
Scenario-oriented Modeling in AsmL and its Instrumentation for Testing
Mike Barnett, Wolfgang Grieskamp, Yuri Gurevich,

Wolfram Schulte, Nikolai Tillmann and Margus Veanes
Microsoft Research, Foundations of Software Engineering, REDMOND

wrwg@microsoft.com

Abstract
We present an approach for modeling use cases and

scenarios in the Abstract State Machine Language and
discuss how to use such models for validation and
verification purposes.

1 Introduction

The Abstract State Machine Language (AsmL) is a
novel, executable modeling language which is fully
integrated in the .NET framework and Microsoft
development tools. This position paper shows how AsmL
can be used in a natural way for scenario-oriented
modeling and how these models can be used for
validation and verification. The paper refines and
extends earlier work on AsmL and use cases [1].

The paper uses a fragment of the CTAS case study to
demonstrate the approach. CTAS has been suggested by
the organizers of the SCESM workshop as a common
case study; the fragment looked at is the weather control
logic of a traffic flight control system. We will show in
particular how the problem of dealing with an arbitrary
number of clients to the connection manager of the
weather control logic can be adequately described with
our approach.

The paper starts with a sketch of AsmL and then
introduces the pattern for scenario-based modeling in
AsmL. The major part of the paper is dedicated to the
CTAS case study; we presume that the reader is familiar
with the basic setup. We conclude with sketching how
test cases can be derived from the model, using the AsmL
System [2].

2 A Glimpse of AsmL
The space constraints prevent us from giving a

systematic introduction into AsmL; instead we rely on
the readers’ intuitive understanding of the language as
used in the examples. Conceptually, AsmL is a fusion of
the Abstract State Machine paradigm and the .NET
common language runtime type system. One finds the
usual concepts of earlier modeling languages like VDM
or Z. AsmL has sets, finite mappings and other high level
data types with convenient and mathematically-oriented
notations (e.g., comprehensions); it uses ASM update
semantics and atomic transactions for dealing with state;
and it has all the ingredients of a .NET language such as

interfaces, structures, classes, enumerations, methods,
delegates, properties, and events. The close embedding
into .NET allows AsmL to interoperate with any other
.NET language, and makes it a perfect choice for
modeling under .NET.

The most unique feature of AsmL is its foundation on
Abstract State Machines (ASMs) [3]. An ASM is a state
machine which in each step computes a set of updates of
the machines variables. Upon the completion of a step,
all updates are "fired" (committed) simultaneously. The
update semantics of AsmL is based on the theory of
partial updates [6,7]. The computation of an update set
can be complex, and the numbers of updates calculated
may depend on the current state. Control flow of the
ASM is described in AsmL in a programmatic, textual
way: there are constructs for sequencing of steps, non-
deterministic (more exactly, random) choice, loops, and
exceptions. On an exception, all updates on state are
unrolled, enabling atomic transactions to be built from
many sub-steps.

AsmL supports meta-modeling based on reflection
which allows a systematic exploration of the non-
determinism in the model. On the meta-level, the state is
a first-class citizen, which enables us to realize various
search strategies over the state space of a model. This is
important for the instrumentation of an AsmL model for
test generation and the use as a test oracle.

AsmL documents are given in XML and/or in Word
and can be compiled from Visual Studio .NET or from
Word; the AsmL source is embedded in special
tags/styles. Conversion between XML and Word (for a
well-defined subset of styles) is available. Note that this
paper is itself a valid AsmL document; it is fed directly
into the AsmL system for animating the formal parts it
contains or for working with the AsmL test generation
tool.

3 Scenarios in AsmL
We consider a use case to be a set of scenarios; each

scenario describes a sequence of events. As in [1], we do
not explicitly attach actors and roles to the events, but
regard this as an extra level of methodology which can be
expressed for a particular model if required. Our goal is
to describe scenarios programmatically by using the
sequence notation of AsmL, as in:

 step DO(Event1)
 step DO(Event2)

Here step is a keyword introducing the next step of the
abstract state machine in a sequence, and DO is a helper
method which appends an event to the sequence of events
associated with this scenario.

We collect the required auxiliary definitions in an
abstract class UseCase which is extended for a concrete
use case. This class provides an abstract .NET property
defining the set of scenarios as defined by a sub-class,
and contains an ASM variable holding a sequence of
events. The DO helper method appends to this sequence.
If a scenario is "played" within the use case, we can think
of this variable holding what has been "played" so far.

An event is described by an interface which just serves
as a type tag on this level. A scenario is represented as a
.NET delegate (similar to a first-class method). When
executed it is supposed to record its events by calling
DO. Playing the entire use case means, for some given
number of iterations, non-deterministically choosing one
of the enabled scenarios (i.e., its precondition holds), and
finally returning the sequence of events produced:
abstract class UseCase
 interface Event
 delegate Scenario()
 abstract property Scenarios as Set of Scenario
 get // read-only property
 var events as Seq of Event = []
 DO(evnt as Event) // fire event
 events := events + [evnt]
 Play(iters as Integer) as Seq of Event
 if iters = 0
 return events
 else
 var cands = Scenarios
 var found = false
 step while not found and cands <> {}
 choose scenario in cands
 try
 scenario() // calling the delegate
 found := true
 catch
 AssertionFailedException:
 // failed == scenario not enabled
 remove scenario from cands
 step
 if found
 return Play(iters-1)
 else // no scenario enabled
 return events

To give life to these definitions, let us consider a tiny
example for a keycard controlled door. The use case for
this defines structures (value types in AsmL) for the
actions of the door and of the user, and gives scenarios
for the normal behavior (the keycard is valid) and for the
error behavior. Note that the "case" notation below is a
convenient way to extend the enclosing class/structure in
AsmL's OO type system, and corresponds to the sum-of-
products or "free algebraic type" construct in other
languages:

class KeycardControlledDoor extends UseCase
 structure DoorEvent implements Event
 case WaitForCard
 case ReleaseLock
 case SignalInvalidCard
 structure UserEvent implements Event
 case SwipeCard
 NormalScenario()
 step DO(DoorEvent.WaitForCard)
 step DO(UserEvent.SwipeCard)
 step DO(DoorEvent.ReleaseLock)
 InvalidCardScenario()
 step DO(DoorEvent.WaitForCard)
 step DO(UserEvent.SwipeCard)
 step DO(DoorEvent.SignalInvalidCard)
 override property Scenarios as Set of Scenario
 get
 return {new Scenario(NormalScenario),
 new Scenario(InvalidCardScenario)}

So far, we have approached a problem-oriented
notation for scenarios in AsmL. The scenarios are type-
checked and can be executed: evaluating the expression
new KeycardControlledDoor().Play(3)1 will
result in a sequence of events, and due to the non-
deterministic choice of the scenario, different ones over
time. With the powerful meta-modeling facilities of
AsmL we can actually do more via execution. Before we
come to that, we will explore how the approach can be
used for the CTAS case study.

4 The CTAS Weather Control Logic
The CTAS weather control logic is suggested by the

organizers of the SCESM 2003 as a common case study.
CTAS (Center TRACON Automation System) is a set of
tools designed to help air traffic controllers. CTAS
consists of a set of processes with one of them acting as
the connection manager (CM) to which the other
processes are clients. One task in the CTAS system is to
synchronize weather information between a weather
forecast provider and the variety of clients, which is
safety critical since adverse weather conditions can grind
an entire traffic control system to a halt. The weather
control logic is given as a "real world" informal
specification consisting of a set of axioms and scenarios.
Here, we will model a fragment of the logic, more
specifically, the updating of the weather information
between the CM and its clients. The interesting aspect of
the update phase is that it has to guarantee atomicity: it
becomes effective only if all clients successfully receive
the new weather information.

Our approach to scenarios in AsmL allows us a nearly
one-to-one translation from the original spec. We start
with modeling some data domains. The (simplified)

1 Note that you can directly evaluate the expression from this document
under Word XP by highlighting it and selecting the Quick Watch function
of the AsmL tool bar. To that end, you will need to edit the configuration
file and change the target to "library" and the output file name to end with
".dll".

STATUS of the CM as well of its clients is described by
an enumeration distinguishing the states pre-updating,
updating, post-updating, post-reverting, and done (idle).
One interesting aspect of this example is that we deal
with a variable number of clients; each client (CL) is
identified by a unique CLIENTID, which is a number. We
define structures describing the events (messages) of the
client, of the connection manager, and environment
related ones:
class CTASWeatherControl extends UseCase
 enum STATUS
 PREUPDATING
 UPDATING
 POSTUPDATING
 POSTREVERTING
 DONE
 type CLIENTID = Integer
 structure ENV implements Event
 case NEW_FORECAST
 structure CM implements Event
 destination as CLIENTID
 case CLOSE_CONNECTION
 case GET_NEW_WEATHER
 case USE_NEW_WEATHER
 case REVERT_WEATHER
 structure CL implements Event
 source as CLIENTID
 case CONNECT
 case RECEIVED_GET
 sucess as Boolean
 case RECEIVED_USE
 success as Boolean
 case RECEIVED_REVERT
 success as Boolean

To represent a connection with a client, we extend the
class CTASWeatherControl with a socket class which
holds the id of the client and its status:
class CTASWeatherControl
 class SOCKET
 id as CLIENTID
 var status as STATUS
 public override ToString() as String?
 return "#" + id

We can now define the data state of the use case. It
consists of the current cycle status and a set of sockets
representing the clients:
class CTASWeatherControl
 var status as STATUS = DONE
 var sockets as Set of SOCKET = {}

We start with a scenario for a client connecting with
the CM. This scenario is parameterized over the client's
id. (We will see later how to deal with this when
registering the scenarios with the use case.) When the
client connects, a new socket is created and the client's
and CM's cycle status is set to DONE. (Note that in the
original spec, we have an initialization protocol for the
new client, which we skip here to save space.) We use the
require construct of AsmL to ensure that a client
connect can only happen when the CM is in cycle status
DONE:

class CTASWeatherControl
 ConnectClient(id as CLIENTID)
 require status = DONE and
 not exists s in sockets
 where s.id = id
 DO(CL.CONNECT(id))
 let s = new SOCKET(id,DONE)
 add s to sockets

The next scenario describes the situation where the
CM enters the update weather information phase. This is
triggered by the event ENV.NEW_FORECAST. The CM
will send out a message to each client to get the new
weather information; in reality, the message carries the
weather information, which we omit here:
class CTASWeatherControl
 NewForecast()
 require status = DONE
 step DO(ENV.NEW_FORECAST)
 status := UPDATING
 step foreach s in sockets
 DO(CM.GET_NEW_WEATHER(s.id))
 s.status := UPDATING

The next scenario handles incoming
CL.RECEIVED_GET responses from the clients. It is
parameterized over the client's socket and a boolean flag
indicating whether the client has successfully received
the new weather. It is enabled only if both the CM and
the given client are in the status updating. If the client
has successfully received the weather, its status is
changed to post-updating. If the client failed, then the
CM switches into status post-reverting and all clients are
sent messages to revert:
class CTASWeatherControl
 ReceivedGet(s as SOCKET, success as Boolean)
 require status = UPDATING and
 s.status = UPDATING
 step DO(CL.RECEIVED_GET(s.id,success))
 step if success
 s.status := POSTUPDATING
 else
 status := POSTREVERTING
 step foreach s' in sockets
 DO(CM.REVERT_WEATHER(s'.id))
 s'.status := POSTREVERTING

The next scenario describes what to do when the CM
is in status updating and all clients have successfully
received the new weather information, i.e. are in state
post-updating. The CM sends a message to all clients to
actually use the new data:
class CTASWeatherControl
 AllReceivedGet()
 require status = UPDATING and
 (forall s in sockets
 holds s.status = POSTUPDATING)
 status := POSTUPDATING
 step foreach s in sockets
 DO(CM.USE_NEW_WEATHER(s.id))

The next scenario describes incoming
CL.RECEIVED_USE responses from the clients and is
similar to the scenario ReceivedGet. However, if in

this state any of the clients fail when using the new
weather, the system essentially resets, disconnecting all
clients:
class CTASWeatherControl
 ReceivedUse(s as SOCKET, success as Boolean)
 require status = POSTUPDATING and
 s.status = POSTUPDATING
 step DO(CL.RECEIVED_USE(s.id,success))
 step if success
 s.status := DONE
 else
 status := DONE
 step foreach s' in sockets
 DO(CM.CLOSE_CONNECTION(s'.id))
 remove s' from sockets

The next scenario describes the situation where all
clients have successfully acknowledged usage of the new
weather info. The CM returns to status DONE. In reality,
more things happen (like logging the new weather info to
a file) which we omit here:
class CTASWeatherControl
 AllReceivedUse()
 require status = POSTUPDATING and
 (forall s in sockets holds s.status = DONE)
 status := DONE

We finally need to model the reverting phase, which
happens when any of the clients fail to get the new
weather data:
class CTASWeatherControl
 ReceivedRevert(s as SOCKET,success as Boolean)
 require status = POSTREVERTING and
 s.status = POSTREVERTING
 step DO(CL.RECEIVED_REVERT(s.id,success))
 step if success
 s.status := DONE
 else
 status := DONE
 step foreach s' in sockets
 DO(CM.CLOSE_CONNECTION(s'.id))
 remove s' from sockets
 AllReceivedRevert()
 require status = POSTREVERTING and
 (forall s in sockets holds s.status = DONE)
 status := DONE

To set up the use case, we need to collect the set of
scenarios. For each of the parameterized scenarios, we
define a non-parameterized version which makes a
choice selecting parameters:
class CTASWeatherControl
 ConnectClientChoice()
 choose id in {1,2,3}
 ConnectClient(id)
 ReceivedGetChoice()
 choose s in sockets, x in enum of Boolean
 ReceivedGet(s,x)
 ReceivedUseChoice()
 choose s in sockets, x in enum of Boolean
 ReceivedUse(s,x)
 ReceivedRevertChoice()
 choose s in sockets, x in enum of Boolean
 ReceivedRevert(s,x)

Now, we can override the property of the UseCase
class which defines the scenarios:

class CTASWeatherControl
 override property Scenarios as Set of Scenario
 get
 return {
 new Scenario(ConnectClientChoice),
 new Scenario(NewForecast),
 new Scenario(ReceivedGetChoice),
 new Scenario(AllReceivedGet),
 new Scenario(ReceivedUseChoice),
 new Scenario(AllReceivedUse),
 new Scenario(ReceivedRevertChoice),
 new Scenario(AllReceivedRevert)}

This finishes the model. We can now "play" the use
case: new CTASWeatherControl().Play(11), for
example, produces for instance the following sequence:
[CL.CONNECT(client=2),
 CL.CONNECT(client=1),
 ENV.NEW_FORECAST(),
 CM.GET_NEW_WEATHER(client=2),
 CM.GET_NEW_WEATHER(client=1),
 CL.RECEIVED_GET(client=1,sucess=True),
 CL.RECEIVED_GET(client=2,sucess=False),
 CM.REVERT_WEATHER(client=1),
 CM.REVERT_WEATHER(client=2),
 CL.RECEIVED_REVERT(client=2,success=True),
 CL.RECEIVED_REVERT(client=1,success=False),
 CM.CLOSE_CONNECTION(client=1),
 CM.CLOSE_CONNECTION(client=2)]

Each additional execution would produce new
variations of the choices of parameterized scenarios.

5 Generating Tests
The AsmL Test Tool generates test sequences from a

scenario-oriented model like the one we gave for CTAS
(and also from other kinds of AsmL specifications).
Some concepts of the tool have been explored in [4]; the
tool and its documentation are available as part of the
AsmL distribution. Currently the test tool consists of the
following components:
1. Parameter Generator. The generator is configured

with a hierarchy of domain definitions. Definitions
are given on type level, on method level, and on
parameter level. Defaults are taken from a higher
level if no definition is given on the lower level; for
example, if a definition is not given for a parameter,
it is taken from the type of the parameter. For the
CTAS example, we just need to configure the type
CLIENTID to take values from some final set like
{1,2}, the type SOCKET to take elements from the
current value of the sockets variable, and the type
Boolean to take values from {true,false}.

2. FSM Generator. The finite state machine generator
is configured with state variables and actions. For
the CTAS, we take as state variables the sockets
and status fields and as actions the scenarios (we
can directly use the parameterized scenarios here).
Using the parameter generator to find parameters for
actions, the FSM generator exhaustively explores the

model's state space, by applying enabled actions
starting at the initial state. This is a breadth-first
exploration implemented on the meta-modeling
level. The state-space exploration is terminated using
several complementary techniques. State abstraction
properties group states into equivalence classes; the
number of visits to an equivalence class is bounded.
Filters can be installed which stop the exploration at
certain states. Bounds, for example the percentage of
model path coverage, also terminate the exploration.

3. Sequence Generator. The sequence generator takes
the FSM and applies known algorithms to find the
least number of sequences covering all links of the
generated FSM. In the CTAS case, these will be
sequences of scenarios; the sequence of events can be
easily extracted from each scenario sequence.

4. Conformance Tester. The conformance tester
executes the model and an implementation together,
ideally in lock step [5]. The conformance tester reads
an arbitrary managed .NET assembly, binds methods
of the model against the implementation, and
executes the test sequences running the model and
implementation. We have applied the conformance
tester to various API specs. In the case of scenario-
oriented specifications, the gap between
requirements and design is larger but it can be
bridged by providing more sophisticated binding
code between the events of the scenarios and those of
an underlying implementation.

We describe how an FSM is generated for the CTAS
weather control with the AsmL Test Tool. We need to
give the tool an instance of the weather control use case,
which is defined in the following paragraph. We also
override the string conversion function for nicer output:
wc = new CTASWeatherControl()
class CTASWeatherControl
 override ToString() as String?
 return "C"

When the test tool starts up, we enter some basic
configuration information:
1. The source of the model (this document);
2. The relevant state variables of the model (we choose

that weather control cycle status, socket set, and
individual socket);

3. The actions of the model (we choose all the original
scenarios including parameterized ones);

4. Once we have added the actions, the tool will come
up with defaults of the so-called domain
configuration, which defines how parameters are
generated. We assign to type
CTASWeatherControl the singleton set containing
the instance wc, to the type socket the value of
wc.sockets as dynamically defined in the current

state, to the type Boolean the set {true,false},
and to the type CLIENTID the set {1,2}.

A screenshot of the configuration after this input will
look as shown below:

The most challenging step in configuring for test
generation is to define when the exploration of the state
space terminates. Recall that the test tool generates from
the configured ASM an FSM by exhaustively executing
the model, applying actions with supplied parameters
starting from an initial state in a breadth-first search.
Even if the state space is finite, the search space might be
huge. The AsmL test tool supplies a variety of ways to
control the search:
• State Abstraction. The user can supply a mapping

from the concrete state into a more abstract state.
This mapping serves to define equivalence classes
between states. When state is visited which have
been already seen in the abstract state space (which
is in the same equivalence class) exploration is
terminated.

• Filters. The use can supply predicates on the
concrete state. Only those states which pass the filter
are considered for exploration; exploration is stopped
at a state which does not pass the filter.

• Model Coverage. The user can supply a bound for
model branch coverage; when the coverage exceeds
that bound, exploration stops.

For the CTAS we have a finite state space since we
configured only two clients which can ever connect.
However, it still makes sense to not explore the state
exhaustively, in order to get a more compact
understanding of the system's behavior.

First, we want to abstract the order in which clients do
something: whether first client #1 and then #2 connects,
receives a weather report, etc., or vice versa, is not of
interest to us. This is achieved by the following
abstraction:
property CTASAbstr as (STATUS,
 Map of STATUS to Integer)
 get return (wc.status,
 { st ->
 [st|so in wc.sockets
 where so.status = st].Length
 | st in enum of STATUS })

The domain of the state abstraction is a pair of the status
of the CM and a multi-set of the status of connected

clients (where the multi-set is presented as a mapping
from a status into occurrences). For example, the
sequence of events where first client #1 connects and
then client #2 will lead to the same multi-set as in the
opposite way ({DONE->2,...}, since clients are in
state DONE after connection.

Another behavior we are not interested to see is a
weather forecast event in a trivial configuration where
zero or one client is connected. To exclude this behavior
we use a filter:
property CTASFilter as Boolean
 get return wc.status <> STATUS.DONE
 implies Size(wc.sockets) > 1

This predicate filters out CM cycles with less then 2
clients connected.

Adding the abstraction and filter to the CTAS
configuration and then generating the FSM leads to the
output shown in the above screen shot. The visible FSM
shows the behavior we expected. The screenshot shows a
view of the FSM's automatic layout where actions
belonging to the reverting phase of the CTAS are hidden
(for reasons of space). These actions are collapsed into
the transitions with dotted lines: successful reverting
leads us from S5 back to S3 from where a new forecast
can be handled, failing revert shuts down the CTAS and
leads to the initial state where no client is connected.

The AsmL tester allows generating sequences of
actions from the FSM which cover all branches. Since
the CTAS example is a cyclic system where all states are
connected, we get a single sequence from the FSM
consisting of 44 actions. The value of the events
variable of the use case in the last step of this sequence
gives us a corresponding sequence of events which can be
used for conformance testing of an implementation of the
CTAS weather control logic.

6 Discussion and Conclusion
The transparent integration of use cases in a full-

scaled formal modeling language like AsmL provides
opportunities far beyond those of informal models. We
can execute the model to validate the design and we can
instrument it for test generation and conformance testing.
This is in principle not a new message to the research
community — but we are making it happen in reality.

The approach of embedding use cases in a host
language is powerful. In our case, it enables us to use all
the facilities provided by AsmL — like parameterization,
the programmatic control structures, and the wealth of
support for data. The drawback of this approach is that
the user needs to master the host language. AsmL was
carefully designed to avoid some of the complexity issues
associated with earlier specification languages, such as Z,
VDM, or algebraic specifications. For example, the

language avoids using special math symbols and adopts a
simple notational style similar to pseudo-code and
languages like Visual Basic. Nevertheless, some
complexity is inherent. On the other hand, if a user
masters one application of AsmL, it becomes easy for her
to master other applications.

In reality, the way use cases are written depends on
guidelines which change from organization to
organization. The original CTAS specification shows
that. Our embedding approach has the advantage of
being flexible enough to act as an augmentation to
existing approaches instead of replacing them.

 Graphical notations like those of UML are not yet
commonplace in industry, but they probably improve
communicating the requirements and the design with the
customer. A graphical model is not necessarily easier to
write, but it can be easier to read, in particular allowing
the reader to poke into the model on different levels of
detail. We believe it is a feasible approach to have
graphical notations like Statecharts or message sequence
diagrams as a front-end to a general modeling language
like AsmL, and plan to explore tool support for this in
the future.

References
[1] W. Grieskamp, M. Lepper, W. Schulte, and N.

Tillmann: Testable Use Cases in the Abstract State
Machine Language in Proceedings of Asia-Pacific
Conference on Quality Software (APAQS'01),
December 2001.

[2] Foundations of Software Engineering, Microsoft
Research: AsmL System (software package).
http://www.research.microsoft.com/foundations/asml.

[3] Y. Gurevich: Evolving Algebra 1993: Lipari Guide,
in Specification and Validation Methods, Ed. E.
Börger, Oxford University Press, 1995.

[4] W. Grieskamp, Y. Gurevich, W. Schulte, and M.
Veanes: Generating Finite State Machines from
Abstract State Machines in ISSTA 2002,
International Symposium on Software Testing and
Analysis , July 2002.

[5] M. Barnett and W. Schulte: Runtime Verification of
.NET Contracts in The Journal of Systems and
Software, Elsevier, 2002.

[6] Y. Gurevich and N. Tillmann. Partial Updates:
Exploration. Journal of Universal Computer Science, 11
(7): 917-951, Springer Pub. Co, 2001.

[7] Y. Gurevich and N. Tillmann. Partial Updates
Exploration II. In Proc. Abstract State Machines 2003,
LNCS, Vol 2589, pages 57-86, Springer, 2003.

