
Observations on the Decidability of Transitions?

Yuri Gurevich1 and Rostislav Yavorskiy2??

1 Microsoft Research
Redmond WA, 98052, USA
gurevich@microsoft.com

2 Steklov Mathematical Institute
Gubkina 8, Moscow, 119991, Russia

rey@mi.ras.ru

Abstract. Consider a multiple-agent transition system such that, for
some basic types T1, . . . , Tn, the state of any agent can be represented as
an element of the Cartesian product T1×· · ·×Tn. The system evolves by
means of global steps. During such a step, new agents may be created and
some existing agents may be updated or removed, but the total number
of created, updated and removed agents is uniformly bounded.
We show that, under appropriate conditions, there is an algorithm for
deciding assume-guarantee properties of one-step computations. The re-
sult can be used for automatic invariant verification as well as for finite
state approximation of the system in the context of test-case generation
from AsmL specifications.

1 Motivating example

Consider the following simplified model of a file system (a real world file system
that the authors were exposed to). Basic information about a file is collected
in the File class. For simplicity, we include in the model only very basic file
attributes: name and sort. Also, each file keeps a set of the identifiers of its
children, and a reference to the parent. Suppose that we want to verify that
these references are mutually consistent, that is that every child knows its parent
and that every parent knows all the children. We use the syntax of the Abstract
State Machines specification language [1, 2].

type FileId = Integer

enum FileAttr

Regular

Directory

class File

var fid as FileId // explicit unique identifier

? Proc. ASM 2004, Springer Lecture Notes in Computer Science
?? The second author is partially supported by grants from Russian Foundation for

Basic Research, Russian Science Support Foundation, and Microsoft Research.



var sort as FileAttr

var name as String // file name

var parent as FileId //reference to the parent

var children as Set of FileId // the children

var content as String // the children

Thus a file system is modeled as a set of file records. The fid field provides
an explicit unique identifier of a file. As an object (or class instance), a file is
automatically provided with an object ID, but there may be good reasons to
have explicit identifiers as well.

The root of the file system has a file ID but no other file fields. A global
variable files contains the current set of existing files; initially it is empty. And
there is a counter that provides fresh file IDs.

const root as FileId = 0

var files as Set of File = {}
var nextFid as FileId = 1

We specify common file system operations for creation, deletion and renam-
ing/moving of a resource.

procedure Create(parent as File, name as String, sort as FileAttr)

let fid = nextFid

let file = new File(fid, sort, name, parent,{},"")
add file to files

add fid to parent.children

nextFid += 1

procedure Delete(file as File)

let parent = the file′ in files where file.parent = file′.fid

require file.children = {}
remove file.fid from parent.children

remove file from files

procedure Move (file as File, newName as String, newParent as File)

file.parent := newParent.fid

file.name := newName

add file.fid to newParent.children

let oldParent = the file’ in files where file.parent = file’.fid

remove file.fid from oldParent.children

The following method formalizes the property to be verified.
Invariant() as Boolean

forall f1 in files, f2 in files holds

(f1 ne f2) implies (f1.fid in f2.children iff f1.parent = f2.fid)

Note that the operations Create and Delete affect two files — all the rest
remain unchanged. The Move operation affects only three files, namely the moved
file, its old parent and its new parent).



A “manual” proof of the property is simple. Assume that the invariant holds
before a transition. One only needs to check that, after the transition is per-
formed, the property holds for the affected files. This splits into several cases. In
each cases, checking of the property is easy.

Similar examples arise in modelling of various distributed systems. Usually,
in multiple agent transition systems the state of an agent a is characterized by
the values of fields a.f1, . . ., a.fN . Without loss of generality one may assume
that all agents have the same set of fields. During one step of the computation
some new agents may be created and some previously active agents may be
removed or updated. The main restriction we impose is that the set of affected
agents — created, removed or updated — is uniformly bounded for all steps.

In the example we checked an invariant. More generally, we may want to check
whether a precondition ϕ1 at a given state of the system implies a postcondition
ϕ2 at the next state of the system.

We sought (and found) a decidability result that covers invariant checking
and assume-guarantee properties for such systems. The result can be used for
automatic invariant verification as well as for finite state approximation of the
system in the context of test-case generation from AsmL specifications [3, 4].

The rest of the paper is organized as follows. In Section 2 we describe our
computation model. In Section 3 we show that under the considered restrictions
the assume-guarantee properties of a system are expressible in the first order
theory of the underlying structure S. The conclusion is given in Section 4.

2 Computational model

2.1 The system state

Let I denote an infinite index set, that is any countable set with only the equality
relation defined on the elements. For simplicity we may assume I is the set of
natural numbers.

Let S be a structure of signature σ. Intentionally, a state of every agent is
characterized by a value from S. For the file system example described above
the set of elements of S is

FileId× FileAttr× String× FileId× Set of FileId× Boolean

That is we just take the cartesian product of sets representing types of the class
fields. The last element in the product stands for the universe of Boolean val-
ues {true, false}. We added it because, instead of a variable set of agents,
it is convenient to think about a fixed infinite set of agents where the addi-
tional Boolean valued field Active indicates whether the record corresponds to
a currently existing element or not. The creation of a new agent corresponds
to updating the Active field to true for a previously inactive agent. Similarly,
when the object is destroyed we just flip the value of the Active field to false.

Let f be a fresh unary functional symbol. The state of the whole system is
characterized by a mapping

f : I → S.



Namely, agents are identified by elements of I, the state of an agent a is char-
acterized by the value f(a).

2.2 The transition relation

In what follows Diffk stands for a first order formula asserting that the values
of the k variables are different. For example

Diff3(x, y, z) ⇀↽ (x 6= y) ∧ (y 6= z) ∧ (x 6= z).

Such formulas are expressible in any first-order theory with equality.
In general, the program for a non-deterministic transition τ has the following

form:

procedure τ
choose i1, . . . , ik in I, p1, . . . , pm in S

where Diffk(i1, . . . , ik) and δ(f(i1), . . . , f(ik), p1, . . . , pm)
f(i1) := t1(f(i1), . . . , f(ik), p1, . . . , pm)
· · ·
f(ik) := tk(f(i1), . . . , f(ik), p1, . . . , pm)

where, δ is a first-order formula over σ, and t1, . . . , tk are terms over σ.
Thus one step of the system goes like that: k different agents are chosen

randomly that satisfy the condition formalized by formula δ. Then, states of the
chosen agents are updated accordingly to the program of τ .

A computation is a sequence of states (interpretations of f) such that each
subsequent state is the result of the transition applied to the previous state for
a particular choice of the parameters.

2.3 Properties of the computations

In this paper we are interested in the properties of the following form:

ϕ1 → ◦τϕ2.

Here ◦τ denotes the well known temporal operator “valid in the next state after
transition τ” never mind what choices are made by τ ; formulas ϕ1, ϕ2 are of the
following form:

ϕ1 ⇀↽ ∀j1 . . . js ∈ I (Diffs(j1, . . . , js) → ψ1(f(j1), . . . , f(js))),
ϕ2 ⇀↽ ∀j1 . . . jt ∈ I (Difft(j1, . . . , jt) → ψ2(f(j1), . . . , f(jt))),

where ψ1, ψ2 are first-order formulas over σ with no free variables.

3 The main result

Theorem 1 For any formulas ϕ1, ϕ2 and transition τ as described above the
relation ϕ1 → ◦τϕ2 is expressible in the first order theory of S.



Proof. First of all, we expand ϕ1 → ◦τϕ2 according to the definition of ◦τ . This
gives us the following formula:

∀j1 . . . js ∈ I (Diffs(j1 . . . js) → ψ1(f(j1), . . . , f(js))) →
∀j1 . . . jt ∈ I (Difft(j1 . . . jt) → ψ2(f ′

τ (j1), . . . , f ′
τ (jt))).

Here f ′
τ stands for the version of f updated according to the transition τ .

Then we expand the definition of τ :

∀j1 . . . js ∈ I [Diffs(j1 . . . js) → ψ1(f(j1), . . . , f(js))] →
∀j1 . . . jt ∈ I [Difft(j1 . . . jt) →
∀i1 . . . ik ∈ I ∀p1 . . . pm ∈ S [Diffk(i1, . . . , ik) →
δ(f(i1), . . . , f(ik), p1, . . . , pm) →
ψ2(f ′′(j1, i,p), . . . , f ′′(jt, i,p))]],

where i, p are abbreviations for i1, . . . , ik, and p1, . . . , pm correspondingly, and
f ′′ is defined in the following way:

f ′′(j, i,p) =
{
tl(f(i1), . . . , f(ik), p1, . . . , pm), if j = il, 1 ≤ l ≤ k;
f(j), otherwise.

Lemma 1 The right hand side of the implication ϕ1 → ◦τϕ2 is equivalent to a
conjunction of formulas of the form

∀j1 . . . jn ∈ I[Diffn(j1, . . . , jn) → β(f(j1), . . . , f(jn))]

where β(x1, . . . , xn) is a first-order formula over σ.

Proof. Begin by moving all the universal quantifiers out of the formula. The
formula in question acquires the form ∀jχ(j) where χ(j) is a boolean combina-
tion of equalities jp = jq and first-order formulas over σ with substituted terms
f(j).

To transform this kind of formula to the desired form we apply the following
standard procedure.

First, we consider the following tautology: the complete disjunctive normal
form where the equalities jp = jq play the roles of propositional variables. Every
consistent disjunct Config l(j) represents a pattern of equality over the variables
jp.

Then, instead of the formula χ(j), we consider the following implication
(which is equivalent to χ(j) because the antecedent is a tautology):

[
∨
l

Config l(j)] → χ(j).

This is equivalent to the following conjunction:∧
l

[Config l(j) → χ(j)].



To complete the proof of the lemma we move the universal quantifier over j
inside the conjunction, and then we eliminate all the positive occurrences of
equality in Config l. For example:

∀j1j2j3j4(j1 6= j2 ∧ j2 = j3 ∧ j1 = j4 → χ(j1, j2, j3, j4))

is equivalent to
∀j1j2(j1 6= j1 → χ(j1, j2, j2, j1)).

Q. E. D.

Lemma 2 Let α(x1, . . . , xk) and β(y1, . . . , yn) be two first order formulas in
the signature σ, where all the free variables of the formulas are explicitly shown.
Then the following property

for any function f : I → S the following holds:
∀i1 . . . ik ∈ I[Diffk(i1 . . . ik) → α(f(i1), . . . , f(ik))] →
∀j1 . . . jn ∈ I[Diffn(j1, . . . , jn) → β(f(j1), . . . , f(jn))].

is expressible by a first-order formula over σ.

Proof. The proof follows from the following equivalent transformations.
1. For better readability we replace the text in the first line of the property

with the second-order quantifier over f , and then move outside the universal
quantifier over j. As the result we get:

∀f : I → S, ∀j1 . . . jn ∈ I[Diffn(j1, . . . , jn) →
[∀i1 . . . ik ∈ I(Diffk(i1 . . . ik) → α(f(i1), . . . , f(ik))) →
β(f(j1), . . . , f(jn))]].

2. Observe now, that the property starts with two universal quantifiers: we
choose any function f , and then any n different values of the function arguments.
The rest of the formula is a property about values of the function on these argu-
ments. One can easily see that nothing is lost if we just fix values of j1, . . . , jn,
e.g. j1 = 1, j2 = 2, . . . , jn = n.

Indeed, if the property is true for all values of j then it is certainly true for
these particular values. On the other hand, if it is refuted for some particular
choice of f and j, then one can easily construct f ′ by permuting some values of
f in such a way that the property is refuted for f ′ and the fixed values of j. So,
we can transform to the following:

∀f : I → S
[∀i1 . . . ik ∈ I(Diffk(i1 . . . ik) → α(f(i1), . . . , f(ik))) →
β(f(1), . . . , f(n))].



3. Note now that since f is arbitrary, values f(1), . . . , f(n) are just any values
from S. So we get:

∀a1 . . . an ∈ S,∀f : I → S
[f(1) = a1 ∧ · · · ∧ f(n) = an →

[∀i1 . . . ik ∈ I(Diffk(i1 . . . ik) → α(f(i1), . . . , f(ik))) →
β(a1, . . . , an)]].

or in disjunctive form:

∀a1 . . . an ∈ S,∀f : I → S
[¬(f(1) = a1 ∧ · · · ∧ f(n) = an)∨
∃i1 . . . ik ∈ I(Diffk(i1 . . . ik) ∧ ¬α(f(i1), . . . , f(ik)))∨
β(a1, . . . , an)]].

4. Since the last line has no occurrences of f , this is equivalent to:

∀a1 . . . an ∈ S[β(a1, . . . , an)∨
∀f : I → S[(f(1) = a1 ∧ · · · ∧ f(n) = an) →
∃i1 . . . ik ∈ I(Diffk(i1 . . . ik) ∧ ¬α(f(i1), . . . , f(ik)))]]

5. Without loss of generality one can assume that values of i1 . . . ik in the last
line of the formula are restricted with k + n. Indeed, with this kind of formula
we can only distinguish cases when is = 1, . . . ,is = n, is > n, and equalities
is1 = is2 . In the worst case, after applying the corresponding permutation to f
we get i1 = n+ 1, . . ., ik = n+ k.

As the result we get the following formula:

∀a1 . . . an∀an+1 . . . an+k ∈ S[β(a1, . . . , an)∨
∀f : I → S[(f(1) = a1 ∧ · · · ∧ f(n+ k) = an+k) →
∃i1 . . . ik ∈ 1, . . . , n+ k(Diffk(i1 . . . ik) ∧ ¬α(f(i1), . . . , f(ik)))]]

6. Now, the values f(i) for i > n+k could be ignored. So instead of a function
we can consider sequences of integers:

∀a1 . . . an+k ∈ S[β(a1, . . . , an)∨
∃i1 . . . ik ∈ {1, . . . , n+ k}(Diffk(i1 . . . ik) ∧ ¬α(ai1 , . . . , aik

))]

7. To finish the proof note that existential quantifier over the finite set
{1, . . . , n+ k} could be replaced with the corresponding finite disjunction.

Q. E. D.

Note that this reduction from the second order language to the first order
turns out to be quite simple. It is possible that the result was known, but we
don’t know any relevant references.

Corollary 1 Suppose the first order theory of S is decidable, then the relation
ϕ1 → ◦τϕ2 is decidable too.

Proof. Indeed, according to the theorem the relation is expressible by a first
order formula over S. So, it is decidable.



4 Conclusion

Let K denote the class of computational systems satisfying the following condi-
tions:

1. The system state is characterized by a finite collections of agents.
2. Each of the agents is characterized by an element of the structure S.
3. A transition of the system consists of the following three steps: some new

agents arrive, some previously active agents leave the system, and some other
agents are updated. The total number of created, updated and removed
agents is uniformly bounded.

4. All the updates are expressible by first order formulas over S.

Corollary 2 Suppose the first order theory of S is decidable. Then assume-
guarantee properties ϕ1 → ◦τϕ2 of systems from the class K are decidable pro-
vided the precondition ϕ1 and the postcondition ϕ2 are expressible by first order
formulas over S.

One example of S is Presburger Arithmetic of addition [5]; see [6] for more.

5 Acknowledgements

The authors are thankful to anonymous referees for numerous helpful remarks
to the text.

References

1. Foundations of Software Engineering group, Microsoft Research,
http://research.microsoft.com/fse/

2. AsmL: The Abstract State Machine Language. Reference Manual. Modeled Com-
putation LLC, 2002. http://research.microsoft.com/fse/asml/

3. Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, and Margus Veanes. Gener-
ating Finite State Machines from Abstract State Machines. In ISSTA 2002, Inter-
national Symposium on Software Testing and Analysis, July 2002.

4. Margus Veanes and Rostislav Yavorsky. Combined Algorithm for Approximating a
Finite State Abstraction of a Large System. In SCESM 2003, 2-nd International
Workshop on Scenarios and State Machines: Models, Algorithms, and Tools, May
2003.

5. George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and
Logic. Cambridge University Press, 2002.

6. M.O. Rabin. Decidable theories. In J. Barwise, editor, Handbook of Mathematical
Logic, pp. 595-627, North Holland, 1977.


