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Abstract 
We present an approach for modeling use cases and 

scenarios in the Abstract State Machine Language and 
discuss how to use such models for validation and 
verification purposes. 

1 Introduction 

The Abstract State Machine Language (AsmL) is a 
novel, executable modeling language which is fully 
integrated in the .NET framework and Microsoft 
development tools. This position paper shows how AsmL 
can be used in a natural way for scenario-oriented 
modeling and how these models can be used for 
validation and verification. The paper refines and 
extends earlier work on AsmL and use cases [1]. 

The paper uses a fragment of the CTAS case study to 
demonstrate the approach. CTAS has been suggested by 
the organizers of the SCESM workshop as a common 
case study; the fragment looked at is the weather control 
logic of a traffic flight control system. We will show in 
particular how the problem of dealing with an arbitrary 
number of clients to the connection manager of the 
weather control logic can be adequately described with 
our approach.   

The paper starts with a sketch of AsmL and then 
introduces the pattern for scenario-based modeling in 
AsmL. The major part of the paper is dedicated to the 
CTAS case study; we presume that the reader is familiar 
with the basic setup. We conclude with sketching how 
test cases can be derived from the model, using the AsmL 
System [2].  

2 A Glimpse of AsmL 
The space constraints prevent us from giving a 

systematic introduction into AsmL; instead we rely on 
the readers’ intuitive understanding of the language as 
used in the examples. Conceptually, AsmL is a fusion of 
the Abstract State Machine paradigm and the .NET 
common language runtime type system. One finds the 
usual concepts of earlier modeling languages like VDM 
or Z. AsmL has sets, finite mappings and other high level 
data types with convenient and mathematically-oriented 
notations (e.g., comprehensions); it uses ASM update 
semantics and atomic transactions for dealing with state; 
and it has all the ingredients of a .NET language such as 

interfaces, structures, classes, enumerations, methods, 
delegates, properties, and events. The close embedding 
into .NET allows AsmL to interoperate with any other 
.NET language, and makes it a perfect choice for 
modeling under .NET. 

The most unique feature of AsmL is its foundation on 
Abstract State Machines (ASMs) [3]. An ASM is a state 
machine which in each step computes a set of updates of 
the machines variables. Upon the completion of a step, 
all updates are "fired" (committed) simultaneously. The 
update semantics of AsmL is based on the theory of 
partial updates [6,7]. The computation of an update set 
can be complex, and the numbers of updates calculated 
may depend on the current state. Control flow of the 
ASM is described in AsmL in a programmatic, textual 
way: there are constructs for sequencing of steps, non-
deterministic (more exactly, random) choice, loops, and 
exceptions. On an exception, all updates on state are 
unrolled, enabling atomic transactions to be built from 
many sub-steps. 

AsmL supports meta-modeling based on reflection 
which allows a systematic exploration of the non-
determinism in the model. On the meta-level, the state is 
a first-class citizen, which enables us to realize various 
search strategies over the state space of a model. This is 
important for the instrumentation of an AsmL model for 
test generation and the use as a test oracle. 

AsmL documents are given in XML and/or in Word 
and can be compiled from Visual Studio .NET or from 
Word; the AsmL source is embedded in special 
tags/styles. Conversion between XML and Word (for a 
well-defined subset of styles) is available.  Note that this 
paper is itself a valid AsmL document; it is fed directly 
into the AsmL system for animating the formal parts it 
contains or for working with the AsmL test generation 
tool. 

3 Scenarios in AsmL 
We consider a use case to be a set of scenarios; each 

scenario describes a sequence of events. As in [1], we do 
not explicitly attach actors and roles to the events, but 
regard this as an extra level of methodology which can be 
expressed for a particular model if required.  Our goal is 
to describe scenarios programmatically by using the 
sequence notation of AsmL, as in: 



  step DO( Event1 ) 
  step DO( Event2 )  

Here step is a keyword introducing the next step of the 
abstract state machine in a sequence, and DO is a helper 
method which appends an event to the sequence of events 
associated with this scenario.  

We collect the required auxiliary definitions in an 
abstract class UseCase which is extended for a concrete 
use case. This class provides an abstract .NET property 
defining the set of scenarios as defined by a sub-class, 
and contains an ASM variable holding a sequence of 
events. The DO helper method appends to this sequence. 
If a scenario is "played" within the use case, we can think 
of this variable holding what has been "played" so far.      

An event is described by an interface which just serves 
as a type tag on this level. A scenario is represented as a 
.NET delegate (similar to a first-class method). When 
executed it is supposed to record its events by calling 
DO. Playing the entire use case means, for some given 
number of iterations, non-deterministically choosing one 
of the enabled scenarios (i.e., its precondition holds), and 
finally returning the sequence of events produced: 
abstract class UseCase 
  interface Event 
  delegate Scenario() 
  abstract property Scenarios as Set of Scenario 
    get // read-only property 
  var events as Seq of Event = [] 
  DO(evnt as Event)          // fire event 
    events := events + [evnt] 
  Play(iters as Integer) as Seq of Event 
    if iters = 0 
      return events 
    else  
      var cands = Scenarios 
      var found = false 
      step while not found and cands <> {} 
        choose scenario in cands 
          try 
            scenario() // calling the delegate 
            found := true  
          catch  
            AssertionFailedException: 
              // failed == scenario not enabled 
              remove scenario from cands 
      step 
        if found 
          return Play(iters-1) 
        else // no scenario enabled 
          return events 

To give life to these definitions, let us consider a tiny 
example for a keycard controlled door. The use case for 
this defines structures (value types in AsmL) for the 
actions of the door and of the user, and gives scenarios 
for the normal behavior (the keycard is valid) and for the 
error behavior. Note that the "case" notation below is a 
convenient way to extend the enclosing class/structure in 
AsmL's OO type system, and corresponds to the sum-of-
products or "free algebraic type" construct in other 
languages: 

class KeycardControlledDoor extends UseCase 
  structure DoorEvent implements Event 
    case WaitForCard 
    case ReleaseLock 
    case SignalInvalidCard 
  structure UserEvent implements Event 
    case SwipeCard 
  NormalScenario() 
    step DO( DoorEvent.WaitForCard ) 
    step DO( UserEvent.SwipeCard ) 
    step DO( DoorEvent.ReleaseLock ) 
  InvalidCardScenario() 
    step DO( DoorEvent.WaitForCard ) 
    step DO( UserEvent.SwipeCard ) 
    step DO( DoorEvent.SignalInvalidCard ) 
  override property Scenarios as Set of Scenario 
    get  
      return {new Scenario(NormalScenario), 
              new Scenario(InvalidCardScenario)} 

So far, we have approached a problem-oriented 
notation for scenarios in AsmL. The scenarios are type-
checked and can be executed: evaluating the expression 
new KeycardControlledDoor().Play(3)1 will 
result in a sequence of events, and due to the non-
deterministic choice of the scenario, different ones over 
time. With the powerful meta-modeling facilities of 
AsmL we can actually do more via execution. Before we 
come to that, we will explore how the approach can be 
used for the CTAS case study. 

4 The CTAS Weather Control Logic 
The CTAS weather control logic is suggested by the 

organizers of the SCESM 2003 as a common case study. 
CTAS (Center TRACON Automation System) is a set of 
tools designed to help air traffic controllers. CTAS 
consists of a set of processes with one of them acting as 
the connection manager (CM) to which the other 
processes are clients. One task in the CTAS system is to 
synchronize weather information between a weather 
forecast provider and the variety of clients, which is 
safety critical since adverse weather conditions can grind 
an entire traffic control system to a halt. The weather 
control logic is given as a "real world" informal 
specification consisting of a set of axioms and scenarios. 
Here, we will model a fragment of the logic, more 
specifically, the updating of the weather information 
between the CM and its clients. The interesting aspect of 
the update phase is that it has to guarantee atomicity: it 
becomes effective only if all clients successfully receive 
the new weather information.  

Our approach to scenarios in AsmL allows us a nearly 
one-to-one translation from the original spec. We start 
with modeling some data domains. The (simplified) 

                                                
1 Note that you can directly evaluate the expression from this document 
under Word XP by highlighting it and selecting the Quick Watch function 
of the AsmL tool bar. To that end, you will need to edit the configuration 
file and change the target to "library" and the output file name to end with 
".dll". 



STATUS of the CM as well of its clients is described by 
an enumeration distinguishing the states pre-updating, 
updating, post-updating, post-reverting, and done (idle). 
One interesting aspect of this example is that we deal 
with a variable number of clients; each client (CL) is 
identified by a unique CLIENTID, which is a number. We 
define structures describing the events (messages) of the 
client, of the connection manager, and environment 
related ones: 
class CTASWeatherControl extends UseCase 
  enum STATUS 
    PREUPDATING 
    UPDATING 
    POSTUPDATING 
    POSTREVERTING 
    DONE 
  type CLIENTID = Integer  
  structure ENV implements Event 
    case NEW_FORECAST  
  structure CM implements Event 
    destination as CLIENTID 
    case CLOSE_CONNECTION 
    case GET_NEW_WEATHER 
    case USE_NEW_WEATHER 
    case REVERT_WEATHER 
  structure CL implements Event 
    source as CLIENTID 
    case CONNECT 
    case RECEIVED_GET 
      sucess as Boolean 
    case RECEIVED_USE 
      success as Boolean 
    case RECEIVED_REVERT 
      success as Boolean 

To represent a connection with a client, we extend the 
class CTASWeatherControl with a socket class which 
holds the id of the client and its status: 
class CTASWeatherControl 
  class SOCKET 
    id         as CLIENTID 
    var status as STATUS 
    public override ToString() as String? 
      return "#" + id 

We can now define the data state of the use case. It 
consists of the current cycle status and a set of sockets 
representing the clients: 
class CTASWeatherControl 
  var status as STATUS = DONE  
  var sockets as Set of SOCKET = {} 

We start with a scenario for a client connecting with 
the CM. This scenario is parameterized over the client's 
id. (We will see later how to deal with this when 
registering the scenarios with the use case.) When the 
client connects, a new socket is created and the client's 
and CM's cycle status is set to DONE. (Note that in the 
original spec, we have an initialization protocol for the 
new client, which we skip here to save space.) We use the 
require construct of AsmL to ensure that a client 
connect can only happen when the CM is in cycle status 
DONE: 

class CTASWeatherControl 
  ConnectClient(id as CLIENTID) 
    require status = DONE and  
            not exists s in sockets 
                where s.id = id 
    DO( CL.CONNECT(id) )  
    let s = new SOCKET(id,DONE) 
    add s to sockets 

The next scenario describes the situation where the 
CM enters the update weather information phase. This is 
triggered by the event ENV.NEW_FORECAST. The CM 
will send out a message to each client to get the new 
weather information; in reality, the message carries the 
weather information, which we omit here: 
class CTASWeatherControl 
  NewForecast() 
    require status = DONE 
    step DO( ENV.NEW_FORECAST ) 
         status := UPDATING 
    step foreach s in sockets 
           DO( CM.GET_NEW_WEATHER(s.id) ) 
           s.status := UPDATING 

The next scenario handles incoming 
CL.RECEIVED_GET responses from the clients. It is 
parameterized over the client's socket and a boolean flag 
indicating whether the client has successfully received 
the new weather. It is enabled only if both the CM and 
the given client are in the status updating. If the client 
has successfully received the weather, its status is 
changed to post-updating. If the client failed, then the 
CM switches into status post-reverting and all clients are 
sent messages to revert: 
class CTASWeatherControl 
  ReceivedGet(s as SOCKET, success as Boolean) 
    require status = UPDATING and  
            s.status = UPDATING 
    step DO( CL.RECEIVED_GET(s.id,success) ) 
    step if success 
           s.status := POSTUPDATING 
         else 
           status := POSTREVERTING 
           step foreach s' in sockets 
                  DO( CM.REVERT_WEATHER(s'.id) ) 
                  s'.status := POSTREVERTING  

The next scenario describes what to do when the CM 
is in status updating and all clients have successfully 
received the new weather information, i.e. are in state 
post-updating. The CM sends a message to all clients to 
actually use the new data: 
class CTASWeatherControl 
  AllReceivedGet() 
    require status = UPDATING and  
            (forall s in sockets 
             holds s.status = POSTUPDATING) 
    status := POSTUPDATING 
    step foreach s in sockets 
           DO( CM.USE_NEW_WEATHER(s.id) ) 

The next scenario describes incoming 
CL.RECEIVED_USE responses from the clients and is 
similar to the scenario ReceivedGet. However, if in 



this state any of the clients fail when using the new 
weather, the system essentially resets, disconnecting all 
clients: 
class CTASWeatherControl 
  ReceivedUse(s as SOCKET, success as Boolean) 
    require status = POSTUPDATING and  
            s.status = POSTUPDATING 
    step DO( CL.RECEIVED_USE(s.id,success) ) 
    step if success 
           s.status := DONE 
         else 
           status := DONE 
           step foreach s' in sockets 
                  DO(CM.CLOSE_CONNECTION(s'.id)) 
                  remove s' from sockets 

The next scenario describes the situation where all 
clients have successfully acknowledged usage of the new 
weather info. The CM returns to status DONE. In reality, 
more things happen (like logging the new weather info to 
a file) which we omit here: 
class CTASWeatherControl 
  AllReceivedUse() 
    require status = POSTUPDATING and 
     (forall s in sockets holds s.status = DONE) 
    status := DONE 

We finally need to model the reverting phase, which 
happens when any of the clients fail to get the new 
weather data: 
class CTASWeatherControl 
  ReceivedRevert(s as SOCKET,success as Boolean) 
    require status = POSTREVERTING and   
            s.status = POSTREVERTING 
    step DO( CL.RECEIVED_REVERT(s.id,success) ) 
    step if success 
           s.status := DONE 
         else 
           status := DONE 
           step foreach s' in sockets 
                  DO(CM.CLOSE_CONNECTION(s'.id)) 
                  remove s' from sockets 
  AllReceivedRevert() 
    require status = POSTREVERTING and  
     (forall s in sockets holds s.status = DONE) 
    status := DONE 

To set up the use case, we need to collect the set of 
scenarios. For each of the parameterized scenarios, we 
define a non-parameterized version which makes a 
choice selecting parameters: 
class CTASWeatherControl 
  ConnectClientChoice() 
    choose id in {1,2,3}  
      ConnectClient(id) 
  ReceivedGetChoice() 
    choose s in sockets, x in enum of Boolean 
      ReceivedGet(s,x) 
  ReceivedUseChoice() 
    choose s in sockets, x in enum of Boolean 
      ReceivedUse(s,x) 
  ReceivedRevertChoice() 
    choose s in sockets, x in enum of Boolean 
      ReceivedRevert(s,x) 

Now, we can override the property of the UseCase 
class which defines the scenarios: 

class CTASWeatherControl 
  override property Scenarios as Set of Scenario 
    get 
      return { 
        new Scenario(ConnectClientChoice), 
        new Scenario(NewForecast), 
        new Scenario(ReceivedGetChoice), 
        new Scenario(AllReceivedGet), 
        new Scenario(ReceivedUseChoice), 
        new Scenario(AllReceivedUse), 
        new Scenario(ReceivedRevertChoice), 
        new Scenario(AllReceivedRevert)}  

This finishes the model. We can now "play" the use 
case: new CTASWeatherControl().Play(11), for 
example, produces for instance the following sequence: 
[CL.CONNECT(client=2), 
 CL.CONNECT(client=1), 
 ENV.NEW_FORECAST(), 
 CM.GET_NEW_WEATHER(client=2),  
 CM.GET_NEW_WEATHER(client=1),  
 CL.RECEIVED_GET(client=1,sucess=True),  
 CL.RECEIVED_GET(client=2,sucess=False), 
 CM.REVERT_WEATHER(client=1), 
 CM.REVERT_WEATHER(client=2), 
 CL.RECEIVED_REVERT(client=2,success=True), 
 CL.RECEIVED_REVERT(client=1,success=False), 
 CM.CLOSE_CONNECTION(client=1), 
 CM.CLOSE_CONNECTION(client=2)] 

Each additional execution would produce new 
variations of the choices of parameterized scenarios. 
 

5 Generating Tests 
The AsmL Test Tool generates test sequences from a 

scenario-oriented model like the one we gave for CTAS 
(and also from other kinds of AsmL specifications). 
Some concepts of the tool have been explored in [4]; the 
tool and its documentation are available as part of the 
AsmL distribution. Currently the test tool consists of the 
following components:  
1. Parameter Generator. The generator is configured 

with a hierarchy of domain definitions. Definitions 
are given on type level, on method level, and on 
parameter level. Defaults are taken from a higher 
level if no definition is given on the lower level; for 
example, if a definition is not given for a parameter, 
it is taken from the type of the parameter. For the 
CTAS example, we just need to configure the type 
CLIENTID to take values from some final set like 
{1,2}, the type SOCKET to take elements from the 
current value of the sockets variable, and the type 
Boolean to take values from {true,false}.  

2. FSM Generator. The finite state machine generator 
is configured with state variables and actions. For 
the CTAS, we take as state variables the sockets 
and status fields and as actions the scenarios (we 
can directly use the parameterized scenarios here). 
Using the parameter generator to find parameters for 
actions, the FSM generator exhaustively explores the 



model's state space, by applying enabled actions 
starting at the initial state. This is a breadth-first 
exploration implemented on the meta-modeling 
level. The state-space exploration is terminated using 
several complementary techniques. State abstraction 
properties group states into equivalence classes; the 
number of visits to an equivalence class is bounded. 
Filters can be installed which stop the exploration at 
certain states. Bounds, for example the percentage of 
model path coverage, also terminate the exploration. 

3. Sequence Generator. The sequence generator takes 
the FSM and applies known algorithms to find the 
least number of sequences covering all links of the 
generated FSM. In the CTAS case, these will be 
sequences of scenarios; the sequence of events can be 
easily extracted from each scenario sequence.  

4. Conformance Tester. The conformance tester 
executes the model and an implementation together, 
ideally in lock step [5]. The conformance tester reads 
an arbitrary managed .NET assembly, binds methods 
of the model against the implementation, and 
executes the test sequences running the model and 
implementation. We have applied the conformance 
tester to various API specs. In the case of scenario-
oriented specifications, the gap between 
requirements and design is larger but it can be 
bridged by providing more sophisticated binding 
code between the events of the scenarios and those of 
an underlying implementation.  

We describe how an FSM is generated for the CTAS 
weather control with the AsmL Test Tool. We need to 
give the tool an instance of the weather control use case, 
which is defined in the following paragraph. We also 
override the string conversion function for nicer output: 
wc = new CTASWeatherControl() 
class CTASWeatherControl 
  override ToString() as String? 
    return "C" 

When the test tool starts up, we enter some basic 
configuration information: 
1. The source of the model (this document); 
2. The relevant state variables of the model (we choose 

that weather control cycle status, socket set, and 
individual socket); 

3. The actions of the model (we choose all the original 
scenarios including parameterized ones); 

4. Once we have added the actions, the tool will come 
up with defaults of the so-called domain 
configuration, which defines how parameters are 
generated. We assign to type 
CTASWeatherControl the singleton set containing 
the instance wc, to the type socket the value of 
wc.sockets as dynamically defined in the current 

state, to the type Boolean the set {true,false}, 
and to the type CLIENTID the set {1,2}.  

A screenshot of the configuration after this input will 
look as shown below: 
       

 
 
The most challenging step in configuring for test 
generation is to define when the exploration of the state 
space terminates. Recall that the test tool generates from 
the configured ASM an FSM by exhaustively executing 
the model, applying actions with supplied parameters 
starting from an initial state in a breadth-first search. 
Even if the state space is finite, the search space might be 
huge. The AsmL test tool supplies a variety of ways to 
control the search: 
•  State Abstraction. The user can supply a mapping 

from the concrete state into a more abstract state. 
This mapping serves to define equivalence classes 
between states. When state is visited which have 
been already seen in the abstract state space (which 
is in the same equivalence class) exploration is 
terminated. 



•  Filters. The use can supply predicates on the 
concrete state. Only those states which pass the filter 
are considered for exploration; exploration is stopped 
at a state which does not pass the filter. 

•  Model Coverage. The user can supply a bound for 
model branch coverage; when the coverage exceeds 
that bound, exploration stops. 

For the CTAS we have a finite state space since we 
configured only two clients which can ever connect. 
However, it still makes sense to not explore the state 
exhaustively, in order to get a more compact 
understanding of the system's behavior.  

First, we want to abstract the order in which clients do 
something: whether first client #1 and then #2 connects, 
receives a weather report, etc., or vice versa, is not of 
interest to us. This is achieved by the following 
abstraction: 
property CTASAbstr as (STATUS, 
                       Map of STATUS to Integer) 
  get return (wc.status,  
              { st ->  
                 [st|so in wc.sockets 
                    where so.status = st].Length 
              | st in enum of STATUS }) 

The domain of the state abstraction is a pair of the status 
of the CM and a multi-set of the status of connected 



clients (where the multi-set is presented as a mapping 
from a status into occurrences). For example, the 
sequence of events where first client #1 connects and 
then client #2 will lead to the same multi-set as in the 
opposite way ({DONE->2,...}, since clients are in 
state DONE after connection. 

Another behavior we are not interested to see is a 
weather forecast event in a trivial configuration where 
zero or one client is connected. To exclude this behavior 
we use a filter: 
property CTASFilter as Boolean 
  get return wc.status <> STATUS.DONE 
                  implies Size(wc.sockets) > 1 

This predicate filters out CM cycles with less then 2 
clients connected. 

Adding the abstraction and filter to the CTAS 
configuration and then generating the FSM leads to the 
output shown in the above screen shot. The visible FSM 
shows the behavior we expected. The screenshot shows a 
view of the FSM's automatic layout where actions 
belonging to the reverting phase of the CTAS are hidden 
(for reasons of space). These actions are collapsed into 
the transitions with dotted lines: successful reverting 
leads us from S5 back to S3 from where a new forecast 
can be handled, failing revert shuts down the CTAS and 
leads to the initial state where no client is connected. 

The AsmL tester allows generating sequences of 
actions from the FSM which cover all branches. Since 
the CTAS example is a cyclic system where all states are 
connected, we get a single sequence from the FSM 
consisting of 44 actions. The value of the events 
variable of the use case in the last step of this sequence 
gives us a corresponding sequence of events which can be 
used for conformance testing of an implementation of the 
CTAS weather control logic. 

 

6 Discussion and Conclusion 
The transparent integration of use cases in a full-

scaled formal modeling language like AsmL provides 
opportunities far beyond those of informal models. We 
can execute the model to validate the design and we can 
instrument it for test generation and conformance testing. 
This is in principle not a new message to the research 
community — but we are making it happen in reality. 

The approach of embedding use cases in a host 
language is powerful. In our case, it enables us to use all 
the facilities provided by AsmL — like parameterization, 
the programmatic control structures, and the wealth of 
support for data. The drawback of this approach is that 
the user needs to master the host language.  AsmL was 
carefully designed to avoid some of the complexity issues 
associated with earlier specification languages, such as Z, 
VDM, or algebraic specifications. For example, the 

language avoids using special math symbols and adopts a 
simple notational style similar to pseudo-code and 
languages like Visual Basic. Nevertheless, some 
complexity is inherent. On the other hand, if a user 
masters one application of AsmL, it becomes easy for her 
to master other applications. 

In reality, the way use cases are written depends on 
guidelines which change from organization to 
organization. The original CTAS specification shows 
that. Our embedding approach has the advantage of 
being flexible enough to act as an augmentation to 
existing approaches instead of replacing them.  

 Graphical notations like those of UML are not yet 
commonplace in industry, but they probably improve 
communicating the requirements and the design with the 
customer. A graphical model is not necessarily easier to 
write, but it can be easier to read, in particular allowing 
the reader to poke into the model on different levels of 
detail.  We believe it is a feasible approach to have 
graphical notations like Statecharts or message sequence 
diagrams as a front-end to a general modeling language 
like AsmL, and plan to explore tool support for this in 
the future. 
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