
Abstract State Machines:
An Overview of the Project

Yuri Gurevich
Microsoft Research, One Microsoft Way, Redmond, WA 98052

November 2003

Abstract

This is an extended abstract of an invited talk at the Third Inter-
national Symposium on Foundations of Information and Knowledge
Systems (to be) held in Vienna, Austria, in February 2004.
We quickly survey the ASM project, from its foundational roots to
industrial applications.

0 Prelude

The ASM project started as a foundational investigation by this theorist in
the mid 1980s at the University of Michigan. In the 1990s, a community of
ASM-ers formed, see the ASM academic website [1], and several engines to
write and execute abstract state machines were developed. Siemens was the
first large company to use such engines. In 1998, Microsoft Research invited
this theorist to build a group on Foundations of Software Engineering (FSE)
and to apply the ASM theory. We sketch these developments stressing the
foundational issues.

A draft of the talk, in the form of Power-Point slides, was written first;
hence the choppy character of this hastily written extended abstract.

Many thanks to Andreas Blass and Jon Jacky for useful comments.

1



1 The original foundational problem

What is computer science about mathematically speaking? To elucidate
the question, let’s compare computer science to physics. The physicists use
partial differential equations (PDEs) to model the physical world. What
mathematics should play the role of PDEs in computer science?

The world of computer science is much different from that of physics.
The precise state of a physical system is an abstraction, but the state of a
computer (as a digital rather than physical system) is examinable. Much
of physics is devoted to continuous processes where the very next state of
the process does not exist. Computer scientists are interested primarily in
discrete processes where the next state is well defined (unless the process
stops). Here we concentrate on discrete processes exclusively.

Computer science isn’t even a natural science: we study the artificial
world of computers. Imagine intelligent visitors from a distant planet. Their
mathematics and physics are probably similar to ours, but their comput-
ers and therefore their computer science may be vastly different. And yet
there is something objective (and going beyond the classical analysis of which
functions are computable) about computations that is worth exploring.

1.1 Dynamics

The classical mathematical approach to deal with dynamics is to reduce it
to statics. Instead of analyzing motion directly, mathematicians analyze the
history of motion. Your (for simplicity, ordinary) differential equations may
speak about dx/dt, dy/dt, . . . where t is time, and so you seemingly study a
process developing in time. But a simple coordinate transformation allows
you to rewrite your equations in terms of dt/dx, dy/dx, . . ., and now the
process develops along a spatial line rather than the time line. This shows
that time is just another dimension in the perfectly static history of the
process. In that sense your (possibly most fruitful) analysis is sort of an
autopsy.

This reduction of dynamics to statics does not come for free. We illustrate
this on the case of a program with three integer variables x1, x2, x3 that goes
from the initial state X0 to states X1, X2, . . .. If we make the (logical) time
explicit (so that the state at time t is Xt), then every xi is a function xi(t)
of t. For simplicity, we assume that every state Xt is uniquely defined by
the values x1(t), x2(t), x3(t). Every xi(t + 1) depends on Xt and therefore

2



on x1(t), x2(t), x3(t). Even if the original program was simple, the derived
system of equations may be hard.

The ingenious mathematical analysis fakes a discretization of a continuous
process and concentrates on the relation between the current state (at time
t) and the “next state” (at time t+ dt). We don’t have to fake discretization
because we deal with discrete processes to begin with.

Let’s start our analysis of algorithms with algorithms that work in se-
quential time. The term algorithm is understood broadly; every computer
system at any fixed abstraction level is an algorithm. A sequential time
algorithm starts in some state X0 and proceeds to states X1, X2, . . ..

Postulate 1 (Sequential Time [10]) The behavior of a sequential time
algorithm is determined by the set of states, the subset of initial states, and
the state transition function.

Remark 1 Shouldn’t it be the state transition relation rather than the state
transition function? By default, an algorithm is deterministic. (One can
argue that algorithms are intrinsically deterministic; see [10, Section 9] in
this connection.) But nondeterministic algorithms (and nondeterministic
abstract state machines) make appearance in the sequel.

A finite state machine is an example of sequential time algorithm. In
general, a sequential time algorithm is a finite state machine or an infinite
state machine. The computation theory offers us the universal Turing ma-
chine [13]. But it is clearly inadequate to describe arbitrary sequential time
algorithms succinctly. Can one improve on Turing’s machine?

1.2 Statics

It occurred to us early on that every static mathematic reality can be de-
scribed as a structure in the sense of mathematical logic, that is a set with
operations and relations. Next time you talk to a mathematician, ask him
what he is working on. Whether he/she works with graphs or Banach spaces
or whatever, it surely will be some kind of structures. This insight eventually
gave rise to the Abstract State Postulate. We give here only an abbreviated
version of the postulate.

Postulate 2 (Abstract State [10]) The states of an algorithm are struc-
tures of a fixed vocabulary. . . .

3



The vocabulary is intrinsic to the algorithm itself and does not depend
on the input or state. The current state contains all other information that
the algorithm needs to continue the computation.

Remark 2 We use the notion of structure in a slightly unorthodox way. We
presume that the base set of every structure contains the ideal elements true
and false and that predicates are operations taking value in {true,false}.
It follows that our states are algebras in the sense of the science of universal
algebra.

2 Abstract state machines

What is the true state of a program in, say, the C programming language?
Often, they tell you that the state is given by the values of its variables.
This is not true. You need to know also the procedure stack and where the
program counter is.

The Key Observation With fully transparent states (defined exclusively
by the values of the variables), a simple programming language suffices to
program transitions.

Note that the state of a C program can be made fully transparent by
means of auxiliary variables [11]. The same applies to every other program-
ming language.

The key observation led to the definition of abstract state machines, or
ASMs.

Remark 3 We view a computation as an evolution of the state. According
to the abstract state postulate and Remark 1, states are algebras. Hence the
original name “evolving algebras” for abstract state machines.

We consider three categories of algorithms: sequential, (synchronous) par-
allel, and distributed. The definition of sequential ASMs was formulated in
[8]. The definitions of parallel ASMs and distributed ASMs were formulated
in [9]. Numerous examples of ASMs are found on the academic ASM site [1].
In the talk we illustrate ASM definitions by means of examples.

4



3 The foundational ambition of the ASM

project

The ASM Thesis Every algorithm is an ASM as far as the behavior is
concerned. In particular the given algorithm can be step-for-step simulated
by an appropriate ASM.

This bold (impudent?) thesis was formulated in [9]. Recall that the
notion of algorithm is understood broadly: every computer system at a fixed
level of abstraction is an algorithm.

3.1 Theoretical confirmation of the ASM thesis

Intuitively, a sequential algorithm is a sequential time algorithm with steps
of bounded complexity. In the presence of the sequential time postulate and
the abstract state postulate, an additional Bounded Exploration Postulate
expresses that the steps of any sequential algorithm have bounded complex-
ity.

In [10], a sequential algorithm is defined as anything that satisfies these
three postulates: the sequential time postulate, the abstract state postulate,
and the bounded exploration postulate. Sequential ASMs are sequential
algorithms of course. Two sequential algorithm are behaviorally identical
if they have the same states, the same initial states and the same state
transition function.

Theorem 1 (Sequential Characterization Theorem [10]) For every
sequential algorithm, there is a behaviorally identical sequential ASM.

In [4], a parallel algorithm is defined as anything satisfying the sequential
time postulate, the abstract state postulate, and several other postulates
describing how the parallel subprocesses communicate with each other. The
definition of parallel ASMs in [4] is a variant of that in [9]. In either version,
parallel ASMs are parallel algorithms.

Theorem 2 (Parallel Characterization Theorem [4]) For every paral-
lel algorithm, there is a behaviorally identical parallel ASM.

The problem of characterizing distributed algorithms by suitable postu-
lates is open.

5



3.2 ASMs and hardware/software specifications

By the ASM thesis, ASMs are appropriate for modeling of arbitrary computer
systems on given levels of abstraction. You can model existing or future sys-
tems; in other words, you can use ASMs to specify how hardware or software
is supposed to function at a given level of abstraction. These specifications
are executable. (Practical ASM languages typically use declarative means as
well: preconditions, postconditions, invariants, and so on.) The executabil-
ity of specification makes it much more useful. It allows you to address the
following crucial questions.

1. Does the specification satisfy the requirements?

2. Does the implementation satisfy the specification?

3.3 Experimental confirmation of the ASM thesis

A substantial amount of experimental confirmation of the thesis is found at
the academic ASM website [1]; see also books [5, 12]. In most cases people use
ASMs not to check the thesis but to achieve their own goals; typically they
use ASMs for modeling/specification purposes. But in the process they find
out that ASMs suffice for their modeling purpose. In cases when Theorems 1
or 2 apply, a direct ASM simulation of a given piece of software or hardware
may be more elegant than the generic simulation obtained from the proofs
of Theorems 1 or 2.

One particularly impressive example of the ASM usage in academia is a
large distributed ASM that gives the official dynamic semantics for SDL, the
Specification and Description Language of the International Telecommunica-
tion Union [6]. Another impressive example is [12].

The use of ASMs at Microsoft is (very partially) reflected at [2].

4 AsmL, the ASM Language

ASMs are mathematical machines executable in principle. This is not good
enough for applications. One needs practical engines to write down and ex-
ecute ASMs. By the time I joined Microsoft, several ASM engines were in
use. Siemens used ASM Workbench designed by Giuseppe Del Castillo at
the University of Paderborn, Germany, as well as ASM Gopher designed by

6



Joachim Schmid and Wolfram Schulte at the University of Ulm, Germany.
Matthias Anlauff designed XASM at the Technical University of Berlin, Ger-
many; since then Matthias moved to Kestrel, Palo Alto, CA, and XASM
became an open-source ASM tool. More information about these and other
ASM tools is found at [1].

Currently, the most powerful ASM engines are those developed by the
Foundation of Software Engineering group at Microsoft Research. One of
them is called AsmL, an allusion to ASM Language. AsmL can be down-
loaded from the AsmL website [2] and used for academic purposes. The site
contains various auxiliary materials.

4.1 Features of AsmL

AsmL has a strong mathematical component. In particular, sets, sequences,
maps and tuples are available as well as set comprehension {e(x) | x ∈
r | φ(x)}, sequence comprehension and map comprehension.

AsmL is fully object oriented.
The crucial features of AsmL, intrinsic to ASMs, are massive synchronous

parallelism and finite choice. ASMs steps are transactions, and in that sense
AsmL programming is transaction programming.

AsmL is fully integrated into the .NET framework which provides inter-
operability with great many languages and tools.

Literate programming via MS Word and automated programming via
XML are provided. The demo, mentioned below, demonstrates literate pro-
gramming among other things. The whole article [7] is in fact an AsmL
document.

Here are some additional features of AsmL.

• Advanced type system: disjunctive types, semantic subtypes, generics,

• Pattern matching for structures and classes,

• Intra-step communication with outside world and among submachines,

• Reflection over execution,

• Data access, structural coverage,

• State as first class citizen,

7



• Processes (coming).

The AsmL compiler is written in AsmL.

4.2 Specifications vs. prototypes

It is often argued that specifications are mere prototypes. Of course, spec-
ifications are prototypes but good specifications are more than that. They
present a consistent high-level description of the system abstracting away
irrelevant details. They describe what might happen and what must not
happen. And they are not quickly destroyed and thrown away; instead they
continue to serve as important documentation.

Here is an example that makes this point; the example comes with the
AsmL distribution. The task is to specify in-place sorting that proceeds one
swap at a time and always advances. Here is an AsmL program that does
that.

var A as Seq of Integer = [3,1,2]

Swap()

choose i,j in Indices(A)

where i<j and A(i)>A(j)

A(i) := A(j)

A(j) := A(i)

Sort()

step until fixpoint

Swap()

The program is self-explanatory with one exception: the last two lines of
the Swap procedure are executed in parallel so that there is no need to save
the value of A(i). In AsmL, parallelism is a default; you pay a syntactic
price for sequentiality.

The sorting algorithm of the program is not efficient but it is the most
general algorithm for the purpose. Any other in-place sorting algorithm that
proceeds one swap at a time and always advances is a specialization of our
algorithm.

8



4.3 A demo

A demonstration of AsmL is planned for the talk.

5 Requirements, specifications, and imple-

mentations

Consider the development of a new piece of software (or maybe a new ver-
sion of an old piece). A product idea gives rise to a (typically informal)
description of the product formulating various requirements that the prod-
uct is supposed to satisfy. This description is the starting point for writing
a design specification. Eventually the specification is implemented.

5.1 Does the specification satisfy the requirements?

The question can be restated thus: how to debug the specification? Whether
specification is declarative or executable, it is important that it is readable.
But if the specification is executable, you can play out various scenarios. In
the case of AsmL specification, given a few properties of the specification,
the AsmL tool allows you to automatically derive a finite state machine that
abstracts from other properties [7]. The finite state machine can be used to
produce test suites and for model checking.

5.2 Does the implementation satisfy the specification?

The question really is how to enforce the specification? To make the problem
a bit more concrete, imagine that our product is just an API, that is an
application programming interface, that reacts to particular actions.

If the specification is deterministic, run a sequence of actions on the API
specification and record the reactions; the result can be used as an oracle
against which to test the implementation or implementations.

However, specifications tend to be highly non-deterministic. The sorting
specification above is a good example. You cannot use it to produce an oracle
for conformance testing. To deal with this more general situation, a different
and much more subtle approach is being used by the group of Foundations
of Software Engineering [3]. We plan to illustrate the approach in the talk.

9



6 Postlude

We hope that the story of the ASM project will support the maxim that
there is nothing more practical than good theory.

10



References

[1] The ASM Michigan Webpage, http://www.eecs.umich.edu/gasm/,
maintained by James K. Huggins.

[2] The AsmL webpage,
http://research.microsoft.com/foundations/AsmL/.

[3] Mike Barnett and Wolfram Schulte, “Runtime Verification of .NET
Contracts”, Elsevier Journal of Systems and Software 65:3 (2003),
199–208.

[4] Andreas Blass and Yuri Gurevich, “Abstract state machines capture
parallel algorithms,” ACM Transactions on Computational Logic
4:4 (2003), 578–651.

[5] Egon Börger and Robert Stärk, Abstract State Machines, Springer,
2003.

[6] Uwe Glässer, Reinhard Gotzhein and Andreas Prinz, “Formal se-
mantics of SDL-2000: Status and perspectives”, Computer Net-
works 42:3 (2003), 343–358, Elsevier.

[7] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte and Mar-
gus Veanes, “Generating finite state machines from abstract state
machines”, ACM Software Engineering Notes 27:4 (2002), 112-122.

[8] Yuri Gurevich, “Evolving algebras: An attempt to discover seman-
tics”, in G. Rozenberg and A. Salomaa, Editors, Current Trends in
Theoretical Computer Science, World Scientific, 1993, 266–292.

[9] Yuri Gurevich, “Evolving algebra 1993: Lipari guide”, in E. Börger,
Editor, Specification and Validation Methods, Oxford University
Press, 1995, 9–36.

[10] Yuri Gurevich, “For every sequential algorithm there is an equiv-
alent sequential abstract state machine”, ACM Transactions on
Computational Logic, vol. 1, no. 1 2000), 77–111.

[11] Yuri Gurevich and James K. Huggins, “The Semantics of the C pro-
gramming language”, Springer Lecture Notes in Computer Science
702 (1993), 274–308.

11



[12] Robert F. Stärk, Joachim Schmid and Egon Börger, Java and
the Java Virtual Machine: Definition, Verification, Validation,
Springer, 2001.

[13] Alan M. Turing, “On computable numbers, with an ap-
plication to the Entscheidungsproblem”, Proceedings of Lon-
don Mathematical Society, series 2, vol. 42 (1936–1937), 230–
265; correction, ibidem, vol. 43, 544–546. Available online at
http://www.abelard.org/turpap2/tp2-ie.asp.

12


