
Partial Updates: Exploration

Yuri Gurevich and Nikolai Tillmann

Microsoft Research

One Microsoft Way, Redmond, WA 98052, USA

Abstract

The partial update problem for parallel abstract state machines has

manifested itself in the cases of counters, sets and maps. We propose a

solution of the problem that lends itself to an eÆcient implementation

and covers the three cases mentioned above. There are other cases of

the problem that require a more general framework.

Contents

1 Introduction 3

2 Preliminaries 6

2.1 Multisets . 6

2.2 ASMs . 7

2.3 The background of a state . 8

2.4 Sequential composition and submachines 8

2.5 AsmL . 10

3 Challenges 10

3.1 Sets . 11

3.2 Maps . 11

3.3 Counters . 12

1

4 Partial Updates in the Traditional Setting 12

4.1 Registry Solution . 13

4.1.1 Maps . 13

4.1.2 Counters . 13

4.1.3 The General Picture 14

4.2 A General Result . 14

5 Particles 14

5.1 Clients Types . 15

5.2 Apt Client Cases . 16

6 Partial Updates 17

6.1 Partial Update Rules . 18

7 Integration 19

7.1 Integration of Particles . 19

7.2 Integration of Partial Updates 21

8 Reporting 21

8.1 Sequential Composition . 22

8.2 Submachines . 22

9 Preamble to Examples 24

10 Example: Counters 24

11 Example: Maps 25

11.1 Map Transformers of Finite Rank 26

11.1.1 The Setup . 26

11.1.2 Ranked Transformers and Controllers 28

11.2 Maps and Map Particles . 30

2

12 Example: Counter Maps 33

12.1 Counter Map Background . 33

12.2 The Setup . 34

12.2.1 Ranked Transformers and Controllers 34

12.3 Counter Maps and Counter-Map Particles 36

13 Example: Sets 38

1 Introduction

The Abstract State Machine (ASM) thesis states that, for every computer
system A, there is an ASM B such that B is behaviorally equivalent to A
and in particular step-for-step simulates A [G93, G95]. The thesis inspired
numerous applications of ASMs [ASM, Br95, Br99, FSE].

In [G00], the thesis is proved for sequential computer systems. Sequential
systems are sequential-time and bounded-parallelism. A system is sequential-
time if its runs are �nite or in�nite sequences of states. A system is bounded-
parallelism if there is a �xed bound on the degree of the parallelism of single
steps in computations of the system; see details in [G00]. In [BG*], the thesis
is proved for computer systems that are unbounded-parallelism but bounded-
sequentiality. A system is bounded-sequentiality if there is �xed bound on the
lengths of sequences of events that must occur in a particular order during
any single step. The abstract state machines of [BG*] are essentially the
parallel (but not distributed) ASMs of the Lipari guide [G95]; see details in
[BG*].

The problem of partial updates, addressed in this paper, arises in the con-
text of sequential-time computer systems of unbounded parallelism, in other
words, synchronous parallel systems. The problem bothered the �rst author
from the time of the Lipari guide [G95]. It manifested itself �rst in the
form of the cumulative updates of a counter. Imagine a synchronous parallel
computer system A such that A contains an integer counter c and such that
di�erent parts of A increment c during the same step. The value of c at the
end of a step of A is the value of c at the beginning of the step plus the sum
of all the increment parameters. If you see the individual changes as usual

3

assignments, the semantics is all screwed up: the cumulative e�ect of incre-
ments by 2 and by 3 is a contradiction rather then the expected increment
by 5, and the cumulative e�ect of two increments by 2 is an increment by 2
rather than the expected increment by 4. How should we deal with counters
in the ASM model of the computer system A? (One may wonder if there is a
real system A of that kind. We have some imperfect examples but one does
not need a perfect example to worry about such systems in the context of
the ASM thesis.)

The second manifestation of the partial-update problem was related to sets.
Imagine that one part of a synchronous parallel computer system treats a set
variable s as a unit, subject to usual assignments, while another part, during
the same step, treats that same set variable s as an aggregate, subject to
insertions and deletions of members. How do we reconcile the two points of
view in the ASM model of the computer system?

The third manifestation of the partial-update problem was related to the
development of AsmL, a powerful ASM-based speci�cation language [FSE].
In AsmL 2, the current version of AsmL, map variables replace dynamic
functions of positive arity. Often you need to change a map variable m
only at some particular argument, say at 1. How do you do that in the
ASM paradigm, and how do you combine such a partial update with usual
updates? So far, the partial-update problem for maps seems similar to that
of sets, but it is more complicated. The value m(1) of m at the argument
1 can be again a map. You may want to change m(1) at the argument 2
leaving the rest of m unchanged. And m(1)(2) can be again a map, and so
on and so forth.

Partial updates can be eliminated in the traditional ASM setting; see [Sec-
tion 4]. But the development of AsmL required more practical algorithms
for the integration of partial updates. The problem was complicated by the
use of submachines in AsmL1. In violation of the bounded sequentiality as-
sumption discussed above, the number of the steps of a submachine B of a
program A is not bounded a priori. For example B may run to completion
(that is until its state stabilizes), whatever number of steps it takes, during
one step of A. Furthermore, B may have submachines of its own.

In this paper, we do not eliminate partial updates. We develop a systematic

1AsmL is not the �rst ASM-based language to employ submachines; see [A00, S99]. A
theoretical study of submachines was conducted in [BS00].

4

solution of the partial-update problem that allows the programmer to freely
use partial updates to modify counters, sets and maps in the main program
and in submachines and in submachines of submachines, and so on, without
worrying how submachines will report modi�cations and how to integrate
modi�cations2.

The basis of our approach is illustrated best on the example of a counter.
How does a counter do in parallel all the increments? Typically it doesn't.
Instead, it performs increments sequentially but the result does not depend
on the order in which the updates are executed. So the presumed parallel
execution is an abstraction.

At this point, we need a couple of mathematical de�nitions. Consider a
collection F of unary operations over a set S. Recall that two operations
f and g commute if f(g(x)) = g(f(x)) for all x in S. Say that f and g
malcommute if f(g(x)) 6= g(f(x)) for all x in S. Say that F is apt if every
two operations in F either commute or malcommute.

We view modi�cations, like counter increments or map alterations, as unary
operations. It turns out that in each of the three cases mentioned above |
counters, sets and maps | the collection of modi�cations is apt. In this pa-
per, we restrict attention to apt cases where the collection of modi�cations is
apt. Notice that it is easily checkable in apt cases whether two modi�cations
f; g commute; just check g(f(x)) = f(g(x)) for any one x.

Now consider an apt case. Call a multiset M of modi�cations consistent if
their composition is order independent. It is easy to check that the com-
position of the modi�cations in M is order independent if and only if every
two modi�cations commute. This gives us a simple generic algorithm for
checking consistency in apt cases. (In the cases of counters, sets and maps,
more eÆcient algorithms for checking consistency follow from our results in
[Sections 10-13]).

Any location ` can be modi�ed by the main program as well as by subma-
chines of all levels (submachines of the main program, their submachines,
etc.). Consider the computation of any submachine M during a single step
of its parent machine. Suppose M makes n steps. Let �i be the multiset of
modi�cations of ` produced by M or reported by its submachines during the
ith step of M . At the end of the ith step, M composes �i into one modi�ca-

2Our treatment of maps extends that of an earlier version of [GSV01].

5

tion fi. If i < n, then M applies fi to the content of its local version of ` to
update the current state of M . (Initially, when M is created by its parent,
the content of M 's version of ` is the current content the parent's version
of `.) After the nth step, M computes the composition fn Æ � � � Æ f1 and
reports it to its parent machine. (At this point, M dies, and its version of `
dies with it.) The main machine, at every step, composes all modi�cations
produced by it and reported to it into one modi�cation which it applies to `
to update its own state. If inconsistency is detected in the process then the
computation fails. The reporting and integration procedures are described
in [Sections 7 and 8].

A disgruntled ASMer may not like that we \pollute" the clean ASM paradigm
with partial updates. He/she may be comforted by the fact that partial
updates can be eliminated. Besides, the current framework of apt cases is
rather restricted. We intend to revisit the partial update problem.

In the rest of the paper, the traditional ASM setting means the setting with-
out partial updates. The setting with partial updates will be called new.

We presume that the reader has some familiarity with abstract state machines
(ASMs); the Lipari guide [G95] would do.

2 Preliminaries

2.1 Multisets

Intuitively, a multiset is a set with multiple occurrences of elements. For
example, a multiset da; b; b; a; be contains a with multiplicity 2 and b with
multiplicity 3. The underlying set of a multiset � will be called the domain
of � and denoted dom(�). Thus dom(da; b; b; a; be) = fa; bg.

Every map m whose range consists of positive integers yields a multiset �
with dom(�) = dom(m) where the multiplicity of an element a is m(a). Every
multiset � can be obtained this way; the generating map is the characteristic
function �� of �. The characteristic function of the empty multiset is the
empty map.

Let �1 and �2 be multisets with domains d1 and d2 and characteristic func-
tions �1; �2 respectively, let d = d1 [d2, and for each i 2 f1; 2g, let fi be the

6

extension of �i to d such that fi(a) = 0 for a 2 d� di. The sum m1 +m2 is
the multiset with domain d and characteristic function f1(a) + f2(a).

We use ceiling brackets for multisets in the same way as braces are used for
sets. By analogy with set comprehension, we use multiset comprehension.
Let s be a set or multiset, let p be a unary relation over s, and let f be a
function over s. Then

df(x) j x 2 s where p(x)e

is a multiset � with domain d
 ff(x) j x 2 s where p(x)g. What is the
characteristic function �� of �? If s is a set then ��(y) is the cardinality of
the set fx j x 2 s where p(x) ^ f(x) = yg. Otherwise

��(y) =
X
x2sy

�s(x) where sy = fx j x 2 dom(s) where p(x) ^ f(x) = yg

Until now, we viewed multisets as generalizations of sets. There is another
view of the notion of multiset, as an abstraction of the notion of sequence.
You abstract from the order of the members of the sequence but not from the
number of the occurrences of a member in the sequence. The second view
suggests the implementation of multisets as sequences.

2.2 ASMs

As we said in the introduction, we assume that the reader is familiar with
the Lipari Guide [G95]. In particular we assume that the reader knows the
notions of vocabulary, state, location, update, update set, and rule. For
brevity, elements of an ASM may be called points.

The update set of a rule R at a state X will be denoted �XR, and the
value of a term (or expression) t at a state X will be denoted rXt. (This
notation is borrowed from an earlier version of [GSV01].) The subscript may
be omitted if the state is clear from the context.

Recall that an update set � of a state X is consistent if it contains at most
one update per location. If � is consistent then X + � is the state which
results from X by executing the updates in �.

7

2.3 The background of a state

In the ASM paradigm, a state is comprehensive. It is not reduced to in-
dicating the current values of the variables. For example, if you deal with
sets at all, then the state contains all sets that are or may become relevant
later. The concept of state background was introduced in [BG00]; see also
[GSV01] and [BG*]. The background of state does not change during state's
evolution. It contains true, false, undef. Here we presume that the back-
ground includes integers and is closed under �nite sets, multisets, sequences
and maps. In other words, if x is a �nite set of elements of a state X, or
a �nite multiset of elements of X, or a �nite sequence of elements of X, or
a �nite map from elements of X to elements of X then x is an element of
X. In principle, the background may contain some in�nite sets, multisets,
sequences or maps, but here we are interested only in �nite ones. In the rest
of the paper, by default, sets, multisets, sequences and maps are �nite. (We
still speak about the base set of a state even though it may be in�nite, but
in most cases of possibly in�nite sets we try to use the term collection.)

Our map notation follows that of [GSV01]. It is pretty much self-explanatory.
For example, the map fi1 7! r1; i2 7! r2g has domain fi1; i2g and maps i1
to r1, and i2 to r2. The atomic maps fi1 7! r1g and fi2 7! r2g are called
maplets. An arbitrary map can be thought of as a set of maplets. The empty
map is denoted f!g.

Formally, maps are elements of the state, and the mapping information is
contained in a static apply function: if m is a map and apply(m; i) = r 6=
undef then m includes the maplet fi 7! rg. The domain of a map m is
the set fi j apply(m; i) 6= undefg and the range is the set fapply(m; i) j
i 2 dom(m)g. (Notice that the range never contains undef.) We write x(i)
instead of apply(x; i).

2.4 Sequential composition and submachines

In ASMs, the default composition of rules is the parallel composition. That
is why the rule

8

do in-parallel

P

Q

is usually abbreviated to
P

Q

But the sequential composition

do sequentially

P

Q

is used as well though its semantics is more complicated [G00]. It is executed
in two successive substeps. The second substep may overwrite some changes
made during the �rst substep. If a clash occurs at either substep, the whole
step is aborted.

B�orger and Schmid use in�x notation P seq Q [BS00] for sequential com-
position. AsmL uses notation

step

P

step

Q

so that the user pays a syntactic price for every substep. The hope is that
the user will not use sequential composition without a good reason.

In the rest of this subsection, we recall (though not literally) some de�nitions
from [BS00]. First we de�ne the sequential composition of update sets �1

and �2. The intention is that �1 is executed �rst, and then �2 is executed in
the state resulting from the execution of �1. Recall that an update consists
of a location and the new value. If u is an update, let Loc(u) be the location
of u. If � is an update set then Loc(�) = fLoc(u) : u 2 �g. We don't
distinguish between inconsistent update sets.

De�nition 2.1 If update sets �1 and �2 are consistent then

�1 seq �2
 fu 2 �1 : Loc(u) =2 Loc(�2)g [�2

And if �1 or �2 is inconsistent then the composition is the inconsistent
update set. �

9

Now the semantics of the sequential composition of rules can be de�ned.

De�nition 2.2

�X(P seq Q)
 �XP seq �YQ

where Y = X +�X(P). �

Even though �YQ is an update set over Y , it is also an update set over
X because X and Y have the same vocabulary and the same elements and
therefore the same locations and the same possible updates; see [G00]. Thus
the sequential composition of update sets makes sense.

Once the sequential composition is de�ned, its repeated application leads to
the iteration of a rule:

Rn

(
skip n = 0

Rn�1 seq R n > 0

If some �XR
n is equal to �XR

n+1 then so is any �XR
m with m > n. In

this case �XR
n is denoted limk!1�XR

k. If some �XR
n is inconsistent then

limk!1�XR
k is inconsistent. If no �XR

n is equal to �XR
n+1 or inconsis-

tent then limk!1�XR
k is unde�ned. The iterate rule has the following

semantics:
�X(iterate R)
 lim

k!1
�XR

k

2.5 AsmL

AsmL (Abstract State Machine Language) is an advanced ASM-based spec-
i�cation language developed at Microsoft Research [FSE]. It extends the
language of the parallel ASMs of the Lipari Guide [G95] in a number of di-
rections. Some extensions are briey described in [GSV01]. For the present
paper, the two most relevant extensions are the use of submachines and par-
tial updates. This paper provides the theoretical foundation for the treatment
of partial updates in AsmL.

3 Challenges

In the introduction, we mentioned three manifestations of the partial-update
problem. Here we expand on that theme.

10

3.1 Sets

One can think of a set in two di�erent ways.

� A set is one entity. Accordingly it is natural to treat a set variable s
as a nullary function and assign new values to it, e.g. s := f1,2,3g.

� A set is a composite object. Accordingly it is natural to treat a set
variable s as a relation so that we can insert elements into and remove
elements from the set, e.g. s(1) := true, or s(2) := false.

It may be desirable to exploit both points of view in a program so that one
can overwrite a whole set as well as insert elements into it and remove ele-
ments from it. Furthermore, we should be able to make in parallel consistent
changes that use both points of view, like this:

do in-parallel

s := f1, 2, 3g
s(1) := true

s(4) := false

How to reconcile the two points of view?

3.2 Maps

In the case of maps, we have a similar problem. A map m can be seen as
a single entity, or as a set of maplets fi 7! rg. You may want to replace
the whole map m. You may want to add, remove or change a single maplet.
Actually the map problem is more involved. It involves recursion. The value
r of a maplet fi 7! rg can be a map in its own right. You may want to zoom
in and add, remove or change only a maplet of r. Again, you want to make
in parallel consistent changes like this:

do in-parallel

m(1) := f 2 7! 3 g
m(2) := f 3 7! 4 g
m(1)(2) := 3

m(1)(3) := undef

11

Here the �rst and second clauses partially updatem, and the third and fourth
clauses partially update the submap m(1) of m. Notice that we cannot see
m(1) as a mere abbreviation for apply(m; 1) in these clauses because apply
is a static function. So what should the clauses mean in the ASM world?

3.3 Counters

In this paper, a counter is integer-valued and the only counter-changing op-
erations are these:

� incr(k) increments the counter value by k.

� overwrite(n) updates the counter value to n.

Again, you want to make consistent changes in parallel, and the question is
how to program them properly in the ASM world.

4 Partial Updates in the Traditional Setting

The question arises how to deal with partial updates in the traditional ASM
setting which has only total updates. One natural (to ASMers) point of view
is that partial updates involve di�erent levels of abstraction. A counter,
for example, can be placed outside our system, as a separate vassal agent,
with smaller steps. During one step, our program sends instructions to the
counter, and the counter performs them in some order. Care should be taken
on how our program will read the counter correctly.

Let us rephrase the question: Can partial updates be accommodated (rather
than avoided) in the traditional ASM setting? Again, the answer is yes. We
mention below two ways to achieve the goal.

Notice that the set challenge is dominated by the map challenge. In fact,
sets can be represented by maps whose only possible value is true. On the
other hand, the map challenge and the counter challenge are quite di�erent.
Two identical modi�cations of a map have the same e�ect as one of them
while two identical increments of a counter accumulate. Changes to a map
at two di�erent indices (say at 1 and at 2) a�ect separate parts of the map.
There is nothing like that in the case of a counter.

12

4.1 Registry Solution

4.1.1 Maps

The following solution is sketched in [GSV01]. Introduce an auxiliary binary
dynamic function MR (an allusion to Map Registry). The �rst argument of MR
is intended to represent a map variable; for simplicity we do not distinguish
here between the variable and its representative. The second argument of MR
is intended to be a sequence. Instead of changing a map variable m directly,
register the changes with MR. For example, suppose that currently m(1) is
also a map and m(1)(2) = 7 and that you want to change m(1)(2) to 11. Use
the rule

MR(m; [1; 2]) := 11

When all desired changes have been registered with MR, an additional Ap-
pendix step is made, in which the new values of the map variables are com-
puted from the entries in MR and all locations of MR are reset to undef. This
step fails if there are conicting entries in MR.

4.1.2 Counters

As in case of maps, we can use an auxiliary registry function, say CR (an
allusion to Counter Registry). But this registry function is ternary. The �rst
argument is intended to reect the variable in question, the second argument
is intended to reect the kind of modi�cation, and the third argument is
intended to be a new element (imported from the reserve). There are only two
kinds of counter modi�cations: incr and overwrite. Instead of incrementing
a counter c by n, import a new element r and assign n to CR(c; incr; r). The
element r is a tag that distinguishes this particular assignment from from
any other.

Again, an additional step is required that integrates all modi�cations of any
counter and overwrites all CR-locations to undef. It is an error if a nonzero
increment and an overwrite are applied to the same counter.

Remark 4.1 One can argue with our policy of disallowing concurrent over-
writes and nonzero-increments. There are other possible policies, e.g. add
all increments to the overwrite value, or if increments and overwrites both

13

occur then ignore all increments (or ignore all overwrites). Our policy will
be justi�ed in [Section 10]. �

4.1.3 The General Picture

The solutions for maps and counter challenges have the following common
pattern.

First, register all modi�cations by means of an auxiliary registry function.

Second, use the registry to check for consistency and compute new values for
your variables in a special Appendix step.

4.2 A General Result

A more general solution is given in [BG*]. There, di�erent parts of a given
computer system can send all kinds of messages to each other. In particular,
a message could be a command to increment a counter c by 2 or a command
to alter a map m at 1 to 7. Nevertheless, by the main theorem of [BG*],
there is a traditional ASM that is behaviorally equivalent to A. Thus partial
updates can be eliminated.

The main theorem of [BG*] applies only to bounded-sequentiality systems,
with a �xed bound on the lengths of sequences of events that must occur in
a particular order during any computation step. The parallel machines of
the Lipari guide [G95] are like that. However, the partial-update elimination
result is later generalized in [BG*] to the case of computer systems built from
bounded-sequentiality systems by means of submachines.

5 Particles

In this and the following three sections, we develop a systematic approach to
deal with partial updates directly.

In the traditional ASM setting, location contents are changed by updates and
only by updates. That is preserved in the new setting; at the end of each step,
an ASM produces a set of updates that are used to change location contents.
The new aspect is this. During one step, in addition to updates, an ASM

14

issues modi�cations, like increment a counter c by 7, or alter a map variable
m at index 1 to 7. At the end of every step, all updates and modi�cations
are integrated into updates.

What are these modi�cations? They can be viewed as unary operations over
appropriate domains. The increment-by-7 modi�cation is the operation

incr7(x)
 x+ 7

over integers. The map alteration at index 1 to value 7 is an operation over
maps; a map x is transformed into a map y
 alter17!7(x) that behaves as
follows:

y(i) =

(
7 if i = 1

x(i) otherwise

5.1 Clients Types

ASMs of the Lipari guide are essentially untyped. We say \essentially" rather
than \completely" because there is a separate Boolean type there. AsmL,
because it is integrated into an industrial environment, is typed. Here we
also use a bit of type discipline; this is not necessary but convenient.

We presume that there are types, like counters, sets and maps, which we will
call client types for brevity. For each client type T , there is an associated
type whose elements are modi�cation operations over T . These modi�cations
will be called particles, or more exactly T particles. For example, incr7 is a
counter particle, and alter17!7 is a map particle.

Remark 5.1 The term particle is admittedly strange. Here are our justi-
�cations of it. First, the concept is central to the new setting, and so we
wanted it to have a simple name. Second, modi�cations are combined to
produce a single update, and so they are parts, or particles, of the resulting
update. Third, we recalled that, in quantum physics, particles can be seen
as special functions, and so there is a precedent of calling some functions
particles. �

Intuitively, a T particle f is an operation on (the collection of elements of
type) T , and so f can be applied to any T element a to produce another

15

T element f(a). But in the ASM paradigm of abstract states, a particle is
just an element. To this end, we have a special particle-apply that takes a
particle f and an element a and returns the desired f(a).

Remark 5.2 In the ASM paradigm, the collection of states of an ASM is
closed under isomorphisms, so that any structure isomorphic to a state is
itself a state. Only the isomorphism type of the state matters. Thus we
cannot assume that modi�cation operations themselves always belong to the
state. We can assume only that they are represented by some elements. For
simplicity of exposition, we are going to ignore this pedantic point. �

Further, particles f; g over a given client type T can be composed; g Æ f is a
T particle h such that h(x) = g(f(x)) for all x of type T . Here Æ is a static
binary operation in the state.

Remark 5.3 The application and composition functions may be polymor-
phic. Alternatively, there may be a separate pair of apply and composition
functions for every client type T . We don't care. We will apply particles
only to legitimate client elements, and we will compose only particles of the
same particle universe. Having separate apply and composition functions for
every client type may be useful if one contemplates a generalization where
the composition of T particle may di�er from the usual function composition.
�

5.2 Apt Client Cases

If T is a client type and if f; g are T particles, then a priori we have the
following three scenarios:

1. (g Æ f)(x) = (f Æ g)(x) for all x of type T , in other words g Æ f = f Æ g,
so that f and g commute.

2. (g Æ f)(x) 6= (f Æ g)(x) for all x of type T . In this case, we will say that
f and g malcommute.

3. (g Æ f)(x) = (f Æ g)(x) for some x of type T , and (g Æ f)(x) 6= (f Æ g)(x)
for some x of type T .

16

We will say that the case of a client type T is apt if every two T particles
either commute or malcommute.

In this paper, we are primarily interested in apt particle types.

6 Partial Updates

Recall that traditional ASM updates are called total updates in this paper.
Recall that a total update u is given by a pair (`; v) where ` is a location and
v is an element (intentionally, the new content of `). Usually u and (`; v)
are identi�ed. But here we have a problem. A partial update is also given
by a pair (`; f); this time around ` is a location of a client type T and f is
a T particle. We don't want a partial update given by a pair (`; f) to be
confused with a total update given by the pair (`; f). The total update given
by a pair (`; v) will be denoted TU(`; v), and the partial update given by a
pair (`; f) will be denoted PU(`; f).

Actually we would like to see total updates as special partial updates. To
this end, we introduce overwrite particles

overwrite(y) : x 7! y

Our intention is to identify TU(`; v) with PU(`; overwrite(v)) but we need
to be careful. The world of updates is untyped. In a given state, any location
` and any point v form an update. The world of partial updates has some
type discipline. We don't want to impose any particular type system. So we
will just assume the following.

� If ` is a location of a client type T and v is a value of type T
then TU(`; v) is identi�ed with PU(`; overwrite(v)) where the par-
ticle overwrite(v) is a T particle.

� If ` is any other location and v is a legal content of ` according to
your type system, then TU(`; v) is PU(`; overwrite(v)) where the type
of the particle overwrite(v) is whatever is appropriate in your type
system.

Of course, we will have to ensure that our treatment of overwrite particles is
consistent with this identi�cation.

17

Remark 6.1 One can avoid the second-clause complications by using only
client-type overwrite particles. Then total updates of non-client locations do
not �t our current partial-update framework. The remainder of this section
can be easily adjusted to this. �

For future reference, we note the following.

Lemma 6.2 Suppose that T is any client type and consider two T particles
such that one of them is an overwrite. Then (i) the composition of the two
particles, in either order, is an overwrite, and (ii) the two particles either
commute or malcommute.

Proof The �rst claim is obvious, and the second follows from the �rst. �

The ostensible meaning of a partial update PU(`; f) is to modify the current
content v of ` to f(v). But modi�cations (at least those modi�cations that
are not total updates) do not really change location contents. They are
integrated into total updates which can change location contents.

A partial-update multiset is a multiset of partial updates. The concept of
a partial-update multiset is a generalization of a set of total updates. In the
case of partial updates, we really need multisets and not only sets. Think for
example about counter increments.

6.1 Partial Update Rules

Traditionally, if you �re a rule R in a state X then the result is a set of
updates of X. Now we deal with partial updates. Firing a rule R in a state
X results in a multiset of partial updates of X; this multiset will be denoted
~�XR (notice the tilde).

18

De�nition 6.3 The Partial Update Rule (Partial Assignment) R is a rule

f(�t) t0

where f(�t) is a term of some client type T , and t0 is a term whose type is
that of T particles. Let X be a state. Then

~�XR
 dPU(`; g)e

where ` = (f;rX
�t) and g = rXt0. �

7 Integration

Consider one step of an ASM that transforms a state X to a state Y . At the
end of a step, the ASM is supposed to produce an update set, that is a set
of total updates. So the multiset of partial updates, generated during the
step, should be transformed into an update set. This is done by means of an
integrator that integrates partial updates separately for each location `.

Proviso 7.1 All client cases are apt.

7.1 Integration of Particles

By way of motivation, consider a counter c. Suppose that the current value of
c is 0 and let f; g be increment particles with parameters 5 and 7 respectively.
We expect that partial updates PU(c; f) and PU(c; g) will be integrated into
a total update TU(c; 12). Does it mean that the counter performs the two
increments simultaneously? Not necessarily. The counter can perform the
two increments in the order they come to it. It is important though that the
result does not depend on the order.

19

De�nition 7.2 1. Suppose that T is a client type, and let M be a mul-
tiset df1; : : : ; fne of T particles. M is consistent if every composition
fi1 Æ � � � Æ fin of its members gives the same particle. Here (i1; : : : ; in)
ranges over all permutations of (1; : : : ; n).

2. A multiset of overwrite particles overwrite(v1); : : : ; overwrite(vn) is
consistent if v1 = � � � = vn.

�

Concerning the �rst part, the composition of zero particles is the identity par-
ticle. This justi�es the obviously desired conclusion that the empty multiset
of particles is consistent.

The two parts of the de�nition overlap but agree on the common multisets.

Lemma 7.3 Suppose that T is a client type, and let M be a multiset of T
particles. The following conditions are equivalent:

1. M is consistent.

2. Every two members of M commute.

Proof Clearly 2 implies 1. It remains to prove that 1 implies 2. We as-
sume that there are noncommuting particles f; g in M and prove that M
is inconsistent. By the Proviso above, the case of T is apt, and so f and g
malcommute. Let h be the composition of the other particles of M in any
order and let x be any point. Since f and g malcommute, we have

(f Æ g Æ h)(x) = (f Æ g)(h(x)) 6= (g Æ f)(h(x)) = (g Æ f Æ h)(x)

and so M is inconsistent. �

Notice that f Æ g Æ h and g Æ f Æ h di�er at every element of type T .

Remark 7.4 Every particle type is closed under composition and thus forms
a semigroup. In any semigroup, the composition of elements f1; : : : ; fn is or-
der independent if every two elements fi; fj commute. So pairwise commuta-
tivity is suÆcient for order independence. However it is not necessary. Here
is a counterexample. Consider matrices, say 2� 2 integer matrices, together

20

with the usual matrix multiplication. Choose some noncommuting matrices
f1; f2 and let f3 be the zero matrix. Multiply f1; f2; f3 in any order; the result
is always the zero matrix. Instead of matrices we could speak about linear
transformations of the appropriate vector space. �

De�nition 7.5 If a multiset M of particles is consistent then the product
(or parallel composition) �(M) of M is f1 Æ � � � Æ fn; otherwise the product is
unde�ned. �

7.2 Integration of Partial Updates

Let be a partial-update multiset, Loc() be the set of locations ` such that
some partial update of ` occurs in . Let ` range over Loc() and de�ne `
to be the multiset df j PU(`; f) 2 e.

De�nition 7.6 A partial-update multiset is consistent if every ` is con-
sistent. �

We assume that is consistent and explain how to integrate . For each
location ` 2 Loc(), the integrator computes the product �(`). The new
content of ` is v`
 (�(`))(rX`) and the resulting total update is TU(`; v`).

We use this occasion to de�ne the product �() of the partial-update multiset
 :

�()
 dPU(`;�(`)) j ` 2 Loc()e

8 Reporting

We saw above, in [Subsection 2.4], that the use of submachine requires se-
quential composition of update sets. In the presence of particles the situation
becomes more complicated. We need sequential composition of particles ob-
tained by parallel composition; this is addressed in [Subsection 8.1]. Further,
the very notion of submachines needs a generalization; this is done in [Sub-
section 8.2].

21

8.1 Sequential Composition

Recall the [De�nition 2.1] of the sequential composition of update sets. We
are going to de�ne the sequential composition of partial-update multisets
and 0. The intention is that is executed �rst and then 0 is executed in
the state resulting from the execution of 0.

De�nition 8.1 Let and 0 be two consistent partial-update multisets and
let L = Loc() [Loc(0). For each ` 2 L, let g` = �df j PU(`; f) 2 e and
g0` = �df j PU(`; f) 2 0e. Then

 seq 0
 dPU(`; g0` Æ g`) j ` 2 Le

�

Notice that the resulting partial-update multiset (actually a set) seq 0 is
consistent when both and 0 are consistent. We don't distinguish between
di�erent inconsistent partial-update multisets. If or 0 is inconsistent then
 seq 0 is the inconsistent partial-update multiset.

Remark 8.2 We have g0` Æ g` rather than g` Æ g0` because of the way our
composition works: (f2 Æ f1)(x) = f2(f1(x)). �

Now we are ready to de�ne the semantics of the sequential composition of
rules that may involve partial updates.

De�nition 8.3
~�X(P seq Q)
 ~�XP seq ~�YQ

where Y is X plus the result of the integration of ~�XP . �

8.2 Submachines

We write

machine

R

to encapsulate a rule R in a submachine. From the point of view of the
parent program, a submachine B of a machine A is an oracle for A. During

22

one step of A, B can have a complicated run during which it computes some
modi�cations of the state of A. But B does not change the state of A.
Instead, it reports the results to A. In the traditional setting, B reports an
update set which is added to the update set of A; recall that we consider
only one step of A. What should B report in the new setting? Notice that B
may have submachines of its own which may have submachines of their own
and so on. It seems reasonable to require that every submachine summarizes
partial updates and reports a set of partial updates with at most one partial
update per location.

If the partial-update multiset ~�XR is consistent then machine R produces
the set

~�X(machine R)
 �(~�XR)

of partial updates.

Remark 8.4 The submachine machine R behaves like the sequential com-
position of R and skip:

~�X(machine R) = ~�X(R seq skip) = ~�X(skip seq R)

holds for every rule R and every state X. �

Remark 8.5 In the traditional setting, the encapsulation is useful only if R
is a sequential composition or iteration of rules. You can have a submachine

machine

do in-parallel

x := 3

y := 5

but here the encapsulation does not buy you anything. This changes in the
new setting. The following submachine, for example,

machine

do in-parallel

c incr(1)

c incr(-1)

will report only a zero increment of c. This makes a di�erence. Suppose that
the main program issues an overwrite of c at the same step, and there are

23

no other modi�cations of c issued at the same step. An overwrite commutes
with zero increment but does not commute with any other increment, and so
the encapsulation above turns an inconsistent scenario to a consistent one.
�

9 Preamble to Examples

In the rest of the paper we apply the theory developed in [Sections 5-8] to
counters, sets, maps and one additional client type. In each case, we describe
the particles, give a simple commutativity criterion and prove that the case
is apt.

Some particles may have individual names. The identity particle

identity : x 7! x

is an example. But typically particles come in families containing many
particles. Each particle family is the range of a special static function F
of positive arity. For example, the counter incrementing particles form the
range of the function incr with integer domain. Since the background is
closed under tuples, we may assume without loss of generality that every
family-generating function F is unary. Thus every particle f of the F family
has the form F (x) where F is a particle-family generating function and x is
an argument for F . It is presumed that, if f belongs to the family of F , then
the equation f = F (x) has a unique solution. This solution will be called the
control of f in F . It is produced by a special parameter recovery function
ctrl F (f). We will allow ourselves to omit the index when it is obvious from
the context.

10 Example: Counters

Think about a counter as a location holding an integer value which can be
modi�ed by overwrite and increment particles.

Remark 10.1 Instead of integer counters, one can deal with e.g. real coun-
ters. �

24

The increment particle performs a simple addition:

incr(k) : x 7! x + k where k is an integer

Notice that in this example incr(0) coincides with the identity particle.

The following theorem implies an algorithm which computes whether two
particles commute.

Theorem 10.2 Two counter particles commute and if and only if one of the
following conditions holds.

� Both particles are increment particles.

� The particles are overwrite particles with the same control.

� One particle is an overwrite particle and the other one an increment
particle with control zero.

Proof Obvious. �

Theorem 10.3 The case of counters is apt. In other words, every two
counter particles either commute or malcommute.

Proof By the previous theorem, one of the noncommuting particle is an
overwrite. Use [Lemma 6.2]. �

Remark 10.4 In [Subsection 4.1.2], we mentioned di�erent a-priori-possible
policies for handling concurrent overwrites and increments. The particle
framework leads us unambiguously to our policy where an overwrite and an
increment can be executed in parallel if and only if the increment's control
is zero. �

11 Example: Maps

In the case of maps, we have the identity particle and the overwrite and
alter particle families. An alter particle changes only parts of the given map,

25

leaving the rest of the map as it is. An overwrite particle, on the other hand,
throws away the old value completely and replaces it with a new value.

On the �rst glance, the matter is simple. Think about a map as a set of
maplets i 7! vi. A simple alter particle a�ects only one maplet i 7! vi
replacing the old value vi with a new value v0i. Accordingly the control
should be a pair [i; v0i]. A more complicated alter particle a�ects several
maplets replacing old values vi with new values v0i. Accordingly the control
should be a set f[i; v0i] : i 2 Ig and thus a map in its own right. This would
work if we were willing to restrict attention to maps say from integers to
integers, but we don't. The value vi may be a map in its own right and
you may want just to alter it rather than replace it. Thus the control of f
may involve another alter particle gi such that v0i = gi(vi). The control of gi
may involve yet another alter particle. In that sense the de�nition of alter
particles involves recursion. We give a formal description of such recursive
modi�cations in the next subsection where we abstract from our particles
and deal with so-called transformers instead.

11.1 Map Transformers of Finite Rank

This is a mathematical digression whose goal is to identify a family of map-
transforming particles called alterers.

11.1.1 The Setup

To simplify the exposition, we abstract from some aspects of ASMs so that
our framework contains only things needed for this mathematical digression.
So we assume the following.

S is a collection whose elements will be called atoms; one of the atoms is
called undef and none of the atoms is a map. Let S0 = S, and let Sn+1 be
the collection of maps m over S0 [� � � [Sn. (According to [Section 2], m is
�nite, that is domain of m is �nite, and its range does not contain undef.)
Let S� = S0 [S1 [S2 [� � � . Every map over S� is an element of S�. In the
rest of this subsection, a map is a map over S�. Elements of S� will be called
points. Thus a point is either an atom or a map.

26

A binary operation apply on S� reects the behavior of maps:

apply(x; y) =

(
x(y) if x is a map and y 2 dom(x)

undef otherwise

Here x(y) means of course the value of the map x at point y. The point of
this trivial remark will become apparent in the next paragraph.

XS is the structure formed by the collection S�, and the binary operation
apply and the nullary operations undef and emptymap (and possibly some
additional operations which play no role in this subsection but may be needed
in the next subsection). For each point (that is element) x, XS \knows"
whether x is a map, and if yes then what map it is exactly. In that sense,
the nature of points is immaterial; instead of XS, we can work with any
isomorphic copy of XS. Therefore we cannot exploit the fact that elements
of S� n S are genuine maps, that is �nite functions. As far as the structure
XS is concerned, they are just elements. It is the function apply that makes
them behave as if they are maps. Instead of apply(x; y), we write x(y), even
if x is not a map. This makes every point look like a total function which
equals undef almost everywhere. As far as apply is concerned, every atom
looks like the empty map (but only the empty map is the interpretation of
the nullary symbol emptymap in XS).

T is the collection of all unary operations over S�. Elements of T will be
called transformers. Even though a transformer f is applied to every point,
it is convenient to think about it as primarily a map transformer. In this
connection, the argument of the transformer will be often denoted m.

C is the collection of �nite functions c from S� to T . In other words, the
domain of any c 2 C is a �nite subset of S� and the range is a subset of T .
Elements of C will be called controllers. This terminology is justi�ed by the
following de�nition.

27

11.1.2 Ranked Transformers and Controllers

De�nition 11.1 An element c 2 C controls a transformer f if, for all points
m and x,

(fm)(x) =

(
(cx)(mx) if x 2 dom(c)

mx otherwise

�

Here fm = f(m), cx = c(x) and mx = m(x). For better readability, we
allow ourselves to omit some parentheses when the intended meaning is clear
from the context.

Let us try to explain the de�nition. A transformer f transforms any point
m into a map m0 = f(m). If m is not a map then m0 = f(emptymap).
The interesting case is when m is a map. So let m be a map, and let x
be any point. The question is what is m0(x). If x 2 dom(c) then c(x) is a
transformer; in this case m0(x) is obtained by applying the transformer c(x)
to m(x). Otherwise m0(x) = m(x).

Example 11.2 Let consty be the constant transformer such that
consty(x) = y. Let c be the controller f0 7! const1g and let f be the
function controlled by c. If m is an atom (say orange; we cannot rule out
that some our points are oranges, and oranges are no maps) then f(m) is
the map f0 7! 1g. Indeed (fm)(0) = (c0)(m0) = 1 and, if x 6= 0 then
(fm)(x) = m(x) = undef. �

De�nition 11.3 Let c be a controller. For every point x, we de�ne an
associated transformer

cx

(
c(x) if x 2 dom(c)

identity otherwise

�

Example 11.4 Let c be again f0 7! const1g. Then c0 = const1 and every
other cx = identity. �

Corollary 11.5 A transformer f is controlled by a controller c if and only
if (fm)(x) = cx(mx) for all points m; x.

28

Lemma 11.6 Every transformer has at most one controller.

Proof By contradiction assume that a transformer f has two distinct con-
trollers c and d. Then there are points x; y such that cx(y) 6= dx(y). Now let
m = fx 7! yg. We have

(fm)(x) = cx(mx) 6= dx(mx) = (fm)(x)

which is impossible. �

By induction on n, we de�ne controllers and transformers of rank n.

De�nition 11.7 � A transformer f is of rank 0 if it is a constant trans-
former.

� The empty controller is of rank 0. A nonempty controller c is of rank
n if its range consists of transformers of rank � n and there is at least
one transformer of rank n there.

� A transformer f is of rank n > 0 if there is a controller of rank n � 1
that controls f .

Transformers of positive rank are alterers. �

Corollary 11.8 If c is a controller such that every transformer in the range
of c is ranked then c is ranked.

Proof The empty controller has rank 0. If c is nonempty, then the rank
of c is the maximal rank of transformers in the range of c. (We use the fact
that the domain of c is �nite. It implies that the range of c is �nite and so
the maximal rank in question exists.) �

Lemma 11.9 The collection of ranked transformers is closed under compo-
sition.

Proof Let f and g be ranked transformers. By induction on rank(f) +
rank(g) we prove that the transformer h
 g Æ f is ranked. If f or g is

29

constant then so is h. So we can assume that f and g have positive ranks.
Let c; d be the controllers of f; g respectively. Using [Corollary 11.5], we have

(hm)(x) = (g(fm))(x) = dx((fm)x) = dx(cx(mx))

We construct a controller e such that ex = dx Æ cx for all points x. (To ease
reading, we abbreviate identity to id.)

� The domain of e is dom(c) [dom(d). So if x =2 dom(e) then ex = id =
id Æ id = dx Æ cx.

� If x 2 dom(c)�dom(d) then e(x) = c(x). For such x, ex = cx = idÆcx =
dx Æ cx. Since c is ranked, e(x) is ranked.

� If x 2 dom(d)�dom(c) then e(x) = d(x). For such x, ex = dx = dxÆid =
dx Æ cx. Since d is ranked, e(x) is ranked.

� If x 2 dom(c) \ dom(d), set e(x) = d(x) Æ c(x). For such x, ex = d(x) Æ
c(x) = dx Æ cx. Notice that rank(cx) � rank(c) < rank(f). Similarly,
rank(dx) < rank(g). Thus rank(cx) + rank(dx) < rank(f) + rank(g).
By the induction hypothesis, e(x) is ranked.

By [Corollary 11.5], e controls h. By the construction of e, the range of e
consists of ranked transformers. By [Corollary 11.8], e is ranked. Thus h is
ranked. �

11.2 Maps and Map Particles

Now we are in a position to de�ne the relevant maps and the relevant particles
properly. Let X be a state and S any collection of non-map elements of X
that contains undef. For example, S could be the collection of integers or
binary strings extended with undef. Our X is like XS except that it contains
more elements and its vocabulary is richer. In the rest of this section, we deal
only with maps that belong to S�. Strictly speaking, we should speak about
S-maps. In order to simplify the exposition, we just speak about maps. In
any case, we have a well de�ned notion of alterers.

Remark 11.10 Let us clarify the sentence about X being like XS. Since X
is closed under maps (see [Subsection 2.3]), X includes the whole collection

30

S� constructed in the previous section. As a result, the structure XS of
the previous section is a substructure but not of X itself but rather of the
structure obtained from X by removing all function names except for apply,
undef and emptymap from the vocabulary of X. (In logic terms, XS is a
substructure of a reduct of X). �

The map particles of a state X consist of the identity particle, (map-) over-
write and alter particles ofX. The alter family of particles consists of alterers,
that is of positive-rank transformers. The controller of an alterer f is the
control of the particle f . Notice that the control itself is a �nite map from
elements of X to elements of X. The particle f = alter(f!g) with the
empty control is similar to but does not coincide with the identity particle
over maps: If x is an atom (that is an element of A), then f(x) = f!g 6= x.
Thus we do need a separate identity particle.

The overwrite particles are exactly transformers of rank 0. Such transform-
ers do not have controllers in the sense of the previous subsection but they
do have controls: the control of overwrite(y) is the point y. (It is because
of overwrite particles that we have to distinguish between controls and con-
trollers.)

Lemma 11.11 Let f and g be alter particles and let c = ctrl f and d =
ctrl g. Then f and g commute if and only if cx and dx commute for all
x 2 dom(c) \ dom(d).

Proof If x =2 dom(c) then cx = identity and therefore cx and dx commute.
Similarly, cx and dx commute if x =2 dom(d). Thus it suÆces to prove that
f and g commute if and only if, for every point x, cx and dx commute. Let
h = gÆf , h0 = f Æg, ex = dxÆcx and e0x = cxÆdx. We show that h and h0 di�er
at some point if and only if there exist points x; y such that ex(y) 6= e0x(y).

First suppose that h and h0 di�er at some m which means that the maps
hm and h0m di�er at some point x. Using [Corollary 11.5], we show that
ex(mx) 6= e0x(mx).

ex(mx) = dx(cx(mx)) = dx((fm)(x)) = (g(fm))(x) = (hm)(x)

6= (h0m)(x) = (f(gm))(x) = cx((gm(x)) = cx(dx(mx)) = e0x(mx)

31

Second suppose that, for some points x; y, ex(y) 6= e0x(y). We show that h
and h0 di�er at m
 fx 7! yg.

(hm)(x) = (g(fm))(x) = dx((fm)(x)) = dx(cx(mx)) = ex(mx) = ex(y)

6= e0x(y) = e0x(mx) = cx(dx(mx)) = cx((gm)(x)) = (f(gm))(x) = (h0m)(x)

�

The following Theorem implies an algorithm which computes whether two
particles commute.

Theorem 11.12 Two map particles f and g commute if and only if one of
the following conditions holds.

1. f or g is the identity particle.

2. Both f and g are overwrite particles and ctrl f = ctrl g.

3. f is an alter particle, g is an overwrite particle and f(ctrl g) = ctrl g.

4. f is an overwrite particle, g is an alter particle and g(ctrl f) = ctrl f .

5. Both f and g are alter particles with c = ctrl f , d = ctrl g and cx
and dx commute for all x 2 dom(c) \ dom(d).

Proof First, assume that f and g commute. If f or g is the identity particle,
condition 1 holds. Otherwise, if f or g is an overwrite particle, it is obvious
that condition 2, 3 or 4 holds. For the remaining case that both f and g are
alter particles it follows from [Lemma 11.11] that condition 5 holds.

Second, each of the conditions 1-4 obviously implies commutativity. Condi-
tion 5 implies commutativity by [Lemma 11.11]. �

Theorem 11.13 The case of maps is apt. In other words, every two map
particles either commute or malcommute.

Proof Let f and g be map particles which do not commute. We will show
that they malcommute.

32

Since the identity particle commutes with every other particle, the claim is
trivial in the case when f or g is the identity particle. We assume that
neither of them is the identity particle and prove the claim by induction on
minrank(f; g)
 minfrankf; rankgg.

The case minrank(f; g) = 0. At least one of f; g is an overwrite. Use
[Lemma 6.2].

The case minrank(f; g) > 0. Both f and g are alter particles. Let c = ctrl f
and d = ctrl g be the controllers. Assume that f; g do not commute. By
[Lemma 11.11], there is a point x 2 dom(c) \ dom(d) such that cx and dx do
not commute. Clearly minrank(cx; dx) < minrank(f; g). By the induction
hypothesis cx and dx di�er at every point. Let m be any point. We show
that h(m) 6= h0(m). It suÆces to show that (hm)(x) 6= (h0m)(x). We have

(hm)(x) = g(f(m))(x) = dx((fm)x) = dx(cx(mx))

6= cx(dx(mx)) = cx((gm)x) = f(g(m))(x) = (h0m)(x)

�

12 Example: Counter Maps

Counter maps are a marriage of maps and counters. In addition to overwrite
and alter particles, counter maps admit increment particles. You can see
counter maps as a generalization of multisets in two directions: negative
multiplicities and nested map-like structure.

First we extend the background structure to accommodate counter maps.
The rest of this section is similar to the previous section; we explain the
necessary changes.

12.1 Counter Map Background

Recall that undef does not belong to the range of a map. The meaning of
m(x) = undef is that m is not de�ned at x. In this section we consider a
similar collection of �nite functions except that the role of undef is played
by number zero.

33

Let us make this more precise. In our abstract states, a map is any element
x such that either x is the interpretation of the name emptymap or else the
set fy j apply(x; y) 6= undefg, the domain of x, is �nite and nonempty.
Counter maps are de�ned in exactly the same way except that (i) another
apply function, apply0, is used and (ii) the set fy j apply(x; y) 6= undefg is
replaced with the set fy j apply0(x; y) 6= 0g, the domain of counter map x.
One can say that apply0 defaults to 0 while apply defaults to undef. In this
section, apply0(x; y) is abbreviated to x(y).

In [Section 2] we assumed that the state background is closed under maps.
Here we assume that, in addition, the state background is closed under
counter maps. In other words, if m is a counter map from elements of the
state to elements of the state then m itself is an element of the state.

12.2 The Setup

As in the setup of the previous section, S is a collection whose elements
will be called atoms and which contains undef; this time we assume that it
includes the integers as well. No atom is a counter map.

We build collections S0; S1; : : : and the collection S� = S0 [S1 [S2 [� � �
as in the previous section except that this time we use counter maps rather
than usual maps. As before, T is the collection of all unary functions over
S�, called transformers, and C is the collection of �nite functions from S� to
T , called controllers.

12.2.1 Ranked Transformers and Controllers

We reuse the previous-section's de�nitions of controlled transformers and
constant transformers (except that now we are talking about counter maps
rather than usual maps). In addition, we use an additional category of trans-
formers:

34

De�nition 12.1 A transformer f is an increment, if there exists an integer
number k such that f(x) = x� k for every point x where

x� k

(
x + k if x is an integer

undef otherwise

�

The operator � is a modi�ed addition operator to be applied not only to
integers but also to other elements of S�. Notice that, contrary to apply0, �
defaults to undef. We make the following observations on the composition
of increment and controlled transformers:

Lemma 12.2 Let f be a controlled transformer and g an increment trans-
former. Then g Æ f and f Æ g are constant transformers, and f and g mal-
commute.

Proof First, consider g Æ f . By the de�nition of controlled transformers,
f(x) is always a counter map. Hence, by de�nition of �, g(f(x)) = undef

because f(x) is not an integer.

Second, consider f Æ g and let x be any element of S�. Then g(x) is an
integer, if x is an integer, or undef otherwise. In any case, g(x) is an atom;
let's call it a. Since a is an atom, a(y) = 0 for all points y. Further, let c be
the controller of f . By [De�nition 11.1] (adjusted to counter maps), f(a) is
a counter map and

(fa)(y) =

(
(cy)(0) if y 2 dom(c)

0 otherwise

and so f(g(x)) = f(a) does not depend on x and di�ers from g(f(x)) =
undef. �

Modify the previous-section's notion of ranked transformers by including the
increment transformers into the category of transformers of rank 0.

Lemma 12.3 The collection of (revised) ranked transformers is closed under
composition.

35

Proof The proof of [Lemma 11.9] remains valid except that the base of
induction needs two additional clauses.

1. If both f and g are increment transformers then g Æ f is an increment
transformer.

2. If one of the transformers is an increment and the other is an alterer,
then, by [Lemma 12.2], their composition, in either order, is a constant
transformer.

�

12.3 Counter Maps and Counter-Map Particles

The revised de�nitions and lemmas allow us to de�ne the relevant counter
maps and counter-map particles properly. Let X be a state and S any col-
lection of non-counter-map elements of X that contains undef and includes
integers. Our X is like the previous-section's XS (adjusted to counter maps)
except that it contains more elements and its vocabulary is richer. Thus we
have again a well de�ned notion of alterers; this time we also have the notion
of increment.

As in the previous section, alterers give rise to the family of alter particles.
The family of increment particles consists of increment transformers. The
control of an increment particle f : x 7! x � k is k. Given an integer k, we
write incr(k) for the increment particle with control k.

Notice that, in contrast to the counter case, incr(0) is not the identity
particle, as incr(0)(x) = undef 6= x for every non-integer point x.

The counter-map particles of a state X consist of the identity particle and
(counter-map) overwrite, increment and alter particles. Notice that the over-
write particle as well as the increment particle is a transformer of rank 0. We
explore the relation of increment and overwrite particles in the next de�nition
and lemma.

36

De�nition 12.4 Particles incr(k) and overwrite(y) are compatible if

1. y = undef, or

2. y is an integer and k = 0.

�

Lemma 12.5 An increment and an overwrite particle are compatible if and
only if they commute.

Proof Let f = incr(k) and g = overwrite(y).

First, let f and g commute. We show that one of the conditions of [De�-
nition 12.4] holds. By contradiction assume that y is neither undef nor an
integer; then so is g(f(x)) = y. The other composition f(g(x)) = y � k is
either undef or an integer by de�nition of �. Thus g(f(x)) 6= f(g(x)) which
cannot be as f and g commute. Therefore our assumption was wrong and y
is either undef or an integer. If y is undef, condition 1 holds. So we may
assume that y is an integer. By contradiction assume that k 6= 0. Then
f(g(x)) = y�k = y+k 6= y = g(f(x)). This cannot be as f and g commute.
Therefore our assumption was wrong and k = 0, so that condition 2 holds.

Second, suppose that condition 1 or 2 of [De�nition 12.4] holds. We show
that f and g commute.

� If y = undef, then for every x holds

f(g(x)) = f(undef) = undef� k = undef = y = g(f(x))

� If y is an integer number and k = 0, then for every x holds

f(g(x)) = f(y) = y � 0 = y + 0 = y = g(f(x))

�

The following theorem implies an algorithm which computes whether two
particles commute.

Theorem 12.6 Two counter-map particles commute if and only if one of
the following conditions holds.

37

1. Any case mentioned in [Theorem 11.12].

2. Both are increment particles.

3. They are compatible increment and overwrite particles.

Proof Let f and g be counter-map particles.

First, assume that f and g commute. If neither of them is an increment
particle, then the �rst part of the proof of [Theorem 11.12] remains valid
unchanged and implies that condition 1must hold, so we may assume without
loss of generality that one of them, say f , is an increment particle. If the
other, say g, is also an increment particle, condition 2 holds obviously. If g
is an overwrite particle it follows from [Lemma 12.5] that condition 3 holds.
Finally it follows from [Lemma 12.2] that g is not an alter particle.

Second, assume that one of the conditions holds. If condition 1 holds, the
second part of the proof of [Theorem 11.12] remains valid unchanged. Con-
dition 2 obviously implies commutativity. If condition 3 holds then it follows
from [Corollary 12.5] that f and g commute. �

Theorem 12.7 The case of counter maps is apt. In other words, every two
map particles either commute or malcommute.

Proof Let f and g be counter-map particles. The proof of [Theorem 11.13]
is �ne except that the base of induction changes as follows:

The case minrank(f; g) = 0. At least one of f; g is either an overwrite or an
increment particle.

If one is an overwrite particle, use [Lemma 6.2]. So we can assume that one
is an increment particle, say f , and g is not an overwrite particle. Then the
claim is trivial if g is the identity or an increment particle. If g is an alter
particle, use [Lemma 12.2]. �

13 Example: Sets

Let X be a state. In this section, we operate on a nonempty and possibly
in�nite collection S of sets (that is �nite sets) in the state X. Each of these

38

sets consists of elements of X and is an element of X. We presume that
the collection S is closed under union and set di�erence (and thus under
intersection).

We consider the insertion of one or more elements and the removal of one of
more elements as special operations on sets in this section. Insertions and
removals may occur in parallel. They are consistent as long as no element is
inserted and removed at the same time. We call the joint insert-and-remove
operation insrem.

Example 13.1 If S contains all �nite subsets of integers then we have, in
particular, the following insrem operations: f(x)
 x [f1; 7; 13g, g(x)

x n f42g and (g Æ f)(x) = (x [f1; 7; 13g) n f42g. �

Remark 13.2 In applications, we have encountered only insertions, re-
movals, the combinations of the two, and overwrites. One may want to
consider various additional operations and �rst of all intersection. We notice
only that the integration of the intersection operation into the particle frame-
work of this section is straightforward. Instead of insrem, there would be the
combined operation of insertion, removal and intersection, say insremint. �

The set particles consist of overwrite particles and insrem particles. The
control of an insrem particle consists of a pair [y+; y�] of disjoint sets where
y+ contains the elements which are to be inserted and y� those which are to
be removed.

insrem([y+; y�]) : x 7! x [y+ n y� where y+ \ y� = ;

Remark 13.3 When we use the set operations union and di�erence together
without parentheses, we assume left associativity. So x [y+ n y� means
(x [y+) n y�. �

Notice that in this example insrem([;; ;]) coincides with the identity over
sets, so identity is one of set particles.

Lemma 13.4 The collection of set particles is closed under composition.

39

Proof Let f and g be set particles. If f or g is an overwrite particle,
the composition g Æ f also is an overwrite particle, so we may assume
that both f and g are insrem particles. Let f = insrem([x+; x�]) and
g = insrem([y+; y�]). De�ne

h = insrem([x+ n y� [y+; x� n y+ [y�])

We �rst show that h is a legal insrem particle, that is that the part to be
inserted and the part to be removed are disjoint. Second, we will show that
h = g Æ f .

1. By contradiction assume that some � 2 (x+ n y�[y+)\ (x� n y+[y�).
Then � 2 (x+ n y�) or � 2 y+.

(a) If � 2 x+ n y�, then � 2 x+. Hence � =2 x� and therefore � =2
x� ny+. As � belongs to the union x� ny+[y� but not to the �rst
summand, it must belong to the second summand: � 2 y�. But
then � =2 x+ n y� which contradicts the assumption of this case.

(b) If � 2 y+, then � =2 y� by de�nition of insrem. Also, � =2 x� n y+.
Therefore � =2 x� n y+ [y� which contradicts the choice of �.

2. For every set z the following holds:

g(f(z)) = z [x+ n x� [y+ n y�
(1)
= z [(x+ n y�) n x� [y+ n y�
(2)
= z [(x+ n y�) [y+ n (x� n y+) n y�

= z [(x+ n y� [y+) n (x� n y+ [y�)

= h(z)

where (1) holds because y� is removed from the set in the end of the
expressions anyway, and (2) because z [y+ n (x� n y+) = z n x� [y+
for every set z.

�

Lemma 13.5 Let f = insrem([x+; x�]) and g = insrem([y+; y�]). Then f
and g malcommute if (x+ [y+) \ (x� [y�) 6= ;.

40

Proof Let � 2 (x+ [y+) \ (x� [y�). Without loss of generality, � 2 x+.
It follows that � =2 x�. Hence � 2 y�. For every set z0, � 2 z0 [x+ n x� and
� =2 z0 n y�. This implies the following where the expressions in parentheses
play the role of z0.

� 2 (z [y+ n y�) [x+ n x� = f(g(z))

� =2 (z [x+ n x� [y+) n y� = g(f(z))

Therefore f(g(z)) 6= g(f(z)) for every set z. �

Lemma 13.6 Let f = insrem([x+; x�]) and g = insrem([y+; y�]). Then f
and g commute if and only if (x+ [y+) \ (x� [y�) = ;.

Proof First, let f and g commute. By contradiction assume (x+ [y+) \
(x� [y�) 6= ;. Then, by [Lemma 13.5], f and g malcommute. That is a
contradiction and so the set is empty.

Second, let (x+ [y+)\ (x� [y�) = ;. If follows that x� and y+ are disjoint,
and so are x+ and y�. Thus

z n x� [y+ = z [y+ n x� (1)

z [x+ n y� = z n y� [x+ (2)

for every set z. Therefore the following holds for every set z:

g(f(z)) = z [x+ n x� [y+ n y�
(1)
= z [x+ [y+ n x� n y�

= z [(x+ [y+) n (x� [y�)

= z [(y+ [x+) n (y� [x�)

= z [y+ [x+ n y� n x�
(2)
= z [y+ n y� [x+ n x�

= f(g(z))

�

The following theorem implies an algorithm which computes whether two
particles commute.

41

Theorem 13.7 Two set particles f and g commute if and only if one of the
following conditions holds.

1. Both are overwrite particles with the same control.

2. f is an insrem particle, g = overwrite(y) and f(y) = y.

3. f = overwrite(y), g is an insrem particle and g(y) = y.

4. Both are insrem particles with f = insrem([x+; x�]) and g =
insrem([y+; y�]) such that (x+ [y+) \ (x� [y�) = ;.

Proof First, assume that f and g commute. If f or g is an overwrite particle
it is obvious that one of conditions 1 to 3 must hold. If both f and g are
insrem particles, [Lemma 13.6] implies condition 4.

Second, assume that one of the conditions holds. Each of the conditions 1 to
3 obviously implies commutativity. If condition 4 holds, then the commuta-
tivity follows from [Lemma 13.6]. �

Theorem 13.8 The case of sets is apt. In other words, every two set parti-
cles either commute or malcommute.

Proof Let f and g be set particles. If one of them is an overwrite particle,
use [Lemma 6.2]. So we may assume that f and g are insrem particles.
Let [x+; x�] = ctrl f and [y+; y�] = ctrl g. Assume that f and g do not
commute. Then, by [Lemma 13.6], the set (x+ [y+) \ (x� [y�) 6= ;. It
follows from [Lemma 13.5] that f and g malcommute. �

Remark 13.9 There exists a mapping of sets to maps with range ftrueg
which turns set particles into appropriate map particles. We give an informal
description of this mapping.

A set x becomes the map x̂ = f� 7! true j � 2 xg. (Clearly, the set can be
reconstructed from the map.)

A set-overwrite particle overwrite(x) corresponds to the map-overwrite par-
ticle overwrite(x̂). An insrem particle insrem([x+; x�]) corresponds to the
map particle

alter(f� 7! overwrite(true) j � 2 x+g

[f� 7! overwrite(undef) j � 2 x�g)

42

�

Acknowledgment

Discussions with all our colleagues in the Microsoft Research group on Foun-
dations of Software Engineering and especially with Andreas Blass were very
helpful. Margus Veanes worked on map modi�cations early on. Last-moment
remarks of the editor, Egon B�orger, contributed to clarity.

References

[A00] Matthias Anlau�, \Xasm | an extensible component-based
abstract state machine language", in Abstract State Ma-
chines: Theory and Applications, Y. Gurevich et al., editors,
Springer-Verlag, Lecture Notes in Computer Science 1912
(2000), 69{90.

[ASM] ASMMichigan web page, http://www.eecs.umich.edu/gasm,
maintained by Jim Huggins.

[BG00] Andreas Blass and Yuri Gurevich, \Background, reserve, and
Gandy machines," in Computer Science Logic, P. Clote and
H. Schwichtenberg, editors., Springer-Verlag, Lecture Notes
in Computer Science 1862 (2000), 1{17.

[BG*] Andreas Blass and Yuri Gurevich, \Abstract state
machines capture parallel algorithms," to appear.
In the meantime, the paper can be found at
http://research.microsoft.com/~ gurevich.

[BGS99] Andreas Blass, Yuri Gurevich, and Saharon Shelah, \Choice-
less polynomial time," Annals of Pure and Applied Logic 100
(1999), 141{187.

[Br95] Egon B�orger, \Why Use Evolving Algebras for Hardware
and Software Engineering?", in Theory and Practice of In-
formatics, M. Bartosek, J. Staudek, J. Wiedermann, editors.,

43

Springer Verlag, Lecture Notes in Computer Science 1012,
1995, 236{271.

[Br99] Egon B�orger, \High level system design and analysis using
Abstract State Machines" in Current Trends in Applied For-
mal Methods, D. Hutter, W. Stephan, P. Traverso, M. Ullman,
editors., Springer Verlag, Lecture Notes in Computer Science
1641, 1999, 1{43.

[BS00] Egon B�orger and Joachim Schmid, \Composition and subma-
chine concepts for sequential ASMs," in Computer Science
Logic, P. Clote and H. Schwichtenberg, editors., Springer-
Verlag, Lecture Notes in Computer Science 1862 (2000), 41{
60.

[Bx97] Don Box, \Essential COM", Addison Wesley Longman, 1997.

[FSE] Foundations of Software Engineering, Microsoft Research,
web page, http://research.microsoft.com/fse/.

[G93] Yuri Gurevich, \Evolving Algebras: An Attempt to Discover
Semantics", Bull. European Assoc. for Theoretical Computer
Science, no. 43, Feb. 1991, 264{284. [A slightly revised ver-
sion appeared in Current Trends in Theoretical Computer Sci-
ence, G. Rozenberg and A. Salomaa, editors., World Scien-
ti�c, 1993, 266{292.]

[G95] Yuri Gurevich, \Evolving algebra 1993: Lipari guide," in
Speci�cation and Validation Methods, E. B�orger, ed., Oxford
Univ. Press (1995) 9{36.

[G97] Yuri Gurevich, \May 1997 Draft of the ASM guide," Univ. of
Michigan Tech Report CSE-TR-336-97, found at [ASM].

[G00] Yuri Gurevich, \Sequential abstract state machines capture
sequential algorithms," ACM. Trans. Computational Logic 1
(2000), 77{111.

[GSV01] Yuri Gurevich, Wolfram Schulte, and Margus Veanes, \To-
ward industrial strength abstract state machines," Tech. Re-
port MSR-TR-2001-98, Microsoft Research.

44

[S99] Joachim Schmid, \Executing ASM speci�cations with Asm-
Gofer", http://www.tydo.de/AsmGofer, 1999.

45

