structure X∗.) We set `X =`′ ∪ `′′,
where `′ is the union of the causality relations `i

X associated, in X, to the bindings
ti. The other part, `′′ is defined by letting ξ `′′ q if, first, ξ is the union of a context
ξ′ for `′ and another answer function η, and, second, ξ′ and η are related as follows.
Let ξi be contexts for the `i

X such that ξ′ =
⋃

i ξi; such ξi exist and are unique by
Lemma 5.6. For i = 1, . . . , k, let ai = Val(ti, X, ξi). Let X∗ = (X but x 7→ a). Let
`0 be the causality relation associated in state X∗ to the rule R0. Then we require
η `0 q.

The proof that `X is clean is essentially the same as in the case of conditional
rules. Only the following minor differences need to be taken into account. First,
in the case of conditional rules, `′ was clean by induction hypothesis. In the
present situation, the induction hypothesis tells us that each `i

X is clean, so we
must invoke Lemma 5.5 to infer that `′ is clean. Second, in the case of conditional
rules, the second part of the causality definition used the causality relation `0 or
`1 associated, in state X, to R0 or R1 according to the truth value Val(ϕ,X, ξ).
In the present situation, the causality relation used in the second part is always
obtained from the same rule R0 but in different states X∗ according to the values
Val(t1, X, ξ). Neither of these differences affects the structure of the proof, so we
do not repeat the details.

4It is usually safe to assume that no xi occurs in v. Then (X but x 7→ a) simply adjoins values
for the xi’s. The assumption becomes unsafe only if a variable occurs both free and bound in the
same rule.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 35

Similarly, the following lemma is obtained by essentially the same argument as
the analog for conditionals.

Lemma 5.12. The contexts for `X are the unions ξ∪β of a context ξ for `′ and
a context β for `0, where `′ and `0 are as in the definition of `X . Furthermore,
for each context α, the associated ξ and β are uniquely determined.

As usual, this lemma immediately implies that the number and length of queries
in any context are uniformly bounded — just take the sum of the bounds for the
ti and R0.

To define failures and updates for the let-rule R in state A and context α, begin
by writing α = ξ ∪ β with ξ and β as in the preceding lemma. By Lemma 5.6, ξ
admits a unique representation as a union of contexts ξi for the ti in state X. Let
ai = Val(ti, X, ξi) and let X∗ = (X but x 7→ a). By the preceding lemma and the
definition of `0, β is a context for R0 in X∗. We define that R fails in X and α if
and only if R0 fails in X∗ and β. The update set for R in X and α is defined to be
the update set of R0 in X∗ and β.

To complete the verification of the postulates, we must produce a bounded ex-
ploration witness W . This will be the union W ′ ∪W ′′ of two parts. The first part,
W ′, is the union of bounded exploration witnesses for the terms ti. Recall that we
saw, when discussing the semantics of terms of the form f(t1, . . . , tk), that if states
X and Y agree as to the values of terms from W ′ when the variables are given
values from Range(α), then the q’s such that α `′ q will be the same in both states
and, if α is a context with respect to `′ then the ti will have the same values ai in
both states. To form W ′′, start with a bounded exploration witness W0 for R0 and,
in each of its terms, replace all occurrences of any constant ẋi with the following
variant t̄i of ti. To get t̄i, make the following two substitutions in ti. Replace all
occurrences of variables v from v with the corresponding constants v̇. Replace all
subterms that begin with external function symbols by new, distinct variables.

To see that this W does what the Bounded Work Postulate requires, suppose X,
Y and α are as in the postulate, i.e., α is an answer function for both of the states
X and Y , and each term in W has the same values in X and Y when the variables
are given the same values in Range(α). We must show, first, that α causes the
same queries in both states and, second, that if α is a context then it produces the
same failures (if any) and the same updates in both states.

Suppose first that α `X q. There are two cases to consider, according to whether
α `′ q or α `′′ q. In the first case, we have α `i

X q for some i. Since W includes
a bounded exploration witness for `i

X , we can apply the Bounded Work Postulate
for the term ti to conclude that α `i

Y q and therefore α `Y q, as required.
Suppose, therefore, that α `′′ q. According to the definition of `′′, we have

α = ξ′ ∪ η, where ξ′ is the union of contexts ξi for the `i
X , where η `0 q, where `0

is the causality relation associated to R0 in the state X∗ = (X but x 7→ a), and
where ai = Val(ti, X, ξi). Because W includes a bounded exploration witness for
each `i

X , the Bounded Work Postulate for ti implies that ξi is a context for ti in Y
and Val(ti, Y, ξi) = ai. (The fact that it is a context was deduced from the Bounded
Work Postulate shortly after the statement of the postulate in [Blass and Gurevich
2006, Section 5].) Let Y ∗ = (Y but x 7→ a). So we have that η `0 q in X∗, and we
must show that the same is true in Y ∗. Since W0 is a bounded exploration witness

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

36 · A. Blass and Y. Gurevich

for R0, it suffices to show that each term in W0 has the same values in X∗ and Y ∗

when the variables are given values in Range(η).
Consider any term s ∈ W0. According to the definition of W ′′, there is a term

s∗ ∈ W ′′ ⊆ W that is obtained from s by replacing each ẋi with the t̄i described in
the definition. Compare the evaluation of s in X∗, using some values in Range(η) for
the variables, and the evaluation of s∗ in X, using the same values for those variables
and values (to be specified later) from Range(α) for any additional variables that
may occur in s. In the first evaluation, any subterm ẋi gets value ai, as given by
the structure X∗. In the second, such a subterm ẋi has been replaced by t̄i. Our
intention is to get t̄i to have value ai in X. If we can achieve this, then it will follow
that the two evaluations agree, since the rest of s (i.e., all but the ẋi) is unchanged
in s∗ and its evaluation proceeds the same way in X∗ as in X. The same argument
works with Y and Y ∗ in place of X and X∗. Thus, we shall have that the values
of x in X∗ and Y ∗ agree because they are the same as the values of s∗ (which is in
W) in X and Y , respectively.

We therefore try to obtain that the value in X of t̄i is ai, which was defined as
the value of ti in X with answer function ξi. There are, according to the definition
of t̄i, two differences between ti and t̄i. First, each vj in t has been replaced by
v̇j . Second, the subterms of ti that begin with external function symbols have
been replaced by new variables. The first of these modifications causes no problem,
since the definition of evaluation of terms says to use, for any variable vj , the value
assigned by the structure to the constant v̇j . The second also causes no problem,
since the variables introduced here can be assigned any values from Range(α).
(Here it is important that they were new variables, not already assigned values in
the evaluation of s.) So we simply assign to each of these variables the same value
that the corresponding subterm of ti had in X with ξi. Notice that this value is,
by the definition of values of terms that begin with external function symbols, in
Range(ξi) ⊆ Range(α), so it is a permissible value for a variable here.

This completes the verification that, for suitable values of the new variables, the
value of s in X∗ agrees with the value of s∗ in X. It therefore also completes the
verification that η `0 q in Y ∗ and thus α `X q, as required.

We must still verify that our bounded exploration witness behaves properly with
respect to failures and updates, but most of the work for this has already been
done in the preceding treatment of causality. Suppose, in addition to the preceding
assumptions on α, X, and Y , that α is a context for `X . So it is ξ′ ∪ η where ξ′

and η are as in the preceding discussion and, in addition, η is a context for `0.
The argument above shows that terms in W0 get the same values in X∗ and Y ∗

when the variables are given the same values in Range(η). Since W0 is a bounded
exploration witness for R0, we conclude that R0 fails in X∗ with η if and only if it
fails in Y ∗ with η and that, if it doesn’t fail, then it produces the same updates in
these two states. But these failures and updates of R0 are exactly the failures and
updates of R in states X and Y , with α. So these also agree, and the verification
of the Bounded Work Postulate is complete.

Fail. The causality relation and the update sets for Fail are empty, and it fails
in all states and (necessarily empty) contexts. The postulates and cleanness are
trivial in this case.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 37

Remark 5.13. In Definition 5.1 of ordinary ASMs, we required that the set of
states be closed under the transition function, which had not yet been defined. The
preceding construction of the semantics of ASMs (under the temporary assumption
that all structures of the appropriate vocabulary are states) determined the transi-
tion functions, via the specification contained in the Update Postulate. Thus, this
construction completes Definition 5.1.

We close with two examples; additional examples are in Sections 2 and 3 of [Blass
and Gurevich 2006].

Example 5.14. We give a small but otherwise realistic example of an ordinary
interactive algorithm and show how to represent it with an ASM. The algorithm’s
vocabulary contains nullary dynamic symbols x and y whose values in all states
are numbers, which we think of as the coordinates of a point in the plane. The
algorithm accepts as input from a user two numbers δx and δy, to be used as
increments of x and y. (We write δx rather than the customary ∆x to avoid any
possible confusion with the notation for update functions.) So at the end of its step,
the algorithm will update x and y to x + δx and y + δy. But first, it wants to draw
the new point (x, y) on the computer screen, and for this purpose, it must invoke
a drawing routine provided by the operating system. So this drawing routine is
part of the algorithm’s environment. After it is invoked, the drawing routine calls
back to our algorithm, asking for the coordinates of the point to be plotted. When
it gets these coordinates, the drawing routine draws the point and confirms to the
algorithm that this job has been done. At this point, the algorithm can complete
its step.

In terms of queries and replies, the interaction here is as follows. The user is, of
course, part of the environment, and the input he provides, δx and δy, is regarded
as the reply to queries. These queries may represent explicit prompts issued by the
algorithm, or they may be implicit queries indicating willingness to pay attention
to input. The replies to these queries, i.e., the numbers provided by the user, cause
the algorithm to call the drawing routine. This call is another query, whose reply
will be the drawing routine’s confirmation that it has done the job. (If the scenario
didn’t involve confirmation, then this call would be an output, i.e., a query for
which only the vacuous and automatic reply “OK” is expected). The callbacks
from the environment (i.e., from the drawing routine) are replies to implicit queries
of the form “I’m willing to pay attention to input,” and the algorithm’s responses
are outputs.

To write this as an ASM, we must decide on a vocabulary of external function
symbols and output channels to correspond to the interaction described above. We
use δx as a nullary external function symbol, whose associated query (associated
by the template assignment) is the query asking for the user’s first input. So the
number supplied by the user will be the value of the term δx (in agreement with the
notation used earlier). Of course, δy is handled analogously. The algorithm’s initial
call to the drawing routine will be the query assigned to an external function symbol
Draw, whose value will be the element sent by the drawing routine to confirm that
its job is done. Next, we have the two implicit queries by which the algorithm looks
for the drawing routine’s callbacks. We use external function symbols ReqX (for
“request x”) and ReqY for these. So the values of these symbols will be whatever

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

38 · A. Blass and Y. Gurevich

signals the drawing routine sends as its callbacks. The algorithm’s outputs, in
response to the callbacks, are of course the new values of x and y; we use X and Y
as names for the output channels on which these numbers are sent.

For several of the queries used here — Draw, ReqX, and ReqY — the value
of the reply doesn’t matter, but the existence of the reply is important because it
initiates further actions on the algorithm’s part. In ASM syntax, one can express
the existence of a reply, without saying anything more about that reply, by writing
Draw = Draw and similarly for the other queries. To make the intention behind
such equations more evident, we employ the syntactic sugar t! for t = t.

With these preparations, we can formalize our algorithm as the following ASM.

let u = x + δx, v = y + δy in
do in parallel

if ReqX! then OutputX(u) endif
if ReqY ! then OutputY (v) endif
if Draw! then

do in parallel x := u, y := v enddo
endif

enddo
endlet

The initial let-bindings cause the queries for δx and δy to be issued; the computation
proceeds only when replies have been received giving these values. They are added
to x and y to give what will become, at the end of the current step, the new values
of x and y. But during the current step, these values are temporarily assigned to
u and v. Then the outer parallel block begins by issuing the three queries ReqX,
ReqY , and Draw. If the drawing routine works as expected, the first two of these
queries will get replies promptly (the callbacks), so the guards of the first two
conditionals in our program will be true and the algorithm will produce the two
outputs (the answers to the callbacks). Then the drawing routine will do its job
and send confirmation, the reply to Draw. That makes the guard of the third
conditional true, so the algorithm will update x and y and finish this step.

It is important to remember that the relative order of the components of a parallel
block has no semantical effect. We have chosen to write the three conditional rules
in an order that reflects when the replies are expected — ReqX and ReqY before
Draw. But it would make no difference if we wrote the last of these conditionals
first, to reflect the order in which the queries are issued.

Example 5.15. The following example was suggested by Dean Rosenzweig. Con-
sider an algorithm that includes, among the functions of its state, an encryption
mechanism and a function for producing e-mail messages with specified content
and addressee. It could then, during a single step, encrypt a file and e-mail it to
someone, as described by the ASM program

Output(Message(addressee, Encrypt(file))).

Now suppose the situation changes so that the encryption is no longer done
locally within the algorithm but rather is done by an outside server called by our
ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

Ordinary Interactive Small-Step Algorithms, II · 39

algorithm. Making the encryption operation external does not change the algorithm
in an essential way. It is thus natural to continue to view the whole process as being
done within a step. What was previously done by the function Encrypt is now
the result of a conversation between our algorithm and the server, which is part
of the environment. First the algorithm sends its username (formally, a query),
and the server replies with a prompt for a password. When the algorithm sends
the password (another query), the server replies with a prompt for the file to be
encrypted. Finally, the algorithm sends the file and the server replies with the
encrypted form of it. The process involves several external functions:

—F, whose associated template F̂ attaches labels to a username to produce a query
whose intuitive meaning is “this user wants to encrypt a file” and whose reply is
a prompt for a password.

—G, whose Ĝ adds labels to a password prompt5 and a password, producing a
query with the intuitive meaning “here’s my password”; the reply to this will be
a prompt for the file to be encrypted.

—E, whose Ê adds labels to a file prompt and a file, producing a query that means
“here’s the file to encrypt”; the reply will be the encrypted file.

In terms of these functions, the change in the ASM program above will be to replace
the term Encrypt(file) with the term

E(G(F(username), password), file).

(We have, for the sake of simplicity, omitted from the ASM program any instructions
for what to do if something goes wrong, e.g., if the password is not accepted.)

REFERENCES

The AsmL webpage, http://research.microsoft.com/foundations/AsmL/.

Andreas Blass and Yuri Gurevich 2003. Abstract state machines capture parallel algorithms.
ACM Trans. Computational Logic 4:4 , 578–651.

Andreas Blass and Yuri Gurevich 2006 Ordinary Interactive Small-Step Algorithms, I. ACM
Trans. Computational Logic 7:2 , 363–419.

Andreas Blass and Yuri Gurevich Ordinary Interactive Small-Step Algorithms, III. ACM
Trans. Computational Logic, to appear.

Andreas Blass, Yuri Gurevich, Dean Rosenzweig and Benjamin Rossman. Interactive small-
step algorithms, I and II. Logical Methods in Computer Science, to appear (a).

Andreas Blass, Yuri Gurevich, Dean Rosenzweig and Benjamin Rossman. Composite in-
teractive algorithms (tentative title) In preparation (b).

Yuri Gurevich 1995. Evolving algebra 1993: Lipari guide. In Specification and Validation
Methods, E. Börger, Ed. Oxford Univ. Press, 9–36.

Yuri Gurevich 1997. ASM guide. Univ. of Michigan Technical Report CSE-TR-336-97. See
[Huggins].

Yuri Gurevich 2000. Sequential abstract state machines capture sequential algorithms. ACM
Trans. Computational logic, 1:1 , 77—111.

James K. Huggins. ASM Michigan webpage. http://www.eecs.umich.edu/gasm.

Received August 2004; revised July 2005; accepted July 2005

5The presence of the prompt in the query serves to make the ASM formalization simpler than it
otherwise would be.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2007.

