
Inadequacy of Computable Loop Invariants

ANDREAS BLASS

University of Michigan

and

YURI GUREVICH

Microsoft Research

Hoare logic is a widely recommended veri�cation tool. There is, however, a problem of �nding
easily checkable loop invariants; it is known that decidable assertions do not su�ce to verify while

programs, even when the pre- and postconditions are decidable. We show here a stronger result:
decidable invariants do not su�ce to verify single-loop programs. We also show that this problem
arises even in extremely simple contexts. Let N be the structure consisting of the set of natural
numbers together with the functions S(x) = x+1;D(x) = 2x;H(x) = bx=2c. There is a single-loop
program � using only three variables x; y; z such that the asserted program x = y = z = 0 � false

is partially correct on N but any loop invariant I(x; y; z) for this asserted program is undecidable.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs|invariants

General Terms: Algorithms, Theory, Veri�cation

Additional Key Words and Phrases: Assertion, Hoare logic, automated deduction, automated
reasoning, loop invariants, precondition, postcondition, computable, uncomputable, recursive in-
separability

1. INTRODUCTION

Hoare logic [Hoare 1969] is a system for proving asserted programs, i.e., expressions
of the form � � where � is a program and � and are assertions about possible
states of �. The meaning of the asserted program � � (under the so-called partial
correctness interpretation, the only interpretation we shall consider in this paper) is
that, if � is started in a state satisfying � and if this computation of � terminates,
then the �nal state satis�es . Among the deductive rules of Hoare logic, the
most important one for this paper is the iteration rule for deducing properties of a
while-loop:

(� ^ g) � �

� (while g do �) (� ^ :g)
:

A. Blass's research was partially supported by a grant from Microsoft Corporation.
Authors' addresses: A. Blass, Mathematics Department, University of Michigan, Ann Arbor, MI
48109{1109; email: ablass@umich.edu; Y. Gurevich, Microsoft Research, One Microsoft Way,
Redmond, WA 98052; email: gurevich@microsoft.com.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for pro�t or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior speci�c permission and/or a fee.
c
 2001 ACM 1529-3785/01/0100-TBD $5.00

2 � Andreas Blass and Yuri Gurevich

Here the assertion � serves as a loop invariant ; that is, if true initially then it
remains true after each execution of the body of the loop.
We shall also have occasion to refer to the composition rule for programs �0; �1

obtained by sequential composition

� �0 �; � �1

� �0; �1

and the consequence rule

�! �0 �0 � 0 0 !

� �
:

It is possible for the proof of an asserted program � � to make use of assertions
considerably more complicated than � and . These more complicated assertions
could be used as the loop invariant in the iteration rule, as the intermediate formula
� in the composition rule, or as the formulas �0 and 0 in the consequence rule.
Apt et al. [1979] proved that such use of more complicated intermediate assertions
cannot always be avoided. Speci�cally, they proved the existence of two programs
�0 and �1 such that the asserted program true �0; �1 false is correct (i.e., �0; �1

has no terminating computations) but any proof of it in Hoare logic requires an
application of the composition rule with an intermediate assertion � that de�nes a
nonrecursive set.
It is reasonable to expect that, if such complications arise in the use of the com-

position rule, then they should also arise in the use of the iteration rule, simply
because while is a more complicated concept than sequential composition. We shall
show that this expectation is realized in considerably simpler situations than the
one described in Apt et al. [1979]. Speci�cally, our construction uses a program of a
very simple syntactic form1, operating in a structure that includes only a weak (and
decidable) fragment of arithmetic. Furthermore, the precondition in our construc-
tion uniquely speci�es the initial state. (In contrast, the example in Apt et al. [1979]
depended crucially on the availability of many states satisfying the precondition.)
Before stating our result precisely, we need some preliminary de�nitions and

observations.
We refer to the original papers [Hoare 1969; Cook 1978] or to Apt's survey [Apt

1981] for background material on Hoare logic and Cook's completeness theorem,
mentioning here only the facts that we shall speci�cally need later. We consider
Hoare logic for while programs, often referring to them simply as programs. These
programs � are built from assignment statements x := t (where x is a variable
and t a term) by means of sequential composition �0; �1, conditional branching
if g then �0 else �1, and iteration while g do �0. The guards g are assumed to
be quanti�er-free formulas of �rst-order logic. A program � works in the context of
a structure (in the usual sense of �rst-order logic) for a vocabulary that includes the
function and predicate symbols occurring in the terms in �'s assignment statements
and the guards in �'s conditional and iteration statements. The operation of �

1Actually the motivation for this work came from the theory of abstract state machines (ASM)
[Gurevich 2000]. A run of a sequential ASM can be regarded as a loop whose body contains no
loops. This corresponds to the simple syntactic form involved in our main theorem.

Inadequacy of Computable Loop Invariants � 3

consists of changing the values of the variables that occur in �, so a state can be
regarded as simply an assignment of values to these variables.
In asserted programs � � , the pre- and postconditions � and are from some

logical system; usually one uses �rst-order logic here, but we have advocated in
Blass and Gurevich [1987; 2000] the use of existential �xed-point logic instead. The
choice of logic will be immaterial in this paper, as long as very simple quanti�er-free
formulas are included.
As indicated above, an asserted program � � is correct for a class of structures

if, for every structure in this class and every initial state making � true, if the run of
� terminates then the �nal state makes true. The choice of a class of structures
a�ects the deductive apparatus of Hoare logic only in the consequence rule, where
the premises �! �0 and 0 ! are to be admitted if and only if they are valid in
the chosen class of structures.
In this paper, we shall be concerned with the class containing just the following

version of the standard model of arithmetic, N = hN; 0; S;D;H; : : : i, where N is
the set f0; 1; 2; : : :g of natural numbers and the functions S;D;H are de�ned on N
by2

S(x) = x+ 1; D(x) = 2x; H(x) =
jx
2

k
;

and where the : : : in N refers to unspeci�ed additional functions and predicates.
There need not be any of these additional functions and predicates, so our results
will apply in particular to the very weak structure N� = hN; 0; S;D;Hi; see Re-
mark 2 below for more about the choice of structure.
We shall also deal only with programs of an unusually simple form. By a single-

loop program, we mean a program of the form while g do �0 where the body �0

of the loop does not contain while. Notice that the de�nition does not require
merely that the while construct occurs only once but also that it is the program's
outermost construct.

Theorem 1. There is a single-loop program � using only three variables x; y; z
and the vocabulary of N� such that

(1) the asserted program x = y = z = 0 � false is correct in N and

(2) any proof of x = y = z = 0 � false in Hoare logic for N uses a loop invariant
that is undecidable.

The proof of the theorem involves the following fact (Lemma 5) which may be of
interest in its own right. There exists a recursive function f on strings such that
the following two sets are disjoint but recursively inseparable: the set of strings
reachable from a certain initial string by iterated application of f , and the set of
strings from which a certain �nal string is reachable by iterated application of f .
To place the theorem in its proper context, we should point out several things

about loop invariants. First, they always exist as relations. One can simply take
the set of states reachable by repeated execution of the loop's body starting with
a state satisfying the precondition. Second, for su�ciently powerful vocabulary
and logic, loop invariants are expressible by formulas and therefore usable in Hoare

2The letters S;D;H refer to successor, double, and half.

4 � Andreas Blass and Yuri Gurevich

logic proofs. Indeed, this is the point of the expressivity hypothesis in Cook's
completeness theorem [Cook 1978]. Third, if the precondition is recursive (or only
recursively enumerable) then the loop invariant can be taken to be recursively enu-
merable. This is clear from the \reachability" formulation of the loop invariant. It
is also a consequence of the facts that expressivity is automatic (for any vocabulary,
language, and structures) if one works with existential �xed-point logic [Blass and
Gurevich 2000] and that, in the standard model of Peano arithmetic, existential
�xed-point formulas de�ne exactly the recursively enumerable relations.
Our theorem is independent of the choice of logical system, for it refers to the

intrinsic complexity of the loop invariant, not to its expressibility in any speci�c
formal system. It tells us that, although the loop invariant can be taken to be recur-
sively enumerable, it cannot be taken to be recursive, even in very simple situations.

Remark 2. The particular functions in N� were chosen because they arise natu-
rally from our proof and because they constitute a very weak fragment of arithmetic.
Their role is just to provide the vocabulary used by the � of the theorem.
As an indication of the weakness of this fragment of arithmetic, we mention that

its �rst-order theory is decidable. Indeed, 0, S, D, andH are all �rst-order de�nable
in the structure hN;+i, whose �rst-order theory, called Presburger arithmetic, is
well known to be decidable.
The proofs of x = y = z = 0 � false in the theorem are allowed to use much

richer vocabularies. For example, they could use the vocabulary of Peano arith-
metic, which contains 0, S, addition, multiplication, and the order relation <. With
this vocabulary, N satis�es the expressivity hypothesis in Cook's completeness the-
orem, and so this theorem guarantees the existence of proofs of x = y = z = 0
� false.
The usual formulation of Peano arithmetic does not include symbols for the func-

tions D and H that we have included in N�. In the case of D, this does not matter,
since it is de�nable by a term in Peano arithmetic: D(x) = x + x. In the case of
H , we still have de�nability, but not by a term. As a result, the program � of our
theorem could be translated into the language of Peano arithmetic, but at the cost
of including a subroutine to compute H . Although writing such a subroutine is
trivial, its presence in � would mean that this is no longer a single-loop program.
We have not attempted to avoidH and thus to prove the theorem with a single-loop
program in the vocabulary of Peano arithmetic. One of the referees suggested that,
by using two-counter automata instead of Turing machines in Section 4 below, one
could replaceD andH with the predecessor function. But note that the predecessor
function is also not given by a term in the standard formulation of Peano arithmetic.

The rest of this paper is devoted to the proof of the theorem.

2. PROOFS OF WHILE STATEMENTS

Before beginning the construction of the program � promised by the theorem, we
consider in general terms what a proof P of an asserted program of the form

� (while g do �0)

can look like. This will suggest what sort of � can satisfy conclusion (2) of the
theorem.

Inadequacy of Computable Loop Invariants � 5

Of all the rules of Hoare logic for while programs, as listed in Hoare [1969], Cook
[1978], and Apt [1981], only the iteration rule and the consequence rule have conclu-
sions of the required form. The others have conclusions of the form � � where � is
an assignment or a sequential composition or a conditional statement. So our proof
P must end with an application of either the iteration rule or the consequence rule.
Suppose, for a moment, that it ends with an application of the consequence rule.

So this last step has the form

�! �0 �0 (while g do �0)
0 0 !

� (while g do �0)
:

Then the immediately preceding step must again be a use of the iteration rule or
the consequence rule. If it is a use of the consequence rule, then the same argument
can be applied again, and we can continue this way until we �nally reach (because
the proof P is �nite) a use of the iteration rule. Thus, the proof P must have a
�nal segment consisting of a use of the iteration rule followed by a number (possibly
zero) of uses of the consequence rule.
If there are two or more uses of the consequence rule, they can be reduced to one

by repeated use of the observation that

�0 ! �00 �00 � 00 00 ! 0

�0 � 0

followed by

�! �0 �0 � 0 0 !

� �

can be combined into a single step

�! �00 �00 � 00 00 !

� �
:

Thus, we may assume that P ends with a use of the iteration rule followed by at
most one use of the consequence rule.
In fact, we may assume \exactly one" rather than \at most one," since we

can append a trivial application of the consequence rule where �0 and 0 co-
incide with � and . Notice also that the preceding simpli�cations of P do
not change the loop invariant used in the iteration rule. Thus, as far as The-
orem 1 is concerned, we may assume without loss of generality that proofs of
x = y = z = 0 (while g do �0) false have, as the last two steps,

(� ^ g) �0 �

� (while g do �0) (� ^ :g)

followed by

x = y = z = 0! � � (while g do �0) (� ^ :g) (� ^ :g)! false

x = y = z = 0 (while g do �0) false
:

This use of the consequence rule requires that the two implications occurring in
it as premises are true in N . In other words, the loop invariant � must be true in
the initial state, i.e., it is satis�ed in N when x = y = z = 0, and � must imply the
guard formula g in N .

6 � Andreas Blass and Yuri Gurevich

Furthermore, the use of the iteration rule requires that its premise, (�^ g) �0 �,
be correct in N . Since we have just seen that � must imply g, we can infer that
� �0 �must be correct. (Here, as always in this paper, \correct" refers to the partial
correctness interpretation, but in the present context total correctness would work
as well. Since �0 does not involve while, it will certainly terminate.)
Thus, � must be true in the initial state x = y = z = 0 and in every state

reachable from it by repeated application of �0; we call such states positive. In
addition, � must be false in any state where g fails (i.e., any state where � would
halt) and therefore also in any state from which a :g state could be reached by
repeated use of �0; we call such states negative. Thus, the loop invariant � must
be true in all positive states and false in all negative ones. Since a state can be
identi�ed with a triple of numbers (the values of x; y; z), the positive states and the
negative states constitute two ternary relations on N, which we designate as +(�0)
and �(�0; g), respectively. (The notation re
ects the fact that the de�nition of
negative states involves the guard g but the de�nition of positive states does not.)

Lemma 3. Suppose �0 is a program and g is a guard, both using only the vari-
ables x; y; z and the vocabulary of N�. Suppose further that �0 does not use while.
Finally, suppose that the relations +(�0) and �(�0; g) are disjoint but recursively
inseparable3. Then the program while g do �0 serves as the � required in Theo-
rem 1.

Proof. Clearly, while g do �0 is a single-loop program using only the variables
and vocabulary allowed in Theorem 1. The disjointness of the sets of positive and
negative states means that �, started with x = y = z = 0, will never halt, so the as-
serted program x = y = z = 0 � false is correct. Finally, the discussion preceding
the lemma shows that any proof of this asserted program in Hoare logic must use a
loop invariant � that is true in all positive states and false in all negative ones. By
the �nal hypothesis of the lemma, the relation de�ned by � cannot be recursive.

From now on, our goal will be to �nd �0 and g satisfying the hypotheses of the
lemma.

Remark 4. For �0 and g as in the hypotheses of the lemma, or indeed for any
program de�ning a recursive function and any guard de�ning a recursive relation,
both +(�0) and �(�0; g) are recursively enumerable. So we shall be dealing with
recursively enumerable but recursively inseparable sets.

3. SOME RECURSIVELY INSEPARABLE EXAMPLES

In this section, we construct an approximation to what Lemma 3 requires. We shall
not (yet) be concerned about the exact nature of the program and the guard, nor
even about the underlying structure. But apart from these points we shall obtain
the essential structure required in Lemma 3.

3Two r-ary relations A and B on the set of natural numbers are recursively inseparable if there is
no recursive r-ary relation C which includes A and is disjoint from B. This concept was introduced
in Trakhtenbrot [1953] and widely used in undecidability proofs in logic; see for example B�orger
et al. [1997]. It has been applied to Hoare logic in the already mentioned paper Apt et al. [1979]
and in Bergstra and Tucker [1982], but not in a way directly relevant to our theorem.

Inadequacy of Computable Loop Invariants � 7

Lemma 5. There exists a (total) recursive function f on strings over a certain
�nite alphabet, such that the following two sets are disjoint but recursively insepa-
rable:

|the set +(f) of strings reachable from a certain initial string by iterated applica-
tion of f

|the set �(f) of strings from which a certain �nal string is reachable by iterated
application of f .

Proof. We use the well-known fact that the set A of sentences provable in
Peano Arithmetic and the set B of sentences refutable in Peano arithmetic are re-
cursively enumerable and recursively inseparable; see for example Shoen�eld [1967,
Chapter 6, Exercise 13]. The only information we shall use about A and B is that
they are recursively enumerable, recursively inseparable sets of sentences in a �-
nite vocabulary, closed under logical equivalence. (In fact, we need only a little
bit of closure under logical equivalence, namely that either of these sets contains a
sentence � if and only if it contains ::�.) Thus, we could equally well have used
Trakhtenbrot's theorem [Trakhtenbrot 1953] that, for nontrivial vocabularies, the
set of logically valid sentences is recursively inseparable from the set of sentences
falsi�able in �nite structures.
We regard sentences as strings over a �nite alphabet. The use of in�nitely many

variables in �rst-order logic causes no problem here, as we can regard a variable as
the letter v followed by a number written in binary notation.
For A and B as above, �x an algorithm enumerating A, an algorithm enumer-

ating B, and an algorithm enumerating all strings of symbols in our alphabet. We
assume that each of these algorithms enumerates at most one new element at any
stage. We also assume that, whenever any one of them enumerates a sentence of
the form ::�, it has already enumerated �. This is easily arranged; just modify
the algorithms so that, whenever they are about to enumerate ::� they �rst enu-
merate � if they haven't already done so. Let a0 and b0 be the �rst strings in the
enumerations of A and B, respectively. These will be the initial string and the �nal
string in the statement of the lemma. We shall de�ne a recursive function f so that
the strings reachable from a0 by iterated application of f will be exactly those in
A, while the strings from which b0 is reachable will be exactly those in B. This will
clearly su�ce to establish the lemma.
We give an algorithm de�ning f in stages. At each stage, the value of f(x) will

have been de�ned for only �nitely many strings x. In this situation, to \iterate
f as long as possible starting at x" means to form the sequence x; f(x); f2(x) =
f(f(x)); : : : , until reaching either a value not yet in the domain of f or b0. This
makes sense because of the �rst of the following four inductive hypotheses, which
we shall ensure at each stage of our construction.

(1) The only cycle in f is at f(b0) = b0. In other words, for any positive integer n,
fn(x) = x implies x = b0.

(2) Only elements of A ever become reachable from a0. Conversely, any element
enumerated into A at any stage becomes reachable from a0 at the same stage
if not earlier.

8 � Andreas Blass and Yuri Gurevich

(3) The only elements from which b0 ever becomes reachable are those of B. Con-
versely, if b is enumerated into B at some stage, then b0 becomes reachable
from b at the same stage if not earlier.

(4) If a string x is not (yet) reachable from a0, if b0 is not (yet) reachable from x,
and if f(x) is de�ned, then f(x) is ::x.

Begin the de�nition of f by setting f(b0) = b0. Then do the following at each
stage n, for n = 0; 1; 2; : : : .
First, see whether a new element has been enumerated into A at stage n. If so, if

this element is �, and if � is not yet reachable from a0, iterate f as long as possible
starting at a0, and let x be the �nal element in the resulting sequence. (Note that
(1) is crucial here.) Being reachable from a0, x will be in A, so x 6= b0, and therefore
f(x) is not yet de�ned. Set f(x) = �. Thus, we ensure that the element � of A is
reachable from a0.
Second, see whether a new element has been enumerated into B at stage n. If so,

and if this element is �, iterate f as long as possible starting at �, and let y be the �-
nal element in the resulting sequence. (Again, (1) is used.) If y = b0, do nothing (as
b0 is already reachable from �). Otherwise, every element of this iteration, from � to
y, is, by inductive hypothesis (4), a sentence logically equivalent to � and therefore
in B. Set f(y) = b0. Thus, we ensure that b0 is reachable from the element � of B.
Third, see whether a new string has been enumerated at stage n by the algorithm

that lists all the strings. If so, if this string is z, and if f(z) is not yet de�ned, then
set f(z) = ::z.
This completes the description of stage n in the construction of f . It is easy

to check that our four inductive hypotheses are preserved at every step. Of the
three parts of stage n, the �rst ensures that each element of A eventually becomes
reachable from a0; the second ensures that b0 eventually becomes reachable from
each element of B; and the third ensures that f is a total function. Since the entire
construction is algorithmic, f is a recursive function, and the lemma is proved.

The preceding proof could be modi�ed so that a0 and b0 are any two speci�ed
strings and so that f is one-to-one except that two strings (b0 and one other one)
map to b0.

4. CONVERSION TO ARITHMETIC

In this section, we convert Lemma 5 into a form that supplies the hypotheses of
Lemma 3 and thus completes the proof of Theorem 1. The conversion uses two
familiar ideas: convert an arbitrary algorithm into a Turing machine, and describe
the operation of a Turing machine in arithmetic.

Lemma 6. There is a Turing machine M , operating on a two-way in�nite tape,
using only two symbols, 0 (the blank) and 1, with two distinguished control states
q0 and q1, and having the following properties:

(1) In state q1, the machine halts.

(2) If started on a blank tape, in state q0, the machine M computes forever (there-
fore without ever entering state q1).

Inadequacy of Computable Loop Invariants � 9

(3) The set of con�gurations reached by M during the computation in property (2)
is recursively inseparable from the set of con�gurations from which M would
eventually halt.

Proof. Consider the function f of Lemma 5. It acts on strings over a certain
�nite alphabet. Transform it to act on binary strings via a coding function. Speci�-
cally, assign to each symbol from the �nite alphabet a code that is a positive integer
(di�erent integers for di�erent symbols). Then encode strings of symbols by writing
the code of each symbol in unary notation (a string of 1's) and separating these
by single 0's. Via this coding, f becomes a recursive function on binary strings.
(It should be de�ned arbitrarily but recursively on binary strings that do not code
strings over the original alphabet.)
Now letM be a Turing machine that does the following. When started in control

state q0, it writes the binary code of a0 on its tape and then goes into control state
q2, scanning the left end of this code. (Since 0 is the blank symbol, there are also in-
�nitely many 0's covering the unused part of the tape.) In control state q1,M halts.
In control state q2, it begins computing f repeatedly. That is, it computes f of the
current tape contents, but from the halting state of this subcomputation it proceeds
as follows: if the current tape contents are essentially b0 (see below for \essentially")
then it goes to state q1; otherwise, it returns to state q2 scanning the essential left
end of the tape contents, for another round of f . Here \essentially" b0 means the
following. M should check, starting from its presently scanned square and going
both to the left and to the right until encountering two consecutive 0's, whether
this segment of the tape contains the binary code of b0. If so, then we say the tape
contents are essentially b0. They may not be exactly b0, because there may be some
1's beyond the double-zeros, but then the tape contents are not the binary code of
anything; so we need not worry about this situation. Similarly, the \essential" left
end of the tape means the point just to the right of the �rst double-zeros on the left.
The �rst of the lemma's three conclusions is clear by de�nition, and the second

follows immediately from the fact that b0 is not reachable from a0 by iteration
of f . It remains to prove the third conclusion. So suppose we had a recursive
set separating the con�gurations reachable from the initial con�guration (state q0
and empty tape) from the con�gurations that eventually lead to halting. Then we
would have, by a one-to-one reduction to this set, a recursive set separating +(f)
from �(f). Indeed, if g is the recursive function assigning to each string x over the
original alphabet (used by f) the con�guration consisting of the binary code of x,
the control state q2, and the scanned square at the left end of the code, then

|if x 2 +(f) then g(x) is reachable by M from the initial con�guration

|if x 2 �(f) then a halting state is reachable by M from g(x).

Because +(f) and �(f) are, by assumption, recursively inseparable, we have a
contradiction, and the proof of the lemma is complete.

Finally, we apply a standard procedure for arithmetically encoding Turing ma-
chine con�gurations and instructions. Number the states of M with natural num-
bers, so that q0 and q1 are represented by 0 and 1, respectively. Then any con-
�guration of M can be represented by a triple of natural numbers (x; y; z). Here
x is the number of the state, and y is the contents of the tape to the left of the

10 � Andreas Blass and Yuri Gurevich

scanned square and including this square; the contents are interpreted as the binary
notation for a natural number, the scanned square being the least signi�cant digit.
(Thus the in�nitely many blanks stretching to the left have no e�ect on y.) Finally
z is the contents of the tape strictly to the right of the scanned square, read, from
right to left, as the binary notation for a natural number, so that the square to the
right of the scanned square is the least signi�cant digit. With these conventions,
the initial con�guration of M , where the tape is empty and the control state is q0,
is represented by x = y = z = 0.
The instructions of M can easily be written as a program �0 of the sort required

in Lemma 3. For example, an instruction saying \if the control state is 3 and the
scanned square contains 1 then change the 1 to 0, move to the left, and enter control
state 4" would become

if x = SSS0 ^ :(y = DHy)
then x := SSSS0; y := Hy; z := Dz

else : : : .

Here S, D, and H are as in N� in Theorem 1, and the : : : at the end is where
M 's other instructions would be �lled in. It should be clear that all Turing machine
instructions admit similar translations, so that the operation of a single step of M
can be expressed by a program �0. This program and the guard x 6= 1 (expressing
that M has not entered the halting state q1) satisfy the hypotheses of Lemma 3.
By that lemma, this completes the proof of the theorem.

REFERENCES

Apt, K. R., \Ten years of Hoare's logic: A survey | Part 1," ACM Transactions on Programming
Languages and Systems 3:4 (October 1981), 431{483.

Apt, K. R., Bergstra, J. A., and Meertens, L. G. L. T., \Recursive assertions are not enough
| or are they?," Theoret. Comp. Sci. 8 (1979), 73{87.

Apt, K. R. and Olderog, E.-R., \Veri�cation of sequential and concurrent programs," Springer-
Verlag, 1991.

Bergstra, J. A. and J. V. Tucker, J. V., \Some natural structures which fail to possess
a sound and decidable Hoare-like logic for their while-programs," Theoret. Comput. Sci. 17
(1982) 303{315.

Blass, A. and Gurevich, Y., \Existential �xed-point logic," In \Logic and Complexity" (ed. E.
B�orger), Springer Lecture Notes in Computer Science 270 (1987), 20{36.

Blass, A. and Gurevich, Y., \The underlying logic of Hoare logic," Bull. European Assoc.
Theoret. Comp. Sci. To appear.

B�orger, E., Gr�adel, E., and Gurevich, Y., \The classical decision problem," Springer-Verlag,

1997.

Cook, S. A., \Soundness and completeness of an axiom system for program veri�cation," SIAM
Journal of Computing 7:1 (1978), 70{90.

Gurevich, Y., \For every sequential algorithm there is an equivalent sequential abstract state
machine," ACM Transactions on Computational Logic 1:1 (July 2000).

Hoare, C. A. R., \An axiomatic basis for computer programming," Communications of ACM
12:10 (October 1969), 576{580, 583.

Shoenfield, J. R., \Mathematical Logic," Addison-Wesley, 1967.

Trakhtenbrot, B. A., \On Recursive Separability," Doklady Acad. Nauk SSSR 88 (1953), 953{
955, in Russian.

Received March 2000; revised June 2000; accepted June 2000

