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1. INTRODUCTION

Sequential algorithms, like C programs or sequential abstract state machines
(sequential ASMs), work in small steps, that is, steps of bounded complexity.
Parallel algorithms, like circuits or parallel random access machines (PRAMs)
or parallel ASMs, work in wide shallow steps. The steps are wide in the sense
that the algorithm has no fixed bound on the number of components executing
in parallel during a single step. The steps are shallow in the sense that the
algorithm has a fixed bound, independent of the input or state, on the number
of actions executed sequentially during a step.

The sequential ASM thesis asserts that every sequential algorithm is behav-
iorally equivalent to a sequential ASM. In Gurevich [2000], the second author
axiomatized sequential algorithms by means of three convincing postulates,
proved the thesis, and checked that every sequential ASM satisfies the pos-
tulates. In Blass and Gurevich [2003], we extended that line of investigation
to the more challenging case of parallel algorithms. We axiomatized parallel
algorithms by means of pretty convincing postulates and we proved the thesis
for this case: every parallel algorithm is behaviorally equivalent to a parallel
ASM.

Our postulates were, of course, intended to describe what happens in any sort
of parallel computation, but it turned out later that they were too restrictive in
one respect. They did not allow creation of new proclets (the basic sequential
algorithms from which the parallel ones are built up) on the fly during a com-
putation step. The set of proclets could be changed only by updates of the state,
as part of the transition at the end of a step.

This restriction on proclet creation did not hinder us from proving that the
usual parallel models, like circuits or PRAMs or even alternating Turing ma-
chines, satisfy the postulates. But it resulted in an error in our attempt to
prove that parallel ASMs always satisfy the postulates. The other parallel com-
putation models we considered did not require on-the-fly proclet creation but
parallel ASMs did.

Here we liberalize accordingly the postulates of Blass and Gurevich [2003]
and thus expand the notion of parallel algorithms. We show that the main
theorem, the ASM thesis for parallel algorithms (Blass and Gurevich [2003],
Theorem 10.1), remains true for the new, larger class of parallel algorithms. And
we check that parallel ASMs satisfy the new postulates. We use the occasion to
correct a couple of other, smaller errors in Blass and Gurevich [2003].

In Section 2, we describe the problems with the examples in Sections 8.4 and
8.5 of Blass and Gurevich [2003], we show how all but one of the problems can
easily be corrected, and we sketch the idea needed to correct the one remaining
problem. In Section 3 we develop this idea in detail. This involves modifying
the postulates from Blass and Gurevich [2003] to allow proclets to create (or
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activate) additional proclets on the fly. In Section 4, we show that this modifica-
tion solves the one remaining problem in Blass and Gurevich [2003], Section 8.
Finally, in Section 5, we show how to extend the proof of the ASM thesis for
parallel algorithms (Blass and Gurevich [2003], Theorem 10.1), to the wider
class of algorithms defined by our modified postulates.

To avoid excessive repetitions, we assume that the reader is acquainted with
the content of Blass and Gurevich [2003]. We occasionally give references to
particular passages in Blass and Gurevich [2003], and we occasionally give
reminders about particular points there, but we try to keep these references
and reminders minimal.

Remark 1. An alternative response to the discovery of the flaw in Blass and
Gurevich [2003] might be to retain the postulates and try to modify the defini-
tion of ASMs so as to capture exactly the algorithms defined by those postulates.
Such a modification might be possible, but it seems to be of very limited inter-
est. The postulates should describe the general notion of parallel computation.
Since ASMs, as described in Blass and Gurevich [2003] and earlier in Gurevich
[1995], are surely parallel algorithms, the postulates should cover them.

The need to liberalize the postulates may lead to the suspicion that further
liberalization may be needed in the future and that, in contrast to the present
situation, it could require an extension of the notion of ASM. In fact, the study
of intrastep interaction of an algorithm with its environment has led to an
extension of the ASM framework; see Blass et al. [2006]. But we do not know and
couldn’t conceive a parallel algorithm that works in wide, shallow steps without
intrastep interaction with its environment but does not fit the framework of our
postulates. If such algorithms exist, we would be very interested to hear about
them.

One can also suspect that the postulates were composed to prove the ASM
thesis without reforming the notion of parallel ASM of Gurevich [1995]. All we
can do in this respect is to assure the reader that our goal is to understand
the nature of algorithms, in this case wide-shallow-step algorithms without in-
trastep interaction, and, in the case of Blass et al. [2006], intrastep interactive,
small-step algorithms. We are ready to go wherever the analysis takes us; let
the chips fall where they may. In the case of parallel algorithms, our proof of the
ASM thesis required only insignificant changes of the ASM model of Gurevich
[1995]. In the case of Blass et al. [2006], the ASM model needed a nontrivial
extension.

2. THE PROBLEMS AND HOW TO SOLVE THEM

The flaws that have been found in the work of Blass and Gurevich [2003] concern
two of the examples in Section 8 of that article. In this section, we explain what
these flaws are, we show how to easily correct all but one of them within the
framework of Blass and Gurevich [2003], and we indicate why the one remain-
ing flaw requires a liberalization of the framework. Specifically, we first remove
the one error from Section 8.4 of Blass and Gurevich [2003] and then turn our
attention to Section 8.5. The latter section contains two errors. One requires
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some adjustment of the algorithm proposed in Blass and Gurevich [2003], but
the other is more serious, requiring the liberalization of the framework to allow
intrastep creation of proclets.

Formally, all of these problems in Section 8 of Blass and Gurevich [2003] had
the same underlying cause: the use of comprehension terms in the description
of algorithms. Recall that comprehension terms, expressions of the form
{{t(x) : x ∈ r : ϕ(x)}} denoting multisets, are part of the syntax of parallel
ASMs, as introduced in Section 9 of Blass and Gurevich [2003]. They are
not, however, terms in the ordinary sense of first-order logic, and that is the
sense in which term was used in the postulates of Blass and Gurevich [2003],
Section 7. The errors in the examples in Sections 8.4 and 8.5 arose from treating
comprehension terms as though they were terms in the sense of the postulates.

Inspection of the postulates reveals that the notion of term was used
there once explicitly and once implicitly. The explicit use was in the last
clause of the Background Postulate (Blass and Gurevich [2003], p. 600),
where Proclet was required to be a variable-free term. The implicit use was
in the Proclets Postulate (Blass and Gurevich [2003], pp. 605–606), which
required the proclets to execute a sequential algorithm with output. The
definition of sequential algorithms with output (Blass and Gurevich [2003],
p. 582) incorporated the Bounded Exploration Postulate from Gurevich [2000]
(Bounded Sequentiality at this point in Blass and Gurevich [2003] was a typo),
which required a bounded exploration witness consisting of finitely many
terms. These sequential algorithms with output are equivalent to sequential
ASMs with Output rules, as explained on p. 631 of Blass and Gurevich [2003].
These ASMs use ordinary terms (of the vocabulary described in the Proclets
Postulate), not comprehension terms, in their updates, guards, and outputs,
because the bounded exploration witness consists of ordinary terms. With
these observations in mind, it is easy to see what was wrong in the examples
of Sections 8.4 and 8.5 in Blass and Gurevich [2003].

We begin with Section 8.4 of Blass and Gurevich [2003], which dealt with
first-order and fixed-point logic. The treatment of first-order logic was cor-
rect, but the explanation (on page 621) of a step of the induction leading to
a fixed point used a comprehension term in the update of temp(p). The context
there (page 621) was that a proclet p is to calculate an inflationary fixed point
IFPP, x̄(ϕ(P, x̄))(t̄) by calculating the successive iterates

�0 = ∅ and �n+1 = �n ∪ {ā : ϕ(�n, ā)}
at successive steps of the algorithm under construction. Other proclets are avail-
able to carry out the subsidiary calculations associated with ϕ and its subfor-
mulas. The step from �n to �n+1, as described in Blass and Gurevich [2003]
involved a comprehension term, in which the proclet p converts its mailbox
(the multiset of results from the subsidiary computations using �n) into the
desired �n+1.

Fortunately, the comprehension term here becomes unnecessary if we modify
slightly the format in which p stores (as temp(p) in the notation of Blass and
Gurevich [2003]) the sets �n and the activity of the subsidiary proclets that
compute the value of ϕ.
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Instead of taking temp(p) to be the set �n itself, let temp(p) be the character-
istic function of this set, regarded as a set of ordered pairs, that is,

{〈ā, true〉 : ā ∈ �n} ∪ {〈ā, false〉 : ā ∈ M k − �n},
where M is the base set of the structure in which the formula is to be evaluated
and where k is the arity of P .

Also, when a subsidiary proclet has computed the truth value v of ϕ at certain
arguments ā, using �n as the interpretation of P , let it push to p the pair 〈ā, v′〉
where v′ is the disjunction of v and the truth value of �n(ā).

Note that this v′ is the truth value of ā ∈ �n+1, and so the ordered pair
〈ā, v′〉 is one of the pairs that p should have in temp(p) at the next step of the
computation. Thus, the update to be performed by p is simply to give temp(p) the
value of myMail (provided this is different from the previous value of temp(p)).
No comprehension term is needed.

Technically, we should mention another modification in the work of the sub-
sidiary proclets for ϕ and its subformulas. These proclets use the current value
of �n, which they pull from p. With the new format for storing �n in temp(p),
the subsidiary proclets will, of course, have to take this format into account in
their computations. This modification has no effect on the discussion in Blass
and Gurevich [2003], because that discussion didn’t include such fine details
about the work of the subsidiary proclets.

We turn next to the first difficulty in Section 8.5, namely, in the work of
a term-proclet 〈û, ā〉 where u is a comprehension term {{t(x) : x ∈ r : ϕ(x)}}
and where ā is a list of values for the pseudofree variables of u. (In Blass and
Gurevich [2003] we wrote t for what we now call u; the new notation avoids
confusion with t(x).) This term-proclet 〈û, ā〉 has the task of computing the
value of u when its pseudofree variables are given the values ā, and Blass and
Gurevich [2003] contained a three-part recipe for how to do this. The first two
parts of the recipe are correct: activate the proclet 〈r̂, ā〉, which will provide a
value for r, say b. Then activate, for each c ∈ b, the proclets 〈t̂(x), ā�c〉 and
〈ϕ̂(x), ā�c〉, which will provide the values of t(c) and ϕ(c). The error is in the
final step, where the right t(c)’s, namely, those corresponding to c’s for which
ϕ(c) = true, are picked out, assembled into a set, and equipped with the correct
multiplicities. As it stands, this requires the use of comprehension terms, which
are unavailable to proclets.

The key idea for repairing the problem is to arrange for the proclet 〈û, ā〉
to find the multiset it needs, the value of u, as its mailbox, rather than trying
to assemble it. Carrying out this idea will require careful attention to what
messages are sent to 〈û, ā〉 by other proclets. The messages must be just the
right t(c)’s, each with its right multiplicity. Arranging this will require some
additional proclets and static functions, to do some of the work that was pre-
viously hidden in a comprehension term, for example, the work of picking out
the right t(c)’s. We postpone the implementation of this idea until Section 4,
because the details depend on the repair of the other error in Section 8.5 of
Blass and Gurevich [2003], which we discuss next.

The remaining, serious error is the definition of the “terms” MDA(p) and MA(p)
on pages 624–625 of Blass and Gurevich [2003]. (There is also an obvious
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typographical error in the definition of MDA which, as it stands, never mentions
MDA; the intent was to have MDA(〈Â, ā〉) in all six places where 〈Â, ā〉 occurs.) With
this definition, MDA(p) and MA(p) are not really terms, in the sense required by
the postulates for algorithms, because they involve comprehension terms. The
intention behind the definitions of MDA and MA was, as explained in Blass and
Gurevich [2003], to provide a finite set that contains all proclets that might be
activated by the algorithm. There seems to be no way to achieve this intention
without using comprehension terms. That is, terms in the correct, first-order
sense do not enable us to name, in advance of executing a particular step of the
algorithm, a set guaranteed to contain all proclets that might be needed during
that step. In other words, an appropriate set of proclets, for a particular step
in the computation, can be described only during the execution of this step, not
before the step begins. This is the motivation for the following extension of the
notion of algorithm.

Do not require the full set of proclets for any step to be given by a term
Proclet of the algorithm’s vocabulary. Instead, require some subset, called pri-
mary proclets, to be given by such a term, PriProclet. Allow primary proclets to
activate (or create) new secondary proclets during the step. Furthermore, allow
secondary proclets to activate further proclets (which we still call secondary,
not tertiary), etc. All the proclets, primary as well as secondary, participate in
the activities of proclets described in Blass and Gurevich [2003]—pushing and
receiving messages, setting up and pulling displays, and updating the state.
But only the primary proclets are specified as part of the algorithm’s state.
The secondary ones are temporary, losing their proclet status at the end of the
step. In the terminology of Blass and Gurevich [2003], Section 7, the notion of
secondary proclet is given by the ken, not the state.

In somewhat more detail, our conventions for the activation of secondary
proclets are as follows. To activate new proclets, a proclet p, primary or sec-
ondary, must mark for activation a finite subset s of the state. The secondary
proclets thereby activated are not, however, the members of s but rather the
ordered pairs 〈q, p〉 where q ∈ s. Thus, a secondary proclet 〈q, p〉 “knows” its
creator p in the sense that it can refer to p by a term in its local state, namely,
the term second(me).

This liberalization of the notion of algorithm requires changes in several of
the postulates and definitions of Blass and Gurevich [2003]; the next section
spells these changes out.

3. POSTULATES

The purpose of this section is to modify the definition of algorithms from Blass
and Gurevich [2003] by allowing proclets to activate other proclets.

Remark 2. The terminology activate a proclet was already used in Blass
and Gurevich [2003], but with a different meaning than here.

In Blass and Gurevich [2003], each state of an algorithm determined a set
of proclets. The notion of “active” proclet was not part of the state but rather a
convenient and intuitive way for us to informally describe certain aspects of a
ken, and it could have different meanings in the context of different algorithms.
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In particular, an inactive proclet was still a proclet and could, despite the ter-
minology, engage in certain basic activities, for example pulling information to
see whether it should become active.

In the present article, each state of an algorithm will determine a set of pri-
mary proclets. Activation produces additional, secondary proclets, which would
not be proclets and could not engage in any activities at all if they were not
activated. Activation will be a formal notion, an essential ingredient in our
postulates, not merely a convenient abbreviation for certain aspects of kens.

The distinction between the two notions of activation may be clarified by
noting that the present notion (but not that in Blass and Gurevich [2003]) of
activating a proclet could as well be called procletizing an element of the state.

In broad terms, our modification of the notion of parallel algorithm is to allow
any proclet p to mark for activation, during the course of a step, some finite
subset Act(p) of the state X . The effect of this activation is that the elements
〈q, p〉 for q ∈ Act(p) become proclets in their own right.

For this to make sense, a few observations are in order. First, as in Blass
and Gurevich [2003], we regard subsets of X as multisets of elements of X
in which all the multiplicities are 1. The Background Postulate of Blass and
Gurevich [2003] ensures (and will continue to ensure even after we modify it
below) that finite multisets of elements of a state X are themselves elements
of X . In particular, Act(p) is an element of X .

Second, what does it mean for p to “mark” a set? It means to assign that set
as the value of a certain dynamic, nullary function symbol myAct in its local
state. (This myAct is not part of the global state of the whole algorithm but of
the local state of the individual proclet.) This is exactly like the way proclets
produced their displays, Display(p), by setting a value for myDisplay in Blass
and Gurevich [2003]. We adopt the conventions that the initial value of myAct,
at the beginning of any step, is the empty set and that, if a proclet assigns to
myAct a value in X that is not a set, then nothing is thereby activated.

Third, not all proclets can arise from this activation process; there must be
some proclets already available at the beginning of a step to get the activation
process started. The set of these primary proclets is to be given by the value of
a term PriProclet in the state. We could require that there is always just one
primary proclet; if more are wanted, they could be activated by the primary one
at the beginning of the step. This theoretical simplification, however, seems to
bring no real benefit, and would impose a cost: As was shown in Sections 8.1–
8.4 of Blass and Gurevich [2003], most known types of parallel algorithms do
not require intrastep activation of proclets. If we insisted on starting each step
with only a single proclet, we would be forced to include intrastep activation
even in algorithms that otherwise have no need for it.

After this broad outline of how we intend to modify the notion of parallel
algorithm from Blass and Gurevich [2003], we turn to the details of revising
the postulates in Blass and Gurevich [2003], Section 7, to accommodate this
picture of activation of proclets.

The Sequential Time Postulate, which was taken unchanged from Gurevich
[2000] to Blass and Gurevich [2003], could remain unchanged again, but we take
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this opportunity to incorporate a small improvement that was first pointed out
in Blass and Gurevich [2006], namely, that the sets S(A) of states and I(A) of
initial states must be nonempty.

—Sequential Time Postulate. An algorithm A is associated with a nonempty set
S(A) of states, a nonempty subset I(A) ⊆ S(A) of initial states, and a map
τA : S(A) → S(A) called the one-step transformation.

The Abstract State Postulate, also unchanged from Gurevich [2000] to Blass
and Gurevich [2003], remains unchanged here.

—Abstract State Postulate. All states of A are first-order structures with the
same finite vocabulary, which we call the vocabulary of A. τA does not change
the base set of a state. Both S(A) and I(A) are closed under isomorphisms.
Any isomorphism from a state X to a state Y is also an isomorphism from
τA(X ) to τA(Y ).

In the Background Postulate of Blass and Gurevich [2003], the last item
required a variable-free term Proclet naming, in each state, a finite set, also
called Proclet. Modify this by changing Proclet to PriProclet. This change,
though only notational at the current point in the postulates, reflects the fact
that only the set of primary proclets is given with the state; secondary proclets
are activated during the computation steps. The notation Proclet will be used
later to refer to the whole set of proclets, primary and secondary.

—Background Postulate. Each state contains the following:
—the elements true and false, the Boolean operations on them, undef, and

the equality predicate;
—all ordered pairs of elements of the state, with a binary function symbol

for pairing 〈x, y〉 and unary functions first and second for extracting the
components of a pair;

—all finite multisets of elements of the state, with symbols for the empty
multiset ∅, singletons {{x}}, binary sum x
 y , general sum

⊎
x, TheUnique,

and AsSet, and
—a variable-free term PriProcletnaming a finite set, also called PriProclet.

Remark 3. As in Blass and Gurevich [2003], the Background Postulate en-
sures the availability of (among other things) the operation AsSet, defined as
taking any x to the multiset that has the same members as x has but with
multiplicity only 1. In Blass and Gurevich [2003], we used this operation only
when the argument is a multiset, so that it simply removes the multiplicities.
In the present article, there will be an additional use of AsSet, one in which the
argument need not be a multiset. If x is not a multiset, then it has no mem-
bers, and so the definition gives AsSet(x) = ∅. It follows that, using AsSet and
equality, we can test for sethood; x is a set if and only if x = AsSet(x).

In Blass and Gurevich [2003], Definition 7.10, a ken K of a state X was
defined to consist of X together with two functions MailboxK and DisplayK ,
such that each has the set of proclets as its domain and such that the values of
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MailboxK are multisets. This definition needs significant changes to accommo-
date activation of new proclets.

The most obvious change is that the ken must include information about
which proclets activate which other proclets. Activation takes place entirely
within a step. It does not persist across a step boundary from one state to
the next; any proclets that should remain proclets for the next step should be
added to PriProclet. Thus, activation information is not part of the state. It
is temporary information to be changed and used by the algorithm within a
step, just like the mailboxes and displays of Blass and Gurevich [2003]; such
information resides in the ken. So a ken K should include a unary function
ActK . The intended meaning of ActK (p) is the set marked for activation, as
myAct, by the proclet p, but as far as the definition of ken is concerned, ActK

is just some function from proclets to sets in X . The intended meaning will be
formalized later in the notion of correct ken. In these respects, ActK and myAct
behave just like DisplayK and myDisplay in Blass and Gurevich [2003].

A more complicated change in the notion of ken arises from the fact that
the functions MailboxK , DisplayK , and ActK have as their domain the set of
proclets. In Blass and Gurevich [2003], that set was given with the state, but
now it depends on the ken via the activations described by ActK . This inter-
dependence between kens and the associated sets of proclets accounts for the
greater complexity of the following definition compared to the corresponding
Definition 7.10 in Blass and Gurevich [2003].

Definition 4. A ken of a state X consists of X together with three functions,
MailboxK , DisplayK , and ActK , with a common domain ProcletK ⊆ X and with
values in X , subject to the following requirements.

—The values of MailboxK are multisets.
—The values of ActK are sets.
—PriProcletX ⊆ ProcletK .
—If p ∈ ProcletK and q ∈ ActK (p), then 〈q, p〉 ∈ ProcletK .
—ProcletK is the smallest set satisfying the preceding two requirements.

The elements of ProcletK are called the proclets of the ken K .

As usual in recursive definitions, the detailed meaning of the last require-
ment is that, for all subsets Z of the state X , if PriProcletX ⊆ Z ⊆ ProcletK

and if, for each p ∈ Z and each q ∈ ActK (p), we have 〈q, p〉 ∈ Z , then
Z = ProcletK .

Notice that the closure condition on ProcletK incorporates our convention
that, if q is in the set Act(p) then it is not q itself but the pair 〈q, p〉 that becomes
a proclet.

Remark 5. This convention allows the proclets 〈q, p〉 activated by p to
“know” which proclet activated them, that is, they can refer to p in their lo-
cal states (see Definition 7 below) by means of the term second(me). This sort
of knowledge seems intuitively reasonable, and it also serves two technical
purposes.
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First, it ensures that two proclets will not both activate the same secondary
proclet for different purposes.

Second, it provides a way for a proclet p to pass information to the proclets
it activates, namely by displaying it. Sending messages would not suffice for
this purpose, since the number of messages sent by a proclet during a step
will be bounded (because the proclets are sequential algorithms with output)
while the number of proclets activated by p need not be bounded. So displaying
and pulling are the only ways for p to convey information to all the proclets it
activates. For this to work, all these proclets must know p, in order to pull the
information.

If comprehension terms were available, then this second purpose would not
require our convention of automatically indicating the activator in every sec-
ondary proclet. Indeed, if such indications were wanted, then instead of marking
a set s for activation, the proclet p could mark {{〈q, p〉 : q ∈ s : true}}, that is, p
could attach the activator tags on its own. Indeed, p could similarly convey any
bounded amount of additional information to the proclets it creates, by building
this information into the proclets themselves. But, since comprehension terms
are not available to the proclets, this approach will not work. And in any case,
it would not achieve the first purpose indicated above.

Remark 6. One can imagine a more powerful sort of activation, where the
tag added to a secondary proclet is not necessarily its activator but some other
element of the state chosen by the activator. In addition to myAct, there would
be another dynamic, nullary function myTag (initially undef). When a proclet
updates myAct to a set s and myTag to e, the effect is to activate secondary
proclets 〈q, e〉 for q ∈ s.

In this system, it would be possible for several proclets to activate the same
secondary proclet, so it would be up to the algorithm to prevent unwanted
clashes—for example by always including the activator p as a component of e.

This system provides a powerful means of communication from a proclet p
to the proclets q that it activates. It avoids the need for p to display information
for these q’s since it can build the information into the proclets themselves.

Indeed, this sort of tagging could, with some awkwardness, replace display-
ing and pulling as a means of communication. One strategy for doing this is as
follows. Let all the proclets x that want to pull from p instead send p a mes-
sage, say of the form 〈x, pull〉. Instead of displaying an entity d , p activates new
auxiliary proclets 〈q, 〈d , p〉〉 for all q in its mailbox. That is, it updates myAct to
myMail and updates myTag to 〈d , me〉. Each new proclet 〈q, 〈d , p〉〉 checks whether
its first component q is of the form 〈x, pull〉. If so, it sends its second component
〈d , p〉 to x, which interprets this message as meaning that d is the display of
p. A careful presentation of this strategy would have to prevent conflicts be-
tween the messages used here, to simulate displays, and any messages that the
proclets use for other purposes; we refrain from looking at these details.

In Blass and Gurevich [2003], Definition 7.11, we defined the local state of
a proclet, given a ken K for a state X . To accommodate activation, we expand
the local states of Blass and Gurevich [2003] to include a dynamic nullary
symbol myAct whereby a proclet indicates the set it wants to activate. The new
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definition, replacing Definition 7.11 of Blass and Gurevich [2003], therefore
reads as follows.

Definition 7. Suppose K is a ken of a state X and suppose p ∈ ProcletK .
An initial local state for p in X is the structure X plus

—a static, nullary symbol me, interpreted as p;
—a static, nullary symbol myMail, interpreted as some multiset in X ;
—a static, unary symbol Display, interpreted as some unary function X → X ;
—a dynamic, nullary symbol myDisplay, interpreted as undef; and
—a dynamic, nullary symbol myAct, interpreted as ∅.

The initial local state of p given by K is the initial local state for p in X where

—myMail is interpreted as MailboxK (p) and
—Display is interpreted as DisplayK extended1 by Display(x) = undef for

x /∈ ProcletK .

Remark 8. The initial local state of p is the only local state of p that we
shall work with. In any step of the overall algorithm, a proclet will execute the
proclet algorithm only once, in the initial state. The result of this execution can
include, in addition to output (messages to other proclets) and updates to the
global state (to be executed at the end of the overall algorithm’s step), updates
to the dynamic symbols myDisplay and myAct. These updates can be regarded
as producing a new non-initial local state, but no computation will be done in
that state.

We can therefore, when discussing the state in which a proclet computes,
speak of its local state, omitting the word initial. In fact, in Blass and Gurevich
[2003], we didn’t even introduce initial in this context. We have done so here in
order to emphasize that these states use the initial default values for myDisplay
and myAct, even in the case of a proclet p and a ken K for which DisplayK (p)
and ActK (p) have values different from these defaults. The similarity between
the names Display and myDisplay does not entail any connection between the
value of the former (in some ken) and the initial value of the latter. Only in
the case of correct kens (defined later) is the syntactic similarity reflected in a
semantical connection, and that connection does not involve the initial value
of myDisplay but the final value, after execution of the proclet algorithm (also
defined below). The same comments apply to Act and myAct.

As in Blass and Gurevich [2003], we occasionally refer to the states of the
entire algorithm as global states, to distinguish them from the local states of
proclets.

Remark 9. There is an analogy between myAct and myDisplay. Both provide
ways for a proclet to make a contribution to the overall ken, specifically to ActK

and DisplayK , respectively, at least when we deal (as we soon will) with correct
kens. But there are two differences. The lesser of the two is that ActK is required

1This extension should also have been in the corresponding Definition 7.11 of Blass and Gurevich
[2003].
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to take sets as values, whereas the dynamic symbol myAct could, in principle,
denote any element of the state. We shall (in the definition of correct ken) adopt
the convention that if a proclet p gives myAct a value that is not a set, then the
resulting value of ActK (p) should be ∅.

The second difference is that DisplayK is part of the initial local state given
by K but ActK is not. That is, a proclet has access to what other proclets have
displayed but not to the activations performed by other proclets. Why?

Allowing proclets to know what other proclets activate would introduce a
sneaky means of communication. A proclet p could activate another proclet
q, not so that q would participate in the computation but rather so that other
proclets, seeing that q is activated, would be able to infer some information that
p wants to transfer to them. If we are not careful, such communication could
make the computation process circular, that is, there might be no correct ken.
For example, p might activate q if and only if it has no incoming message, while
r might send a message to p if and only if q is activated. If there are no other
proclets that might send a message to p, then no correct ken is possible; the
message-sending and activating specified by the proclets’ programs are circular
and contradictory.

This particular example could be rendered harmless by acknowledging that
p is sending information to r and putting an edge from p to r in the information
flow digraph. That edge, together with the one arising from the message r might
send to p, would constitute a cycle in that digraph, contrary to the Bounded
Sequentiality Postulate. So the example would be excluded by this postulate.

But the general problem cannot be removed so easily. If proclets could know,
in general, about each other’s activations, then the information flow digraph
should have edges from every proclet to every proclet—a monstrous contra-
diction to Bounded Sequentiality. To avoid such a disaster, we would have to
perform an analysis of just which proclets really do (in some ken) get informa-
tion from which other proclets. Such an analysis would be essentially the same
as the analysis leading to the definition of pulls from, Definition 7.18 in Blass
and Gurevich [2003].

There is a simpler way to get activation information to those proclets that
might need it: if other proclets should find out what p has activated, let p
incorporate Act(p) into its display for the other proclets to read. In this way,
the analysis mentioned above is subsumed by the analysis leading to pulls
from, there is no need to include sneaky transmission of information in the
information flow digraph, and all communication between proclets still fits the
push and pull paradigms of Blass and Gurevich [2003].

The Proclets Postulate of Blass and Gurevich [2003] needs one evident ad-
dition and some reorganization. The addition is that the initial local state in
which a proclet operates should contain the dynamic, nullary symbol myAct.
The reorganization arises from the following considerations along with a de-
sire to stay conceptually close to the picture in Blass and Gurevich [2003]. The
Proclets Postulate of (Blass and Gurevich [2003], Section 7.3) was written so as
to refer only to states, not to kens. Thus, for example, it says that myMail should
denote (in the local state of a proclet p) some multiset, not that this multiset
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should be MailK (p) for a specific ken K . Kens appeared in the postulates of
Blass and Gurevich [2003] only in the subsequent Section 7.4, which dealt with
interaction between proclets. In our present context, we must give up either
this ken-independence of the Proclets Postulate or the mention of proclets in
the postulate. The reason is, of course, that the notion of proclet now depends
on the ken and not merely on the state. We choose the second option. That
is, we retain the general structure of the Proclets Postulate, referring only to
the state, and we therefore postpone any mention of the proclets themselves in
postulates.

Because the postulate is not about proclets but only about their algorithm,
we rename it accordingly.

—Proclet Algorithm Postulate. The algorithm A determines a single se-
quential algorithm with output, called the proclet algorithm, in the vo-
cabulary of the global algorithm plus the static nullary symbols me and
myMail, the static unary symbol Display, and the dynamic nullary symbols
myDisplay and myAct. The outputs of the proclet algorithm are ordered pairs
〈addressee, content〉 of elements of the state.

During any step of the (overall) algorithm, each element p in the current
state X is to be regarded as potentially executing the proclet algorithm for one
step in a state consisting of X , p as the denotation of me, some multiset as the
denotation of myMail, some unary function as the denotation of Display, undef
as the initial value of myDisplay, and ∅ as the initial value of myAct. Potentially
here refers to the fact that, once we define the correct ken K , only the elements
of ProcletK will actually run the proclet algorithm. Also, once we define the
correct ken K , the initial local state in which a proclet p operates will be the
initial local state given by K as in Definition 7.

We emphasize that, in each step of the global algorithm, the proclet algorithm
is to be executed for only one step by each proclet. Accordingly, it will be very
convenient to use the following abbreviation.

Definition 10. Let K be a ken of a state X , and let p ∈ ProcletK . We
abbreviate one step of the proclet algorithm is executed in the initial local state of
p given by K as p fires in K . Here one step is executed means that the transition
function is applied and outputs are produced once; there is no iteration as in
runs of an algorithm.

The remarks following the Proclet Algorithm Postulate in Blass and Gurevich
[2003], Section 7.3, apply here with the obvious additions of saying that myAct
behaves like myDisplay, being updated during (rather than at the end of ) a
step, and not retaining its value past the end of a step.

Section 7.4 of Blass and Gurevich [2003], about the interaction between pro-
clets, needs substantial modification, especially because the very notion of pro-
clet now depends on a sort of interaction, namely, activation.

The first modification here, in Definition 7.18 from Blass and Gurevich [2003]
of “q pulls from p,” is rather minor. The idea behind the definition was that q
pulls from p in state X if there are two kens for X , differing only in the values

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 19, Publication date: June 2008.



19:14 • A. Blass and Y. Gurevich

of Display(p), such that q behaves differently in its initial local states given by
these kens. We do not change this idea, but the detailed meaning of behaves
differently, namely, producing different updates or sending different mailings,
must now be extended to include activating different elements. Formally, the
required change in Definition 7.18 of Blass and Gurevich [2003] is that “differ-
ent updates (in the global state or in myDisplay)” becomes “different updates
(in the global state, in myDisplay, or in myAct).”

In addition, we explicitly require the two kens in the definition to agree that
p and q are proclets. In fact, this was already implicit. The definition involves
Display(p), which is defined only when p is a proclet. It also involves firing
q, that is, executing q in appropriate initial local states; these states involve
Mailbox(q), which is defined only if q is a proclet.

Definition 11. Let p and q be elements of a state X . Then q pulls from p if
there are two kens K and K ′ such that

—both p and q are in ProcletK ∩ ProcletK ′ ;
—K and K ′ differ only in the values of Display(p), and
—when q fires in K and in K ′, the results differ either in updates (of the global

state or myDisplay or myAct) or in mailings (counting multiplicities).

The information flow digraph of Blass and Gurevich [2003], Definition 7.19,
should be modified so that if p activates q then there is an edge from p to q.
Intuitively, something has flowed from p to q, perhaps “activeness” or “proclet-
hood”; it is not obvious whether this consitutes information. But the following
example shows that, whether or not we call it information, it must be included
in the digraph.

Example 12. Suppose there is just one primary proclet p, which activates
another proclet q if and only if p’s mailbox is empty (and p does nothing else).
Suppose further that q’s computation is just to send a message to p. So the in-
formation flow digraph has an edge from q to p, representing the possibility of
a mailing, and we claim that it should also have an edge from p to q, represent-
ing the possibility of activation. By including this second edge, we introduce a
cycle into the digraph, so that the Bounded Sequentiality Postulate is violated
and the instructions we gave for these two proclets do not constitute an algo-
rithm. Without the second edge, the instructions would satisfy the postulate.
Our claim is that the former outcome, “not an algorithm,” is correct. The reason
is that these instructions cannot be consistently executed. p must activate q if
and only if p’s mailbox is empty, which happens if and only if q is not activated.
(Once we define correctness of kens, we can say that the circularity prevents
the existence of a correct ken.)

Taking into account the preceding observations, the dependence of the
notion of proclet on the ken, and our desire to remain as close to Blass and
Gurevich [2003] as these considerations permit, we are led to the following
definition of the information flow digraph, replacing Blass and Gurevich
[2003], Definition 7.19.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 19, Publication date: June 2008.



Abstract State Machines Capture Parallel Algorithms • 19:15

Definition 13. Let X be a (global) state. Its information flow digraph has
as vertices all those elements p ∈ X that belong to ProcletK for at least one
ken K . There is an edge from p to q if at least one of the following conditions
is satisfied.

—q pulls from p.
—There is a ken K , for which both p and q are proclets, such that, when p fires

in K , it sends a message to q.
—q is of the form 〈r, p〉 and there is a ken K , for which p is a proclet, such that,

when p fires in K , it updates myAct to a set containing r.

Remark 14. The three clauses defining the edges of the information flow
digraph correspond to information flow by pulling, pushing, and activating,
respectively. In all three clauses, as well as in the definition of vertices, we have
included everything that might be involved for some reasonable ken.

Remark 15. We explain briefly why our formulation of the third clause in
Definition 13, the one about activation, is preferable to two plausible-looking
alternatives. The first alternative is to replace the part about p updating myAct
to a set containing r with the simpler requirement r ∈ ActK (p). The second
is to require not only p but also q to be a proclet of K . (Our definition requires
q to be a proclet of some ken, in order to be a vertex of our digraph, but it need
not be a proclet of the same ken K mentioned in the third clause.) Readers for
whom our definition is obviously better than these alternatives are invited to
skip the rest of this remark.

The defect in both alternatives arises from the fact that, in arbitrary kens K
(as opposed to the correct kens, which will be defined later), no connection is re-
quired between the function ActK and the results of the proclets’ computations
of myAct in their local states given by K .

On the one hand, this means that we could have r ∈ ActK (p) even when r is
not at all the sort of thing that p might activate under the proclet algorithm,
indeed, even if the proclet algorithm is such that myAct can never be updated.
As a result, the first proposed alternative could put into our digraph a great
many activation edges that have nothing to do with any activation that the
algorithm would ever perform. Indeed, we would have edges from each vertex
p to all vertices of the form 〈r, p〉, for arbitrary r in the state. In this situation,
the Bounded Sequentiality Axiom would be excessively difficult to satisfy.

On the other hand, if a proclet p, firing in K , activates 〈r, p〉 by updating
myAct to a set that contains r, there is no guarantee that r ∈ ActK (p), and
therefore there is no guarantee that 〈r, p〉 is a proclet of K . As a result, the
second proposed alternative would miss many possible activations.

Both alternative formulations would be admissible if we were working only
with correct kens, but we are not, and for good reason. The existence and unique-
ness of correct kens (Theorem 23 below) depends on the Bounded Sequentiality
Postulate, which in turn is formulated in terms of the information flow digraph.
For more information about the need to work with all kens rather than only
correct ones, see Sections 7.4 and 12 of Blass and Gurevich [2003].
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With the revised definition of the information flow digraph, we can retain
the Bounded Sequentiality Postulate from Blass and Gurevich [2003].

—Bounded Sequentiality Postulate. There is a uniform bound B, depending only
on the algorithm and not on the state, for the lengths of all directed walks in
the information flow digraphs of global states.

Definition 16. Let X be a state and p a vertex of its information flow di-
graph. The level of p in this digraph is the length of the longest walk in the
digraph that ends at p. By length here we mean (as in Blass and Gurevich
[2003]) the number of vertices in the walk, not the number of edges, so levels
begin with 1, not 0.

Clearly, the level of p always exists and is no greater than the uniform bound
B given by the Bounded Sequentiality Postulate. It also follows immediately
from the definition that, if the information flow digraph has en edge from p to
q, then the level of p is strictly smaller than that of q.

Our next task is to prove the analog, in our new situation, of Theorem 7.22 of
Blass and Gurevich [2003], which asserts the existence of a unique correct ken
for each state. We begin with a definition of correctness, just like that in Blass
and Gurevich [2003] except that it takes activation into account, both explicitly
in a clause relating Act to myAct and implicitly by using the new notion of ken.

Definition 17. Let X be a global state and K a ken for X . Then K is a
correct ken for X if the following three conditions are satisfied.

—For each p ∈ ProcletK , the members of MailboxK (p) are the messages sent to
p by the proclets q ∈ ProcletK when each such q fires in K . (The multiplicity
of a message m in MailboxK (p) is the sum, over all q ∈ ProcletK , of the
multiplicity with which q sends m to p, that is, the multiplicity of 〈p, m〉 in
the output multiset of q’s execution of the proclet algorithm.)

—For each p ∈ ProcletK , the value of DisplayK (p) is the value that myDisplay
obtains when p fires in K .

—For each p ∈ ProcletK , the value of ActK (p) is the value that myAct obtains
when p fires in K , provided this value is a set. Otherwise, ActK (p) = ∅.

For technical purposes, it is useful to have a name for the following conse-
quence of correctness.

Definition 18. Let X be a global state and K a ken for X . Then K is a
plausible ken for X if, whenever p ∈ ProcletK and q ∈ ActK (p), then 〈q, p〉 is
at a higher level than p in the information flow digraph for X .

In connection with this definition, notice first that from p ∈ ProcletK and
q ∈ ActK (p) it follows that 〈q, p〉 is a proclet of K and is therefore a vertex of
the information flow digraph.

Notice also that, if K satisfies the third requirement in the definition of
correct, then it is plausible. Indeed, if we assume the third requirement and
also assume p ∈ ProcletK and q ∈ ActK (p), then p firing in K produces a
value of myAct that contains q. That provides an edge in the information flow
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digraph from p to 〈q, p〉 and thus ensures that 〈q, p〉 is at a higher level than
p.

Before proving that every state has a unique correct ken, we record some
preliminary information that will be needed in that proof.

Definition 19. Let K be a ken for a state X , and let l be a positive in-
teger. H(K , l ) is defined to be the ken that is the same as K except that
DisplayH(K ,l )(p) = undef for those p ∈ ProcletK that have level ≥ l in the
information flow digraph for X . We refer to H(K , l ) as the result of hiding the
displays of K from level l up.

Notice that ActH(K ,l ) = ActK and therefore ProcletH(K ,l ) = ProcletK . In
particular, in passing from K to H(K , l ), we need not adjust the domains of the
functions.

LEMMA 20. Let K be a ken for a state X , p a proclet of K , and l its level
in the information flow digraph of X . Consider the one-step executions of the
proclet algorithm by p in two initial local states, the one given by K and the
other by H(K , l ). These two executions produce the same updates (to the global
state and to myDisplay and myAct) and the same output multiset of messages.

PROOF. Inspection of the definitions of initial local states and hiding reveals
that the two initial local states mentioned in the lemma differ only in the values
of Display(q) when q ∈ ProcletK = ProcletH(K ,l ) and q has level ≥ l . Of these
q’s, only finitely many are relevant to the updates and outputs produced when
p executes the proclet algorithm, because this algorithm, being a sequential
algorithm with output, satisfies the Bounded Exploration Postulate. So we can
connect K to H(K , l ) by a finite sequence of kens, in which

—at the first step we pass from K to a ken in which Display(q) has been
changed to undef for all the irrelevant q’s of level ≥ l , so the new ken differs
only finitely from H(K , l ), and

—at each subsequent step, we change the value of Display(q) for only one
q ∈ ProcletK .

We already know that at the first step in this sequence the updates and outputs
of p are unchanged. It remains to check that the same is true at all subsequent
steps in our sequence of kens. So consider, for the rest of this proof, a particular
pair of consecutive kens in the rest of our sequence; suppose, toward a contra-
diction, that they do not agree as to p’s computation; and let q be the unique
element where their Display functions differ.

Because all the kens in the sequence have the same Act function, they all
have the same proclets as K . In particular, our q is a proclet for both of the
consecutive kens under consideration. This and the assumed disagreement as
to p’s computation imply that p pulls from q and so there is an edge from q to
p in the information flow digraph. This is absurd, as q has level ≥ l and p has
level l .

LEMMA 21. Let X be a state, K and K ′ two plausible kens for it, and l a
positive integer. Assume that, for all q ∈ ProcletK ∩ ProcletK ′ ,
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—if q has level ≤ l then MailboxK (q) = MailboxK ′ (q),
—if q has level < l then DisplayK (q) = DisplayK ′ (q), and
—if q has level < l then ActK (q) = ActK ′ (q).

Let p ∈ ProcletK have level l . Then p is also in ProcletK ′ , and the executions
of p in its initial local states given by K and by K ′ produce the same updates
and the same outputs.

PROOF. We proceed by induction on l and observe that our assumptions
about K and K ′ imply that the same assumptions also hold if l is replaced by
any smaller l ′. So, by induction hypothesis, any proclet of K with level < l is
also a proclet of K ′. Since p is a proclet of K , it is either in PriProcletX or
activated by some other q ∈ ProcletK (i.e., p = 〈r, q〉 for some r ∈ ActK (q)).
In the former case, we immediately have that p is also a proclet of K ′, because
PriProclet is given by the state, not the ken. In the latter case, the assumption
of plausibility implies that q has level < l . So q ∈ ProcletK ′ and, by hypothesis,
ActK (q) = ActK ′ (q). In particular, q activates p in K ′, and so p ∈ ProcletK ′ , as
desired.

To prove that p produces the same updates and outputs whether it fires in K
or in K ′, we may, thanks to Lemma 20, work with the kens H(K , l ) and H(K ′, l )
obtained by hiding displays from level l up. But we claim that the initial local
states of p given by these kens coincide. Clearly, proving the claim would suffice
to complete the proof of the lemma.

To prove the claim, notice first that the only effect of a ken on the initial local
state of p is to provide the interpretations of myMail and Display. Since p is at
level l , the first assumption of the lemma ensures that K and K ′ and therefore
also H(K , l ) and H(K ′, l ) agree as to Mailbox(p), which provides the value of
myMail for p’s initial local state. As for Display, the second assumption of the
lemma ensures that all of K , K ′, H(K , l ), and H(K ′, l ) agree as to the displays
of those elements of level < l that are proclets with respect to both K and K ′.
But the induction hypothesis implies, as in the first paragraph of this proof,
that an element of level < l is a proclet for all or none of K , K ′, H(K , l ), and
H(K ′, l ). So, for q of level < l , Display(q) will have the same value for all of K ,
K ′, H(K , l ), and H(K ′, l ), either by the second assumption of the lemma or be-
cause of the convention, in the definition of initial local states, that Display of a
non-proclet is always undef. The same convention combined with the definition
of hiding ensures that Display(q) has the same value, namely undef, for H(K , l )
and H(K ′, l ) whenever q has level ≥ l . (Notice that such a q might be a proclet
for just one of K and K ′. In that case, DisplayH(K ,l )(q) and DisplayH(K ′,l )(q)
would be undef for different reasons—once because of hiding and once because
of the convention concerning Display of non-proclets. The need to deal with this
situation blocks the easier argument of Blass and Gurevich [2003], Lemma 7.25
and motivated the notion of hiding.) This completes the proof that the initial
local states of p given by H(K , l ) and H(K ′, l ) are identical, as required.

Remark 22. The hypothesis of the lemma may seem a bit awkward, because
it concerns Mailbox up to and including level l but Display and Act only strictly
below level l . We claim, however, that this situation is semantically natural even
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if syntactically awkward. The reason is that the parts of the ken covered by this
hypothesis at stage l are exactly the parts relevant to the computations done
by elements p at level l . Indeed, the information relevant to the computation
of such a p consists of (1) whether p is a proclet and therefore should be doing
a computation at all, (2) the mailbox of p, and (3) the displays that p reads.
Here (1) involves Proclet at level l (namely, at p), which is determined by Act
at strictly lower levels (because of plausibility); (2) involves Mailbox at level l ;
and (3) involves Display at lower levels.

Another way to view the situation is that the hypothesis covers exactly the
information that is determined, in a correct ken, by the activity of proclets at
strictly lower levels than l . As a special case, for l = 1, we have just the infor-
mation that is determined by the state without any need for computation by
proclets, namely, the proclets at level 1 (determined by PriProclet as plausi-
bility prevents any activation of proclets of level 1) and their mailboxes (empty
as nothing can send messages to them).

The general structure of this hypothesis, referring to Mailbox (and implicitly
to Proclet) for one level higher than Display and Act, will recur in subsequent
arguments.

THEOREM 23. For every state X , there is a unique correct ken.

PROOF. We first prove uniqueness. Suppose both K and K ′ are correct kens
for the state X . We prove the following by induction on l .

(1) ProcletK and ProcletK ′ have the same elements of levels ≤ l . So for levels
≤ l we can speak of proclets without specifying which of the two kens we
mean.

(2) MailboxK and MailboxK ′ agree on all proclets of level ≤ l .
(3) DisplayK and DisplayK ′ agree on all proclets of level < l .
(4) ActK and ActK ′ agree on all proclets of level < l .

For the base case, l = 1, items (3) and (4) are vacuous. Item (1) follows from
the fact that a proclet at level 1 cannot be activated by another proclet in a
correct (or just plausible) ken. So at level 1 the proclets for any plausible ken
are just those in PriProcletX . Item (2) at level 1 follows from the fact that
messages always go from lower to higher levels (because they produce edges) in
the information flow digraph. In particular, no message ever goes to a proclet of
level 1. Since K and K ′ are correct, it follows that MailboxK = MailboxK ′ = ∅.

For the induction step, assume the assertions hold for a certain l . As noted
in item (1), it makes sense to speak of proclets at level l without specify-
ing K or K ′. For each such proclet p, we can apply Lemma 21 to conclude
that its updates and outputs are the same whether K or K ′ provides its ini-
tial local state. By correctness, it follows that DisplayK (p) = DisplayK ′ (p)
and ActK (p) = ActK ′ (p). Thus, we have items (3) and (4) for l + 1 in place
of l .

Furthermore, the mail sent by p is the same for K as for K ′. Since this
holds for all proclets p at level l and also for all proclets at lower levels (by
the same argument), and since proclets at level l + 1 can receive mail only
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from proclets at levels ≤ l (because message-sending produces edges in the
information flow digraph), we conclude that every proclet at level l +1 receives
the same messages, with the same multiplicity, whether the proclets are firing
K or in K ′. Another application of correctness gives us item (2) for proclets at
level l + 1. Since we already had this item for proclets of lower level, we now
have item (2) with l + 1 in place of l .

Finally, since proclets can be activated only by proclets of lower level, and
since PriProclet depends only on the state, not the ken, the proclets at level l+1
are determined by Act(q) for proclets of levels < l + 1. Thus, item (1) for l + 1
follows from item (4) for l + 1.

This completes the induction and thus, if we take l to be the number of
levels, the proof of uniqueness. To prove existence, we construct the desired K
by induction on levels l . After stage l , we will have constructed a ken K (l ),
intended to have the following properties. Its proclets are the proclets of the
correct ken up to and including level l , and its Mailbox function agrees with
that of the correct ken on these proclets. Furthermore, its Display and Act
functions agree with those of the correct ken on proclets at levels < l . On
proclets of level ≥ l , its Display and Act functions have the default values
undef and ∅, respectively.

For l = 1, let MailboxK (1), DisplayK (1), and ActK (1) be the constant functions
with domain PriProcletX and with values ∅, undef, and ∅, respectively. This
is clearly a plausible ken, with ProcletK (1) = PriProcletX .

For the induction step, suppose K (l ) is already defined. Let each proclet
p ∈ ProcletK (l ) of level ≤ l fire in K (l ). Temporarily define DisplayK (l+1)(p)
to be the resulting value of myDisplay for each such p and to be undef for all
other elements p of the state. Similarly, temporarily define ActK (l+1)(p) to be
the resulting value of myAct for each such p where this value is a set, and to be
∅ for all other elements p of the state. (We have defined these functions on too
large a domain and will correct for this later; this was the only reason for saying
“temporarily.”) Use this temporary ActK (l+1) to define ProcletK (l+1), as in the
definition of ken. Then restrict DisplayK (l+1) and ActK (l+1) to ProcletK (l+1) as
required in the definition of ken. Note that, by restricting ActK (l+1) we have not
changed what ProcletK (l+1) should be, since the characterization of Proclet in
terms of Act (in the last three clauses in the definition of ken) uses Act only
applied to elements of Proclet.

To complete the induction step, we must define MailboxK (l+1)(p) for all ele-
ments p ∈ ProcletK (l+1). Define it to be the multiset of messages sent to p by the
elements q of ProcletK (l ) firing as in the preceding paragraph, multiplicities
being summed over q. This completes the definition of K (l ).

In the inductive step, if q ∈ ActK (l+1)(p), with p and therefore also q in
ProcletK (l+1), then, by definition of ActK (l+1), the ken K (l ) witnesses that the
information flow digraph has an edge from p to 〈q, p〉. Thus, K (l+1) is plausible.
Since K (1) is vacuously plausible, all ActK (1)(p) being empty, we conclude that
K (l ) is plausible for all l .

We shall show that the sequence of kens K (l ) gradually stabilizes in the
following sense. For each l , the kens K (l ) and K (l + 1) agree as to Proclet
and Mailbox up to and including level l of the information flow digraph, and
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they agree as to Display and Act at all levels strictly below l . The proof is by
induction on l .

For the basis of the induction, l = 1, notice that the assertions of agreement
concerning Display and Act are vacuous. Concerning Proclet, the definition
says that it contains only elements of PriProclet when the ken is K (1), but
when the ken is K (2) it can contain also secondary 〈r, p〉, where r ∈ ActK (2)(p).
As K (2) is plausible, such secondary proclets cannot be at level 1. Thus, K (1) and
K (2) have the same proclets at level 1. These proclets have, by definition, empty
mailboxes under K (1). Under K (2), their mailboxes contain the messages sent
to them by proclets q firing in K (1). Any such message would cause an edge from
q to p in the information flow digraph, which is impossible since p is at level 1.
This completes the verification of the claimed stabilization between K (1) and
K (2) and thus the basis of our induction.

For the induction step, suppose we have the desired stabilization between
K (l ) and K (l + 1). To prove the stabilization between K (l + 1) and K (l + 2),
compare the definitions of these two kens. The former fires the proclets of K (l ) at
levels ≤ l in their initial local states given by K (l ); the latter fires the proclets of
K (l+1) at levels ≤ l+1 in their initial local states given by K (l+1). By induction
hypothesis, these two sets of firings involve the same proclets p at levels ≤ l
(though there may be different proclets at higher levels). Furthermore, for each
such proclet p, its two computations yield the same updates and outputs, by
Lemma 21 since the kens are plausible. This means, in particular, that, in the
definitions of K (l + 1) and K (l + 2), the temporary versions of Display and Act
agree up to and including level l .

We claim next that that Proclet is the same, for K (l + 1) and K (l + 2), up
to and including level l + 1. Suppose, toward a contradiction, that some q of
level ≤ l + 1 is a proclet in one of the kens K (l + 1) and K (l + 2) but not in
the other. Consider such a q of minimum possible level in the information flow
digraph. Clearly, q cannot be in PriProcletX , for then it would be a proclet of
both kens. So it is of the form q = 〈r, p〉 where, for one of the kens p is a proclet
and r ∈ Act(p), while for the other ken either p is not a proclet or r /∈ Act(p).
As the kens are plausible, p is of lower level than q, so, by our choice of q to
minimize the level, p is a proclet of both kens. So we must have r ∈ Act(p) for
one ken and not for the other. We already saw that the Act functions of these
two kens agree up to and including level l , so p must have level ≥ l + 1. That
contradicts the fact that p has lower level than q. This contradiction completes
the proof that the kens K (l + 1) and K (l + 2) have the same proclets up to and
including level l + 1.

Finally, for these common proclets at levels ≤ l + 1, the two kens K (l + 1)
and K (l + 2) have the same mailboxes, since these mailboxes come from the
outputs of the computations by proclets of levels ≤ l , in initial local states given
by K (l ) and K (l +1), and we have seen that these outputs are the same in both
cases.

This completes the inductive proof of the claimed agreement between K (l )
and K (l + 1) up to level l . Apply this result with l greater than the maximum
length B of walks allowed by the Bounded Sequentiality Postulate. For such
an l , we have K (l ) = K (l + 1); the whole kens are identical. Rereading the
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definition of K (l + 1) in the light of this equality, we find that it says precisely
that K (l ) is correct.

Now that we have the existence and uniqueness of the correct ken for any
state, we can formulate the final postulate.

—Update Postulate. The update set of the algorithm in a (global) state is the
set of all the updates of global dynamic functions produced by all the proclets
of the correct ken, firing in the correct ken.

This is exactly like the corresponding postulate in Blass and Gurevich [2003]
except that the notion of proclet now depends explicitly on the ken.

Remark 24. The fact that, in each step of an algorithm, each proclet fires
just once is formally contained in the Update Postulate. This postulate refers to
a single firing, and so do the definitions on which it depends, like the definition
of correct kens. And this postulate describes the whole influence of the proclets
on the overall computation, since only the updated state persists to the next
step.

The intuitive notion of bounded sequentiality requires bounds not only on
the number of proclets that act in sequence, as formalized in the Bounded
Sequentiality Postulate, but also on the sequentiality in the actions of a single
proclet. The latter bound is ensured, in our postulates, by the requirements
that proclets execute a sequential algorithm and that they fire only once per
step.

Remark 25. The Update Postulate implies that the updates of global dy-
namic functions produced by the various proclets do not clash. This is because
the update set of an algorithm, as defined in connection with the Sequential
Time Postulate in Blass and Gurevich [2003], will never contain conflicting
updates.

The next definition is like that in Blass and Gurevich [2003] but using our
modified postulates.

Definition 26. A parallel algorithm is an algorithm satisfying the Sequen-
tial Time, Abstract State, Background, Proclet Algorithm, Bounded Sequen-
tiality, and Update Postulates.

4. ABSTRACT STATE MACHINES AS ALGORITHMS

This section is devoted to showing that ASMs can be viewed as parallel al-
gorithms in the sense defined above. That is, we prove what was claimed in
Section 8.5 of Blass and Gurevich [2003]. We do not repeat all the parts of
Section 8.5 that are correct but concentrate on correcting the errors.

It will be useful first to make a few comments about the nature of the exam-
ples in Section 8 of Blass and Gurevich [2003]. Those examples involved various
approaches to parallel computation—PRAMs, circuits, alternating Turing ma-
chines, first-order logic, fixed-point logic, and ASMs—and indicated how the
algorithms of these models fit our postulates. The most important work here
was to analyze these algorithms down to the level of proclets in order to say what
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the proclets and the proclet algorithm should be. Another aspect was adjoin-
ing, if necessary, the multisets, ordered pairs, etc., required by the Background
Postulate, but this second aspect was fairly routine. Except for Proclet, every-
thing required by the Background Postulate is determined once the “atomic”
elements of the state are known. Thus, to make these other models of parallel
computation fit our postulates, the procedure is roughly as follows. First analyze
the algorithms to see what entities are directly involved. The small sequential
processes that make up the parallel algorithm are among these entities, as pro-
clets, and the way they work is the proclet algorithm. Then, if Boolean values,
multisets, and ordered pairs are not already present, adjoin them, along with
the basic operations on them. (See Blass and Gurevich [2003], Section 7, partic-
ularly Remarks 7.3 and 7.5, for comments on the naturality of adjoining these
things.)

In the particular case of ASMs, the definition in Blass and Gurevich [2003],
Section 9, required their vocabularies to contain everything listed in the Back-
ground Postulate. The ASMs constructed in the proof of the main result, The-
orem 10.1, of Blass and Gurevich [2003] will indeed contain all these things,
because they are behaviorally equivalent to algorithms, as defined by the pos-
tulates; behavioral equivalence demands that the states and therefore the vo-
cabulary are the same. But one can also consider other ASMs, for example,
the parallel ASMs of Gurevich [1995] (but without interactive features like ex-
ternal functions and importing reserve elements), and they should also fit our
postulates when equipped with suitable proclets and a background containing
multisets and ordered pairs.

For simplicity, we consider in detail only one version of ASMs, namely, that
defined in Section 9 of Blass and Gurevich [2003], with one clarification. Where
we said that the vocabulary of an ASM should contain “all the items required
by the Background Postulate”, the last item in that postulate, “a variable-free
term Proclet . . . ” (which would now become PriProclet) is to be omitted. If an
ASM’s vocabulary happens to contain a nullary function symbol PriProclet,
then that symbol should be renamed to avoid a conflict with the PriProclet
involved in our postulates. Note that a symbol PriProclet in some arbitrary
ASM need not have anything to do with the actual proclets, the sequential
subprocesses of which the algorithm is composed; the name PriProclet could
be purely accidental. We prefer to reserve this name for the actual primary
proclets.

Although we concentrate on one version of ASMs, the same ideas could be
used to handle other versions, for example, without multisets or without ordered
pairs in the background. (These things, if missing from the ASM states, would,
of course, be added when we defined the states to be used in the postulates.) We
believe that the version we consider exhibits all the difficulties of other natural
versions, so that, given the following treatment of it, the reader will be able to
treat the others also. The vocabulary of the algorithm we describe will consist
of the vocabulary of the given ASM plus two new, static, unary function symbols
defined as follows:

Mult(x, y) = multiplicity of element x in multiset y
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and

pred(n) = {0, 1, . . . , n − 1}
for natural numbers n. (Mult and pred abbreviate multiplicity and predecessors,
respectively. What exactly the natural numbers are, in a state of our algorithm,
is irrelevant to the functioning of the algorithm; we postpone discussion of the
issue to Remark 27 after the presentation of the algorithm.)

The exposition in Blass and Gurevich [2003], Section 8.5, began with a rough
but intuitively understandable description of the algorithm, containing three
explicitly acknowledged difficulties, and it continued with a discussion of how
to circumvent these difficulties. In an attempt to retain intuitive understand-
ability for our present, somewhat more complicated (but correct) algorithm,
we again want to separate the main idea from the circumvention of the old
difficulties. In this way, we can concentrate attention on the new aspects of
the construction. Furthermore, of the three difficulties mentioned and circum-
vented in Blass and Gurevich [2003], two can be treated here in the same way
as there, and one disappears entirely. We explain this first, in order to get all
of these difficulties out of the way. (In Blass and Gurevich [2003], we described
the algorithm first and eliminated the difficulties afterward, but in the present
context it seems clearer to handle the difficulties first.)

The first difficulty was that the rough description assumed that the ASM
never produced conflicting updates. It was solved by showing, in Blass and
Gurevich [2003], Section 9.2, how to convert any ASM into one that never pro-
duces such clashes. The same solution applies in the present context.

The second difficulty was that there are infinitely many proclets, though
only finitely many become active in any step. This difficulty disappears in the
present context. Our postulates require only the set of primary proclets to be
finite, and the algorithm we describe will involve only a single primary proclet.
Any element of the state is potentially a secondary proclet, and by activating
some of these we can obtain all the proclets used by the construction in Blass
and Gurevich [2003]. Thus, we no longer need the terms MDA(p) and MA(p) that
we defined—incorrectly because we used comprehension terms—on pages 624–
625 of Blass and Gurevich [2003].

The third difficulty concerned cycles in the information flow digraph, where
one proclet activated another and gave it some information, and then the sec-
ond proclet returned some information to the first. This difficulty was solved
by replacing each proclet by two or three others, each performing a part of the
original proclet’s task. We shall refer to these two or three proclets as incarna-
tions of the original one. Thus, the first incarnation of one proclet might activate
another proclet, but the reply from the second proclet would then go to the sec-
ond or third incarnation of the first. (More precisely, the first incarnation of
the first proclet might activate the first incarnation of the second proclet, and
eventually the last incarnation of the second proclet would reply to the second
or third incarnation of the first proclet.) This solution continues to work in the
present setting. Activate has, of course, a new meaning, the meaning given by
our postulates, rather than merely displaying some information that is read by
the proclet to be activated. But the idea remains the same. In fact, we shall
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describe our algorithm in the same format as in Blass and Gurevich [2003],
numbering a proclet’s tasks in a way that indicates which tasks are to be done
by which incarnations.

In addition to getting these difficulties out of the way, we must make another
preliminary comment, on the nature of the proclets used in our algorithm. In
the rough description (before addressing the three difficulties) in Blass and
Gurevich [2003], pp. 622–623, the proclets were ordered pairs 〈Ẑ , ā〉, where
Z is an occurrence of a term or rule in the given ASM, Ẑ is a “name” for it,
and ā is a tuple of values for its pseudofree variables. Recall that the names
were assigned rather arbitrarily in Blass and Gurevich [2003]; they just need
to be elements of the state that can be explicitly named, and this is easy to
arrange since there are only finitely many of them. Recall also that a variable x
is pseudofree in an occurrence Z if Z lies in the scope of a comprehension term
or a parallel rule that binds x; since an ASM program has no free variables,
all the free variables of a term or rule are among its pseudofree variables. To
list the values of these variables in a tuple, we implicitly assume a particular
ordering of the variables. It will be convenient to assume that the pseudofree
variables of any term or rule Z are listed in decreasing order of their scopes;
these scopes are linearly ordered because they all contain Z . (This convention
was already tacitly used in Blass and Gurevich [2003].)

Our proclets will be more complicated for two reasons. First, as indicated
above in the solution of the third difficulty, each of the proclets in the rough
description will actually have two or three incarnations, different proclets that
divide the work in such a way as to avoid cycles. Some care will be needed in
the choice of just which elements of the state serve as the second and third
incarnations of proclets; we postpone the details until after we have presented
enough of the algorithm to motivate the details. For now, the reader can use
the following simple picture of incarnations. Because the necessary number of
incarnations of a proclet 〈Ẑ , ā〉 is entirely determined by the nature of the term
or rule Z , we can simply include, with Ẑ , a marker distinguishing the various
incarnations of the proclet. Thus, instead of 〈Ẑ , ā〉, we would have 〈Ẑ , k, ā〉 for
the kth incarnation of 〈Ẑ , ā〉.

The second complication in our proclets arises from the convention that each
secondary proclet p is an ordered pair whose second component is the proclet
that activated p. Thus, where one might intuitively think of a chain of activa-
tions, say

x ∈ PriProclet, y ∈ Act(x), z ∈ Act( y), w ∈ Act(z),

the actual chain would look like

x ∈ PriProclet, y ∈ Act(x), z ∈ Act(〈 y , x〉), w ∈ Act(〈z, 〈 y , x〉〉),
the last proclet activated here being 〈w, 〈z, 〈 y , x〉〉〉. In our situation, this means
that our proclets will not have the simple form 〈Ẑ , k, ā〉 but will be ordered
pairs whose first components have this form and whose second components are
themselves proclets. The proclet previously called 〈Ẑ , k, ā〉 will thus encode the
list of all the occurrences of terms and rules within which Z lies.
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Both of these complications in the proclets—exhibiting the incarnation num-
bers and the ancestors of the proclets—will contribute little to the essential
ideas of the algorithm that we shall describe, but they threaten to obscure the
ideas by cluttering the notation. Accordingly, we adopt the convention of writing
simply 〈Ẑ , ā, . . .〉; the intention is that the “. . .” reminds us of all the extra in-
formation coded in the proclet, but we refrain from exhibiting this information
and thus remain close to the 〈Ẑ , ā〉 notation used in Blass and Gurevich [2003].

In addition to the proclets 〈Ẑ , ā, . . .〉 that will play essentially the same roles
as 〈Ẑ , ā〉 in the rough description in Blass and Gurevich [2003], our algorithm
will involve some additional proclets. Most of these arise from the need to avoid
comprehension terms in the proclet algorithm. In describing the activity of
proclets 〈û, ā〉 where u is a comprehension term, we incorrectly used compre-
hension terms in Blass and Gurevich [2003]. Now, the “work” done by these
comprehension terms will be described honestly, using additional proclets.

There will also be some additional proclets in our description of the activity
of proclets 〈R̂, ā, . . .〉 when R is a parallel rule do forall x ∈ r, R0(x) enddo.
These are needed in order to get the right format for the subsidiary proclets
〈R̂0(x), ā�c, . . .〉.

The work of all these additional proclets will be described in the context of
the work of their activators (or activators of activators). The “main” proclets
〈Ẑ , ā, . . .〉 serve the same purpose as 〈Ẑ , ā〉 did in Blass and Gurevich [2003].
When Z is a term, the purpose is to compute its value v, using ā for the values
of (pseudo-)free variables, and to push v to the parent (i.e., to the activator).
More precisely, it pushes the pair 〈v, 〈Ẑ , ā, . . .〉〉, so the parent knows which
child computed this v. When Z is a rule, the purpose is to ensure the execution
of the updates that the rule produces, again using ā to supply the values of free
variables. To “ensure the execution” here means either to execute the updates
or to activate enough other proclets that will ensure the execution.

In the following description of our algorithm, it is to be understood that,
when a proclet (of the rough description) has several incarnations (in the precise
description), then each of these incarnations except the last is to activate the
next one. This activation is to be added to the activations explicitly mentioned
in the following description.

In the light of the preceding discussion, we can use, in our present algo-
rithm, much of what was done in the rough description in Blass and Gurevich
[2003]. Specifically, the activity of the proclets corresponding to variables, to
terms of the form f (t1, . . . , tn), to update rules, and to conditional rules can be
described exactly as in Blass and Gurevich [2003], pp. 622–623, with just two
modifications:

—change every 〈Ẑ , ā〉 to 〈Ẑ , ā, . . .〉;
—delete the parenthetical comment that activation is done “by displaying an

appropriate signal,” since activation is now done by updating myAct.

Notice that, in each of these cases, a proclet activates a bounded set of other
proclets, so the desired myAct can be explicitly given by the proclet algorithm.

There remain the proclets corresponding to comprehension terms and to
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parallel rules—the two ASM constructs that introduce unbounded parallelism.
For these proclets, we cannot proceed exactly as in Blass and Gurevich [2003].
Indeed, the instructions in Blass and Gurevich [2003] for the second incarnation
of such a proclet (i.e., the instructions labeled (2) in the rough description)
involve activating an unbounded set of secondary proclets. To do so, a proclet
would update myAct to mark a set for activation, but the necessary set could be
described only by a comprehension term. The following instructions for these
two sorts of proclets avoid this difficulty by marking for activation only a set
directly available to the activating proclet, that is, a set that can be named
in the proclet’s initial local state. The price for this is that the comprehension
term to be avoided involved some parallel work, which must now be done by
additional proclets. Here are the details.

Let p be the proclet 〈û, ā, . . .〉 where u is a comprehension term {{t(x) : x ∈
r : ϕ(x)}}. As in Blass and Gurevich [2003], the work of p will be in three parts
(i.e., p will have three incarnations).

(1) activate 〈r̂, ā, . . .〉;
(2) after receiving the value b computed by this secondary proclet, display b

and mark AsSet(b) for activation;
(3) push 〈myMail, me〉 to your parent.

Obviously, for this to be correct, a lot has to happen between instructions (2)
and (3). Specifically, the proclets activated in (2) must somehow ensure that the
mailbox of p is exactly the multiset that p is supposed to compute, the value
of {{t(x) : x ∈ r : ϕ(x)}} when the free variables have values given by ā. That is
achieved as follows.

The proclets activated as a result of (2) are 〈c, p, . . .〉 for all c ∈ b. (The “. . .”
here refers only to an indication of the fact that the activator is the second
incarnation of p.) Each such 〈c, p, . . .〉 does the following.

(1) Read b from the display of (the second incarnation of ) p and mark for
activation

{{〈t̂(x), ā�c〉, 〈ϕ̂(x), ā�c〉}} 
 pred(Mult(c, b)).

Recall that pred(Mult(c, b)) = {0, 1, . . . , m − 1} where m is the multiplicity
of c as an element of b.

(2) When the proclets 〈t̂(x), ā�c〉 and 〈ϕ̂(x), ā�c〉 return values, if ϕ(c) = true
then display {t(c)}; otherwise display ∅.

The additional proclets 〈k, . . .〉 (for 0 ≤ k < Mult(c, b)) activated here read the
display of (the second incarnation of) 〈c, p, . . .〉 and, if it is nonempty, extract its
element (using TheUnique) and mail that to (the third incarnation of) p. As a
result of all this work, the proclets activated by 〈c, p, . . .〉 will contribute to the
mailbox of p either nothing, if ϕ(c) = false, or exactly Mult(c, b) copies of t(c), if
ϕ(c) = true. Combining the results from all elements c of AsSet(b), we obtain as
the mailbox of p exactly the required multiset, the value of {{t(x) : x ∈ r : ϕ(x)}}
with free variables interpreted according to ā.

Finally, we consider the somewhat easier case of a parallel rule. Let p be
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the proclet 〈R̂, ā, . . .〉, where R is the rule do forall x ∈ r, R0(x) enddo. Its
instructions are

(1) activate 〈r̂, ā, . . .〉; and
(2) after receiving the value b computed by this secondary proclet mark

AsSet(b) for activation.

Each proclet 〈c, p, . . .〉 activated in (2) merely activates 〈R̂0(x), ā�c, . . .〉. These
proclets will then ensure the execution of R0(c) for all c ∈ b, as required.

To complete the description of our algorithm, we still have two tasks to ac-
complish. We must provide the term PriProclet, and we must keep our promise
to provide details about which elements of the state serve as the second and
third incarnations of our proclets.

The first of these tasks is remarkably easy. We need only a single primary
proclet, the one corresponding to the whole ASM program �, considered as a
rule; all other proclets that we need are activated during the execution of the
algorithm. We therefore define PriProclet to be {{〈�̂, 〈〉〉}}. (Here 〈〉 is the empty
tuple, since � has no pseudofree variables.)

Finally, we turn to incarnations. When a proclet p activates its next incar-
nation p′, it does so by including an appropriate element q in its myAct, so
that p′ = 〈q, p〉. But what is an appropriate q? The proclet 〈q, p〉 had better
be distinct from all the other proclets activated by p. We need not worry about
coincidences with other secondary proclets, activated by proclets other than p,
for these will have their activators, not p, as their second components. We also
need not worry about a coincidence with the primary proclet 〈�̂, 〈〉〉, since its
second component 〈〉 is distinct from p. In most cases, our description of the
algorithm tells what the other proclets activated by p are, and it is easy to
find a suitable q. If, as suggested in Blass and Gurevich [2003], we use certain
multisets as the codes Ẑ , then true will work as the required q in all but two
cases. To see this, just use the fact that true is not a multiset or an ordered
pair or a natural number. (See Remark 27 below about natural numbers.) The
two cases where this choice might fail are those where p is the second incar-
nation of 〈Ẑ , ā, . . .〉 and Z is a comprehension term or a parallel rule. In those
cases, the other proclets activated by p include 〈c, p〉 for all members c of b
(in the notation used for describing the algorithm above). So we must ensure
that q /∈ b. Fortunately, there is a standard (in set theory) trick for getting an
object that is not a member of a given (multi)set b, namely, to take the object b
itself. (There are also other options, for example, {{b}}.) Thus, we can obtain the
next incarnation, in the two cases where q = true might not work, by taking
q = b instead. One final comment is needed here, namely, that, in these cases, p
should display b, so that the proclets it creates can tell, by reading the display,
whether they are the next incarnation of p or one of the other proclets, 〈c, p〉
for c ∈ b, that p activated.

Remark 27. Our algorithm depended on the availability of natural num-
bers and the functions Mult and pred. There are at least two plausible ways to
represent natural numbers by elements of the states of our algorithms. One is
the coding, due to von Neumann, that has become standard in set theory. It sets
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(inductively) n = {0, 1, . . . , n − 1}. With this coding pred is simply the identity
function. An alternative coding, quite natural when multisets are available, is
to represent n by a multiset consisting of n copies of some standard entity, for
example true or ∅.

But in fact, we could do without any particular representation of the nat-
ural numbers. The algorithm never used Mult and pred individually but only
in the combination pred ◦ Mult, and it never mattered that the elements of
pred ◦ Mult(c, b) were numbers, only that they were Mult(c, b) distinct objects,
all distinct from true. (Distinctness from true was used only in our discus-
sion of using q = true for producing second and third incarnations.) Thus, we
could simply assume the existence of some such function to serve in place of
pred ◦ Mult.

5. ALGORITHMS ARE ABSTRACT STATE MACHINES

Our goal in this section is to show that the ASM thesis, that all algorithms
are behaviorally equivalent to ASMs, holds for parallel algorithms in the sense
of Definition 26. That is, the thesis is not damaged by our extension of the
notion of parallel algorithm from Blass and Gurevich [2003] to allow intrastep
creation of proclets. We do not change the definitions of ASMs (see Blass and
Gurevich [2003], Section 9.1), and of behavioral equivalence (see Blass and
Gurevich [2003], Definition 2.3). Recall that behavioral equivalence is a very
strong equivalence relation, requiring the same states, the same initial states,
and the same one-step transition function. In particular, when we construct an
ASM equivalent to a given algorithm A, it is obvious what the states and initial
states of the ASM must be; the only issue is constructing an ASM program that
produces the same transition function as A.

THEOREM 28. Every parallel algorithm is behaviorally equivalent to an
ASM.

PROOF. The proof is very similar to the proof of the corresponding, weaker
result, Theorem 10.1, in Blass and Gurevich [2003], so we only explain the
changes that are required by our present, broader notion of algorithm.

The first part of the proof in Blass and Gurevich [2003], expressing the pro-
clet algorithm as a sequential ASM with output, �, requires only a notational
change: Since the initial local state now interprets the dynamic, nullary symbol
myAct, this symbol is added to the vocabulary of �.

The next part of the proof in Blass and Gurevich [2003], starting at the
bottom of page 631, gives a rough description of how the ASM’s computation
will proceed. As pointed out there, the most natural approach to computing the
correct ken, namely, imitating the level-by-level recursion used in the proof of
Theorem 7.22, needs to be modified because information about the levels is not
available to the proclets. So in Blass and Gurevich [2003] the rough description
of the ASM’s work is called a “rough description of the modification” of the
natural approach.

We must now make a further modification because the notion of proclet is
not fixed by the state (as it was in Blass and Gurevich [2003]) but changes from
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phase to phase as a result of activations. The work of the ASM still proceeds
in B phases, with all proclets executing the proclet algorithm in certain initial
local states at each phase, but the set of proclets here depends on the phase. In
the first phase, the proclets are the elements of PriProclet. At any later phase,
say phase k, the proclets are the elements of PriProclet and the elements
activated by proclets at phase k − 1. The latter are, of course, the elements of
the form 〈q, p〉 where p was a proclet at phase k − 1 and it updated its myAct
to a set containing q.

At each phase, the proclets of that phase execute the proclet algorithm in
an initial local state where myMail and Display are interpreted as the results
of the preceding phase (with myMail = ∅ and Display(q) = undef in phase 1),
exactly as in Blass and Gurevich [2003]. The argument in Blass and Gurevich
[2003], p. 632, showing that, in phase k, all proclets of level ≤ k are computing
in the initial local states given by the correct ken carries over to the present
context. It follows that these proclets do the correct pushing, displaying, and
activating at this phase and that, as a result, the next phase has the correct
set of proclets up to and including level k + 1. (The reference to Lemma 7.25 in
Blass and Gurevich [2003] is now replaced with a reference to Lemma 21.)

Just as in Blass and Gurevich [2003], the rough description must be supple-
mented with a decision to suppress all updates of the global state until phase
B, during which the ASM is using the correct set of proclets with the correct
initial local states at all levels.

In the formal presentation of the ASM, starting on page 633 of Blass and
Gurevich [2003], the following extensions are needed to handle activation of
proclets. First, in addition to the terms (or more precisely term schemas)
Outmail(p, M , D) and Dspl(p, M , D) used there, we also have Asp(p, M , D).
Here Asp stands for activate secondary proclets; the intended meaning is that
proclet p, with M as its mailbox and D as the display function, would exe-
cute updates of myAct, and Asp(p, M , D) is the multiset of all the elements x
such that p would update myAct to x, just as in Blass and Gurevich [2003]
Dspl(p, M , D) is the multiset of those x such that p updates myDisplay to x.
(The ASM program � can be arranged so that it produces at most one update
of myAct and myDisplay, but it is convenient to give the definitions in a general
form that does not presuppose this uniqueness.)

The definitions of OutmailR and DsplR by induction on rules R, as given in
Blass and Gurevich [2003], must be supplemented with clauses to define AspR .
To formulate these clauses, we use for terms t the notation t ′, defined just as in
Blass and Gurevich [2003] with the extra clause that myAct in t is to be replaced
with ∅ in t ′. Now the clauses defining AspR are exactly analogous to the clauses
for DsplR in Blass and Gurevich [2003]:

—If R is an update rule of the form myAct := t, then AspR(p, M , D) is {{t ′}};
—If R is any other update rule, then AspR(p, M , D) is ∅;
—If R is Push t0 to t1, then AspR(p, M , D) is ∅;
—If R is do in parallel R0, . . . , Rk enddo; then AspR(p, M , D) is the sum
AspR0

(p, M , D) 
 . . . 
 AspRk
(p, M , D);
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—If R is if ϕ then R0 else R1 endif, then AspR(p, M , D) is

{{z : z ∈ AspR0
(p, M , D) : ϕ′}} 
 {{z : z ∈ AspR1

(p, M , D) : ¬ϕ′}}.
Continuing in analogy with how we handled Dspl, we define Asp (p, M , D) to
be TheUnique(AsSet(Asp�(p, M , D))). One more definition is needed, to incor-
porate both the automatic tagging of secondary proclets with their activators
and the convention that, if a proclet marks for activation something other than
a set, then it thereby activates nothing. Accordingly, we define TP(p, M , D) to
be

{{〈q, p〉 : q ∈ Asp(p, M , D) : AsSet(Asp(p, M , D)) = Asp(p, M , D)}};
the notation TP stands for tagged proclets.

Next, we modify the definitions in Blass and Gurevich [2003], p. 634, of
Mailboxk(p) and Displayk(p) to take into account the possible variation of the
set of proclets from one phase to another. The (unique) occurrence of Proclet
in these definitions is to be replaced with Procletk , which in turn is defined by
induction on k simultaneously with Mailboxk(p) and Displayk(p), as follows:

—Proclet0 is PriProclet;
—Procletk+1 is PriProclet 
 ⊎{{TP(p, Mailboxk(p), Displayk) : p ∈ Procletk :
true}}.
It was shown in Blass and Gurevich [2003] that Mailboxk(p) and Displayk(p)

give the mailbox and display functions after k phases of the computation in our
description of how the desired ASM works. The argument there extends to show
that TPk(p) gives the set of proclets activated by p in phase k and therefore that
Procletk is the set of proclets that execute during phase k + 1. Arguing as on
page 635 of Blass and Gurevich [2003], we find that the updates of the given
algorithm A are matched by the ASM program

do forall p ∈ ProcletB−1 �∗(p) enddo

(the same as in Blass and Gurevich [2003] except for the subscript B − 1 on
Proclet), where �∗(p) is obtained from � by the same substitutions as in Blass
and Gurevich [2003], except that Skip replaces not only updates of myDisplay
but also updates of myAct.
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