
Abstract State Machines
Capture Parallel Algorithms

ANDREAS BLASS
University of Michigan
and
YURI GUREVICH
Microsoft Research

We give an axiomatic description of parallel, synchronous algorithms. Our main result is that every
such algorithm can be simulated, step for step, by an abstract state machine with a background
that provides for multisets.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of
Computation—Parallelism and concurrency; D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming; I.6.5 [Simulation and Modeling]: Model Development—
Modeling methodologies

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Parallel algorithm, abstract state machine, ASM thesis,
postulates for parallel computation

1. INTRODUCTION

The Abstract State Machine Thesis [Gurevich 1995] asserts that every algo-
rithm is behaviorally equivalent to an abstract state machine and in particular
is simulated step for step by that machine. There is considerable empirical ev-
idence for this thesis [ASM Web]. In Gurevich [2000], the thesis was proved
for sequential algorithms. The purpose of this article is to extend the ideas and
results of Gurevich [2000] to parallel algorithms.

The algorithms we consider have computations divided logically into a se-
quence of discrete steps. Within each step, many parallel subcomputations may
take place, but they finish before the next step begins. We do not consider the
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more general notion of distributed computation, where many agents proceed
asynchronously, each at its own speed, and where communications between
agents may provide the only logical ordering between their actions. In addi-
tion, we assume that parallelism is the only way for the amount of computation
within a single step to be unbounded, that is, to increase with the input or the
state rather than being fixed by the algorithm. Another way to say this is that
we insist on a fixed bound for the amount of sequentiality in any one step (more
precise formulations will be given later).

We shall give a general, axiomatic description of such parallel algorithms,
analogous to the description of sequential algorithms in Gurevich [2000]. We
hope to make it plausible that our description is broad enough to cover all algo-
rithms of the sort described in the preceding paragraph. Then, we shall prove
that every such algorithm can be simulated step-for-step by an abstract state
machine (ASM) [Gurevich 1995, 1997] operating with a suitable background
in the sense of Blass and Gurevich [2000]. Since abstract state machines are
conceptually quite simple, and since the background we need can be kept sim-
ple as well, our main result provides a significant reduction of the general
notion of parallel algorithm. In effect, it provides a simple normal form for such
algorithms. By enriching the background somewhat, we can make individual
algorithms simpler and more natural, at the cost of some loss of simplicity in
the general notion.

This article is organized as follows. Section 2 reviews the axioms for se-
quential algorithms introduced in Gurevich [2000], checking which of them
remain correct for parallel computation and which must be modified. Although
we briefly review the material from Gurevich [2000] that we use in the present
paper, a detailed understanding of Sections 2 and 10 presupposes knowledge
of Gurevich [2000]. Section 3 is devoted to a special case of parallel computa-
tion, where there is, within any one step, no interaction between the various
processes. Some of the issues distinguishing parallel from sequential computa-
tion are most easily understood in this context. In Sections 4 and 5 we describe
what must be added to this simple context in order to describe general paral-
lel algorithms. In particular, we go beyond Section 3 by allowing communica-
tion and interaction between processes, but not in a way that would introduce
unbounded sequentiality. The framework developed here covers the partial up-
dates described and studied in Gurevich et al. [2001] and Gurevich and Tillman
[2001] and used in the specification language AsmL [Foundations of Software
Engineering Group]. Section 6 summarizes material on backgrounds from Blass
and Gurevich [2000] and Gurevich et al. [2001], indicating its relevance to the
matters discussed in the preceding sections. We assemble all this material in
Section 7 to describe parallel computation in general. To support the claim that
our description is general, we show in Section 8 how several popular models
of parallel computation fit the description. (We thank two of the referees for
suggesting that this material be added to the earlier version of the article.) In
Section 9, we review the definition of abstract state machines in the context of
a background containing multisets. We also establish a normal form theorem
for these abstract state machines. Part of the parallelism and thus part of the
power of this model comes from allowing comprehension terms for multisets,
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analogous to the comprehension terms for sets used in Blass et al. [1999]. In
Section 10, we prove our main result, showing how the general parallel algo-
rithms described in Section 7 can be simulated by abstract state machines.
In particular, this shows that the partial updates of Foundations of Software
Engineering Group, Gurevich et al. [2001] and Gurevich and Tillman [2001]
can be eliminated in favor of ordinary updates in the presence of the multi-
set background. In Section 11, we extend some of our results to unbounded
sequentiality by using abstract state machines with submachines. The subse-
quent sections contain additional remarks about parallel algorithms in general
and about possible variations in the axioms. The study of one of these variations
leads to an apparently new complexity class and a complete problem for it in
Section 12.

Terminology 1.1. By “parallelism” we generally mean unbounded paral-
lelism. That is, the number of parallel processes is not subject to an a priori
bound given by the program alone but rather depends on the state. Bounded
parallelism, exemplified by the “do in parallel” rules of ASMs, is really se-
quential computation and was already covered by the analysis in Gurevich
[2000].

Terminology 1.2. The word “sequential” has two different meanings, both
of which are somewhat relevant to this article, so we must be careful to distin-
guish them.

The phrase “sequential time” refers to what was described above as syn-
chrony between the various processes. It means that in any run of an algorithm,
there is an initial state, followed by a second state, followed by a third, and so
on, the progression of states being determined by the algorithm. This concept
is to be contrasted with distributed algorithms, where there may be no natural
global clock, and where an attempt to speak of the second state, the third, and
so on may lead to states that depend, in general, not only on the algorithm but
also on the order in which different agents happen to execute their tasks.

The phrase “sequential algorithm” means an algorithm which not only op-
erates in sequential time but also does not involve (unbounded) parallelism.
There is a uniform bound, depending only on the algorithm and not on the
state, for how much reading and writing can be done at any one step. These are
the algorithms characterized in Gurevich [2000].

Thus, the algorithms considered in the present paper are sequential time
algorithms but not necessarily sequential algorithms.

Terminology 1.3. Throughout this article, we use “bounded” to mean that
a bound depends only on the algorithm, not on its input or its state. Thus, for
example, the algorithms considered in this paper have, in each step, bounded
sequentiality but not (necessarily) bounded parallelism.

Notice that this meaning of “bounded” disagrees with the set-theoretic ter-
minology “bounded quantification,” which means that the quantified vari-
able is restricted to range over a (specified) set. When the states of an algo-
rithm include a set-theoretic structure, as for example in Blass et al. [1999],
it often happens that the sets used by the algorithm grow with the input.
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In such cases, bounded quantifiers in the set-theoretic sense may fail to be
bounded in our sense; that is, the ranges of the quantified variables may not be
bounded.

2. SEQUENTIAL TIME AND ABSTRACT STATES

The treatment of sequential algorithms in Gurevich [2000] was based on three
postulates:

(1) Sequential Time: An algorithm A is associated with a set S(A) of states,
a subset I(A) ⊆ S(A) of initial states, and a map τA : S(A) → S(A) called
the one-step transformation.

(2) Abstract State: All states of A are first-order structures with the same
finite vocabulary, which we call the vocabulary of A. τA does not change the
base set of a state. Both S(A) and I(A) are closed under isomorphisms. Any
isomorphism from a state X to a state Y is also an isomorphism from τA(X )
to τA(Y ).

(3) Bounded Exploration: There is a finite set T of terms in the vocabulary
of A such that, whenever two states X and Y coincide on T , then1(A, X ) =
1(A, Y ).

In the last postulate, 1(A, X ), the update set produced by algorithm A in
state X , is defined as the set of all triples ( f , ā, b) where f is a function symbol,
ā is a tuple of elements of X of the right length to serve as the argument tuple
of f , b is the value of f at ā in τA(X ), but b is not the value of f at ā in X . Thus
1(A, X ) can be regarded as all the information of the form f (ā) = b that is not
true in X but becomes true when τA is applied to X . It represents the changes
in X produced by the algorithm A.

Recall our convention that “bounded” means that the bound depends only on
the algorithm, not on the state. The name of the Bounded Exploration Postulate
refers to the fact that what the algorithm does at any step depends only on
the values of a fixed, finite set T of terms, which in turn depends only on the
algorithm. In particular, the number of elements of the state that are involved
in one computation step is bounded.

By a pure run of an algorithm, we mean a finite or infinite sequence of states
in which the first member is an initial state and each of the other members
is obtained by applying τA to the immediately preceding member. (The word
“pure” refers to the fact that there are no external influences on the sequence
of states, for example no users typing input.)

We shall need a modification of the notion of sequential algorithm, which is
also of independent interest, namely a sequential algorithm with output. This
is a process that works like a sequential algorithm but may also, at each of its
steps, send some information to the outside world. For example, the algorithm
may write a character string on a printer, or it may send data to some other
algorithm. The information sent is, like every object involved in an algorithm’s
computation, a member of its state.

One way of modeling this situation would be to have a dynamic function
symbol output to which the algorithm assigns values that are the objects to
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be sent; it would be assumed that the outside world somehow monitors this
dynamic symbol and extracts the appropriate values. It will be useful for our
purposes to regard sending information as a separate operation from updating
the state. In particular, we allow for the possibility of several elements being
sent at the same step. In fact, we shall also need the possibility of sending the
same element several times during one step, so in general we have not a set
but a multiset of outputs at each step. (See Section 4 below for a discussion of
multisets; for now, it will do no harm to think of sets instead.) We formalize this
picture as follows.

Definition 2.1. A sequential algorithm with output is an algorithm satisfy-
ing the Sequential Time, Abstract State, and Bounded Sequentiality Postulates
above with the following modifications.

—Add to the Sequential Time Postulate that there is a function σA assigning
to each state X a multiset σA(X ) of members of the base set of X , called the
multiset of outputs from X in algorithm A.

—Add to the Abstract State Postulate that σA respects isomorphisms in the
sense that, if i : X→Y is an isomorphism between two states, then i[σA(X )] =
σA(Y ).

—Add to the Bounded Sequentiality Postulate that, if two states X and Y
coincide on T , then σA(X ) = σA(Y ).

The proof of the sequential thesis in Gurevich [2000] can be adapted to show
that any sequential algorithm with output is equivalent to a sequential abstract
state machine with output. (See the proof of Theorem 10.1 for a discussion
of this adaptation.) Here sequential ASMs with output are defined just like
ordinary sequential ASMs except that the definition of rules has an extra clause,
introducing rules of the form “Output(t)” where t is any term. The semantics
of such a rule is that the value of t (in the current state) is put into the output
multiset of the algorithm at this state.

In some situations, it may be convenient to have several sorts of output,
for example writing on several printers or sending data to several destina-
tions. This can be incorporated in the preceding picture by tagging each output
element with a label indicating what sort of output it is. Alternatively, if the
number of output functions depends only on the algorithm and not on the state,
then we could extend the notion of sequential algorithm with output by hav-
ing several output functions σA,l , and we could extend the notion of ASM with
output by having several sorts of output rules, Outputl (t). All the preceding
comments apply as well in this extended context.

Remark 2.2. In the present article as well as in Gurevich [2000], the no-
tion of initial state, though important for accurately modeling general notions
of algorithms, plays no essential role in the technical development. We could
simplify the postulates by omitting all mention of initial states. This simplifi-
cation could be obtained equivalently by assuming that all states are initial. To
use a smaller set of initial states merely means to confine one’s attention to a
subset of the runs.
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For the first two axioms, the Sequential Time Postulate and the Abstract
State Postulate, the justifications given in Gurevich [2000, Sections 3.1 to 3.3
and 4] do not depend on the fact that the algorithm is sequential. So these two
axioms are equally valid for the parallel algorithms that are our concern in
the present paper. We adopt them as part of our general description of parallel
algorithms.

The Bounded Exploration Postulate, on the other hand, specifically describes
sequential algorithms. It is false for most parallel algorithms. For example,
consider an algorithm that takes as input a (simple, undirected) graph and
transforms it to its complement, deleting all the edges present in the input and
adding edges between those pairs of distinct vertices that were not adjacent in
the input.

do forall x in Vertex
do forall y in Vertex

if x6=y then Adjacent(x,y):=¬Adjacent(x,y) endif
enddo

enddo

It is certainly not true for this algorithm that agreement between two states on
a fixed finite set entails agreement of the update sets. The update sets depend on
the entire graphs, which may be very different despite any fixed finite amount of
agreement. So the Bounded Exploration Postulate fails for such an algorithm.

It fails for an additional reason also. There are very few ground terms in the
vocabulary of graphs; they all denote true, false, or undef. So the hypothesis
in the Bounded Exploration Postulate, that X and Y agree over T , does not
even guarantee any agreement at all between the graphs; it only guarantees
that true, false, and undef agree.

Clearly, to describe parallel algorithms, we must drop the Bounded Explo-
ration Postulate and assume, in its place, an axiom or axioms specifically de-
signed for parallelism. The development of such axioms will be the goal of the
next few sections.

One aspect of the Bounded Exploration Postulate, however, still makes sense
in the parallel context. The transition from any state X to the next state τA(X )
still consists of certain changes or updates, collected in the set 1(A, X ) defined
above. It will be the task of our new axioms to explain where this set of updates
comes from. The explanation will have to be new, but what is to be explained is
still the update set 1(A, X ).

We adopt from Gurevich [2000] the following very strong notion of (behav-
ioral) equivalence of algorithms.

Definition 2.3. Two algorithms are equivalent if they have the same states,
the same initial states, and the same one-step transformation function.

We shall obtain, for every parallel algorithm (in the sense defined by our
postulates) an abstract state machine that is equivalent to it in the sense defined
here. It will follow of course that they are also equivalent in any of the weaker
senses of equivalence that have been considered in the literature. By using a
very strong notion of equivalence, we obtain a correspondingly strong theorem.
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The following corollary is a trivial consequence of the definitions, but we
mention it explicitly for emphasis.

COROLLARY 2.4. Equivalent algorithms have the same pure runs.

Remark 2.5. It is reasonable to ask about impure runs—runs that involve
some intervention by the external world. The situation is quite simple as long
as we assume that the environment intervenes only between steps of the algo-
rithm. That is, we suppose that a run is a sequence of states in which the first
state is initial and each subsequent state comes from its immediate predecessor
either by the algorithm’s transition function (as in a pure run) or by an action
of the environment. Then, if two algorithms are equivalent, every run of either
algorithm is also a run of the other, involving exactly the same interventions of
the environment (at exactly the same steps).

The situation is much less clear if the environment can intervene during a
step of the algorithm. Indeed, it is not even clear in this case what it would mean
for runs of two equivalent algorithms to involve the same interventions of the
environment, since equivalence of algorithms does not require any similarity
between the internal structure (if any) of the algorithms’ steps.

There is, however, a reasonably clear case, namely the one in which the
environment assigns values to certain functions, called external functions, and
these values do not change during any one step of the algorithm. In this case,
it does no harm to pretend that the values of external functions were assigned
at the beginning of each step of the algorithm, and this means in effect that the
environment’s actions occur between the algorithm’s steps. So we are back in
the easy situation discussed above.

Notice that this sort of action by the environment covers non-determinism,
for we can regard non-deterministic choices as being given by external func-
tions. A slightly more involved argument justifies the importing of new elements
from the reserve; see Gurevich [1997].

More general interventions of an environment within a step, for example
replies to an algorithm’s calls of external routines, appear to be useful in mod-
eling and therefore should be considered, but we do not deal with them in this
paper. Our goal is simply to prove equivalence, as defined above, between ar-
bitrary parallel algorithms and abstract state machines. Accordingly, we shall
not treat environments except in the present remark and one appearance of
non-determinism in Section 8.

3. A SIMPLIFIED PICTURE

In this section, we consider an oversimplified view of parallel algorithms, de-
signed to remain close to the ideas of Gurevich [2000] while exhibiting some of
the new phenomena involved with parallelism.

A key observation for our treatment is that a parallel computation consists
of a number of processes running (not surprisingly) in parallel, and that, if
we analyze the computation far enough, then each of these processes satisfies
Bounded Exploration even though the whole computation does not.
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For example, in the graph-complementing algorithm, each pair of distinct
vertices (x, y) has an associated process that makes this pair adjacent in τA(X )
if and only if they were not adjacent in X . That is, the process associated with
(x, y) is responsible for one update in 1(A, X ), namely (Adjacent, (x, y), true)
or (Adjacent, (x, y), false). And any single such process satisfies Bounded Ex-
ploration in a suitable sense.

Terminology 3.1. We have been using the word “process” in a rather un-
usual and specialized way, namely referring only to subprocesses so small that
no (unbounded) parallelism remains. Processes in this sense are thus subject
to the Bounded Exploration Postulate.

Our example can be viewed as having a tree structure (as its indentation was
designed to suggest). The overall computation first splits into subcomputations
indexed by a single vertex x. The subcomputation associated with x executes
the following algorithm in which me is to be interpreted as denoting x.

do forall y in Vertex
if me6=y then Adjacent(me,y):=¬Adjacent(me,y) endif

enddo.

This intermediate level subcomputation still includes parallelism, looking at all
vertices y of the graph, so it does not satisfy Bounded Exploration. In standard
terminology, “process” can refer to subcomputations like this and, typically, to
much larger ones, usually not satisfying Bounded Exploration. To avoid con-
flict with this well established terminology, we shall henceforth use the word
proclet to mean a process in the specialized sense above, satisfying Bounded
Exploration in a suitable sense.1

We must be careful about the “suitable sense” in which proclets satisfy
Bounded Exploration. Remember that the vocabulary of graphs is so poor that
no ground term denotes a vertex. The bounded-exploration witness T for the
proclet associated with (x, y) should consist of (names for) x, y , true, and false.
(See the discussion in Gurevich [2000, Section 5.4].) But the vocabulary doesn’t
have names for x and y .

The solution to this difficulty begins with a closer look at the notion of state,
as explained in Gurevich [2000, Section 3.3.1]. The crucial point is that the
state should contain everything that is relevant to the computation (at the
chosen level of abstraction). Applied to parallel algorithms, this point means
that the proclets should themselves be (represented by) elements of the state. In
our graph-complementing example, this means that the pairs of vertices (x, y)
(or some equivalent system of labels for the proclets) should be elements of the
state, along with the vertices themselves. In addition, the vocabulary should
include names for static functions first and second mapping each (x, y) to x
and to y , respectively.

To complete the solution to the “lack of sufficient ground terms” problem,
we stipulate that a proclet should know which proclet it is. More precisely, this

1Etymology of “proclet”: The suffix “let” means “small” as in “piglet” or “wavelet.” Since “processlet”
seems awkward, we shortened it to “proclet.”
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means that a proclet p operates on a structure that is like the actual state of
the computation except that its vocabulary has an additional, nullary, static
symbol me interpreted as denoting p. For example, the algorithm executed by
any single proclet in our graph-complementing example is

if first(me)6=second(me) then
Adjacent(first(me), second(me)):=
¬Adjacent(first(me), second(me)) endif.

(A1)

Terminology 3.2. The state in which a proclet executes its computation will
be called the local state of that proclet. When necessary for contrast, we use
global state to mean the state of the entire computation. Thus, in the situation
under discussion, the local state of a proclet p differs from the global state
only by having the additional symbol me denoting p. In later sections, when we
discuss more general parallel algorithms than in the present section, there will
be additional symbols interpreted in the local states of proclets.

In many algorithms, each proclet accesses only a tiny part of the state. Our
definition of local state, as including the whole global state, is convenient for
our purposes because it provides maximum generality.

Remark 3.3. It may appear that, by including the whole global state in each
proclet’s local state, we have made inadequate provision for private memory.
There would indeed be a problem if we were describing a situation where the
proclets are antagonistic to each other and can gain an advantage by keeping
information away from other proclets. Our proclets, however, are parts of a sin-
gle overall computation. They are not antagonistic. If a proclet is not supposed
to access certain information, then this can be assured by the algorithm it ex-
ecutes; it does not require a provision for privacy in the general model that we
are developing.

In general, a state should include functions which, applied to a proclet, pro-
duce the various parameters needed by that proclet’s calculation. This is an-
other instance of the principle that the state should contain all the information
relevant to the computation. In the example, first and second play this role,
telling a proclet which instance of the adjacency relation it is to negate.

In our example of the graph-complementing algorithm, all the proclets exe-
cute the same algorithm. The only difference between them is that they have
different values for the symbol me. It will be useful to notice that this situation
is quite general. At first sight, it appears that one could easily have differ-
ent algorithms for different proclets. Suppose, for example, that the graph-
complementing algorithm were expanded to also make some unary predicate
true of all vertices. That is, adjoin to it

do forall x in Vertex, P(x):=true enddo,

combining the two rules by means of do in parallel. Then some proclets ex-
ecute the algorithm A1 exhibited above to negate one adjacency relationship
while other proclets execute

P(me):=true, (A2)
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a quite different-looking algorithm. Nevertheless, we can arrange for all pro-
clets to execute the same algorithm if we remember, once again, that the state
is supposed to include all information relevant to the computation. Here, this
means that there should be unary predicates, say Proclet1 and Proclet2,
satisfied by the two sorts of proclets. Then all proclets execute the algorithm
described by

if Proclet1(me) then A1
elseif Proclet2(me) then A2
endif.

It is clear that the same trick will reduce to a single algorithm any finite number
of algorithms that may be written out in the overall algorithm for the whole
computation. In our example, we took advantage of the fact that the labels for
the two sorts of proclets were different; proclets executing A1 were (labeled by)
pairs of vertices while those executing A2 were (labeled by) single vertices. In
situations where several types of proclets are naturally labeled by the same
objects (e.g., by pairs of vertices), an additional tag should be included in the
labels to distinguish them.

What if algorithms for proclets are not written out in the overall algorithm
but are produced as part of the computation? Then these algorithms will be
produced in a certain form, perhaps as parse trees of programs in some pro-
gramming language (or perhaps as strings or in some other format). In order for
such a program to be executed (or even read) by a proclet under the constraint
of Bounded Exploration, the program would have to be quite trivial. So in some
sense, this situation cannot really arise. But even if we consider programs so
trivial that a proclet could execute them, the “real” algorithm executed by the
proclets would then be essentially an interpreter for that language. Each pro-
clet reads its program and traverses its parse tree (perhaps after first creating
the parse tree from another representation) and executes it according to the in-
terpreter instructions. Thus, once again, what appeared to be many programs
really amounts to just one.

We also adopt the convention that the set of proclets should be nameable
in the vocabulary of the state. For now, this can be taken to mean a unary
relation symbol Proclet defining the set of proclets or a Boolean expression
Proclet(x) that is true just when the value of x is a proclet; later, when we have
discussed backgrounds (Section 6), we shall be able to deal with this set more
directly.

In the example above where we combined two algorithms A1 and A2 into
one, the set of proclets would be the union of Proclet1 and Proclet2, so Proclet
would be definable as the disjunction of these two predicates.

The justification for requiring Proclet to be definable is, once again, the
principle that states contain all the relevant information; surely the proclets
involved in a computation are relevant to it.

The symbol Proclet (or the functions involved in defining Proclet if it isn’t a
single symbol) can be dynamic. That is, it is possible for proclets to be created or
destroyed during the computation. We can still arrange, for the same reasons
as above, that all proclets execute the same algorithm.
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We point out that, although we regard algorithms as analyzable into proclets,
we do not require that this analysis be unique. It is possible for an algorithm
to be analyzable into subprocesses in more than one way; see Lamport [1997]
for an example. Even if such non-uniqueness were to persist down to the level
of proclets—if an algorithm were decomposed into proclets in more than one
way—then any of these ways would lead to a simulation by an abstract state
machine in our main result, Theorem 10.1.

In summary, this section has produced a picture of parallel computation very
similar to the picture of sequential computation developed in Gurevich [2000].
The key difference is that, instead of a Bounded Exploration algorithm being
executed once in the current state X , it is executed many times, once for each p
satisfying Proclet, the execution by p being in the current state X augmented
with p as the interpretation of me. The union of the update sets produced by all
these proclets is the overall update set 1(A, X ).

4. A MORE REALISTIC PICTURE

What’s wrong with the picture developed in the preceding section? Why did
we call it oversimplified? The oversimplification is in the way we combined the
results produced by the various proclets. We assumed that each proclet merely
produces a set of updates and that the union of these sets is the overall update
set 1(A, X ). But in fact there are very simple parallel algorithms that do not
fit this description.

One example is given by the use of quantifiers in Gurevich [1995]. The eval-
uation of a Boolean term of the form ∀x ∈ U ∃ y ∈ V ϕ(x, y) can be viewed as
a parallel process of the following sort. First, for each pair 〈x, y〉 ∈ U × V ,
the truth value of ϕ(x, y) is computed by a proclet (or a larger process if ϕ is
complicated). Then, for each x ∈ U , there is a proclet that collects the values
of ϕ(x, y) for all y and computes from them the value of ∃ y ϕ(x, y). Finally,
the results from these proclets are collected, by another proclet, and used to
compute the truth value of ∀x ∃ y ϕ(x, y). The important aspect of this example,
for our present purposes, is that proclets do not merely produce updates but
pass information to other proclets.

Similar situations arise in other familiar algorithmic operations. Suppose for
instance that the algorithm uses a counter C, which proclets may increment
by 1. If n proclets increment C (and no proclet does anything else to C), then
the value of C in the next state τA(X ) should be its value in the current state
X plus n. As soon as n > 1, the actual update is not produced by any one of the
proclets. And if the work of any proclet is regarded as producing the obvious
update (C, (), ValX (C) + 1) (where the () in the middle means the empty tuple
and where ValX (C) is the value of C in the current state X ), then the union of
these update sets will consist of a single update that produces the wrong value
for ValτA(X )(C).

Another example is given by updating a set S, where, in addition to (or
instead of) replacing the entire set with an update like S := T , a proclet may
put an element into S with an update like S(a) := true or take an element
out of S. These situations are typical examples of the partial updates discussed
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in Gurevich et al. [2001] and Gurevich and Tillman [2001] and used in AsmL
[Foundations of Software Engineering Group].

What is really happening in such situations is that the individual proclets
are producing something other than updates to be included in the final1(A, X ).
What they produce are pieces of information, like “increment C by 1,” that need
to be manipulated in some way to produce 1(A, X ). The required manipula-
tion can be different in different situations. In our example of a counter, the
required manipulation was just counting, but there are many more compli-
cated situations. For example, if individual proclets can increment a counter by
any number, not just by 1, then instead of counting we shall need addition. In
the example of quantification, proclets must form the Boolean conjunction or
disjunction of all the truth values passed to them by other proclets.

Can one give a general description of this manipulation? What common as-
pects are shared by counting, addition, conjunction, disjunction, and all the
many other manipulations that could be imagined here? We claim that they
can all be described in terms of operations on multisets.

A multiset M is just a set in which elements have multiplicities that are
positive integers. A familiar example would be the set of zeros of a polynomial
“counted with multiplicity.” Formally, a multiset M can be defined as a function
from an underlying set M0, the domain of M , to the positive integers, the value
of the function at an element x being the multiplicity of x as an element of
M . We write Mult(x, M ) for the multiplicity of an element x in a multiset M ;
formally, this is just M (x) if x ∈ M0 and 0 otherwise. We use double braces
{{ . . . }} as a notation for multisets just as ordinary braces are traditionally used
for sets (and we trust that our double braces are easily distinguished from
nested ordinary braces, {{ . . . }} 6= {{. . . }}). Thus, {{x1, . . . , xn}} is the multiset M
such that, for any a, the multiplicity Mult(a, M ) is the number of subscripts i
for which xi = a, that is, the multiplicity is determined by how often a is listed
in {{x1, . . . , xn}}. Similarly, if r denotes a multiset, t(x) is a term and ϕ(x) is a
Boolean-valued term, then

{{t(x) : x ∈ r : ϕ(x)}}

denotes the multiset M such that, for every a,

Mult(a, M ) =
∑

x such that
ϕ(x) and t(x)=a

Mult(x, r).

That is, M contains the values t(x) for elements x ∈ r satisfying ϕ(x), and the
multiplicities arise from the multiplicity of x as a member of r and from many
different x ’s yielding the same t(x). For example, if r = {{0, 0, 1, 1, 1, 2, 2}}, if
ϕ is true, and if t(0) = a, t(1) = b, and t(2) = a, then Mult(a, M ) = 4 and
Mult(b, M ) = 3; so M = {{a, a, b, b, b, a, a}}, obtained from r by replacing every
element x with t(x).

We also define binary sum (a sort of union) of two multisets by

Mult(a, x ] y) =Mult(a, x)+Mult(a, y),
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and we define the sum of a multiset of multisets by

Mult(a,
⊎

M ) =
∑

x∈M0

Mult(a, x) ·Mult(x, M ).

In connection with the definition of x ] y , note that if a is in both x and y ,
then its occurrences in x and its occurrences in y are regarded as separate in
the sense that they contribute independently to the sum x ] y . This is the case
even if x = y , so x ] x 6= x unless x = ∅. A similar remark applies to

⊎
.

The sum of all the multiplicities of elements in a multiset M is called the
cardinality of M . If the elements of M are themselves numbers, then it is easy
to define the sum of the members of M , namely the sum over all members
x ∈ M0 of x times its multiplicity in M . Similarly, one could define the product
of a multiset of numbers.

We introduce two additional elementary operations on multisets. First, de-
fine TheUnique(x) for a multiset x to be y if y is the only element of x,
with multiplicity 1; if x has cardinality 6= 1, or if x is not a multiset, then
TheUnique(x) = undef. Also define AsSet(x) to be the multiset that has the
same members as x but with multiplicity only 1.

Convention 4.1. In principle, sets and multisets are different sorts of enti-
ties and should be treated as distinct types. It is, however, possible to regard
sets as a special case of multisets, and in this paper it is convenient to do so. We
therefore adopt the technical convention that sets are identified with multisets
in which the multiplicity of each member is 1. In particular, the empty set ∅ is
identified with the empty multiset. With this convention, AsSet converts a mul-
tiset into a set by keeping the members but forgetting the multiplicities. The
standard Boolean operations on sets can be extended naturally to multisets,
but the only one we shall need here is the sum, generalizing union, as defined
above.

In our example of incrementing a counter, the individual incrementing pro-
clets can be regarded as contributing their pieces of information, “increment C
by k,” or simply the numbers k to a multiset, to which the operation of addition
is to be applied. Finally, the sum σ so obtained is used to define the required
update (C, (), ValX (C)+ σ ).

More generally, the partial updates discussed in Gurevich et al. [2001] and
Gurevich and Tillman [2001] and used in Foundations of Software Engineering
Group, can be viewed as messages, sent to a proclet that implements the ap-
propriate sort of integration of the partial updates to produce (ordinary, total)
updates.

We have broken the manipulation of information into two stages: First,
collect into a multiset all the pieces of information produced by the proclets.
Second, perform some operation (for example addition) on the resulting multi-
set. The second stage can be regarded as having bounded exploration, provided
we think of it as acting on the multiset, not on the individual elements in
the multiset. That is, the only genuinely parallel operation is the collection
of the many individual pieces of information into a single object, the multi-
set. We regard this observation as a conceptual simplification of parallelism.
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It is remarkable how few basic concepts are needed for formalizing parallel,
synchronous computation.

What an algorithm does with such multisets of information—how the pieces
of information are combined to produce the updates—may (but need not) be
given by a single proclet’s computation, that is, a computation with bounded
exploration, taking the multiset as input. In this situation, the functions used
for that computation (at that level of abstraction), for example the function
mapping a multiset to its cardinality or the function mapping a multiset of
numbers to the sum of its elements, should be part of the state. This is an
instance of the general principle that the state contains everything needed to
determine how the algorithm proceeds. Ordinarily, the functions used here will
be static, but there is no a priori reason why they could not be dynamic.

A slightly more complicated situation arises if (as will often be the case) the
information produced by the proclets must be processed by a parallel compu-
tation rather than by a single proclet. This occurs in the example, considered
above, of computing the truth value of ∀x ∈ U ∃ y ∈ V ϕ(x, y). For another ex-
ample, consider many counters C(i) (where C is a function symbol and i ranges
over some subset of the state), each capable of being incremented by any of nu-
merous proclets. Then these proclets produce pieces of information of the form
“increment C(i) by n,” which must be appropriately collected and combined.
A natural way to do this is to collect all the increment instructions for each
individual i into a multiset, say Cincrements(i), and then have, for each i, a
proclet that sums the numbers in Cincrements(i) and produces the appropriate
update (C, (i), ValX (C)(i) + n). We may refer to these as second-level proclets,
since they take as their inputs the multisets of information pieces produced
by the previous, first-level proclets. Each of the second-level proclets satisfies
Bounded Exploration, and together they produce (as in Section 3) the required
set of updates.

One can imagine third- and higher-level proclets, but for any algorithm the
number of levels should be bounded. This boundedness is a result of our de-
cision, described in the introduction, that any single step in our algorithms
involves only bounded sequentiality.

Summarizing the present section, insofar as it goes beyond the earlier dis-
cussion, we have that, in addition to producing updates directly, proclets may
produce pieces of information, which we call messages, to be sent to other
proclets for use in their computations. These higher-level computations may
then produce updates or further messages to yet higher-level proclets. But
bounded sequentiality requires a bound, depending only on the algorithm and
not on the state, for the height of this hierarchy of proclets. The update set
1(A, X ), leading to the next state, consists of all the updates produced by all the
proclets.

Remark 4.2. A similar use of multisets occurred in Grädel and Gurevich
[1998]. The logic developed in that article did not allow quantification over, for
example, the natural numbers or the real numbers, yet certain basic opera-
tions, like addition, had to be performed on many numbers at a time. Multisets
emerged as the natural domain for such operations.
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5. PUSHING AND PULLING INFORMATION

In the examples considered in the preceding section, each proclet p sent infor-
mation to only a finite number of proclets q (usually just one), each of which is
“known” to p in the sense that the algorithm run by p specifies all the recipi-
ents q.

Some parallel algorithms, however, involve communication of a different sort
between proclets. Suppose, for example, that there is a global memory consisting
of some registers that many processes can access (for example in the PRAM
model of parallel computation). It is certainly imaginable, indeed likely, that
the number of processes accessing a particular global memory register is not
bounded but increases with the size of the input. In this situation, we can
regard each memory register as a proclet, but the program of this proclet could
not specify all the readers that access this register. Indeed, since a proclet
satisfies Bounded Exploration, its algorithm can specify only a bounded number
of elements of the state and, in particular, only a bounded number of other
proclets.

In situations like this, the transmission of information from the register to
any one of the processes that access it must result from the algorithm executed
by that process, not from the algorithm of the register. In other words, the
communication is driven by an action of the recipient rather than by an action
of the sender.

In order to make our description of parallel algorithms general, we must
allow for both sender-driven and recipient-driven communication. We refer to
the former as pushing information and the latter as pulling it.

Remark 5.1. What if we have an unbounded number of information sources
and an unbounded number of information recipients, with each of the latter
receiving information from each of the former? No source can specify all the
recipients, and no recipient can specify all the sources, so neither pushing nor
pulling suffices for this sort of many-to-many broadcasting. Nevertheless, the
combination of pushing and pulling suffices. One approach is to add a bulletin
board as an additional proclet. All the sources push their information to the
bulletin board, where all this information is collected into a multiset, and then
all the recipients pull this multiset from the bulletin board. Another approach
is to add, for each pair 〈source, recipient〉 another proclet to serve as a commu-
nication channel between these two. The channel would pull information from
its source and then push it to its recipient.

The remainder of this section describes in detail how information is trans-
mitted between proclets within one step of the overall computation. Pushing
and pulling differ in several ways, so we treat them separately.

5.1 Pushing

For a message to be pushed from a proclet p to another proclet q, it is necessary
that the Bounded Exploration algorithm executed by p specify both the content
of the message and the intended recipient q. Thus, each p can send messages
to only a bounded number of other proclets in a single step. In contrast, there
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need not be a bound on the number of messages received by a proclet q in one
step; if, for example, q is the value of some term in the global state, then all the
other proclets could push messages to it.

It is here that multisets are an essential part of the picture. We think of
all the messages sent to q (in a particular step of the execution of the overall
algorithm) as collected into a multiset, which we call Mailbox(q). Being subject
to Bounded Exploration, q cannot deal with the (possibly unboundedly many)
elements of its mailbox individually, but it can deal with the entire mailbox
regarded as a single element of its state. Recall in this connection the examples
above, where a proclet associated with a counter took the multiset of incoming
“increment” instructions and combined them (by means of a static function in
the state) into the required update for this counter. Recall also the proclets
involved in the evaluation of a quantified formula, which take a multiset of
truth values of (instances of) a subformula and combine them (again by means
of a static function) to produce the truth value of the larger formula.

In the multiset Mailbox(q), multiplicities arise if several proclets send the
same message to q and also if a single proclet sends a message to q several
times (in one step). The example of the counter above shows that both sorts of
multiplicities must be taken into account.

The function Mailbox introduced here is not part of the vocabulary of the
algorithm. It is not something that persists from one state of the computation
to the next, changing only when updated. Rather, it is entirely internal to a
single step; there is no connection between Mailbox at one step and at the next.
In each step of the algorithm, Mailbox(p) contains just the messages sent to p
during that step.

For any proclet p, Mailbox(p) will function as an element of the local state
in which p works (details about local states will be spelled out later), but it is
not part of the global state of the overall algorithm. And it is only the global
state that persists from one step of the algorithm to the next. This is not to say
that a proclet cannot “remember” its mailbox from one step of the algorithm
to the next. But in order to do so, it must store this mailbox in some location
of the global state. This requirement is a consequence of the general principle
that anything relevant to the future steps of the algorithm must be part of its
(global) state resulting from the present step.

One can reasonably ask whether a Mailbox function as described above exists
at all. After all, it appears that this function (at a particular step of the com-
putation) depends on the computations of the proclets (for Mailbox(p) contains
the messages sent to p by the other proclets) while these computations depend
in turn on Mailbox (for p can make use of Mailbox(p) in its computation). In
fact, it is easy to design an algorithm for which no such function can exist. Let
there be just one proclet p, and let it execute the algorithm: If 0 is not in your
mailbox, then send 0 as a message to yourself. So Mailbox(p) should contain 0
if and only if it does not contain 0. Our postulates for parallel computation will
exclude such pathology and will ensure that the Mailbox function exists; see
Theorem 7.22.

In examples like those of the preceding section, the Mailbox function is easy
to describe. In those examples, proclets were arranged in a hierarchy, with those
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at the first level sending messages to those at the second level, which in turn
send messages to proclets at the third level, and so on (for a bounded number
of levels). Then for q at the first level, Mailbox(q) is empty, as no proclet sends
messages to q. For proclets q at the second level, Mailbox(q) consists of the
messages received from first-level proclets. And so forth. Our axioms will not
explicitly refer to levels, but they will imply that a structure similar to this is
present, ensuring the existence of Mailbox (as well as similar functions to be
defined in the next subsection).

Terminology 5.2. When pushing a message, the sender produces the pair
〈recipient, content〉. When we need to be careful, we shall use the word mailing
for this pair and message for the content alone.

5.2 Pulling

In pushing, all the “work” is done by the sender, who specifies both the recipient
and the content of the mailing. The recipient can sit passively and just watch
his mailbox fill up. Pulling is more complicated, because the recipient, who
specifies the sender, obviously cannot also specify the content. Rather, each
(potential) sender displays some information that he intends to make public,
and a recipient specifies the sender whose display he wants to read.

We could imagine a sender displaying several sorts of information, perhaps
with some distinguishing labels. Then a recipient would specify not only a
sender but also a label, in order to read a particular one of the labeled pieces of
information displayed by that particular sender. There is, however, no loss of
generality in dispensing with labels and assuming that a sender displays only
a single piece of information, at least as long as the states of the algorithm are
sufficiently rich. The reason that this works is that, instead of displaying sev-
eral pieces of data x with labels L, a sender could just display a set of ordered
pairs 〈x, L〉. By reading this set and then extracting the appropriate component,
a recipient can obtain the same information as by reading the information dis-
played with a particular label. Since it costs no generality and it simplifies the
notation, we adopt the convention that every proclet displays at most one piece
of information.

Each proclet p sets up, without having any particular recipient in mind, its
display, which we call Display(p). The meaning of such a display is that this
information is made available to any proclet that wants to pull it and that can
name p. The vocabulary of a proclet’s algorithm can contain a dynamic 0-ary
function symbol myDisplay; a proclet sets up its display by assigning values to
this symbol. If a proclet p assigns no value or assigns two different values to
myDisplay, then Display(p) is undef at that step.

To pull information displayed by p, some other proclets q can use terms of
the form Display(p) (or more precisely, Display(t) where t is a term with value
p when evaluated in the local state of q). Thus, Display is used as a static unary
function in the algorithms executed by individual proclets.

Remark 5.3. An earlier version of this work did not use Display functions
but instead allowed explicit Pull commands in the programs executed by the
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proclets. Such a command would pull information, from a specified proclet and
store it in a specified location. The present set-up, using Display functions, is
simpler and can easily simulate the old set-up.

Like Mailbox, the function symbols myDisplay and Display are not part of
the vocabulary of the overall algorithm. Their meanings do not persist from
one state of the algorithm to the next. Rather, they are used entirely within one
step of the algorithm, and their values in two consecutive steps may be quite
unrelated. In other words, the values of Mailbox, myDisplay, and Display are
not given by the (global) state of an algorithm A but play an auxiliary role in
describing the transition function τA from one state to the next. In the algorithm
executed by a proclet p, Display acts like a static function; myDisplay acts like
a dynamic function, whose value is undef unless and until p assigns a different
value.

As with Mailbox, our axioms will imply that Display always has well-defined
values; see Theorem 7.22.

6. BACKGROUNDS

This section is about possibly non-obvious elements of the states of a computa-
tion. “Obvious” is not a precise term, but what we mean is adequately suggested
by the remark that, for an algorithm operating on a graph as input, the obvious
elements would be the vertices of the graph, and the obvious functions would
be the adjacency relation and the desired output. Non-obvious elements would
include, for example, the Boolean values true and false as well as the ele-
ment undef and the infinitely many reserve elements that are, according to the
conventions of Gurevich [2000], present in all states.

What non-obvious elements should states include? That depends on the
meaning of “should.” As always, the state contains everything relevant to the
future progress of the algorithm. So it would be reasonable to include in the
state all of the sorts of things that algorithms often need, for example num-
bers, sets, maps, and sequences. On the other hand, we can interpret “should”
as referring to just those elements that are needed for our present purpose,
namely to simulate the algorithm with an abstract state machine. These needs
are remarkably limited.

In this section, we first discuss a number of items that should be included in
the state under the first interpretation of “should”—things that programmers
expect their algorithms to have access to. Afterward, we briefly indicate the
considerably shorter list of items that we actually need in this article. We also
comment briefly on how some items can be obtained from others, that is, how
the former can be regarded as syntactic sugar for constructs built from the
latter.

Having adopted the Abstract State Postulate from Gurevich [2000], we are
committed to using first-order structures as defined in Gurevich [2000], namely
with a vocabulary consisting entirely of total function symbols. As explained
in Gurevich [2000], this convention is based on the availability of the Boolean
values true and false and the Boolean connectives, so that functions can rep-
resent relations; it also uses undef to represent partial functions by total ones.
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Another commitment that we inherit from Gurevich [2000] is that the base
set of the state should not change during a computation; this was justified on
the basis of having an infinite supply of reserve elements that can be imported
when, for example, an algorithm wants to add a new vertex to a graph. Thus,
although the presence of these elements is not explicitly given by the Abstract
State Postulate, it is implicit in the sense that the plausibility of the postulate
depends on the availability of these elements.

There is another source of non-obvious elements, not needed in Gurevich
[2000] but quite important for our present purposes. In fact, we already made
use of these non-obvious elements in the preceding sections, when we assumed
that the state contained tuples of elements (as in the labels of proclets and in
the pieces of information produced by proclets) and multisets (collecting all the
information produced by many proclets or the information displayed by one
proclet). Here we are dealing with constructions that produce new elements
(tuples or multisets) from old ones (the components of a tuple or the elements
of a multiset). Such constructions can be iterated, producing tuples of multi-
sets, multisets of tuples, and so forth. Of course, one can think of many other
constructions of this sort, for example sets, maps, and sequences. A general ap-
proach to such constructions was developed in Blass and Gurevich [2000] under
the name of “background classes”; a brief summary is included in Gurevich et al.
[2001].

A background class K amounts to a way to associate with any set U a struc-
ture K (U ) (of a fixed vocabulary) having U as a subset of its base set. This
construction K (U ) is required to satisfy some axioms, saying essentially that
it respects embeddings (every embedding of sets U → V extends to an em-
bedding of structures K (U ) → K (V )) and intersections; for details, see Blass
and Gurevich [2000]. One can think of K (U ) as the result of adding to U var-
ious sorts of data structures built from the elements of U . For example, there
is a background class for which K (U ) consists of U together with all (finite)
sequences of elements of U , the vocabulary of K (U ) having symbols inter-
preted as the empty sequence, as the function sending each element of U to
the corresponding sequence of length 1, and as the binary operation of concate-
nation. Numerous other examples of background classes are given in Blass and
Gurevich [2000].

An algorithm with background K takes as inputs structures of some vocab-
ulary (disjoint from the background vocabulary), but the initial state of the
computation is richer, being obtained from the input structure I by enlarging
I twice—first by adding the logic elements true, false, and undef (with the
Boolean operations) and an infinite naked set of reserve elements and then by
applying K to the result. This introduces new functions, namely those coming
from the K construction; the original functions of I are extended to the larger
base set by giving them their default values whenever any argument lies out-
side |I |. The computation then proceeds in this twice-enlarged structure. Thus
for example, if K is the tuple background described above, then the computation
could make use of tuples of elements of the input structure.

A realistic description of algorithms would involve quite a rich background,
including numbers, sets, multisets, maps, sequences, and the like, since all these
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things are generally taken to be available when designing algorithms. Very few
of these things, however, will actually be required by our axiomatic description
of parallel algorithms. In fact, we require just multisets and ordered pairs. The
postulates will permit a very rich background but will not demand it.

Why do we choose postulates that demand only a little background? It makes
our main result stronger in that it applies to all algorithms that have at least
this little background, whether or not they use additional background beyond
what the postulates require.

Why, then, do we require any background at all? Couldn’t we get an even
stronger theorem by not requiring any background? The difficulty with this
suggestion is that, when we produce an ASM to simulate a given program,
the ASM needs a certain amount of background—essentially multisets and
ordered pairs. If the given algorithm did not have this background, then its
states would not be the same as the states of the simulating ASM and it would
not be equivalent to the ASM. As a result, we would have to replace our notion
of equivalence with a weaker and more complicated notion of simulation. By
requiring a certain minimum background in the given algorithm, whether or
not that algorithm actually needs this background, we ensure that it and the
simulating ASM are equivalent in the strong sense of Definition 2.3.

In addition and more importantly, it is reasonable to claim that all parallel
algorithms make at least implicit use of multisets. Combining the activities of
many processes into a single overall state transition seems to involve forming
multisets of outputs of the individual processes, even if the algorithm is ex-
pressed in a language that does not make these multisets explicit. Thus, our
background requirements merely make explicit what is already implicit in the
idea of parallelism. They can be regarded as an instance of the general princi-
ple that everything needed by a computational process should be present in its
state.

Remark 6.1. Since multisets are less familiar than sets, and since sets are
widely used as a foundation for all of mathematics (and thus for theory of com-
putation, as in Blass et al. [1999] for example), it is reasonable to ask whether
sets could be used in place of multisets in our treatment of parallel algorithms.
The answer is yes, there are at least two ways to do this, but each involves some
costs.

Multiplicities arise mainly from the possibility of repetition of messages. For
example, if several proclets request that the same counter be incremented, or
even if one proclet makes several such requests concerning the same counter,
then the multiplicities of the requests must be taken into account in order to
increment the counter by the right total amount. One could avoid multiplicities
by ensuring that the messages are all distinct. For example, we could require
that proclets “sign” the messages they send and, if they send the same mes-
sage several times, then the occurrences should be tagged. If proclet p sends
message m, it would actually send, say, 〈m, p, n〉 where n is a suitable tag.
(For example, if the proclet’s algorithm is such that each message originated
from a distinct, identifiable line in a program then n could be the number of
that line.) Instead of signatures, one could arrange for the “operating system”
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to add identifiers to messages; distinct identifiers could be new elements im-
ported from the reserve. In addition to a suitable supply of tags (e.g., numbers or
reserve elements—which would certainly be available in any realistic system),
any tagging scheme requires some additional complication in the functions used
to combine messages and produce updates. For example, consider a proclet re-
sponsible for updating a counter in response to “increment by k” commands.
In the multiset view of the situation, this proclet could receive, as messages,
the relevant numbers k, and it would apply to the multiset of these numbers a
static function “sum” that sends any multiset of numbers to the sum of its mem-
bers (with multiplicity of course). If our proclet receives the messages tagged,
then it needs to apply a function that, given a set of tagged numbers, strips off
the tags and adds the multiset of numbers so obtained. So this slightly more
complicated and considerably less natural function would have to be built into
our states. (We can’t separate the operation into the obvious two parts, (1) strip
off tags and (2) add, because the result of the first would be a multiset, just
what we’re trying to avoid. Also, it would not do to regard “strip off tags” as
an operation to be performed in parallel by many proclets, one for each tagged
message; for these proclets to communicate their results to the counter proclet,
they’d have to send messages, which need tags.)

Another way to eliminate multisets in favor of sets is to invoke the fact that all
(present day) mathematical entities can be defined in terms of sets. Specifically,
a multiset can be viewed as a map from the underlying set to the natural
numbers, sending each member of the multiset to its multiplicity. And maps can
be viewed as sets of ordered pairs, while ordered pairs are themselves viewed
as sets, say via Kuratowski’s coding {{x}, {x, y}}. Of course, simple operations
on multisets will look quite complicated after this coding.

As indicated above, the proof of our main theorem, Theorem 10.1, will require
very little background, namely only ordered pairs and multisets. We regard this
fact as important information, considerably simplifying the conceptual basis
of parallel computation. Nevertheless, this simplification is based in part on
Convention 4.1, identifying sets with certain multisets, and one might argue
that it would be more honest to include sets as part of our background. The
issue is to what extent such identifications or codings are to be permitted for
the sake of simplifying the general framework, since they will usually compli-
cate individual programs.2

We shall state and prove our results in a form that requires only multisets
and ordered pairs in the background (though richer backgrounds are permit-
ted). This makes our results stronger than they would be if a rich background
were demanded. In the case of our main theorem, there is practically no cost
for this strength. Had we included sets in our background, then Proclet would
be a set rather than a multiset (with all multiplicities 1), but the ASM required
in the proof would look exactly the same.

2There is an analogy with the possibility of expressing all Boolean connectives in terms of just one,
“nand.” This possibility can be used to simplify the general theory of connectives, but most of the
propositional combinations occurring in practice become unpleasantly complicated when written
in terms of nand.
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In some of our other results, particularly in Section 11, there would be a
greater cost. Some ASMs considered there naturally use a background that
includes sets and natural numbers. We can get by with our standard background
of multisets and ordered pairs, but at the cost of some awkward coding.

For readers who are interested in reducing everything to the standard back-
ground, we shall explain how to express everything we need in terms of this
background. The explanations will be headed “Reduction.” Readers who don’t
care about reducing to the standard background, who are willing to include
sets, numbers, and some natural functions on them as part of the background
because they are available in any realistic model of computation, are invited to
skip these explanations.

Here’s the first of the explanations, repeating what was said above about
representing sets as multisets, and indicating how we could, if we were so
inclined, reduce the standard background even further.

Reduction 6.2. For theoretical (but not for practical) purposes many sorts
of background items can be expressed in terms of others. For example, using
multisets, we can code sets as multisets in which each member has multiplicity
1. We can code natural numbers, by identifying n with the multiset whose
only element is, say, true with multiplicity n. (Notice that, with reasonable
operations on multisets, this identification would have the effect of representing
numbers in unary notation. So it is definitely unsuited for real computation,
but it can be convenient for some theoretical purposes. See Section 11.) We can
code an ordered pair 〈x, y〉 as the multiset {{x, y , y}}.

If we wanted to be really stingy, we could even dispense with the proposi-
tional connectives, defining negation¬ϕ as the equation ϕ = false and defining
conjunction ϕ ∧ ψ as the equation 〈ϕ, ψ〉 = 〈true, true〉.

The only one of these reductions that we shall actually use in our main
result is the one whereby sets are special multisets. We need sets so rarely
(essentially just the set of proclets) and multisets so often that this reduction
seems worthwhile.

Remark 6.3. Multisets are, as the name implies, a generalization of sets,
the generalization being that multiplicities are permitted. They are also an
abstraction from finite sequences, the abstraction being that the order of the
components of a sequence is ignored to form a multiset. This second way of
viewing multisets is relevant to parallel computation if one shifts the level of
abstraction. Parallelism can be used to describe processes that are not intrinsi-
cally parallel but are actually sequential; parallelism is used to model the fact
that the order of certain sequential steps is immaterial. When parallelism is
used in this way as an abstraction of sequentiality at a lower level of abstrac-
tion, our multisets arise as sequences in which we have abstracted from the
order of the components.

Another way of describing this connection between multisets and sequences
is that sequences can be used as an implementation of multisets. In particular,
the multisets of messages that we see in all parallel computation and that
motivated us to work with multisets are often implemented sequentially as
queues of messages.
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7. THE GENERAL DESCRIPTION

In this section, we combine the points discussed in the preceding five sections,
giving what we consider to be a quite general description of parallel compu-
tation. In the next section, we shall indicate how several familiar models of
parallel computation fit this description.

7.1 Basic Postulates

To begin, we assume that a parallel algorithm satisfies the Sequential Time
and Abstract State Postulates, which we repeat here for convenient reference.

—Sequential Time: An algorithm A is associated with a set S(A) of states, a
subset I(A) ⊆ S(A) of initial states, and a map τA : S(A) → S(A) called the
one-step transformation.

—Abstract State: All states of A are first-order structures with the same
finite vocabulary, which we call the vocabulary of A. τA does not change the
base set of a state. Both S(A) and I(A) are closed under isomorphisms. Any
isomorphism from a state X to a state Y is also an isomorphism from τA(X )
to τA(Y ).

In connection with the Sequential Time Postulate, recall Terminology 1.1 in
the introduction. We deal exclusively with algorithms which, although perhaps
not sequential algorithms, have sequential time. That is, they compute in dis-
crete, well-defined steps, although the amount of reading and writing done in
one step may vary from state to state in an unbounded manner.

7.2 Background Postulate

The next postulate is based on the discussion in Section 6. It summarizes several
consequences of the general principle that a state of a computation must contain
all the information relevant to the future progress of that computation. It also
incorporates a few of the conventions about states that were assumed and used
in Gurevich [2000].

—Background: Each state contains the following:
—the elements true and false, the Boolean operations on them, undef, and

the equality predicate,
—all ordered pairs of elements of the state, with a binary function symbol

for pairing 〈x, y〉 and unary functions first and second for extracting the
components of a pair,

—all finite multisets of elements of the state, with symbols for the empty
multiset∅, singletons {{x}}, binary sum x] y , general sum

⊎
x, TheUnique,

and AsSet, and
—a variable-free term Proclet naming a finite set, also called Proclet.

Remark 7.1. In accordance with the Abstract State Postulate, isomorphic
copies are to be permitted in the Background Postulate. That is, we do not
require the state to contain actual pairs; an isomorphic copy of the pairing
structure is good enough. Similarly for multisets.
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Remark 7.2. Notice that the Background Postulate only imposes a lower
limit on the background. An algorithm may very well use a far more extensive
background than the axiom requires. It might, for example, use sequences,
maps, natural numbers, and even infinite sets.

Remark 7.3. To some extent, the Background Postulate reflects properties
inherent in the notion of parallel computation. For example, we consider multi-
sets to be essential in this sense because parallel computation must implicitly
involve mailboxes and these are multisets; see the discussion in Section 4. Other
aspects of the Background Postulate reflect decisions that were somewhat arbi-
trary, because of the possibility of expressing some concepts in terms of others.
We could have required finite sets to be available (as in Blass et al. [1999]),
but we have chosen instead to regard them as a special case of multisets where
the multiplicities of members are always 1. This choice was motivated mainly
by the fact that we make so little use of sets (as opposed to multisets) in this
paper; we need just one set, Proclet, in the remaining axioms and in the proof
of our main theorem. Also, the “coding” of sets as special multisets seems quite
natural.

On the other hand, we explicitly require ordered pairs to be present, though
they could be represented as special multisets, identifying 〈x, y〉 with {{x, y , y}}
or, as is customary in set theory, with the set {{x}, {x, y}}. We chose not to rely
on these codings since they do not seem so natural and since the definitions of
first and second from either coding look a bit awkward.

Remark 7.4. There is also some arbitrariness in the choice of the specific
functions to require, particularly in dealing with multisets. For example, the
unordered pair is defined from our required operations by {{x, y}} = {{x}} ] {{ y}}.
We could equally well have required unordered pairs and then obtained binary
sum as x] y = ⊎ {{x, y}}. We would then not need the singleton operation, since
{{x}} = AsSet({{x, x}}).

It may be useful to note, particularly for mathematical purposes, that it
would suffice to use the following four operations as the basic ones: pairing
{{x, y}}, sum

⊎
x, TheUnique, and AsSet. Indeed, we have already seen how

these allow us to define singletons and binary sum. They also provide ∅ as⊎
({{a}}) where a is anything that is not a multiset, for example true.
These four operations and the comprehension construct {{t(x) : x ∈ r : ϕ(x)}}

(which will be included in our definition of ASM terms in Section 9) are inde-
pendent; none can be expressed in terms of the others. We briefly sketch the
reasons. For this purpose, we need the notion of the transitive closure TC(x) of
a multiset x; this is the multiset whose members are x, all members of x, all
their members, and so on, all counted with the obvious multiplicities. That is,

TC(x) =
∞⊎

n=0

U (n, x)

where

U (0, x) = {{x}} and U (n+ 1, x) =
⊎

U (n, x).
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We also need the notion of the hereditarily finite multisets over a given set A
of atoms; these are defined recursively as finite multisets whose members are
either elements of A or hereditarily finite multisets over A.

The multisets x such that all multisets in TC(x) have cardinality 0 or 1
form, together with the atoms, a universe closed under

⊎
, TheUnique, AsSet,

and comprehension, but not under pairing. So pairing cannot be expressed in
terms of the others. (Here and below, we include undef among the atoms, for
the sake of closure under TheUnique.)

The multisets x such that all multisets in TC(x) have cardinality 0, 1, or 2
form, together with the atoms, a universe closed under pairing, TheUnique,
AsSet, and comprehension, but not under

⊎
. So

⊎
cannot be expressed in terms

of the others.
For a nonempty set A of atoms, the universe consisting of the hereditarily

finite multisets over A (but not the elements of A) is closed under pairing, sum,
AsSet, and comprehension but not under TheUnique. So TheUnique cannot be
expressed in terms of the others.

For the independence of AsSet, consider the universe consisting of two atoms,
a and undef, and all the hereditarily finite multisets over them. Call an element
x of this universe fat if either it is undef or, for every membership-chain from
a to x,

a = c0 ∈ c1 ∈ · · · ∈ cl−1 ∈ cl = x,

there is some i such that ci is a member of ci+1 with multiplicity at least 2.
One can show, by induction on terms built using pairing,

⊎
, TheUnique, and

comprehension, that if t is such a term and if its free variables are interpreted as
fat objects, then the value of t is also fat. Since {{a, a}} is fat and AsSet({{a, a}}) =
{{a}} is not, it follows that no such term can match AsSet(x).

Finally, for any term t(x, y) built from pairing, sum, TheUnique, and AsSet
but without comprehension, there is a finite number n, computable from the
syntactic structure of t(x), such that, if x is interpreted as a set of atoms and
if y is interpreted as an atom not in x, then the transitive closure of the value
of t(x, y) will contain at most n copies of y . Thus, taking x to be a set of more
than n atoms, we see that pairing, sum, TheUnique, and AsSet cannot match
the comprehension term {{ y : z ∈ x : true}}.

Remark 7.5. The operations on multisets listed in the postulate, namely
∅, {{x}}, x ] y ,

⊎
x, TheUnique(x), and AsSet(x) are intended to be a very small

selection, adequate for our purposes and intuitively justified. Here “adequate”
means that they suffice for our main theorem; “intuitively justified” means the
following. Just as multisets are implicit in the very notion of parallel compu-
tation, in the form of the multisets Mailbox(p) of messages received by a pro-
clet p, so these operations on multisets, with the possible exception of AsSet,
will arise automatically in the context of messages. An absence of incoming
messages and a single incoming message correspond respectively to ∅ and {{x}},
with TheUnique finding the message when there is only one. A proclet receiving
a multiset x of messages from one source and y from another receives altogether
x ] y ;

⊎
x arises similarly when there are many sources.
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There are other functions associated with multisets, which seem quite nat-
ural but which we do not require to be present in the states of our algorithms
because we have no need for them in this article. Others are omitted because
we use them only slightly and can easily express them in terms of the ba-
sic operations we selected. Examples include Boolean-valued membership and
numerical-valued multiplicity.

Remark 7.6. Since AsSet played an exceptional role in the preceding
remark—not being obviously needed for a general description of parallelism—
it may be worthwhile to point out that we make very little use of it. In fact,
it is used in only three places in this article, and one of the three uses can be
eliminated. Another use could be eliminated if we changed the definition of
TheUnique to ignore multiplicities.

Specifically, we use AsSet near the end of Section 8.5 to convert a multiset
of proclets into a set, as required by the Background Postulate; we use it again
to define the displays in the proof of Theorem 10.1; and we use it a third time
in Section 11.1 to produce a term L(p) for a set consisting of certain elements
u1, . . . , uN , each element occurring only once in the set regardless of how often
it is listed among the ui ’s.

The second use is in the context TheUnique(AsSet(x)), so we could dispense
with AsSet if we redefined TheUnique to extract the unique element from a
multiset even if that element occurs with multiplicity larger than 1.

The third use of AsSet can be eliminated as follows. First, note that we can
easily define non-membership in multisets:

a /∈ b⇔ {{x : x ∈ b : x = a}} = ∅.
Now we can define, for each finite n, the n-ary set-forming operation {u1, . . . , un}
by using ∅ when n = 0 and then proceeding inductively with

{u1, . . . , un, un+1} = {u1, . . . , un} ] {{z : z ∈ {{un+1}} : z /∈ {u1, . . . , un}}}.
Concerning the first use of AsSet, which seems not to be eliminable, see

Remark 8.3.

Remark 7.7. It may seem strange that we require multisets in the back-
ground after having introduced in Blass et al. [1999] a system of parallel al-
gorithms that uses only sets, not multisets. In accordance with the preceding
discussions, we hold that multisets, though not explicit in Blass et al. [1999],
are implicit there, just as in all parallel computation. What is special in the sys-
tem of Blass et al. [1999] is that the “operating system” there quickly reduced
the multisets (of messages) to ordinary sets by forgetting their multiplicities.
But if we look closely, we find multisets implicit in parallel operations like
do forall x ∈ r, R(x). Here each x ∈ r produces a set of updates, and all these
sets together constitute a priori a multiset. The multiplicities are removed and
the updates checked for clashes before any updates are executed.

Notice also that the set-up in Blass et al. [1999] took advantage of the fact
that any reasonable construction, including multisets, can be modeled, how-
ever awkwardly, within set theory. If we consider, for example, several proclets
incrementing the same counter, it is clear that a natural description involves a
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multiset of updates. To model this with sets, as in Blass et al. [1999], instead of
multisets, we would have to introduce some unnecessary and inelegant coding.
See Remark 6.1 for additional comments about sets versus multisets.

It may be worth mentioning that a version of our main theorem would hold if
we required of our background only that it be able to simulate (within a single
step) multisets and the basic operations on them, rather than requiring that
the multisets and their operations actually be part of the state. This version of
the theorem would cover the computational system introduced in Blass et al.
[1999]. To prove the theorem in this case, all uses of multisets in our proof would
have to be replaced by the corresponding simulations.

Remark 7.8. The requirement, in the Abstract State Postulate, that the
base set of the state cannot change during the computation was justified in
Gurevich [2000] by the availability of an infinite reserve. Thus, we may regard
the Abstract State Postulate as implicitly requiring the availability of such a re-
serve. We have chosen not to make this requirement explicit in the Background
Postulate, simply because it will not be needed for our results.

Remark 7.9. It would do no harm to require Proclet to be a single, nullary
symbol, but the added generality of allowing it to be a variable-free term makes
our description conform better to intuition. The set of proclets should be defin-
able in the current state, but it needn’t be a basic function. It might, for instance,
be defined as the union of two sets Proclet1 and Proclet2, as in the example
in Section 3. Note that we allow Proclet (or function symbols used in its def-
inition) to be dynamic, so the set of proclets can change from one step of the
computation to another; proclets can be created and destroyed.

7.3 Proclets

It remains to describe how each individual proclet works and how the proclets
cooperate to produce the update set 1(A, X ) that leads from a (global) state X
to the next state τA(X ). The present subsection deals with the working of single
proclets; the next subsection will describe their cooperation.

Although it is quite natural and logical to discuss first how a single pro-
clet works and afterward how proclets interact, it leads to a rather unintu-
itive picture. The reason is that the local state in which a single proclet works
should be determined by the actions (pushing messages and setting up dis-
plays) of other proclets. We therefore include in the present subsection some
interaction-related definitions and remarks intended to make the discussion of
single proclets more intuitive; the full import of these definitions and remarks
will become explicit only in the next subsection when we consider interaction
in detail.

We begin by recalling, from the discussion in Section 5, that the local state
in which a proclet p works contains, in addition to the global state, two things
produced by the action of (other) proclets, namely the distinguished element
Mailbox(p) and the unary function Display. It will be convenient to have a
name for all this proclet-produced information—not just the part relevant to

ACM Transactions on Computational Logic, Vol. 4, No. 4, October 2003.



Abstract State Machines Capture Parallel Algorithms • 605

the computation of a particular proclet p, but all of it. That is the role of the
following definition.

Definition 7.10. A ken3 K of a state X consists of X together with two func-
tions MailboxK and DisplayK , both having as their domain the set of proclets
in X , such that the values of MailboxK are multisets. (The values of DisplayK
can be arbitrary elements of X .)

The next definition makes official what was already mentioned about the
state used by a proclet.

Definition 7.11. Suppose K is a ken of a state X and suppose p is a proclet
in X . Then the local state of p given K is the structure X plus:

—a static, nullary symbol me, interpreted as p,
—a static, nullary symbol myMail, interpreted as MailboxK (p),
—a static, unary function symbol Display, interpreted as DisplayK , and
—a dynamic, nullary symbol myDisplay initially interpreted as undef.

Remark 7.12. The intuition behind this definition is as follows. The local
state in which a proclet p operates is like the global state X of the computation,
with the following exceptions. First, the proclet knows which proclet it is; this
is reflected by the presence of me in its vocabulary. Second, proclet p can use the
multiset of its own received messages, Mailbox(p), accessed via myMail, but it
cannot use the corresponding multisets of the other proclets. The idea here is
that for a message to be available to p it should be sent to p. The technical point
is that, if proclets could look into each other’s mailboxes, that would introduce a
circularity into the computation and the passing of messages, possibly making
Theorem 7.22 below incorrect. For details about this point, see the proof of
Theorem 7.22. Third, a proclet p can access, via Display(q) the information
displayed by another proclet q. The access is arranged very simply, by allowing
the algorithm executed by p to use Display as a static function symbol. Fourth,
a proclet p has a dynamic symbol myDisplay to which it can assign a value that
other proclets can access using Display.

The computation of a proclet takes place in its local state given a certain
“correct” ken. The meaning of “correct” here depends on interaction between
proclets and will therefore be specified only in the next subsection. The algo-
rithm of the proclet, however, makes sense in its local state for any ken, not
only the correct one. So, without relying on the notion of a correct ken, we can
formulate the following postulate describing what each individual proclet’s al-
gorithm is to do. Note that the postulate does not refer to kens at all; they are
not logically needed here. But we expect that it will be helpful to the intuition
to think of the local state in the postulate as given by a ken.

—Proclets: Each element of Proclet is (or represents) a proclet that performs,
at each step, a calculation of the following sort. The local state in which

3The ordinary meaning of “ken” is range of perception or knowledge. We use it for all the information
that can be seen in the computation at this step.
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proclet p works is the current global state X of the overall computation
plus:
—a static, nullary symbol me denoting p,
—a static, nullary symbol myMail denoting some multiset,
—a static, unary function symbol Display, and
—a dynamic, nullary symbol myDisplay, with initial value undef.
All proclets execute the same algorithm, which is a sequential algorithm
with output, in the sense of Definition 2.1. The outputs of this algorithm are
ordered pairs 〈addressee, content〉 of elements of the state.

Several remarks are in order, to explain or justify aspects of this axiom.

Remark 7.13. As indicated in Section 5, the function symbols me, myMail,
myDisplay, and Display are used for internal communication by proclets in one
step and are not part of the global vocabulary. Their values do not persist from
one state to the next. If, by accident, any of these symbols happen to be used
in the global vocabulary, then they should be renamed (or other, new symbols
should be used in the individual proclets’ local states). Similarly, the symbol
Mailbox should not be in the vocabulary, to avoid confusion with its use in our
discussion.

Remark 7.14. The dynamic symbol myDisplay in the algorithm of a pro-
clet will behave differently from the dynamic symbols in the vocabulary of the
overall algorithm. Detailed information about this will be contained in the ax-
ioms in the next subsection, but we give an informal indication now to help the
reader’s intuition. The values of dynamic symbols of the overall vocabulary are
changed only in the transition from one global state X to the next state τA(X ).
The value of myDisplay, in contrast, is used for inter-proclet communication
within a step, that is, it is used for the computation of the update set 1(A, X )
that determines τA(X ). Thus, myDisplay and also the (formally static) symbol
myMail will acquire new values during a step, not at the completion of the step.

A brief explanation is in order for the apparent oxymoron of a new value for
a static symbol myMail. The point is that the value of myMail in the state of a
proclet p—the value of Mailbox(p), is determined by messages pushed to p by
other proclets, not by updates executed by p. Thus, we may view this value as
being empty at the start of a step and gradually growing as messages arrive,
so it gets a new value. Yet, in the program executed by p there are no updates
of myMail, so this program treats it as static.

A good intuitive picture of what happens within a step is that each pro-
clet waits until it has received all the information from other proclets (either
pushed by those proclets or pulled by itself) for that step and then executes its
program, thereby possibly pushing information to other proclets and displaying
information for them to pull. For this to work, it is obviously necessary to avoid
deadlocks, where two or more proclets are waiting for information from each
other; the next postulate will take care of this issue.

Remark 7.15. As explained earlier, we use “proclet” to mean subprocesses
so small that they no longer involve unbounded parallelism; otherwise we
would resolve them into lower-level processes. So it is reasonable to subject
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these proclets to the Bounded Exploration Postulate, which is contained in
our requirement that the proclets’ algorithm be a sequential algorithm with
output.

Remark 7.16. According to the Proclets Postulate, each proclet has avail-
able to it the whole global state of the algorithm. But nothing in the postulate
requires a proclet to actually work with such a big state. In most realistic sit-
uations, each proclet will work with only a tiny part of the global state. We
formulated the axiom to allow maximum freedom for the proclets’ algorithm
and thus to increase the domain of applicability of our main theorem.

Also, in many realistic algorithms, some proclets display information only
to some, not all, of the other proclets. We need not build such access restric-
tions into our description because they can be incorporated into the algorithm
executed by the proclets. If proclet p should not have access to the display of
proclet q, then the proclets’ algorithm can be so arranged that, when executed
in any local state where me denotes p, it never uses Display(q).

Remark 7.17. We already discussed, in Section 3, the idea that all proclets
should execute the same algorithm. To recapitulate: If there are several dif-
ferent algorithms to be executed by different sorts of proclets, then these can
be combined into a single algorithm consisting of many cases, the cases being
guarded by tests of which sort me belongs to.

Thus, the single algorithm mentioned in the Proclets Postulate will ordinar-
ily be an if-chain: it can be given by a program of the form if . . . then . . .
elseif . . . then . . . elseif . . . then . . . . . . . . . else . . . . So each individual
proclet would execute only one of the many clauses in such a chain.

If the algorithms to be executed by the proclets are produced by the compu-
tation itself (so there is not a fixed, finite set of them), then these programs
produced by the computation are part of the state, and the proclets actu-
ally execute an interpreter on these. As noted earlier, this situation can arise
only in trivial situations, because a proclet’s algorithm is subject to Bounded
Exploration.

7.4 Interaction Between Proclets

The remaining two postulates describe how proclets interact and how they
produce the update set leading to the next state of the overall algorithm. They
also specify the notion of “correct ken” alluded to above. Before stating these
postulates, we give some motivation; more detailed comments and explanations
are in the remarks following the postulates.

The essential idea, already described in Sections 4 and 5, is that proclets
communicate by pushing and pulling information, that is, by sending messages
to other proclets and by reading information displayed by other proclets. The
picture in those earlier sections involved a hierarchy of proclets, in which in-
formation is transmitted from lower levels to higher ones. The height of the
hierarchy is bounded, because of our assumption of bounded sequentiality. The
next postulate, called Bounded Sequentiality, is intended to capture this idea in
considerable generality. It does not require that the levels be explicitly definable
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as part of the state, but it implies a hierarchy (see the proof of Theorem 7.22
for details).

The final postulate, called Updates, says what actually happens to the mes-
sages and updates produced by the individual proclets. The updates of global
dynamic functions (i.e., all dynamic functions except myDisplay) go into the set
1(A, X ) of changes from the current state X to the next state τA(X ). The mes-
sages go into the mailboxes of their addressees, still in the current step of the
algorithm. An update of myDisplay by proclet p provides a value for Display(p),
which is used in other proclets’ computations. If we think in terms of levels, this
means that, in a single step of the algorithm, messages generated by proclets at
the lowest level arrive in the mailboxes of proclets at the second level and thus
influence the computations done by these proclets. Also, information displayed
by proclets at the lowest level can be read by proclets at the next level, whose
computations are thereby influenced. These computations may result, still in
the same step, in messages sent to third-level proclets and displays read by
third-level proclets, influencing their computations, and so forth (but for only a
bounded number of levels). The Bounded Sequentiality Postulate will express
this idea succinctly without explicit reference to levels.

This postulate will involve the relation “proclet q reads the display of proclet
p,” so we must give a definition of what this means. Since we don’t assume that
the proclets’ algorithms are written in some traditional programming language,
we cannot use syntactic criteria like “the program executed by proclets men-
tions Display(t) for some term which, in the local state of q denotes p.” Even if
this were well-defined, it would often be wrong, as the occurrence of Display(t)
might be in a branch of a conditional rule and then might not actually be
evaluated.

We use instead a semantic criterion, namely whether changing Display(p)
while leaving the rest of the ken unchanged would change the updates per-
formed by q or the mailings it sends. This approach also has a flaw. It could
happen, for some ken K , that there are proclets p1 and p2 with the following
properties. If K1 (resp. K2) is exactly like K except for changing the value of
Display(p1) (resp. Display(p2)) then q computes the same updates and mail-
ings in K1 and in K2 as it did in K , yet if K ′ is like K except for changing both
Display(p1) and Display(p2), then q does something different. In this situation,
we would say that, with respect to ken K , proclet q does not read the display of
p1 (for q’s computation was unaffected by a change in this display) and does not
read the display of p2, yet somehow reads the combination of the two displays
(for changing both displays alters q’s computation).

This problem would not arise if we knew that q’s computation is unaffected by
changing only the value of Display(p1), regardless of what ken one begins with.
Indeed, K ′ can be obtained from K2 by such a change, and so q’s computation
would be the same in K ′ as in K2, hence also as in K . Thus, there is a sensible
notion of “q might, for some ken, read the display of p.” That is, the notion
of “reads for at least one ken” or “might read” is well-defined but there is no
well-defined notion of “reads for a specific ken.” Fortunately, it is precisely the
notion of “might read” that we need, not the notion of “actually reads” with a
specified ken. For details about this, see the proof of Theorem 7.22 below.
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Definition 7.18. Let X be a (global) state and let p and q be proclets in X .
Then q pulls from p if there are two kens for X , differing only in the values
they give to Display(p), such that when q executes its algorithm in the local
states determined by these kens, either it produces different updates (in the
global state or in myDisplay) or it sends different mailings (where different
multiplicities for the same mailing count as different mailings).

Definition 7.19. Let X be a (global) state. The information flow digraph of
X is the directed graph that has the proclets of X as vertices and that has an
edge from p to q if and only if either q pulls from p or, for some ken of X , p
sends a message to q.

The intuition here is that an edge from p to q represents the possibility that
information from p might (for some ken) flow to q.

With these definitions, we can state the next postulate.

—Bounded Sequentiality: For any (global) state X , there is a uniform bound
B, depending only on the algorithm and not on the state, for the lengths of
directed walks in the information flow digraph. In particular, this digraph is
acyclic.

A walk in a digraph is a finite sequence of (not necessarily distinct) vertices
such that there is an edge from each (except the last) to the next. The length
of a walk is its length as a sequence, which is one more than the number of
occurrences of edges in it.

For some (but not all) purposes, the Bounded Sequentiality Postulate can
be weakened to the Acyclicity Postulate which requires that the informa-
tion flow digraph be acyclic but does not impose any bound on the length of
its walks. In particular, acyclicity suffices to prevent the sort of deadlock de-
scribed earlier, where two or more proclets are waiting for information from each
other.

Remark 7.20. The Bounded Sequentiality Postulate reflects our intention
of describing a single step of the overall computation. Already in the case of
sequential algorithms, a single step of an algorithm can involve a number of
substeps; for example the evaluation of g ( f (c)) involves the evaluation of f (c)
followed by the evaluation of g at this element. Furthermore a bounded number
of steps, one after the other, can be regarded as a single step by an appropriate
scaling. For example, given any abstract state machine, we can produce another
such that two consecutive steps of the former are combined into one step of
the latter. Similar speed-ups are well known for Turing machines and other
computation models.

But to compress an unbounded number of steps into one (unbounded speed-
up) would go beyond the concept of “step” considered in this article. To make
precise the concept of bounded sequentiality, as described in the introduction,
we require an a priori bound on the lengths of sequences of events within one
step that must occur in a specified order. And walks in the information-flow
digraph are such sequences of events. The earlier proclets in the walk must
act before the later ones, because the messages produced by the former and
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the information they display might influence the interpretation of myMail and
Display in the computation of the latter.

A possible objection here concerns our definition of the graph as having an
edge from p to q if, for some ken K , p pushes to q or q pulls from p, that is,
if information from p might under some circumstances reach q. Why not put
an edge from p to q only if p actually sends a message to q or q actually reads
the display of p; that is, why not use only the actual “correct” ken rather than
all possible ones? There are two reasons. One that we have already seen is
that there is no clear notion of “q pulls from p with respect to a specific ken.”
The definition of “pulls from” works well only with respect to all kens at once.
The second reason is that the acyclicity required by the Bounded Sequentiality
Postulate is, as we shall see in the proof of Theorem 7.22 below, used to obtain
a well-defined “correct” ken. Thus, the proposed weakening of the Bounded
Exploration Postulate would refer to a ken whose existence is not yet ensured.
For further discussion of this point, see Section 12.

Remark 7.21. It may seem that the Bounded Sequentiality Postulate could
(and should) be weakened to allow the following sort of situation, while preserv-
ing its intuitive content. Suppose, for example, that there are two proclets p
and q, such that p sends a message m1 to q, and then q (using m1) sends a
message m2 back to p, which then completes its computation using m2. The
information flow digraph then contains a directed cycle of length 2, which the
postulate forbids, yet intuitively there is nothing wrong with this sort of com-
putation. In such a situation, we prefer to distinguish, as distinct proclets, the
two incarnations of p, namely one which, with empty mailbox, computes m1
and sends it, and a second which, with mailbox containing m2, completes the
calculation.

One motivation for our preference is that each proclet now works with a single
mailbox, rather than having its value of myMail change in the middle of the step.
Another motivation is that it allows us to consider only the digraph, telling
where information flows, rather than having to take into account the temporal
ordering of pushing and pulling operations. In other words, our convention
makes the Bounded Sequentiality Postulate considerably simpler than it would
otherwise be.

This splitting of what might appear to be one proclet into two (or more) may
become more intuitive if we recall that proclets were introduced simply as parts
of the overall computation. There is a tendency to personify them, and then the
splitting can seem excessively violent. But if we refrain from personification,
the splitting becomes a reasonable convenience.

We must, however, address one potential problem with our convention. Sup-
pose, in the example above, there were a third proclet r, sending a message
m3 to p. Since we regard the two incarnations of p as separate proclets, say p1
and p2, we must decide which one is to be the addressee for m3. More precisely,
this decision must be made in the program of the overall algorithm, telling all
processes (in particular r) what messages to send and to whom. But is the nec-
essary timing information (like “does p need m3 for its computation of m1?”)
available for use in the overall algorithm? We claim that it must be since we
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deal with deterministic computation. Indeed, even if we regarded p1 and p2 as a
single proclet whose mailbox changes (acquiring m2 part way through the com-
putation), it would be necessary to specify whether m3 arrives before or after
m2 if this affects the computation. That specification suffices to tell us whether
m3 should be sent to p1 or to p2 when we regard these as separate proclets.

We are now in a position to establish, for each global state X , the existence
of a unique “correct” ken. The conclusion of the following theorem spells out
what we mean by “correct.”

THEOREM 7.22. For each state X , there exists a unique ken K with the follow-
ing properties. For each proclet p, MailboxK (p) consists exactly of the messages
m sent to p by other proclets q executing their algorithm in the local state given
by K . The multiplicity of m in MailboxK (p) is the sum, over all proclets q, of the
multiplicity with which q sends m to p. If the algorithm of a proclet p in the
local state given by K produces a single update of myDisplay (possibly with some
multiplicity), then the value given by this update is DisplayK (p); if it produces
different updates or no update of myDisplay, then DisplayK (p) = undef.

Remark 7.23. For the proof of this theorem, the Acyclicity Postulate suffices
in place of the Bounded Exploration Postulate.

Remark 7.24. The theorem can be viewed as a fixed-point description of the
desired K . Given any ken K0, we could let the proclets run in the local states
given by K0. The messages they send would determine a Mailbox function,
collecting all messages sent to any proclet, and their updates of myDisplay
would determine a Display function. These functions amount to another ken
K1. Intuitively, this means that “if the ken had been K0 and the proclets had
computed accordingly, then the ken should have been K1.” The theorem says
that the process K0 7→ K1 has a unique fixed point. In other words, there is a
unique correct ken K , where “correct” means that “if the ken had been K and
the proclets had computed accordingly, then the ken should have been K .”

We need a lemma for the proof of Theorem 7.22.

LEMMA 7.25. Let p be a proclet in a global state X , and let K and K ′ be
kens for X . Assume that MailboxK (p) = MailboxK ′ (p) and that, for every q from
which p pulls, DisplayK (q) = DisplayK ′ (q). Then p produces the same updates
(both global and of myDisplay) and the same mailings in the local states of p
given by K and K ′.

PROOF. The local states of p given by K and K ′ have the same values for all
functions of the global vocabulary (as K and K ′ are both kens for the same global
state X ), for me (trivially), and for myMail (as MailboxK (p) = MailboxK ′ (p));
they also agree about the initial value of myDisplay (namely undef). So the only
difference between these two local states is in the possibly different values of
DisplayK (q) and DisplayK ′ (q) for proclets q from which p does not pull.

According to Definition 7.18, the computation of p is unchanged if we alter
its local state by changing DisplayK (q) for one proclet q from which p does
not pull. By repeatedly applying this fact, we find that the computation of p
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is also unchanged if we alter its local state by changing DisplayK (q) for any
finite number of proclets q from which p does not pull. (Here we make essential
use of the fact that “pulls from” was defined using all kens, not a specific ken.)
Since there are only finitely many proclets altogether, the computation of p
remains unchanged if we alter its local state by changing DisplayK (q) for any
or all proclets q from which p does not pull. But, as observed above, this sort of
alteration of the local state accounts for all of the difference between K and K ′

as far as p is concerned.

Remark 7.26. Although real algorithms involve only finitely many proclets,
as required in our Background Postulate, and although we used this finiteness
in the preceding proof, it may be of interest for theoretical purposes to point
out that the lemma remains true even if there are infinitely many proclets. The
reason for this is based on the Bounded Exploration property of the proclets’
algorithm. Using the notation of the proof of the lemma, we can argue as follows.
It follows from Bounded Exploration, applied to the algorithm executed by p,
that there is a finite set F of proclets such that p’s computation under the ken
K is unchanged if we change, in any way we like, the values of DisplayK (q) for
all q not in F . In particular, we can change these values so as to coincide with
those of DisplayK ′ (q). But then the resulting ken K ′′ differs from K ′ only in
the displays of finitely many proclets, from each of which p does not pull. Then,
changing K ′′ to K ′ one display at a time, as in the proof of the lemma, we find
that p’s computation is the same for K ′ as for K ′′ and therefore the same as
for K .

We are now ready to prove the existence and uniqueness theorem for correct
kens.

PROOF OF THEOREM 7.22. Fix a global state X , and consider the associated
information-passing digraph. Because it is acyclic, we can partition the nodes
into levels L(k) indexed by positive integers k, so that if there is an edge from
p ∈ L(k) to q ∈ L(l ), then k < l . For example, the level of a node p could be
defined as the length of the longest walk ending at p.

Consider now the conditions on K in the statement of the theorem, that is,
the requirements defining correctness of a ken K . They can be equivalently
reformulated as follows, making explicit the role of the levels.

(1) If p ∈ L(k) then MailboxK (p) consists of the messages (with multiplicities)
sent to p by proclets in

⋃
j<k L( j ), computing in their local states as given

by K .
(2) If p ∈ L(k) then DisplayK (p) is the value assigned to myDisplay by p,

computing in its local state as given by K , provided there is a unique such
value, and undef otherwise.

Intuitively, if we knew the correct ken at levels < k, then (1) would tell us
how to obtain the mailboxes of proclets at level k, and then (2) would tell us how
to obtain their displays. So the correct ken can be defined by recursion on k.
More formally, the argument is as follows.
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The computations of proclets mentioned in (1) are, according to the lemma,
determined by the restrictions MailboxK ¹

⋃
j<k L( j ) and DisplayK ¹

⋃
j<k L( j ),

a combination that we abbreviate as K ¹
⋃

j<k L( j ). Indeed, if q ∈ ⋃ j<k L( j )
then, thanks to the definitions of levels and of the information-flow digraph, all
proclets from which q pulls are also in

⋃
j<k L( j ).

Furthermore, the computation of p mentioned in item (2) is, again by the
lemma, entirely determined by MailboxK (p) and DisplayK ¹

⋃
j<k L( j ). Com-

bining these observations and remembering that p was an arbitrary element
of L(k), we find that the requirements (1) and (2) together specify exactly what
K ¹ L(k) should be, given K ¹

⋃
j<k L( j ).

Thus, these requirements constitute a recursive definition, by recursion on
k, of K ¹ L(k). Such a recursion, of course, has a unique solution, so the theorem
is proved.

Definition 7.27. For any global state X , the ken K given by Theorem 7.22
is called the correct ken for X , and the local states of proclets given by K are
called the correct local states. We write simply Mailbox and Display, omitting
the subscript K when it is the correct ken.

Note that, for the correct ken and local states, Mailbox(p) consists of exactly
(with multiplicity) the messages sent to p by other proclets executing their
algorithms in their local states, and Display(p) is the unique value assigned by
p to myDisplay when executing its algorithm in its local state (or undef if there
isn’t a unique such value). In other words, inter-proclet communication works,
for the correct ken, exactly as specified in Sections 4 and 5.

Having the correct ken and local states available, we can now easily finish
the job of describing the algorithm’s transition function. This is the role of our
final postulate.

—Updates: The update set 1(A, X ) of the algorithm A in state X is the set of
all updates of global dynamic functions produced by proclets in the correct
local states for global state X .

The following definition is intended to formalize our claim that the postulates
accurately describe synchronous, parallel algorithms whose individual steps
have bounded sequentiality, that is, the class of algorithms described informally
in the introduction.

Definition 7.28. A parallel algorithm is an algorithm satisfying the Se-
quential Time, Abstract State, Background, Proclets, Bounded Sequentiality,
and Updates Postulates.

8. EXAMPLES

To support our claim that our postulates apply to general sequential-time al-
gorithms with bounded sequentiality in each step, we discuss in this section
a diverse collection of familiar approaches to parallelism. For each of these
approaches, we briefly indicate how it fits our description.
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8.1 Parallel Random Access Machines

We consider parallel random access machines (PRAMs), as described in Karp
and Ramachandran [1990, page 873]: “A PRAM consists of several independent
sequential processors, each with its own private memory, communicating with
one another through a global memory. In one unit of time, each processor can
read one global or local memory location, execute a single RAM operation, and
write into one global or local memory location.” As always, we take the states
of an algorithm to contain all that is needed to determine the future progress
of the computation. Thus, the state of a PRAM should include (in addition to
what is required by the Background Postulate)

—all the memory locations, both global and local,
—all the values (usually integers) that can be stored in memory locations,
—all the processors, and
—all the possible RAM instructions for the processors as well as the programs

of the processors.

There should be static functions describing the organization of the PRAM, in-
cluding the function assigning to an address (which is a value) the correspond-
ing memory location, the function assigning to each processor its accumulator
register, the function assigning to every processor its program, the function as-
signing to every program its first instruction, the function assigning to every
program and instruction the next instruction, and so on. There should also be
static functions for whatever arithmetical (or other) operations are allowed as
primitive RAM operations of the processors. The contents of the registers are
given by a dynamic function. There is also a dynamic function assigning to each
processor the RAM instruction that it is to execute next.

Further details depend on whether concurrent writing is allowed. (Concur-
rent reading makes no essential difference.)

In the case of exclusive writing (EREW or CREW PRAMs), where it never
occurs that two processors write to the same memory location at the same step,
we can take the proclets to be just the processors. The algorithm executed by any
processor simply tells it to traverse its program and execute the instructions it
finds.

The case of concurrent writing is more complicated, in that, in addition to
the processors, global memory locations should also be considered as proclets,
since they may have to do some computing to resolve write conflicts. Instead of
writing directly to global memory, a processor p that wants to write a value v to
a global memory location l sends either v or (in the “priority” model for resolving
concurrent writes) the pair 〈p, v〉 to the proclet l . What l does then depends on
the desired scheme for resolving write conflicts. In the “common” model, where
all processors seeking to write to a memory location must agree on the value to
be written, proclet l simply extracts the unique v from its mailbox and updates
the content function at l to that value. (If the mailbox gives l more than one
value to be written, then l refuses to write anything, and perhaps crashes the
whole computation.) In the “priority” model, l applies a more complicated static
function to its mailbox, picking out the pair 〈p, v〉 with the p of highest priority,
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and it updates the content function at l to the corresponding v. The “arbitrary”
model is somewhat different in that it is non-deterministic, arbitrarily choosing
one of the candidates to be written into location l . As indicated in Remark 2.5,
non-determinism can be modeled by an external function, which in this case
would be a unary function assigning to each memory location l one member
of its mailbox, that is, one of the conflicting writes for location l . The proclet l
then executes the write chosen by the external function.

We remark that our description of exclusive-write PRAMs fits the simple
picture described in Section 3, where proclets only perform updates and do not
communicate with each other. For concurrent-write PRAMs, there is commu-
nication, as described in Section 4, but only of a very basic sort. Information is
only pushed, not pulled, and the bound B in the Bounded Sequentiality Postu-
late can be taken to be 2. Processors are proclets at level 1, and global memory
locations are proclets at level 2.

8.2 Circuits

We first consider uniform Boolean circuits of bounded fan-in, as described in
Karp and Ramachandran [1990, pp. 897–898]. Any computation by such circuits
can be regarded as consisting of two parts. The first part is the construction,
from the length of the input, of the appropriate circuit. Uniformity means that
this construction can be performed by a sequential algorithm (usually in log
space). Since our interest in this article is in parallel algorithms, we shall ignore
this part of the computation and concentrate on the second part, where the
nodes of the circuit perform their computations.

We follow the usual and natural practice of regarding the depth of a circuit as
a measure of the time required for (the second part of) the computation. Thus,
we treat the computation of each level of a circuit as a separate step. This per-
mits a very simple model of the computation. There is a proclet for each node.
Static functions map each node to its immediate predecessors. Another static
function assigns to each node the Boolean operation it is to perform. There is a
dynamic function V assigning to each computation node the Boolean value that
it computes (initially undef and updated just once during the computation), and
assigning to each input and constant node its appropriate value. The algorithm
executed by a proclet p begins by checking whether any of its immediate pre-
decessors q have V (q) = undef. If so, p does nothing. If not, then p applies its
Boolean operation to the V (q)’s and assigns this value to V (p).

Notice that this description of circuits involves no communication between
proclets within a step. It fits the simple description from Section 3.

There are a number of minor variations on this model. First, there is noth-
ing special about Boolean values and operations; any other sort of values and
appropriate operations on them could be used as well. Second, if the depths
of the circuits are bounded, then we could regard the circuit’s whole compu-
tation as a single step. Instead of (or in addition to) updating V (p), proclet
p would display this value, and the computation of any proclet would begin
by pulling the displayed values of its predecessor nodes. Third, if the circuit
model were non-uniform, then the first part of the computation, producing the
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appropriate circuit from the input, would disappear, and the appropriate circuit
would have to be given along with the input as part of the initial state. This
would have no effect on the parallel part of the computation, the part modeled
above.

A more serious modification of the model is needed if the circuits are allowed
to have unbounded fan-in. In this situation, a proclet cannot “know” all of its
immediate predecessors, that is, we cannot have static functions mapping each
node to its immediate predecessors. If the fan-out is bounded, then there can
be static functions assigning to each node p all the nodes q that will make use
of the value computed by p. Then the algorithm executed by each proclet could
push the value it computes to each of these other nodes.

Except in the case of circuits of bounded depth, Bounded Sequentiality re-
quires that the computation proceed in several steps (rather than just one),
most naturally one step for each level of the circuit. Since a proclet’s immediate
predecessors need not all be at the same level, some of the inputs for its Boolean
operation may arrive before others. So we need a mechanism for storing them.
A simple approach is to have a dynamic unary function buffer assigning to each
proclet p the multiset (initially empty) of messages received so far. In addition,
there should be a static function assigning to each p the number of messages
it is to receive. At each computation step, a proclet p adds the newly received
messages to its buffer,

buffer(me):=buffer(me)] myMail,
checks whether the new buffer has the total number of expected messages, and
if so applies the appropriate Boolean operation and, in the next computation
step, sends the result to its parent (or to output if p is the root). (The reason for
waiting until the next computation step to forward the result of a node’s compu-
tation to the parent node is simply to ensure Bounded Sequentiality—to make
the “levels” of the circuit correspond to computation steps. Without the wait-
ing, the whole circuit’s computation would occur in a single step, and Bounded
Sequentiality would be violated unless the depth of the circuit is bounded in-
dependently of the input.)

Still more modification is needed if both the fan-in and the fan-out can be
unbounded. In this case, the natural model involves additional proclets, one for
each edge in the circuit. The task of an edge proclet is to pull the value computed
by its source node and push it to its target node. A node proclet proceeds almost
as above. It waits until it has received the right number of inputs, then applies
its Boolean operation to these, and in the next computation step displays the
result (to be pulled by its outgoing edges).

8.3 Alternating Turing Machines

We use the description of alternating Turing machines given in Karp and
Ramachandran [1990, page 901]; in particular, we assume for simplicity that
an existential or universal configuration has just two successor configurations.

Before beginning our description of alternating Turing machines as parallel
algorithms in our sense, we must comment on one difference between them and
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the models considered in the preceding subsections. During the computation of
an alternating Turing machine, new subcomputations are created, and these
subcomputations will be elements of the state (proclets). We handle this sit-
uation by adopting the approach described in Gurevich [2000, Section 4.5].
Namely, we assume an infinite set of reserve elements, from which the envi-
ronment selects one whenever a new element is needed. We refer to this as
“importing” an element from the reserve.

As always, we include in our states everything relevant to the future progress
of the computation. Specifically, the elements of our states include (in addition
to what the Background Postulate requires)

—proclets, representing the subcomputations into which the main computation
has branched,

—the symbols that can occur on the Turing tapes,
—the control states of the alternating Turing machine,
—the possible tape configurations, meaning what is written on the tape plus

an indication of which cell is scanned by the read-write head, and
—infinitely many reserve elements.

The vocabulary includes (again in addition to what the Background Postulate
requires) names for

—the dynamic unary relation Proclet that holds of exactly the proclets,
—the static nullary function root that is the main computation and is initially

the only proclet,
—the dynamic function active assigning to each proclet the value true if it

is computing and the value false if it has spawned subcomputations, and
assigning undef to each non-proclet (initially, the only proclet root is active),

—for each tape symbol s and each element m of {left, right, stay} indicating
a possible move of the read-write head, a static function from the set of
tape configurations to itself, carrying out the corresponding Turing machine
instruction “write s in the currently scanned cell and change which cell is
scanned according to m,”

—a static function assigning to each tape configuration the symbol in the
scanned cell,

—a dynamic function assigning to each proclet a tape configuration, initially
assigning to the only proclet root the configuration in which the computation
starts (ordinarily the input is written on the tape and the leftmost cell is
scanned),

—a dynamic function assigning to each proclet its control state,
—two dynamic functions assigning to each inactive proclet its two immediate

subcomputations and a dynamic function assigning to each proclet except
root its parent (the initial values are all undef because root is the only
proclet and it is active; the functions are dynamic only because the initial
value undef can be changed to a “real” value; thereafter, the value no longer
changes), and
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—the dynamic function value assigning to each proclet its decision about ac-
ceptance or rejection, with true indicating acceptance, false indicating re-
jection, and undef indicating that the decision has not yet been made.

It is now easy to describe the algorithm followed by each proclet. We begin by
considering active proclets. If the control state of such a proclet p is an ordinary
state (i.e., not an accepting, rejecting, universal, or existential state), then p ap-
plies the appropriate update to its tape configuration and its control state, as
determined, via the Turing machine instructions, from its current control state
and the symbol written in the scanned square of its current tape configuration.
If the control state is accepting or rejecting, then p updates value(p) to true or
false accordingly. If the control state of p is universal or existential, then p im-
ports two elements from reserve, makes them proclets (i.e., makes the predicate
Proclet true of them), and initializes them as active, with configurations and
control states as specified by the Turing machine instructions, with p as their
parent, and with value initially undef; also, p updates its two subcomputation
pointers (which were undef until now) to point to these new proclets, and p
makes itself inactive. This completes the description of what an active proclet
does. Before giving the description for inactive proclets, we note that when a
proclet becomes inactive its control state is universal or existential. Inactive
proclets will never change their control state, so we need to consider only these
two cases.

An inactive proclet p with an existential control state looks at value(q) for its
two immediate subcomputations q. If at least one is true then it sets value(p) to
true. If both are false then it sets value(p) to false. Otherwise it does nothing.

An inactive proclet with a universal control state works the same way with
the roles of true and false interchanged.

This completes the explanation of how alternating Turing machines fit our
description of parallel algorithms. Notice that there is no communication be-
tween proclets, so the description in Section 3 suffices here.

Remark 8.1. It seems awkward to have entire tape configurations as single
elements of the state. Contrast this with the standard ASM model of ordinary
(sequential) Turing machines [Gurevich 2000, Example 4.3.1], where the con-
tent of the tape is given by a dynamic unary function from cells to symbols. The
awkwardness seems, however, to be necessary for modeling alternating Turing
machines at their natural level of abstraction; in other words, it seems to be
inherent in the standard notion of alternating Turing machine. The point is
that, when a computation enters an existential or universal state and spawns
two subcomputations, it must pass (copies of) its tape configuration to these
subcomputations. To formalize this without having the tape configurations as
elements (and having pointers from computations to their configurations), we
would have to include explicit instructions for how to copy the configuration
and make the copies available to the subcomputation. Such instructions could
certainly be given, but they are not part of the notion of alternating Turing
machine; they are at a lower level of abstraction.
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8.4 First-Order and Fixed-Point Logic

As already indicated with a simple example in Section 4, the evaluation of a
first-order sentence in a given structure can be viewed as a parallel algorithm
in our sense. We consider first the situation, as in that example, where one fixed
sentence is to be evaluated in various structures. That is, the structure is given
as input to the algorithm but the sentence is fixed. (Afterward, we shall consider
the more general situation where the sentence is also part of the input.)

In the example, there was a proclet for each pair 〈ϕ(x̄), ā〉, where ϕ(x̄) is a
subformula of the given sentence and ā is a tuple of values for the free variables
x̄ of ϕ. In general, the situation is slightly more complicated for two reasons.
First, the same subformula can occur several times in the given formula, and it
will be convenient to treat those occurrences separately. So the first component
of a proclet 〈ϕ(x̄), ā〉 should be an occurrence of a subformula. Second, it is
convenient for bookkeeping purposes to have all of a formula’s free variables
also free in its subformulas, but this is not generally the case. Accordingly,
we define a variable v to be pseudo-free in an occurrence of a subformula ϕ

of our given sentence if ϕ lies in the scope of a quantifier binding v. Since no
variable is free in the whole sentence, every free variable of ϕ is necessarily
pseudo-free. Intuitively, the definition of pseudo-free means that v could be free
at the location of ϕ without destroying the fact that the whole sentence has no
free variables. We also assume for simplicity that no variable is bound twice
in the given sentence; it is easy to rename bound variables so as to satisfy this
assumption. Alternatively, we could permit multiple binding of variables, at the
cost of replacing variables in the following discussion with tagged variables,
consisting of a variable together with an indication of which quantifier binds it.

Now we take the proclets to be the pairs 〈ϕ(x̄), ā〉 where ϕ is an occurrence
of a subformula in our given sentence and where ā is a tuple of values for its
pseudo-free variables x̄. The initial state consists of the structure in which the
formula is to be evaluated and the proclets, with static functions assigning to
each proclet 〈ϕ(x̄), ā〉 enough information to determine the main connective or
quantifier in ϕ(x̄) (or the information that ϕ(x̄) is atomic and which atomic for-
mula it is), the immediate superformula if any, and the elements ā. For atomic
ϕ, the proclet simply evaluates the truth value by looking at the structure and
pushes this truth value to its parent formula. If ϕ is a propositional combination
of one or two subformulas, it gets their truth values from its mailbox, applies
the appropriate Boolean operation, and either pushes the resulting truth value
to its parent or, if ϕ is the whole sentence so there is no parent, makes the com-
puted truth value the output of the whole computation. Similarly for quantified
formulas, the appropriate Boolean operation now being one applied to the whole
multiset of incoming messages; the two relevant operations, one for existential
quantification and one for universal, are static functions (in accordance with
the principle that the state contains everything relevant for the computation).

Remark 8.2. In the evaluation of a first-order sentence, unbounded par-
allelism arises only from quantification. Nevertheless, we have treated propo-
sitional combinations and quantifications alike, for the sake of simplicity in
the description of the algorithm. We could sacrifice some simplicity for the
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sake of having fewer proclets. In particular, it would suffice to have proclets
〈ϕ(x̄), ā〉 only for those ϕ that are not used as an input to a propositional opera-
tion. The computation of such a proclet would in general involve a combination
of independent (i.e., unnested) quantifier computations (as above) followed by
propositional operations (also as above).

The preceding algorithm evaluates a fixed first-order sentence in one step,
consisting of a number of phases. (Here and below, we use “phase” to refer,
in an informal way, to the consecutive parts in a single step. Phases can be
thought of as corresponding to the levels of the information-flow digraph or to
the steps of the recursion in the proof of Theorem 7.22. In the present example,
they also correspond to the depth of nesting of subformulas in a proclet’s first
component.) The bound B in the Bounded Sequentiality Postulate would be
the depth of nesting of subformulas. (For the variant in the remark, B would
be the depth of nesting of quantifiers.) For an algorithm that evaluates arbi-
trary first-order formulas instead of just a fixed one, the preceding approach
would violate Bounded Sequentiality, though it would satisfy Acyclicity. To ob-
tain a parallel algorithm in our sense, we should make the phases into sepa-
rate steps. The modifications needed in the algorithm are fortunately rather
slight. Instead of having each proclet p immediately push to its parent the
truth value that it computes, let it store this truth value, say as value(p) for
a unary function value in the global vocabulary, and push it to its parent in
the next computation step. Because of this delay, a proclet (for any non-atomic
formula) should not begin its computation until it has checked that all the truth
values it needs have been pushed to it. For a proclet computing a unary or bi-
nary Boolean operation, this means checking that its mailbox contains one or
two (not necessarily distinct) elements, respectively. For a proclet computing
a quantification, it means checking that its mailbox is nonempty; since all the
subcomputations take the same time, if one has delivered a result then they
all have.

Fixed-point logic can be handled similarly except for two things. First, the
evaluation of even a single subformula involves unbounded sequentiality, so to
fit our description it should be regarded as many steps, not as many phases in
one step. Second, subformulas can involve predicate symbols that are not in the
input sentence and are not interpreted in the structure where this sentence is to
be evaluated. Namely, any fixed-point formula of the form FPP, x̄(ϕ(P, x̄, ȳ))(t̄)
has a subformula ϕ with the extra predicate P . For brevity, we call such extra
predicates, which enter the formula by being bound by a fixed-point operator,
bound predicates. Each of our proclets will have to have not only a formula
and values for its pseudo-free variables (as in the discussion of first-order logic
above) but also the values of any bound predicates occurring in its formula.
These bound predicates will be given by unary functions mapping the proclet
to the appropriate sets of tuples. Fortunately, tuples and sets (obtained from
ordered pairs and multisets, respectively) are present in our states anyway in
order to satisfy the Background Postulate.

Given these modifications, the proclets corresponding to atomic formulas,
propositional combinations, and quantifications can compute just as in the
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first-order case. (For atomic formulas involving bound predicates, those predi-
cates, accessed via functions from the proclet, are used in the same way as the
predicates of the given structure are used in the first-order situation.) It remains
to describe how the proclet corresponding to a fixed-point formula operates. For
definiteness, we work with the inflationary fixed-point operator. (See the next
paragraph, or for a general treatment of fixed-point operators see [Dawar and
Gurevich 2001].) Also, for brevity, we omit mention of free variables and values
for them.

The proclet p for IFPP, x̄(ϕ(P, x̄))(t̄) seeks to compute the successive iterates
8n of the inflationary operator defined by ϕ. Here 80 = ∅ and (in a somewhat
simplified notation)

8n+1 = 8n ∪ {ā : ϕ(8n, ā)}.

Proclet p will keep track (in a location temp(p)) of the most recently computed
8n, in order to compare it with the next 8n+1 and so to determine whether the
fixed point has been reached. The value of temp(p) is initially∅, and p gives this
(either by displaying it for pulling or by storing it in the global state, depending
on how one wants to count steps) as the value of the bound predicate P to
the proclets for the subformula ϕ with all possible values for x̄. (If there were
pseudo-free variables in ϕ or other bound predicates, they would be assigned
the same values that they have for p.) When all these proclets finish their
computations, they inform p by pushing to p pairs 〈ā, v〉 consisting of their
value ā for x̄ and the computed truth value. Then p checks whether any ā not
in temp(p) (which at this stage is any ā at all as temp(p) is empty) is associated
with v = true. If not, then the fixed point has been reached and p can evaluate
it at t̄ (which at this stage will certainly yield false). Otherwise, p updates
temp(p) by

temp(p) := temp(p) ] {{first(x) : x ∈ myMail : second(x) = true}}.

Then, p reactivates the proclets for ϕ with this new value of temp(p) as their
value of P , and it repeats the same process until the fixed point is reached. (The
update of temp(p) may produce a multiset rather than a set, but this makes no
difference since any multiplicities here are not used.)

8.5 Abstract State Machines

We show that ASMs, which we shall use to simulate arbitrary parallel algo-
rithms, are themselves parallel algorithms in our sense. Thus, our main theo-
rem will provide a reduction from the class of parallel algorithms to a special
subclass, not to some external and possibly stronger class. We refer to Section 9
below for the definition of ASMs used in this paper (very similar to the definition
in Gurevich [1995]).

Consider an arbitrary ASM program5, and assume that no variable is bound
twice in5; this assumption involves no loss of generality, since bound variables
can be renamed. We intend to describe the operation of 5 in a way that makes
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it clear that all our postulates are satisfied. For expository purposes, we begin
with a description that is incorrect in three ways but (we hope) makes the ideas
clear. We shall point out the three difficulties when they arise in our description,
and afterward we shall show how to correct them.

We assume that 5 never produces inconsistent updates. (This is the first of
the three difficulties.)

Let every occurrence of a term t or rule R in5 be represented by an element
of the state and named by a (variable-free) term t̂ or R̂. This is easy to do; for
example, enumerate all these occurrences in some arbitrary order and repre-
sent the nth one by {{∅, . . . ,∅}}with n occurrences of∅. Note that we are using t
and R here to stand for occurrences of terms and rules. If the same term occurs
several times in 5 then it has several representatives t̂. To simplify terminol-
ogy, we will sometimes gloss over the distinction between terms (or rules) and
their occurrences. Thus, we may write “t is a variable” when we really mean “t
is an occurrence of a variable.”

We take as proclets all pairs of the form 〈t̂, ā〉 or 〈R̂, ā〉, where t (or R) is an
occurrence of a term (or rule) in 5 and ā is a tuple of values for all the pseudo-
free variables of t (or R). (This is the second difficulty; since there are infinitely
many possible values for a variable, we have infinitely many proclets, contrary
to the finiteness requirement in the Background Postulate.) Here “pseudo-free”
is defined as in Section 8.4.

Our algorithm will need to refer to the notion of the “parent” of a proclet.
Here the parent of 〈t, ā〉 or 〈R, ā〉 is the proclet whose first component t ′ or
R ′ is the term or rule having t or R as an immediate constituent and whose
second component is either ā if t ′ or R ′ doesn’t bind a variable or, if it does bind
a variable x, then ā with the value for x omitted. Since 5 is finite, the parent
function, though perhaps complicated, is explicitly definable in the state of the
ASM. We refrain from writing out the definition, but when we refer to “parents”
we mean to use this definition.

Our algorithm will also refer to the notion of an “active” proclet. This notion
is temporary in the same sense as Mailbox and Display; it does not persist
from one state of the algorithm to the next. A proclet can “become” active in the
middle of a step, when it pulls certain information from its parent or receives
certain messages in its mailbox.

The task of a term-proclet 〈t̂, ā〉, when it is active, will be to compute the
value of t in the current state, using the values in ā for its free variables, and
push this value to its parent. More precisely, it should label the pushed value
with its own identity, so that the parent knows where the value came from. So
if the value computed by 〈t̂, ā〉 is v then it should push 〈v, 〈t̂, ā〉〉.

The task of a rule-proclet 〈R̂, ā〉, when it is active, is to ensure the execution
of the updates that rule R produces with values from ā for its free variables.
The rule-proclet may not (indeed often cannot, because of Bounded Exploration)
execute all these updates on its own, but then it must activate enough of its
children to ensure execution of the correct updates.

We now describe how proclets carry out their tasks.
An active term-proclet of the form 〈x̂, ā〉 with x a variable reads the value of

x from ā and passes this to its parent.
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An active term-proclet of the form 〈t̂, ā〉 with t of the form f (t1, . . . , tn) does
the following.

(1) Activate (by displaying an appropriate signal) the proclets 〈t̂i, ā〉 for 1 ≤ i ≤
n.

(2) After receiving the values computed by these proclets, apply f to these
values, and push the result to your parent.

(The third difficulty is visible here: Information must flow from this proclet
to its children to activate the children, and then information must return from
the children, in the form of the values they computed. So the information-flow
digraph has cycles of length 2, contrary to the Bounded Sequentiality Postulate.)

An active term-proclet of the form 〈t̂, ā〉with t of the form {{t(x) : x ∈ r : ϕ(x)}}
does the following.

(1) Activate the proclet 〈r̂, ā〉.
(2) After receiving the value b that this child computes for r, display it as a

signal activating all the proclets 〈t̂(x), ā_c〉 and 〈ϕ̂(x), ā_c〉 for c ∈ b. Also,
remember b, in particular the multiplicities Mult(c, b) for future use.

(3) After receiving the values of t and ϕ for the various c’s, collect the values
of t for which the corresponding value of ϕ is true into a multiset, using
the remembered b to get the multiplicities right. Push this multiset to your
parent.

(The third difficulty is amplified here, and it will recur in the instructions
for rule-proclets, but the essence of the difficulty remains the same: 2-cycles
between a proclet and its children.)

An active rule-proclet of the form 〈R̂, ā〉 with R an update rule, say
f (t1, . . . , tn) := t0, does the following.

(1) Activate the proclets 〈t̂i, ā〉 for 0 ≤ i ≤ n.
(2) After receiving the values bi computed by these proclets, update

f (b1, . . . , bn) to b0.

An active rule-proclet of the form 〈R̂, ā〉 with R a conditional rule, say if ϕ
then R0 else R1 endif, does the following.

(1) Activate 〈ϕ̂, ā〉.
(2) If the returned value is true then activate 〈R̂0, ā〉; if the returned value is

false then activate 〈R̂1, ā〉.
An active rule-proclet of the form 〈R̂, ā〉 with R a parallel rule, say

do forall x ∈ r, R0(x) enddo, does the following.

(1) Activate 〈r̂, ā〉.
(2) After receiving the value b that this child computes for r, display it as a

signal activating all the proclets 〈R̂0(x), ā_c〉 for c ∈ b.

This completes our first, triply incorrect description of the operation of 5 as
a parallel algorithm in our sense. It remains to correct the three difficulties.
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First difficulty: We ignored the possibility of clashes: of updates that attempt
to give two different values for the same location. Our notion of algorithm made
no provision for this, but in ASMs there is a standard convention that, in case
of clash, the transition function does nothing; the next state is the same as
the current one. So the two models seem to disagree. Fortunately, every ASM
is equivalent to one that cannot produce clashes. See Section 9.2 below for a
proof. Thus, we can avoid the first difficulty by replacing the given ASM pro-
gram 5 by a clash-free equivalent 5′ and then applying the description above
to 5′.

Alternatively, we can avoid the normal form and work directly with the given
ASM program 5, at the cost of some extra complexity in the description above.
Add to the state a second copy of each rule-proclet corresponding to an update
rule. The old rule-proclets are no longer responsible for getting their updates
executed but instead collect their updates into a multiset, which they pass to
their parents. In addition, each old update-rule-proclet pushes its update to
the corresponding new proclet. Thus, the computation results eventually in the
root proclet 〈5, 〈〉〉 having the multiset of all the updates that would be executed
were it not for possible clashes. This proclet can then check, by means of a static
function, whether this multiset contains clashing updates. It displays the result
of this check, to be pulled by the new copies of the update-rule-proclets. If there
was a clash, these new proclets do nothing. If there was no clash then they
execute the updates sent to them by the corresponding old update-rule-proclets.

Second difficulty: Infinitely many proclets. Of course there are only finitely
many occurrences of terms and rules in 5, but any free variable has, a priori,
infinitely many possible values, so we get infinitely many proclets. The solution
to this is to redefine the notion of proclet so that there are only finitely many
of them, yet they include all those proclets in the old sense that might possi-
bly become active. Of course the Background Postulate demands that our new
notion of proclet be given by a term. We therefore explain here how to produce
such a term.

We first define a term MDA(p) whose value, for any proclet (in the old sense)
p is the set of proclets that p might directly activate. (More precisely, the term
denotes a multiset containing these proclets with some multiplicities. At the
end, we’ll apply AsSet to get rid of the multiplicities.) The term is quite lengthy,
but its construction is explained by the following clauses.

—If A is a variable v, then 〈Â, ā〉 = ∅.
—If A is a term of the form f (t1, . . . , tn) then 〈Â, ā〉 is the sum of the singletons
{{〈t̂i, ā〉}}.

—If A is a comprehension term {{t(x) : x ∈ r : ϕ(x)}} then 〈Â, ā〉 is the sum of
the singleton {{〈r̂, ā〉}} and the two sets {{〈t̂, ā_c〉 : c ∈ r : true}} and {{〈ϕ̂, ā_c〉 :
c ∈ r : true}}.

—If A is an update rule f (t1, . . . , tn) := t0 then 〈Â, ā〉 is the sum of the singletons
{{〈t̂ i, ā〉}}.

—If A is a conditional rule if ϕ then R0 else R1 endif then 〈Â, ā〉 is the mul-
tiset (sum of three singletons) {{〈ϕ̂, ā〉, 〈R̂0, ā〉, 〈R̂1, ā〉}}.
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—If A is a parallel rule do forall x ∈ r, R0(x) enddo then 〈Â, ā〉 is the sum of
the singleton {{〈r̂, ā〉}} and the multiset {{〈R̂0, ā_c〉 : c ∈ r : true}}.

Here ā_c means the sequence obtained from ā by adjoining one more component
c at the end. If sequences are coded in the obvious way by iterating the ordered
pair operation, then ā_c = 〈ā, c〉.

Next, we define another term MA(p) whose intended meaning is the set of
proclets that p might activate, directly or indirectly. It is defined by induction
on the first component (term or rule) of p. Notice that, since the program 5 is
finite, the whole recursion could be rewritten as an explicit definition, in which
the recursive clauses are nested like the terms and rules in 5.

MA(p) = {{p}} ]
⊎
{{MA(q) : q ∈ MDA(p) : true}}.

Finally, we define the new, finite set of proclets as AsSet(MA(〈5, 〈〉〉)).
Third difficulty: 2-cycles in the information-flow digraph. This problem was

already discussed in Remark 7.21 and we adopt the solution proposed there.
We replace each proclet by two or three proclets, each carrying out part of the
computation of the old proclet. Specifically, where our description above of how
a proclet performs its task used two or three numbered instructions, split the
proclet into two or three proclets, each carrying out just one of the numbered
steps. Also, where our description said to push a value to the parent, push it to
the right incarnation of the parent, namely the incarnation corresponding to
the instruction that receives the value.

Remark 8.3. Our correction of the second difficulty above required the use
of AsSet to reduce the multiset MA(〈5, 〈〉〉) to a set, as required by the Back-
ground Postulate. Recall from Remark 7.5 that AsSet is the only one of our
basic operations on multisets that lacks an obvious justification on the basis of
being intuitively needed to deal with messages. One might therefore consider
the possibility of avoiding the need for AsSet by allowing Proclet to be a multi-
set rather than a set. Unfortunately, this proposal leads to serious difficulties,
both conceptual and technical.

If a proclet p is present with some multiplicity m > 1 in Proclets, should
its actions, especially its pushing of messages, automatically be replicated m
times, so that if the algorithm of p says to push a message to q then q will
receive it m times? If so, then q, not knowing that these weren’t m separate
mailings from a single p, will act in response to all of them, producing a result
quite different from what p intended. On the other hand, if q gets the message
only once, then this reduction from m copies to one amounts to an application
of AsSet, and an ASM simulation (in the proof of our main theorem) will need
AsSet for this purpose.

Consider also our description above of how ASMs satisfy our postulates. In
the absence of AsSet, a proclet p whose first component is a comprehension
term {{t(x) : x ∈ r : ϕ(x)}} will activate proclets for t(x), with various values of x,
with multiplicities matching the multiplicity of x in r. At first sight, this looks
good; it could even avoid the need for p to remember multiplicities (see part 2
of its instructions above). But now suppose that t(x) is itself a comprehension
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term. So the proclets p′ activated by p (with multiplicities) will each activate
further proclets p′′, again with multiplicities. If p activates p′ with multiplicity
m and p′ activates p′′ with multiplicity m′, then altogether p′′ will be activated
with multiplicity mm′. Now p′′ is supposed to send to p′ the value it computes.
The mailbox of p′ will contain this value mm′ times. But the value computed by
p′′ should enter into the value computed by p′ with multiplicity m′, not mm′, and
there seems to be no way to extract this correct multiplicity from the mailbox
of p′.

In summary, although we do not claim that it is impossible to avoid AsSet by
allowing non-1 multiplicities in Proclet, we are convinced that the difficulties
involved in doing so would outweigh any benefit from avoiding AsSet.

9. ABSTRACT STATE MACHINES

The main result to be proved in this article is that parallel algorithms, as de-
fined by the postulates in Section 7, are equivalent to suitable abstract state
machines (ASMs). In preparation for this result, we give in the present section
a brief summary of the relevant definitions concerning ASMs. For more de-
tails, see Gurevich [1995]. Most of this material is a special case of what is in
Gurevich [1995], the special case being defined by the presence, in all states,
of the items required by the Background Postulate. The only deviations here
from the definitions in Gurevich [1995] are that we use comprehension terms
(see below) instead of quantifiers and that multisets serve (as sets did in Blass
et al. [1999]) as the domains over which bound variables are allowed to range.
We also provide a normal form for ASMs, which in particular allows us to
replace any ASM with an equivalent one that never has conflicting updates.
This fact is not needed for our main result, for there the ASM we construct
automatically has no clashes, but it was used to simplify the discussion in
Section 8.5 and we expect that it will be useful beyond the confines of this
article.

9.1 Definition of ASMs

We begin with a vocabulary: a set of function symbols or names with specified
arities, that includes all the items required by the Background Postulate. Some
of the function symbols are declared to be relational; among these are the logic
names (equality, the Boolean operations, true, and false). The values of the
functions interpreting relational names in a structure are required to be in
{true, false}. Also, some of the function symbols are declared to be static; among
these are the logic names, undef, and the names required by the clauses of
the Background Postulate concerning ordered pairs and multisets. Function
symbols not declared to be static are called dynamic.

The collection of terms is defined recursively by:

—Every variable is a term.
—If f is an n-ary function symbol and t1, . . . , tn are terms, then f (t1 . . . , tn) is

a term. If f is relational, then this is a Boolean-valued term.
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—If t(x), r, and ϕ(x) are terms, if x is not free in r, and if ϕ(x) is Boolean-valued,
then {{t(x) : x ∈ r : ϕ(x)}} is a term.

Terms of the form {{t(x) : x ∈ r : ϕ(x)}} are called comprehension terms.
Free variables are defined in the obvious way, with {{t(x) : x ∈ r : ϕ(x)}}

binding x. Semantically, when values have been assigned to the free variables,
{{t(x) : x ∈ r : ϕ(x)}} is interpreted as the multiset in which the multiplicity of
any object a is the sum, over all values of x for which the value of t(x) is a and the
value of ϕ(x) is true, of the multiplicity of the value of x in the value of r. (If the
value of r isn’t a multiset, then this multiplicity is 0.) The remaining recursive
clauses in the definition of the values of terms are just as in ordinary first-order
logic. In the future, we shall omit “the value of” when the intended meaning is
clear; thus we might write that the multiplicity of a in {{t(x) : x ∈ r : ϕ(x)}} is
the sum, over all x for which t(x) = a and ϕ(x) = true of the multiplicity of x
in r.

The collection of rules is defined recursively by:

—If f is an n-ary dynamic function symbol and t0, t1, . . . , tn are terms, then
f (t1, . . . , tn) := t0

is a rule, called an update rule. It is required that, if f is relational, then t0
is Boolean.

—If ϕ is a Boolean term and R1 and R2 are rules, then
if ϕ then R1 else R2 endif

is a rule, called a conditional rule.
—If x is a variable, R(x) is a rule, and r is a term in which x is not free, then

do forall x ∈ r, R(x) enddo
is a rule, called a parallel rule.

Again, free variables are defined in the obvious way, with do forall x ∈ r,
R(x) enddo binding x. In any structure, given values for the free variables, a rule
is interpreted as a set of updates, changing the values of some dynamic functions
at certain argument tuples. See Gurevich [1995] or the next subsection for
details.

An ASM program is simply a rule with no free variables. It thus determines a
set of updates in any structure of the appropriate vocabulary. An ASM consists
of such a program together with a collection of states, which are among the
structures for the appropriate vocabulary, and a subcollection of initial states,
both collections being closed under isomorphisms. The transition function of
the ASM applies to any state by executing the update set of the program; the
collection of states is required to be closed under the transition function.

Since some of the ASM constructs used in Gurevich [1995] are not included
in the present description, we indicate how they can be simulated in the present
set-up. Bounded quantifiers4 can be simulated because ∃x ∈ r ϕ(x) is equivalent

4Recall that, despite the terminology, the range of the quantified variable in a bounded quantifier
need not be (uniformly) bounded. The size of the set over which the variable ranges can increase
with the input rather than being bounded by the algorithm alone. See Terminology 1.3.
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to {{x : x ∈ r : ϕ(x)}} 6= ∅. A parallel combination of two rules, written

do in parallel R0, R1 enddo,

is equivalent to

do forall x ∈ {{true, false}}
if x = true then R1 else R0 endif

enddo.

Repeated use of this construction gives larger do in parallel blocks. The empty
block, also called Skip, is simulated by do forall x ∈ ∅, R enddo for any rule R.
Finally, if-chains as in Remark 7.17 can be simulated by nested conditionals.

Notice that ASMs as defined here involve two forms of parallelism, namely
the do forall construct and comprehension terms. Neither can be eliminated
in favor of the other. Without do forall, the update set generated by any rule
would be bounded. Without comprehension terms, there would be no way to
compute the truth value of a formula like (∀x ∈ r)(∃ y ∈ r) P (x, y) in a single
step (though it could be done in two steps).

9.2 Normal Form

A standard convention in the ASM literature, following Gurevich [1995], is that
if a program produces two conflicting updates, i.e., two updates of the same loca-
tion with different values, then no update at all is executed. This convention for
handling clashes will play no role in the proof of our main result, Theorem 10.1,
since the ASM constructed there will never produce clashes. In our verification
in Section 8.5 that ASMs satisfy our postulates, we ignored clashes to simplify
the discussion. We show here that this simplification causes no loss of general-
ity. Every ASM is equivalent to one that never produces clashes.

The idea behind the construction of a clash-free ASM equivalent to a given
one is to rewrite the program 5 of the given ASM so that, instead of executing
updates, it collects in a multiset the updates that it intends to execute. Then
this multiset is checked for clashes. If a clash is found, nothing is done (thereby
correctly simulating 5); otherwise, all the collected updates are executed.

To carry out this idea, we must represent updates by members of the state,
so that they can be collected into multisets. For this purpose, we assume that
we have associated to each dynamic function symbol f (in the vocabulary of5)
a term f̂ with no free variables, to serve as a code for f . For example, we could
list the function symbols in some order and then associate to the nth symbol
the term {{∅, . . . ,∅}} where there are n occurrences of ∅. We also agree to code
ordered tuples of arbitrary length by means of nested ordered pairs. That is,
we introduce the abbreviations

〈x1, . . . , xn, xn+1〉 = 〈〈x1, . . . , xn〉, xn+1〉
for all n ≥ 2. The corresponding projection functions, extracting a component
from a tuple, are given (for n ≥ 2) by

Pn
1 (x) = firstn−1(x) and Pn

k (x) = second(firstn−k(x)) for k ≥ 2.
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Then Pn
k (〈x1, . . . , xn〉) = xk . For the sake of uniformity, we identify a sequence

of length 1 with its unique component; then the preceding equations are also
correct for n = 1.

We shall use an (n + 2)-tuple of the form 〈 f̂ , ā, b〉 to represent an update
of the n-ary dynamic function f at argument n-tuple ā to value b. With these
conventions in place, we are ready to transform ASM programs into terms rep-
resenting the multiset of updates that they perform (or, rather, that they would
perform if no clashes occurred). The transformation proceeds by induction on
rules, defining for each rule R a term UR , with the same free variables as R,
to represent the update multiset of R. (Since we have multisets in the back-
ground, we use them here, but the multiplicities really play no role; executing
an update many times has the same effect on the state as executing it once.)

—If R is an update rule f (t1, . . . , tn) := t0 then UR is

{{〈 f̂ , t1, . . . , tn, t0〉}}.
—If R is a conditional rule if ϕ then R0 else R1 endif then UR is

{{x : x ∈ UR0 : ϕ}} ] {{x : x ∈ UR1 : ¬ϕ}}.
—If R is a parallel rule do forall x ∈ r, R0(x) enddo then UR is⊎

{{UR0(x) : x ∈ r : true}}.

Our interest is, of course, in the update set U5 corresponding to the whole
program 5. To check it for clashes, we define a Boolean-valued term Clash as

(∃x ∈ U5)(∃ y ∈ U5) [first(x) = first( y) ∧ second(x) 6= second( y)].

To understand this, remember that, under our coding of tuples, an update
〈 f̂ , ā, b〉 is an ordered pair whose first component is 〈 f̂ , ā〉 and whose second
component is b. Remember also that we saw at the end of the preceding sub-
section that quantifiers like ∃x ∈ U5 are available in our ASMs.

We define 1 to be the term {{x : x ∈ U5 : ¬Clash}}. It has the same value as
U5 if Clash is false, but it has value ∅ if Clash is true. So 1 denotes the set
of updates that 5 actually executes. It remains to write an ASM program to
execute these updates, given 1. The program has the form

do forall x ∈ 1, Execute(x) enddo

where Execute(x) is an if-chain with one clause for each dynamic function
symbol f . The clause for f , whose role is to execute updates of f , reads

(else)if Pn+2
1 (x) = f̂ then

f
(
Pn+2

2 (x), Pn+2
3 (x), . . . , Pn+2

n+1 (x)
)

:= Pn+2
n+2 (x) endif.

Notice that the clash-free equivalent of 5 that we have produced here in-
volves just a single do forall applied to an if-chain of simple updates. The
range of the variable in the do forall is, however, a very complicated multiset
term. Most of the parallelism in 5 may be buried in this term.
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10. THE EQUIVALENCE THEOREM

The purpose of this section is to prove that parallel algorithms are equivalent
to abstract state machines (ASMs) working with suitable backgrounds. Recall
that we defined parallel algorithms to be algorithms that satisfy the postulates
of Section 7.

Notice that Definition 2.3 of equivalence requires the simulating ASM to
have the same states and thus to use the same background as the algorithm A
being simulated. The Background Postulate thus ensures that a certain mini-
mal background is available to the ASM whether A makes any real use of it or
not.

THEOREM 10.1. Every parallel algorithm is equivalent to an ASM working
with the same background and with the language described in Section 9.

PROOF. We begin by considering what each individual proclet does at any
step of the given algorithm A. If p is a proclet in the current state X of A, then
it executes an algorithm as described in the Proclets Postulate. So it works
in a local state that differs from X in also having me, myMail, myDisplay, and
Display (see Terminology 3.2). And it executes an algorithm that satisfies all
the postulates of Gurevich [2000] with the following two modifications. First,
an inessential point is that to satisfy the Abstract State Postulate, we must
consider, simultaneously with state X and proclet p, all isomorphic copies of X
with the corresponding proclets. (“Corresponding” means the image of p under
an isomorphism.) We agree to consider all these states and proclets together,
but we continue to use the notation X , p for simplicity.

The second modification is more significant but still minor. It is that pro-
clets not only produce updates (as the algorithms in Gurevich [2000] did) but
also send messages. That is, they are sequential algorithms with outputs, in
the sense of Definition 2.1. Reading Gurevich [2000] with this point in mind,
we find that our proclets execute algorithms that are just like the sequential
ASMs of Gurevich except that they allow, among their rules, one more con-
struct, namely Output(t). In the present situation, where the outputs are pairs
〈addressee, content〉, it is convenient to use, in place of Output〈t1, t0〉, the nota-
tion

Push t0 to t1 endpush,

where t0 and t1 are terms with no free variables. (Remember that all terms in
Gurevich [2000] were ground terms.) The semantics of the new construct is, of
course, that execution of this statement by p causes the value of t0 to be sent
as a message to the proclet denoted by t1. (If the value of t1 is not a proclet,
then nothing happens.) If the algorithm executes several Push rules with the
same values for t0 and t1, then this message is sent to this recipient with the
corresponding multiplicity.

Notice that we are specializing the situation of Definition 2.1. There, outputs
were simply produced and sent to an unspecified outside world. Here, when a
proclet produces an output 〈addressee, content〉, this means that the content is
sent as a message to the addressee.
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It may be useful to briefly sketch the ideas from Gurevich [2000] that are
used here and the modifications needed to accommodate messages. By enlarg-
ing the bounded exploration witness T given by the Proclets Postulate via the
definition of “sequential algorithm with output,” we can arrange that it is closed
under subterms and contains true and false. Then all elements involved in any
update produced by p (either as components of the location being updated or as
the new value), all messages sent by p, and all the recipients of these messages
must be among the values of the terms in T (as evaluated in the local state of
p). The reason is that otherwise we could alter the state, without changing the
values of terms in T , but so that the element in question is not in the base set of
the new state. This would contradict the choice of T as a bounded exploration
witness. (This argument is Lemma 6.2 of Gurevich [2000].) It follows that what
the algorithm does in any single (local) state can be simulated by a single rule, a
do in parallel combination of the updates made and the messages sent in that
state (repeating Push rules as often as needed to achieve the right multiplicity of
messages). The reason for this is that the necessary updates and messages can
be written explicitly using terms from T . (See Corollary 6.6 of Gurevich [2000].)
Furthermore, this rule, which a priori depends on the state, actually depends
only on which terms from T have equal values in the state. The reason is that
two states that satisfy the same equality relationships between terms from T
have isomorphic copies that actually coincide on T . Applying the definition of
T to the isomorphic copies, and then applying isomorphism invariance (as re-
quired by the Abstract State and Proclets Postulates) to transport the results
back along the isomorphisms to the original states, we obtain the claimed re-
sult. (See Lemma 6.9 of Gurevich [2000].) Thus, even though there are infinitely
many possible states, there are only finitely many rules needed to match the
given algorithm in all of them. Combining these rules with an if-chain, using
the equality relations between elements of T as guards, we get a single rule
that matches the given algorithm in all states. (See Lemma 6.11 of Gurevich
[2000].)

Let us write 5 for this “sequential ASM with Push” describing the action of
each individual proclet. Our remaining task is to transform 5 into a genuine
ASM program (without Push, no longer sequential, and using the vocabulary of
the global state, not of the individual proclets) describing the action of all the
proclets together. We begin by describing our general strategy for this task and
then give the details.

A reasonable approach to simulating the work of the given algorithm A is
suggested by the proof of Theorem 7.22, where we showed that the correct ken
can be produced recursively, level by level, where the level of a proclet means
the maximum number of nodes in a chain of its predecessors in the information-
flow digraph of the Bounded Sequentiality Postulate. Unfortunately, nothing in
our postulates requires that the level of a proclet can be described in the given
vocabulary; in anthropomorphic terms, a proclet need not know what its level
is. So the recursion suggested in the proof of Theorem 7.22, computing one level
at a time, must be modified.

Here is a rough description of the modification; it will need to be corrected
later, but it conveys the key idea. The computation proceeds in B phases, where
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B is the bound on lengths of walks given by the Bounded Sequentiality Postu-
late. In the first phase, instead of having only the level-1 proclets execute 5,
let all proclets execute 5, with empty mailboxes and with all displays equal
to undef. For level-1 proclets, the empty mailbox is correct (i.e., it agrees with
the correct ken), since a level-1 proclet cannot receive messages. Furthermore,
level-1 proclets never pull information, so the displays don’t matter for their
computations. So level-1 proclets compute in the first phase exactly as they
would compute with the correct ken; see Lemma 7.25. All higher-level proclets,
however, are probably computing nonsense, since they have not yet received
their messages and they may pull from incorrect displays. Since level-1 pro-
clets execute their computations correctly, in particular, they send the correct
messages and produce their correct displays. So at this point, all level-2 proclets
receive their correct messages.

In the second phase, let every proclet execute 5 with myMail containing the
messages it received in phase 1 and with all displays as computed in phase 1.
We claim that now proclets at levels 1 and 2 are doing the correct computations.

The justification of this claim depends on the fact that, in formulating the
Bounded Sequentiality Postulate, we included in the digraph all edges along
which information might be pushed or pulled. Thus, the first phase did not pro-
duce any messages to level-1 proclets, despite the fact that many higher-level
proclets were computing with incorrect local states. Similarly, level-2 proclets
received messages, in the first phase, only from level-1 proclets, and those mes-
sages were correct since the level-1 proclets were already using their correct
local states. Furthermore, all level-1 proclets produced their correct displays,
and these are the only displays from which level-2 proclets pull information. In
view of Lemma 7.25, this establishes the claim.

In the third phase, let every proclet execute 5 with myMail containing the
messages it received in phase 2 and with all displays as computed in phase 2.
Then an analogous proof establishes the claim that now all proclets at the first
three levels are doing the correct computations. Continuing in this manner, we
find that in phase B all proclets are doing the correct computations.

This completes the rough description of what our ASM does, and it shows
that the correct ken is produced at the end. In fact, it shows that dur-
ing phase B all proclets are already working with correct mailboxes and
displays.

The rough description needs a minor correction to make sure the updates
are correct. In phases 1 through B − 1, some proclets are still using incor-
rect kens, so they may produce incorrect updates of the global state. In fact,
we want no global updates to be produced in these phases, because subse-
quent phases should work with the current global state, not an updated one.
The solution to the problem is easy: just suppress production of updates until
phase B.

This gives an ASM simulation of the given algorithm A, but it does not
seem to be a step-for-step simulation. Each of the B phases seems to be a
separate step of the simulating ASM, since later phases use the results of earlier
ones. It is, however, well known (see Gurevich [2000, Theorem 7.1]) that ASMs
can be speeded up, compressing several steps into one, without changing the
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vocabulary. This idea will complete the proof, but we must check that it still
works in the presence of comprehension terms. This completes the description
of the general strategy; we now proceed to the details.

We begin by converting the “sequential ASM with Push” 5 into two terms
of the global vocabulary (or more precisely term schemas) Outmail(p, M , D)
and Dspl(p, M , D) with the following intended meaning. Suppose X is a global
state, p is a proclet in X , M is a multiset, and D is a function from proclets
to elements of X . Consider executing 5 once in the local state obtained from
X by interpreting me as p, interpreting myMail as M , and interpreting Display
as D (and, as always, using undef as the initial value of the dynamic symbol
myDisplay). Then the value in X of Outmail(p, M , D) is to be the multiset of
the resulting mailings: the multiset of all pairs 〈q, m〉 such that the execution
of 5 results in message m being sent to proclet q. The multiplicity of 〈q, m〉
in Outmail(p, M , D) is the multiplicity with which p sends m to q. The value
in X of Dspl(p, M , D) is the multiset of all elements x such that the execution
of 5 results in an update giving myDisplay the value x. If several updates give
myDisplay the same value x, then this is reflected in the multiplicity of x in
Dspl(p, M , D).

We remark that, although p and M are elements of the state X , D serves
as a place-holder for a function, which is of a higher type. Ultimately, D will
be replaced by definitions of actual functions, so everything will make sense
within X with no need for higher types. For now, however, it is convenient to
use D, as several different functions will have to be substituted for it (namely
the display functions at different phases).

The terms Outmail and Dspl will be constructed by induction on the pro-
gram 5. This means that we actually define OutmailR and DsplR for any “se-
quential ASM with Push” rule R, the desired Outmail and Dspl being Outmail5
and (essentially) Dspl5. The definitions of OutmailR and DsplR are given by the
following obvious inductions on R. As a notational convenience, if t is a term
in the vocabulary of local states, then we write t ′ for the term obtained from t
by replacing

—me by p,
—myMail by M ,
—Display(u) by D(u), and
—myDisplay by undef.

This notation also applies to formulas ϕ since these are a special case of terms.
With these conventions, the definitions of OutmailR and DsplR are as follows,
by induction on the construction of the rules defining sequential ASMs with
Push.

—If R is an update rule, then OutmailR(p, M , D) is ∅ and DsplR(p, M , D) is
also ∅ unless R has the form myDisplay := t in which case DsplR(p, M , D)
is {{t ′}}.

—If R is Push t0 to t1, then OutmailR(p, M , D) is {{〈t ′1, t ′0〉}} and DsplR(p, M , D)
is ∅.
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—If R is do in parallel R0, . . . , Rk enddo, then OutmailR(p, M , D) is the sum
OutmailR0 (p, M , D)] · · · ]OutmailRk (p, M , D) and similarly DsplR(p, M , D)
is the sum DsplR0

(p, M , D) ] · · · ] DsplRk
(p, M , D).

—If R is if ϕ then R0 else R1 endif, then OutmailR(p, M , D) is
{{z : z ∈ OutmailR0 (p, M , D) : ϕ′}} ] {{z : z ∈ OutmailR1 (p, M , D) : ¬ϕ′}},

and similarly DsplR(p, M , D) is
{{z : z ∈ DsplR0

(p, M , D) : ϕ′}} ] {{z : z ∈ DsplR1
(p, M , D) : ¬ϕ′}}.

We define Outmail(p, M , D) to be Outmail5(p, M , D), but we define Dspl
(p, M , D) to be TheUnique(AsSet(Dspl5(p, M , D))). Notice that Dspl5(p, M , D)
represents the multiset of values assigned to myDisplay by the execution of5 (in
the local state described above). So if only one value is assigned to myDisplay
(perhaps several times) then this is the value of Dspl(p, M , D); if either no
value or two different values are assigned to myDisplay then the value of
Dspl(p, M , D) is undef.

We next define terms Mailboxk(p) and Displayk(p) in the vocabulary of the
global state. These terms are intended to denote the values of Mailbox(p) and
Display(p) after k phases of the simulation described in the general strategy
above. The definition is by induction on k.

—Mailbox0(p) is ∅.
—Display0(p) is undef.
—Mailboxk+1(p) is⊎

{{{{second(z) : z ∈ Outmail(q, Mailboxk(q), Displayk) :

first(z) = p}} : q ∈ Proclet : true}}. (1)
—Displayk+1(p) is Dspl(p, Mailboxk(p), Displayk).

To see what is happening in this definition, suppose, as an induction hy-
pothesis, that for every proclet p the values of Mailboxk(p) and Displayk(p)
are the mailbox and display of p after k phases of the simulation described
above. Then in phase k + 1, each proclet p will execute 5 in the local state
where myMail denotes Mailboxk(p) and Display denotes Displayk (and of course
me denotes p and myDisplay is initially undef). It will thus send mailings
as described by Outmail(p, Mailboxk(p), Displayk) and change its display to
Dspl(p, Mailboxk(p), Displayk).

Since this is the case for every proclet, we find that the messages pushed to p
by another proclet q are exactly the members (with multiplicity) of the multiset

{{second(z) : z ∈ Outmail(q, Mailboxk(q), Displayk) : first(z) = p}}.
By taking the union of these multisets over all q, we obtain the multiset of all
messages sent to p during this phase, the multiplicity of any message m being
the sum, over all proclets that push m to x, of the multiplicities with which they
push it. Thus, we obtain exactly the mailbox of p after k+ 1 phases, and this is
how Mailboxk+1(p) was defined.

Similarly, Displ(p, Mailboxk(p), Displayk) is the value given to myDisplay by
proclet p during phase k + 1 (or undef if there isn’t a unique such value). But
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this is exactly the display of p after k + 1 phases, and it is how Displayk+1(p)
is defined.

After B − 1 phases, every proclet has its correct mailbox and display. In
other words, MailboxB−1 and DisplayB−1 define the correct ken. So in phase B,
updates of the global state can be computed. (Messages and displays can also
be computed, but they will just reproduce what was computed at the preceding
step.) So the update set 1(A, X ) of the overall algorithm, which consists of all
the updates of the global state produced by all the proclets operating in local
states given by the correct ken, is the same as the update set produced by the
ASM program

do forall p ∈ Proclet 5∗(p) enddo.

Here 5∗(p) is obtained from 5 by replacing

—me with p,
—myMail with MailboxB−1(p),
—Display with DisplayB−1,
—every Push rule with Skip, and
—every update of myDisplay with Skip.

Thus, we have an ASM producing the same updates of the global state as the
given algorithm.

Remark 10.2. As required by our strong definition of equivalence, the
states of the given algorithm and the simulating ASM in this theorem are
identical. There is no coding involved (unless one considers the Abstract State
Postulate to involve coding).

Remark 10.3. We emphasize that the style of computation used in the pre-
ceding proof, with all proclets executing their algorithm in every phase, often
with incorrect mailboxes, is intended to serve only for proving the theorem, not
as an actual implementation of anything. We nested terms Mailboxk to a depth
of B−1 levels in order to treat the general case, an arbitrary algorithm satisfy-
ing our postulates. In practice, other approaches will usually be available and
much more efficient. Here are some simple examples.

Suppose the proclets “know” their level in the information-flow digraph. For
example, suppose there are predicates levelk for 1 ≤ k ≤ B, such that levelk(p)
is true if and only if p is a proclet of level k in the information-flow digraph.
Then by imposing a global synchronization on the phases, we can have proclets
at any level k compute only in phase k. Formula (1) for Mailboxk+1(p) would
then be modified to read

Mailboxk(p) ]⊎
{{{{second(z) : z ∈ Outmail(q, Mailboxk(q), Displayk) :

first(z) = p}} : q ∈ Proclet : levelk+1(q)}}. (2)

In this version of the algorithm, for each proclet q, there is only one place where
anything of the form Outmail(q, . . . ) needs to be computed, namely in producing
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Mailboxk+1 from Mailboxk where k+1 is the level of q. In this sense, this version
of the algorithm is more efficient than the one in the proof of Theorem 10.1.

A useful special case of this is when there are only two levels, and proclets
know which level they are in. For example, the top level may consist of proclets
controlling counters and the bottom level of proclets requesting increments of
those counters.

Another possibility that occurs frequently in practice is that each proclet
p knows which other proclets will send it messages and how many messages
to expect from each one. Suppose, for example, that the state contains a term
Senders(p) whose value for any proclet p is the multiset of proclets that will
send messages to p, the multiplicity of q in Senders(p) being the number of
messages that q sends to p. Then we can modify the algorithm so that each p
acts only when it has received all the messages it expects. In this situation, in
addition to modifying formula (1), we introduce additional terms Receivedk(p)
to keep track of the senders of the messages received by p at or before phase
k. We let both Mailbox0(p) and Received0(p) be ∅. We define Mailboxk+1(x) for
0 ≤ k < B − 1 to be

Mailboxk(p) ]⊎
{{{{second(z) : z ∈ Outmail(q, Mailboxk(q), Displayk) : first(z) = p}} :

q ∈ Proclet : Receivedk(q) = Senders(q) 6= Receivedk−1(q)}}, (3)

where the clause about Receivedk−1(q) is to be omitted when k = 0. Similarly,
we define Receivedk+1(p) to be

Receivedk(p) ]⊎
{{{{q : z ∈ Outmail(q, Mailboxk(q), Displayk) : first(z) = p}} :

q ∈ Proclet : Receivedk(q) = Senders(q) 6= Receivedk−1(q)}}. (4)

A similar construction is available if each p knows how many messages to
expect altogether, regardless of their senders.

Remark 10.4. As noted earlier, algorithms that use and combine partial
updates in the sense of Foundations of Software Engineering Group, Gurevich
et al. [2001] and Gurevich and Tillman [2001] are covered by our postulates.
The partial updates are viewed as messages to proclets that combine them into
appropriate (ordinary) updates. Theorem 10.1 shows that these can be simu-
lated by ASMs, which don’t use partial updates. Thus, the theorem provides an
elimination of partial updates.

11. SEVERAL STEPS FOR ONE

This section presents an alternative ASM simulation of parallel algorithms,
which has some advantages and some disadvantages vis-à-vis the simulation
in the proof of Theorem 10.1. The first advantage is that it avoids the deeply
nested comprehension terms Mailboxk . The price for this is that the vocabu-
lary is slightly increased and that the simulation is no longer step-for-step but
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rather 2B steps for one, where B is the bound from the Bounded Sequentiality
Postulate. The second advantage is that the same simulation can be applied to
algorithms that do not satisfy Bounded Sequentiality but only Acyclicity. In this
case, the simulation uses an unbounded number of steps for one step of the given
algorithm. Finally, we can restore step-for-step simulation by introducing the
notion of submachines. In the general situation, this use of submachines looks
like just a brutal redefinition of the notion of step, but in many real situations
it behaves quite reasonably.

The material in this section will not be used later in the paper and can
therefore be skipped without loss of continuity.

11.1 Phases Become Steps

The ASM produced in the proof of Theorem 10.1 consisted of a single do forall
rule, but a great deal more parallelism and a certain amount of sequentiality
were hidden in its comprehension terms. Notice that the definition of Mailboxk
involves O(k) nesting of comprehension terms. Any comprehension term {{t(x) :
x ∈ r : ϕ(x)}} involves parallelism in that computations are done for all x ∈ r.
Nesting of comprehension terms involves sequentiality in that the inner terms
must be evaluated as part of the evaluation of the outer ones. So the ASM in the
proof really involves O(B) sequential steps, each of which involves parallelism.

Of course, this is not surprising, since the intuitive algorithm that this ASM
expresses consisted of B phases, in each of which all the proclets operate.

The algorithm can be rewritten as another, perhaps more natural ASM in
which this sequentiality is made more explicit by using separate steps for the
phases, rather than deeply nested comprehension terms. We present such a re-
formulation in the present subsection; in the next subsection we shall show that
it allows us to analyze algorithms that do not satisfy the Bounded Sequentiality
Postulate but only the weaker Acyclicity Postulate.

This version of the ASM would not be appropriate for proving the theorem,
since it simulates the given algorithm not step for step but 2B steps for one. It
also uses additional vocabulary phase (a number, with initial value 1), mode
(a Boolean value, initially true), sends (a ternary number-valued function,
initially constant with value 0), Mailbox (a unary multiset-valued function),
newdisplay (a unary function), and Display (another unary function).

Furthermore, the most natural formulation of this algorithm uses some ad-
ditional background. Specifically, it uses natural numbers and the construction

{{z : z ∈ r with multiplicity µ(z)}}.
where r denotes a set and µ(z) a natural number for each z; this new term
denotes the multiset consisting of the elements z of r, each repeated with the
corresponding multiplicityµ(z). For those interested in keeping the background
minimal, we shall explain at the end of this section how this additional back-
ground can be reduced to the standard multiset background.

The purpose of adding phase, mode, sends, Mailbox, newdisplay, and Display
to the vocabulary is as follows. We use phase to count phases; its initial value is 1
and it increases by 1 after each phase, until it reaches B and the global updates
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are executed. The two values of mode correspond to the two parts of each phase,
first computing the updates of myDisplay and the mailings and then updating
the displays and putting the messages into the appropriate mailboxes. We let
mode = true correspond to the computing part and mode = false to the updating
and mailing part. In fact, for improved readability, we shall use computing and
communicating as aliases for true and false respectively, in this context. The
function sends serves to store the computed messages between the two parts
of a phase; the value of sends(p, m, q) is the multiplicity with which proclet p
is sending message m to proclet q. Similarly, newdisplay stores the displays
that are produced in the computing part of a phase and will take effect in the
subsequent communicating part. The functions Mailbox and Display have the
obvious meanings; they are updated during the communicating part of a phase
for use in the computing part of the next phase.

We need a little more notation to describe the ASM we have in mind. As in the
proof of Theorem 10.1, let5 be the “ASM with Push” that describes the operation
of each individual proclet. We describe two variants50(p) and51(p) of5. These
will be ordinary ASMs (without outputs, i.e., without Push).50(p) describes the
action of proclet p executing 5; it uses the ternary function sends to store, by
means of updates, information about the messages sent by 5, and it similarly
uses newdisplay to store updates of the display of p. 51(p) is similar except
that it performs none of the global updates in 5; it only updates newdisplay
and sends. To simplify the description of 50(p) and 51(p), we assume that 5
has the form of an if-chain,

if ϕ1 then R1
elseif ϕ2 then R2
. . .

elseif ϕk then Rk
endif,

where each Ri is a do in parallel block of updates and send rules and each
ϕi is a complete description of equalities and inequalities between the terms
in T , which include all the terms occurring in the Ri. This normalization of 5
involves no loss of generality, since the proof of Theorem 6.13 in Gurevich [2000]
and its adaptation to produce 5 in our proof of Theorem 10.1 above actually
produce 5 in the required form. We can further assume that no Ri contains
syntactically distinct terms that denote, according to the corresponding ϕi, the
same value. This is easy to arrange because ϕi specifies exactly which terms
from T denote the same value, so we can replace each of these terms in Ri
by a selected representative of its equivalence class (with respect to “equality
according to ϕi”). (The point of this last normalization is that multiplicities of
messages can be read off from the Push rules.) Finally, we assume that each of
the rules Ri contains at most one update of myDisplay. This is automatically
true for the ASM programs 5 produced in our proof of Theorem 10.1.

Now obtain 50(p) from 5 by

—replacing the nullary function symbol me with the variable p,
—replacing myMail with Mailbox(p),
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Fig. 1.

—if a Push-rule Push t0 to t1 endpush occurs exactly n times in a block Ri,
replacing these n occurrences with (one occurrence of) the update rule
sends(p, t0, t1) := n, and

—replacing any update of the form myDisplay := t with newdisplay(p) := t.

And 51(x) is obtained by these same replacements and in addition

—replacing every global update rule in 5 with skip.

(Note that this last replacement applies only to the update rules in 5 that
update global dynamic functions, not to those introduced in50 as replacements
for Push rules and for updates of myDisplay.)

We write L(p) for the set term AsSet({{u1, . . . , uN }}) where the ui ’s are all the
terms occurring in51(p). Recall that AsSet arranges that each member of L(p)
has multiplicity 1 regardless how often it occurs among the ui ’s. Notice that the
ui ’s include names for all the messages that p could send and for the recipients
of these messages.

With these notations, the desired ASM is as in Figure 1; it should be clear
(especially in view of the comments, marked //) that it describes the same
computational process as in the proof of Theorem 10.1. To save some space, we
have omitted enddo and endif, relying on indentation to indicate where rules
end. (Each line l in the figure should be regarded as implicitly ending all current
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do-rules that begin with equal or greater indentation than l . And of course the
end of the program implicitly closes all current rules.)

11.2 Unbounded Sequentiality and Submachines

As mentioned earlier, this ASM has another use, beyond “unraveling” the
comprehension terms and making the phases explicit. Consider replacing the
Bounded Sequentiality Postulate with the Acyclicity Postulate, requiring only
that the information-flow digraph is acyclic and finite, but not necessarily of
bounded depth. That is, the maximum length of a walk in the digraph, though
finite in each state, can grow with the state. Such an algorithm would not be a
parallel algorithm in the sense of this article, but it seems sufficiently similar to
parallel algorithms to be amenable to a similar analysis. Notice, in particular,
that Theorem 7.22 still applies; it used only the acyclicity of the digraph. So
the modified notion of algorithm still gives a well-defined correct ken and thus
a well-defined set of updates.

The analysis given by the ASM construction in the proof of Theorem 10.1
does not carry over to this modified notion of algorithm. It depended crucially
on the bound B to produce the terms MailboxB−1(p). Removing the uniform
bound B leaves us with no terms to describe the final mailboxes.

But the reformulated version of the algorithm can be adapted to the new
situation by using the notion of submachines of ASMs. A submachine of an
ASM is another ASM, operating on the state of the first ASM plus possibly
some “scratch paper.” One can think of submachines as agents, in the sense of
Gurevich [1995, Section 6]; they occur naturally (but without the name “sub-
machine”) in the context of recursive ASMs Gurevich and Spielmann [1997].
The action of the submachine, though it may be many steps in its own right,
counts as only a single step, like an intervention of the environment, for the
larger machine. For details about submachines, see Börger and Schmid [2000],
Gurevich et al. [2001], and Gurevich and Tillman [2001].

We can trivially modify the ASM in Figure 1 by delegating all its work to
a submachine. Instead of using the counter phase to tell when the iteration
should stop, let the submachine keep track of both the current and immediately
preceding values of Mailbox and Display, and let it stop when neither of them
changes from one submachine step to the next. The effect is that the unbounded
number of steps of the submachine now counts as a single step of the ASM.
Furthermore, this ASM uses the same background and vocabulary as the given
algorithm, since phase, mode, sends, newdisplay, Mailbox, Display, and the
storage of the previous phase’s mailbox and display can all be counted as scratch
paper of the submachine.

Thus, all algorithms that are like parallel algorithms, except for having only
acyclic sequentiality instead of bounded sequentiality, are equivalent to ASMs
with submachines.

This simulation and the associated step-counting seem very distorted, since
all of the work is done by the submachine and counted as a single step. But
in practice, the situation is rarely so bad. Typically, a submachine works much
more locally. Even if a step involves several submachines, their presence does
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not greatly distort the intuitive notion of step. A typical example would be an
algorithm whose steps satisfy bounded sequentiality except that the elements
of some list (of unbounded length) have some operation performed on them one
at a time. The AsmL distribution [Foundations of Software Engineering Group]
contains some other examples.

We should also mention the converse result: ASMs with submachines are
algorithms that satisfy our postulates except that Bounded Sequentiality is
weakened to Acyclicity.

The concept of submachine plays an important role in very interesting ques-
tions related to partial updates Gurevich and Tillman [2001] and to the design
of the specification language AsmL (see Foundations of Software Engineering
Group, and Gurevich et al. [2001]).

Reduction 11.1. As promised above, we indicate here how to define, in
terms of multiset operations, the additional background constructions used in
the ASM exhibited above. First, the natural number n can be coded as the mul-
tiset whose only member is true with multiplicity n. Thus 0 is identified with
∅ and n+ 1 with n] {{true}}. Then the term {{z : z ∈ r with multiplicity µ(z)}}
can be defined, thanks to our coding of numbers, as⊎

{{{{z : v ∈ µ(z) : true}} : z ∈ r : true}}.

12. ACTUAL OR POTENTIAL MAILBOXES

In this section, we further explore an objection, already briefly considered in
Remark 7.20, to the Bounded Sequentiality Postulate. The objection concerns
the use, in the definition of the information-flow digraph, of all possible kens.
Why not use only the correct kens?

As indicated above, the correct ken is not well-defined without some acyclic-
ity information, which proceeds from the Bounded Sequentiality Postulate. To
put it another way, the correct ken and the computations of the proclets are
defined in an apparently circular fashion (see the proof of Theorem 7.22 and
Remark 7.24), which can be viewed as a fixed-point requirement. Any ken gives
rise, via the proclets’ computations, to certain messages and displays, which in
turn form a ken, and correctness requires that the latter ken coincide with
the former. We used the Bounded Sequentiality Postulate to ensure that this
fixed-point requirement has a unique solution, the correct ken.

If one wants to avoid considering all possible kens and instead focus
on the correct one (and require bounded sequentiality only for the digraph
it defines), then the following seems to be a reasonable proposal. Require
first that the fixed-point requirement has a unique solution—call this the
Unique Kens Postulate—and then require Bounded Sequentiality only for this
ken. The Unique Kens Postulate amounts to assuming, rather than proving,
Theorem 7.22. Thus, it removes one of the justifications, in Remark 7.20, for
the use of all possible kens. If we restrict our attention to algorithms whose pro-
clets communicate only by pushing, not by pulling information, then the other
justification in Remark 7.20 also disappears. So in this “no pulling” context, the
combination of the Unique Kens Postulate and Bounded Sequentiality for the
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information-flow digraph of the correct ken is a plausible proposal for avoiding
the consideration of all kens together.

We shall show that this proposal does not work, by exhibiting some things
that would be parallel algorithms under the proposed postulates but that do not
intuitively work as parallel algorithms. In the rest of this section, we use only
non-pulling algorithms, so a ken for a state X amounts to (X plus) a mailbox
function.

Here is a simple example to show what can go wrong with the proposal above.
Consider an algorithm with three proclets, called a, b, c (all named by nullary
symbols so they can refer to each other). The algorithms they execute are as
follows. If a’s mailbox is empty it sends message 0 to b; otherwise it does nothing.
If b’s mailbox is empty, it sends messages 0 to a and 1 to c; otherwise it does
nothing. If c’s mailbox contains message 1 and nothing else, it sends message
0 to itself; otherwise it does nothing.

Temporarily ignoring proclet c, we find two fixed-points (in the sense of the
requirements for a correct ken, see Remark 7.24) for the interaction of a and b,
namely, one of their mailboxes contains message 0 and the other is empty. So
these proclets alone would violate the Unique Kens Postulate.

On the other hand, consider proclet c by itself. If c has 1 in its mailbox, then
there is no fixed-point for its algorithm, because of the circularity. c must send
message 0 to itself, and must therefore have 0 in its mailbox, if and only if it
does not have 0 in its mailbox. So again, the Unique Kens Postulate would be
violated.

Finally, let us consider the complete system of three proclets. The coupling
between the a, b pair and c, via b’s possible message 1 to c, makes the Unique
Kens Postulate true for the complete system. Indeed, one of the two possible
fixed-points for the a, b subsystem, the one where a has a message in its mailbox
and b doesn’t, cannot be consistently extended to c, for in this situation c will
have message 1 from b, and then any possible mailbox for c leads, as we saw,
to a contradiction. So the a, b configuration must be that a’s mailbox is empty
while b’s contains message 0. In this situation, b does not send any messages,
so c does not have 1 in its mailbox, and therefore c has a unique consistent
mailbox, namely ∅.

Summarizing, we have that this system satisfies the Unique Kens Postulate,
with Mailbox(b) = {{0}} and Mailbox(a) = Mailbox(c) = ∅. Furthermore, the
information-flow digraph associated to this ken has just a single edge, from a
to b, so it satisfies Bounded Sequentiality (with B = 2).

Despite satisfying the proposed weakening of our Bounded Sequentiality
Postulate, this system does not seem to be a reasonable parallel algorithm. The
uniqueness of the fixed-point comes about not through any way of computing
the fixed-point but by the after-the-fact observation that one of the two possible
configurations of a, b leads to impossible behavior of c.

More specifically, the sort of ASM simulation used in the proof of
Theorem 10.1 will not work with this system. Indeed, this simulation leads
to an oscillation of period 2. After any odd number of phases, the mailboxes
of a and b contain 0 and that of c contains 1; after any non-zero even num-
ber of phases, the mailboxes of a and b are empty and that of c contains 0.
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The simulation never produces the (unique) fixed-point and (therefore) never
stabilizes.

More generally, there seems to be no way to program this sort of situation,
in the sense of finding the unique fixed-point, without just searching through
all possible Mailbox functions to see which one works.

In the remainder of this section, we show that finding the unique Mailbox
for a given algorithm (subject to the Unique Kens Postulate and Bounded Se-
quentiality for the actual kens) may be unacceptably difficult in a complexity-
theoretic sense. For this purpose, we first describe the relevant complexity
class.

Definition 12.1. A find unique problem is a problem of the form

—Instance: a binary string x such that there is exactly one y satisfying R(x, y),
—Task: Find the y such that R(x, y),

where R is a polynomial-time computable binary relation, holding only between
certain binary strings of equal length.

Remark 12.2.5 As an indication of the possible complexity of find unique
problems, we mention that this class of problems includes integer factorization.
An instance of this problem is an integer (in binary notation) and the problem is
to list its prime factors (with multiplicities) in non-decreasing order. Although
the factorization problem is not known to be hard, that is, to be unsolvable in
polynomial time, it is widely believed to be hard—widely enough to serve as a
basis for cryptographic schemes.

After suitable padding to make the inputs and outputs have the same length,
the factorization problem fits the definition of a find unique problem. The reason
is that the prime-testing algorithm of Agrawal et al. [2002] allows us to check
any proposed factorization in polynomial time.

Notice that factorization has the special property, not required for find unique
problems in general, that for every x there is a unique y satisfying R(x, y). In
other words, every x is a legitimate instance.

Remark 12.3. Find unique problems with the special property just men-
tioned, that every x is a legitimate instance, are closely related to the com-
plexity class NP∩ co-NP of decision problems. Specifically, each of these special
find unique problems amounts to a combination of polynomially many decision
problems, each of which is in NP ∩ co-NP. Using notation as in the definition
of find unique problems, we can, on an n-bit input x, obtain the appropriate y
from the answers to the n decision problems “Is the ith bit of the correct y equal
to 1?” Each of these decision problems is in NP because it can be phrased as “Is
there a binary string y of length n, with ith bit 1, and satisfying R(x, y)?” It is
also in co-NP because the negated question can be phrased the same way with
“ith bit 0.”

The NP problems arising in this way have the “unique witness” property,
namely they can be expressed in the form ∃w P (z, w) where for each z there

5This remark was simplified on 1 August 2003 in light of the result of Agrawal et al. [2002].
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is at most one witness w (of polynomially bounded length). Conversely, if a
set and its complement are both NP with unique witnesses, then the decision
problem for this set immediately reduces to a find unique problem for which all
strings are legitimate inputs. Namely, if the set’s NP form is ∃w P (z, w) and its
complement’s NP form is ∃w Q(z, w), both having unique witnesses, then the
decision problem for this set reduces to the find unique problem “given x find
the unique w such that P (x, w) ∨ Q(x, w).”

If we look at general find unique problems, for which not every string is a
legitimate input, then there is a similar connection with a modified version of
NP∩co-NP. A problem in this modified complexity class is given by two NP sets,
say A and B; a legitimate instance is an x belonging to exactly one of the two
sets; and the question about instance x is which of the two sets does it belong
to. (When every x is legitimate, A and B are complementary, and we have an
NP ∩ co-NP problem.)

Remark 12.4. As another indication of the possible complexity of find
unique problems, we mention that a fairly standard oracle argument produces
an oracle relative to which not all find unique problems are solvable in polyno-
mial time.

The relevance of the class of find unique problems to our discussion of unique
mailboxes (i.e., unique kens, since we deal with algorithms that don’t pull in-
formation) is that the latter provides a complete problem for the former.

Consider the following problem, which we call the mailbox problem.

—Instance: a finite first-order structure and an “ASM with Push” in the vo-
cabulary of this structure augmented by me and myMail, such that there is a
unique correct Mailbox function and such that the information-flow digraph
for this Mailbox function has no walks of length greater than 3.

—Task: Find the unique correct Mailbox function.

After suitable coding by binary strings and suitable padding to make the lengths
of the strings match, this problem becomes a find unique problem. This fol-
lows immediately from the observation that one can compute in polynomial
time whether a given Mailbox function is correct for the given structure and
algorithm.

THEOREM 12.5. The mailbox problem is complete for the class of find unique
problems.

PROOF. Let an arbitrary find unique problem be given, and let R be the
binary relation defining it. So the problem is, given x such that there is a unique
y with R(x, y), to find this y . Fix a Turing machine M that computes R(x, y)
in time p(n) where n is the common length of x and y and p is a polynomial.
(Remember that R holds only between binary strings of equal length.) We show
how to produce, for any given binary string x, a structure and an algorithm,
constituting an instance of the mailbox problem, such that, from their uniquely
determined correct Mailbox function, we can easily compute the y such that
R(x, y). Assume for simplicity and without loss of generality that the alphabet
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of the Turing machine M consists of only 0 and 1; 0 is used as the blank symbol.
Let s be the number of control states of M .

Our structure will be built from small components, many of which are essen-
tially like the components of the small 3-proclet example given above. Specifi-
cally, there will be components of the following sorts.

—binary switch: This consists of two proclets, each of which sends message 0
to the other if and only if its own mailbox is empty. So these are like the a
and b in the earlier example. Each binary switch has two consistent (with
the algorithm) configurations, namely one mailbox contains 0 and the other
is empty.

—s-ary switch: This generalization of the binary switch consists of s proclets,
each of which sends message 0 to all the others if its own mailbox is empty;
otherwise, it sends nothing. It is trivial to check that an s-ary switch has
exactly s consistent configurations, in each of which one proclet’s mailbox is
empty and all the other mailboxes contain 0. (Recall that s is the number of
control states of M .)

—black hole: This consists of a single proclet, which sends message 0 to itself
if its mailbox contains something but does not contain 0. When activated, by
receiving a message other than 0, a black hole has no consistent configuration.
In the earlier example, c was a black hole.

These components will be arranged in (essentially) a p(n) by p(n) array, in-
tended to describe the computation of M on an input consisting of the given x
together with some unspecified y .

We now give a detailed description of the structure associated to a given
binary string x of length n. Interspersed with the description is an explana-
tion, in square brackets, of the intended purpose of the various parts of the
structure.

First, the structure contains a linearly ordered set I of p(n) elements, the
successor relation being named by a predicate symbol of the vocabulary. For
convenience, we identify I with {1, 2, . . . , p(n)} (with the usual ordering).

Next, there is a p(n) by p(n) array, indexed by I × I , each cell of which
contains two binary switches. In each of these binary switches, the two proclets
are labeled 0 and 1 (and of course also labeled by their row and column numbers
and another label to distinguish one binary switch from the other). [In the cell
at row i and column j , henceforth called (i, j ), the configuration of the first
switch indicates which symbol, 0 or 1, is written in cell number j of the Turing
tape at step i of the computation; the symbol is the same as the label of the
proclet whose mailbox is empty. The second switch indicates whether this cell,
number j , is the scanned cell at time i.]

For each row, there is an s-ary switch, whose proclets are labeled by the con-
trol states of M (and of course by the row). [In the switch at row i, the label of the
(unique) proclet whose mailbox is empty is the control state of the computation
at step i.]

There is one black hole. [It will be activated whenever something “bad” is
discovered in the alleged computation described by the switches.]
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Each cell in the p(n) by p(n) array has an additional proclet, called its cell
guard. [For an unscanned cell, the cell guard’s job is to make sure the content
doesn’t change from one step to the next; if it does change, the guard activates
the black hole. For a scanned cell, the cell guard reports the nearby action to
the row guard (see below).]

Each row has an additional proclet, called the row guard. [The row guard
makes sure that its row has exactly one scanned cell and that the action near
it is as specified by the program of M . If either of these is not the case, then the
row guard activates the black hole.]

The bracketed explanations above probably make it clear what algorithms
are executed by the various proclets, but to be safe we add a few clarifying com-
ments, before continuing to the last part of the specification. The two switches
in each cell inform some nearby cell guards of their configurations. Specifically,
in each switch the proclet with empty mailbox sends its label (including not
only the 0 or 1 but also which cell and which of the two switches it inhabits)
to the guards of that cell and of the three nearest cells in the previous row.
That is, cell (i, j ) reports to the guards of cells (i, j ), (i − 1, j − 1), (i − 1, j ),
and (i − 1, j + 1) (omitting any of these if they don’t exist because they’re out-
side the array). The effect is that the cell guard at (i, j ) knows, by looking into
its mailbox, what the tape contents are at (i, j ), (i + 1, j − 1), (i + 1, j ), and
(i+1, j +1) and which, if any, of these are scanned. If the guard finds that (i, j )
is not scanned but (i + 1, j ) has different content, then it activates the black
hole by sending it a 1. If the guard finds that (i, j ) is scanned, then it sends to
the row guard for row i a complete description of what it found in cells (i, j ),
(i + 1, j − 1), (i + 1, j ), and (i + 1, j + 1). Each s-ary switch, say at row i, sends
a message to the corresponding row guard, telling what configuration it is in;
all that is needed here is for the proclet in the switch with empty mailbox to
send its label to the row guard. If the row guard’s mailbox contains either more
or fewer than one message from cell guards, it activates the black hole. If it
finds exactly one such message, then it compares that message, the message it
received from the s-ary switch in its row, and the Turing machine program of
M ; if there is a discrepancy then it activates the black hole.

The description so far ensures that the black hole will be activated, and so
there will be no consistent configuration, if the switches fail to code a compu-
tation of M .

We also want to activate the black hole if the input is wrong or if the com-
putation of M fails to accept. In detail, this means the following. If 1 ≤ j ≤ n,
so that cell (1, j ) of our array corresponds to the j th cell of the initial Turing
tape and should therefore code the j th bit of x, if the code is wrong then then
the black hole should be activated. That is, if the j th bit of x is 0 (resp. 1) and
if the proclet labeled 1 (resp. 0) in the switch coding the tape content at (1, j )
has empty mailbox, then this proclet sends a message 1 to the black hole. Also,
if j > 2n and the proclet labeled 1 in the switch coding the tape content at
(1, j ) has empty mailbox, then this proclet sends a message 1 to the black hole;
this ensures that the computation encoded by the switches has 0’s (serving as
blanks) in all input bits past 2n. Thus, the input must be x followed by some
n-bit string y , followed by all 0’s. Furthermore, if the first cell in the first row
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is not scanned, the proclet indicating this sends 1 to the black hole; so the en-
coded computation must start with the leftmost cell scanned. Finally, if, in the
s-ary switch in the last row, the proclet with empty mailbox is labeled by a
non-accepting state of M , then this proclet sends 1 to the black hole.

It follows that the only consistent configurations of this structure and algo-
rithm are those where the switches code a correct and accepting computation
of M from an input of the form xy (followed by blanks), where x is the given
string of length n and y is another binary string of length n. By our assumption
on the input x, we know that there is exactly one such y and therefore exactly
one such computation. That is, our structure and algorithm have exactly one
consistent configuration and therefore constitute an instance of the mailbox
problem. Furthermore, from the solution to this instance, the unique appropri-
ate computation, one can read off the unique y such that R(x, y), for this y is
encoded by the mailboxes of the switches in positions n+ 1 through 2n of the
first row.

Thus, we have a reduction of the find unique problem represented by R to
the mailbox problem. It remains to observe that the reduction is computable in
polynomial time. That is, for any fixed Turing machine M and polynomial p,
giving the relation R, we can in polynomial time convert an arbitrary binary
string x to the structure and algorithms described above.

In view of the theorem and the earlier remarks about the complexity of
find unique problems, it appears that the combination of the Unique Kens
Postulate and Bounded Sequentiality for the correct ken is not a reasonable
way to describe parallel algorithms. The combination describes something more
complicated—essentially a search through all possible kens.

To conclude this section, we comment on another proposal, which seems less
radical than the combination considered above. Define a ken to be correct if it
satisfies the conclusion of Theorem 7.22, without making (for the moment) any
assumption about the existence or uniqueness of such a ken. Then consider the
information-flow digraph for correct kens. That is, there is an edge from p to
q if, in the computations resulting from some correct ken, either p pushes to q
or q pulls from p. Then assume as a new postulate that the lengths of walks in
this digraph are bounded.

To avoid the difficulties mentioned earlier with defining the notion of “pulls
from” when particular kens are considered (rather than all kens together), let
us consider this proposed new postulate in the context where there is no pulling,
i.e., Display simply isn’t in the proclets’ vocabulary.

The proposed new postulate implies that there is at most one correct ken.
Indeed, if there were two, then they would both satisfy the same recursion
conditions, for recursion over the levels of the information-flow digraph for
correct kens, just as in the proof of Theorem 7.22. But the postulate does not
imply that there exists any correct ken at all. So something more must be said
before we can adopt the Updates Postulate in this context. There seem to be
three moderately plausible ways to proceed.

One is to add, as a further postulate, that there exists a correct ken. The
combination of these two new postulates is easily seen to be equivalent to the
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previously considered combination of Unique Kens and Bounded Sequentiality
for the correct ken. So this approach runs into the problems described earlier
in this section.

A second approach is to admit the possibility that there is no correct ken and
to modify the Updates Postulate to take this possibility into account. It seems
natural to suppose that, when there is no correct ken, no updates are performed:
τA(X ) = X , the system crashes. But there are two problems with this idea. First,
any specific convention of this sort seems inappropriate in a general axiomatic
description of arbitrary parallel algorithms. Second, it requires a good deal of
work by the “operating system” to detect the absence of a correct ken. Work of
this sort is not otherwise required, and one might ask whether an operating
system with such power couldn’t just do the whole calculation by itself without
using proclets.

Finally, one could assume that the information-flow digraph G for correct
kens not only exists but is given as part of the state. Then the algorithms for
proclets could be arranged so as to always communicate along edges of G. That
is, a rule of the form Push t0 to t1 could be replaced by one that does the sending
only if G has an edge from me to t1, and a term of the form Display(t) could be
replaced with one that has the same value when G has an edge from t to me
but is undef otherwise. With these changes, all pushing and pulling for any
ken whatsoever will be along edges of G. In other words, the information-flow
digraph in our original sense, defined using all kens, becomes a subgraph of G.
Thus, the assumed bound on the lengths of walks in G gives a bound on the
lengths of walks in the information-flow digraph, and we have recovered the
original Bounded Sequentiality Postulate.

13. WHAT ELSE IS THERE?

After the treatment of sequential algorithms in Gurevich [2000] and the
treatment of parallel algorithms in the present article, it is natural to ask
what other kinds of algorithms remain to be treated. An obvious answer is
algorithms of the sorts that we have specifically excluded from considera-
tion in the main part of this article. The first exclusion was distributed al-
gorithms in which agents act asynchronously. The general analysis of such
algorithms from (something resembling) first principles remains a major
task for future research. The second exclusion was algorithms where single
steps can involve unbounded sequentiality, like the submachine algorithms in
Section 11.

We have also not mentioned quantum algorithms, but Grädel and Nowack
[2003] have shown that they can be modeled by ASMs (with an external func-
tion providing random bits); in fact, quantum states correspond to states in
the sense of the present paper (so there are a great many of them in any non-
trivial quantum algorithm). We have also not mentioned real-time algorithms
and other algorithms involving continuous variation (analog algorithms), even
though experience indicates that such processes also admit ASM models.

Does our main theorem cover all algorithms except these excluded ones?
That is, are all other algorithms parallel algorithms in the sense defined at the
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end of Section 7? Do they satisfy all our postulates? For the rest of this section,
as in most of this article, we work with algorithms that are synchronous (in the
sense that they proceed in a discrete sequence of steps) and that do not involve
unbounded sequentiality within single steps.

Since the algorithms are synchronous, it is reasonable, as explained in
Gurevich [2000], to assume the Sequential Time and Abstract State Postulates.
What else can one say? We shall argue that, except in the case of sequential algo-
rithms covered in Gurevich [2000], such an algorithm must involve substantial
parallelism. This argument, by itself, will not prove that such an algorithm is
necessarily a parallel algorithm in the sense of Definition 7.28, since it does not
sufficiently delineate what happens in and between the proclets. We comment
afterward on where such a delineation could come from.

Consider an algorithm, subject to the Sequential Time and Abstract State
Postulates, but not satisfying the Bounded Exploration Postulate and therefore
not a sequential algorithm. We further assume that the change in the state from
one computation step to the next can be regarded as the result of some number
of atomic events. By atomic events, we mean things like reading the content of
a given location in the state, or writing a new value into a location, or sending
or receiving a single piece of information. One such event may be a necessary
prerequisite for another. For example, the first event may be reading a certain
value which serves as a component of the location where the second event is to
read or write. The relation “necessary prerequisite for” is a strict partial order-
ing of the atomic events in any one step of the computation. Having prohibited
unbounded sequentiality, we have an upper bound B on the lengths of chains in
this partial order. (B depends only on the algorithm, not on the state.) On the
other hand, the number of atomic events should not be bounded independently
of the state, since the algorithm is assumed not to have bounded exploration.6

But a partially ordered set of size S with no chains of length greater than
B must have an antichain (i.e., a set of pairwise incomparable elements) of
size at least S/B. Thus, our partially ordered sets of events must have, as the
state varies, arbitrarily large antichains. And what is an antichain in one of
these partially ordered sets? It is exactly a set of atomic events none of which
is a prerequisite for another. That is, it is a set of atomic events that could
be executed in parallel. It is in this sense that an algorithm with bounded
sequentiality but unbounded exploration must involve substantial parallelism.

The parallelism found by this argument differs in two respects from the
parallelism of proclets discussed in the preceding sections. First, proclets can
be bigger than atomic events. And we took advantage of this, for example
in saying (in Remark 7.17) that several species of proclets executing differ-
ent algorithms can be regarded as executing the same algorithm, namely an

6It is imaginable that the number of atomic events is bounded yet Bounded Exploration fails, since
the atomic events might not be given by a fixed finite set of terms. In this situation, the Bounded
Exploration postulate of Gurevich [2000] would not fulfill its intended purpose of expressing that
the work done in one step is bounded. In the general context of Gurevich [2000], there was no
measure of “work” separate from exploration. In our present context, atomic events can be used to
measure work, and a discrepancy between this measure and bounded exploration would suggest a
problem with the latter.
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if-chain of the other algorithms. Clearly, such a chain is not an atomic event.
To get from parallel atomic events to the axioms used in this article, one would
need to assemble atomic events into larger proclets while preserving a certain
degree of independence, so that proclets can be executed in parallel except for
the temporal ordering imposed by the pushing and pulling of information.

Second, there is no uniformity in the atomic events. Our argument leading to
many parallel atomic events made no use of the fact that the entire algorithm is
described by a finite text. This finiteness should imply that, if many things are
to occur simultaneously, they must be specified in a finite number of ways, given
by the algorithm itself, with only some parameters varying. If this conclusion
could be made rigorous, it would bring us quite close to the idea of proclets, all
executing one of a few algorithms (reducible to one algorithm by the if-chain
idea) but with a varying parameter me.

We summarize these admittedly imprecise arguments in the imprecise con-
clusion that, if an algorithm is to work in sequential time, with bounded se-
quentiality in each step, then either it is a sequential algorithm in the sense of
Gurevich [2000], or it is a parallel algorithm in the sense of the present article,
or it does something very strange, something quite different from the behavior
of currently existing algorithms.

REFERENCES

AGRAWAL, M., KAYAL, N., AND SAXENA, N. 2002. PRIMES is in P, To appear, available at
http : //www.cse.iitk.ac.in/news/primality v3.pdf.

ASM WEB. The ASM Michigan Web Page. Edited by James K. Huggins. URL: www.eecs.
umich.edu/gasm.

BLASS, A. AND GUREVICH, Y. 2000. The Logic of Choice. J. Symbolic Logic 65, 3 (September), 1264–
1310.

BLASS, A., GUREVICH, Y., AND SHELAH, S. 1999. Choiceless Polynomial Time. Annals of Pure and
Applied Logic 100, 141–187.
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