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The Sequential ASM Thesis

The thesis is that every sequential algorithm, on any level of abstraction, can be
viewed as a sequential abstract state machine [Gurevich 1985, 1991]. Abstract state
machines (ASMs) used to be called evolving algebras. The sequential ASM thesis
and its extensions [Gurevich 1995] inspired diverse applications of ASMs. The
early applications were driven, at least partially, by the desire to test the thesis.
Different programming languages were the obvious challenges: Modula-2 [Gurevich
and Morris 1987], Prolog [Börger 1990a, 1990b, 1992], C [Gurevich and Huggins
1992], etc. (A programming language L can be viewed as an algorithm that runs
a given L program on given data.) From there, applications of (not necessarily
sequential) ASMs spread into many directions; see the recent bibliography [Börger
and Huggins 1998] and the ASM websites [ASM Michigan, ASM Paderborn]. So
far, the accumulated experimental evidence seems to support the sequential thesis.
There is also a speculative philosophical justification of the thesis. It was barely
sketched in the literature, but it was discussed at much greater length in numerous
lectures of mine. Here I attempt to write down some of those explanations. This
article does not presuppose any familiarity with ASMs.

In Section 1, we discuss the need for a computation model that is more powerful
and more universal than the standard computation models of theoretical computer
science. In Section 2, we analyze sequential algorithms that are closed in the
sense that they do not interact with their environments. Sequential abstract state
machines are defined in Section 3. The sequential ASM thesis, restricted to closed
algorithms, is explained, argued for and partially proved in Sections 3 and 4. In
Section 5, the sequential ASM thesis is extended to algorithms interacting with
their environments. Section 6 contains various remarks.
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1 The Problem

Quisani: I was surprised to find your name at the website of Microsoft Research.
How do you like it there?

Author: I love it. One has here a unique opportunity to combine theory and
applications.

Q: What would you like to apply?

A: Formal methods, in particular ASMs, abstract state machines.

Q: What is so special about ASMs? What distinguishes them in the vast zoo of
formal methods?

A: I like to think of ASMs as a bridge between the computation models of theo-
retical computer science and real-world problems of specification and verification.

Q: Do you view ASMs as a computation model?

A: Yes, I do.

Q: Does one need another computation model? I think Turing machines serve the
purpose well.

A: The question is, what is the purpose exactly? What purpose are you talking
about?

Q: Well, why did Turing introduce his machines on the first place? Did he try to
formalize the notion of algorithm?

A: I don’t think so. Both Church and Turing were interested in the classical deci-
sion problem: Find an algorithm that decides whether a given first-order formula
is valid. It was one of the most intriguing logic problems of the 1930s. Hilbert
called it the main problem of mathematical logic. Church and Turing gave different
but equivalent formalizations of the notion of computable function and used their
formalizations to show that the classical decision problem is unsolvable [Church
1936, Turing 1936]. In particular, Turing put forward a thesis that a function is
computable if and only if it is computable by a Turing machine. He proved that
no Turing machine computes the validity of first-order formulas. By the thesis,
validity is not computable.

Q: Maybe the classical decision problem was only a pretext, and their real purpose
was to capture the notion of computable function.

A: Maybe. I don’t know.
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Q: By the way, did they really capture the notion of computable function? A
Turing computable function may not be computable in any practical sense.

A: Indeed Church-Turing computability is a liberal notion, but it gives a mean-
ingful upper bound on the class of computable functions.

Q: Why is capturing the notion of computable function not the same as capturing
the notion of algorithm?

A: There is more to an algorithm than the function it computes.

Q: A computable function is a function computable by an algorithm. How could
Church and Turing speak about arbitrary computable functions without speaking
about arbitrary algorithms?

A: They did speak about arbitrary algorithms. In fact, Turing’s informal proof of
his thesis justifies a somewhat stronger thesis: every algorithm can be simulated
by a Turing machine.

Q: There you go. Turing did capture the notion of algorithm.

A: Not really. There may be a huge difference between an algorithm and the
simulating Turing machine. The poor Turing machine may work long and hard,
with its head creeping painfully slowly back and forth on that long narrow tape,
in order to simulate just one step of the given algorithm.

Q: Now you are talking complexity. I thought that experts agree that any algo-
rithm can be simulated by a Turing machine with only polynomial slowdown.

A: True, but polynomial time simulation may not be good enough. Think about
practical algorithms.

Q: What kind of simulations would you like?

A: Step-for-step simulations.

Q: I recall now our conversation [Gurevich 1988c] involving Kolmogorov-Uspenski
machines [Kolmogorov and Uspenski 1958] and Schönhage machines [Schönhage
1980]. A question has been bothering me. You spoke about the KU thesis — any
algorithm can be simulated step-for-step by a KU machine, and about a similar
thesis for Schönhage machines. However, it was unknown whether Schönhage
machines could be simulated step-for-step by KU machines. Given that, how
could you argue for the KU thesis?

A:We are getting closer to the heart of the matter. The difference between the two
theses is in the levels of abstraction at which they consider algorithms. States of
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a KU machine reflect the physical world. In a finite-dimensional space, a physical
representation of a bit may have only so many neighboring physical representations
of bits. Accordingly, the memory of a KU machine is a graph of bounded degree.
On the other hand, the memory of a Schönhage machine is a directed graph where
only out-degree is bounded; there is no bound on in-degree. This is natural from
the point of view of pointer computations on our computers, but it is a higher
abstraction level.

Q: I guess the random access machines of [Cook and Reckhow 1973] reflect an
even higher abstraction level?

A: Yes. The problem arises whether there is a machine model such that any
algorithm, however abstract, can be simulated step-for-step by a machine of that
model. Let me call such a model universal with respect to algorithms. Turing’s
machine is universal with respect to computable functions, but not with respect
to algorithms.

Simulating algorithms on their natural abstraction levels, without implementing
them, involves interesting issues. Consider for example algorithms that work with
graphs. The conventional computation models [Savage 1998] require a string rep-
resentation of the given graph or something like that even in those cases when, in
principle, the algorithm is independent of the graph representation. An algorithm-
universal computation model would allow one to program such algorithms in a way
that is independent of graph representation.

Q: I see nothing wrong in using a data representation appropriate to the task and
taking advantage of it. Any computer will require some kind of data representation.

A: It may be necessary to have the algorithm in a form that is independent of data
representation. The problem is especially acute in databases. The same database
may have different representations, but the meaning of the data should not change.
Database query languages are supposed to reflect only representation-independent
properties.

Q: Can an algorithm be truly independent of data representation? After all it
deals with mathematical abstractions, not with real world objects. Do you see
what I mean?

A: You are right. A graph algorithm deals with graphs and thus the raw data is
somewhat structured already by the use of graphs. Similarly, the choice of database
model structures data to a great extent. I should have been more careful. I meant
to say this. An algorithm-universal computation model allows one to program
algorithms on their natural abstraction levels, without imposing additional repre-
sentation of data. For example, if your algorithm is supposed to deal with graphs,
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then the computation model allows you to deal with graphs without forcing you
to adjacency matrices or any other kind of representation of graphs.

Q: Now I understand your intention.

A: An important use of an algorithm-universal computation model, if it is simple
and clean, is to give operational semantics to computer systems.

Q: Don’t count your chickens before they hatch. I don’t believe there is an
algorithm-universal computation model.

2 Sequential Algorithms

Q: The world of algorithms is too diverse and there are too many possible levels
of abstraction. How can one computation model reflect them all? Consider, for
example, the following models of random access machine: the successor RAM,
whose only operation is x �→ x + 1; the addition RAM; the RAM with addition
and multiplication; the RAM with addition, multiplication and division. Does
your algorithm-universal model do multiplication? If so, its abstraction level is
too high for the first two RAM models. If not, its abstraction level is too low for
the last two RAM models.

A: It is easy to unify your RAMmodels. Introduce a RAMmodel with a parameter
that is a set of arithmetical operations.

Q: And how will you unify the RAM models with the Turing machine and with
e.g. the C programming language? Furthermore, I was thinking about sequential
algorithms till now, but there are also parallel, distributed, real-time algorithms.
How broadly do you want to understand the notion of algorithm?

A: Let’s restrict this discussion to sequential algorithms. We can discuss more
general algorithms some other time.

Q: What are sequential algorithms exactly? Explain your intuition.

A: I’ll try. Let me start with some obvious points.

Point one: a sequential algorithm A, like any other algorithm, is given by a finite
text, the program of the algorithm. Typically it is a program in some programming
language.

Point two: there are two collections associated with A, the collection of all states
of A and the collection of initial states of A. The second is a subcollection of the
first.
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The third point is that A works in sequential time.

Q: What do you mean by that?

A: There is a state-transformation ϕ associated withA, the transformation induced
by executing one step of A. If S is a state of A, then ϕS is also a state of A.

Q: What if S is a final state of A?

A: Stipulate that ϕS = S in that case.

The transition system gives rise to the notion of run. Call an algorithm closed if
it does not interact with its environment. For simplicity, let me restrict attention
to the case when A is closed. We can discuss the more general case later. In the
restricted case, a run (or computation) of A can be defined as a sequence

S0, S1, S2, . . .

where S0 is an initial state and every Si+1 = ϕ(Si).

Q: Can a run be infinite?

A: Yes, there are many useful algorithms that are not supposed to terminate.

Q: What if a computation encounters an error?

A: Errors are in the eye of the beholder. An error state is still a state.

Q: Do you assume that every state is reachable, that is, appears in some run?

A: No, think about a priori states of the algorithm. Often, one describes the
states of the algorithm without knowing which of them are reachable. Recall
Turing machines, but distinguish between the states of the finite control and the
states (or configurations) of the machine itself; one halting state of the finite control
gives rise to many halting states of the machine. It is undecidable whether a given
Turing machines reaches a halting state. Nevertheless, halting states are legitimate
states.

Q: OK, I get the third point.

A: The fourth point is that a sequential algorithm has only one execution thread.
In other words, there is only one executing agent. This distinguishes sequential
algorithms from multi-agent (= distributed) algorithms.

Q: There are programming languages where matrix multiplication can be done in
one step. In reality of course matrix multiplication may require a lot of work. It

6



looks like the agent that pretends to do matrix multiplication in one step needs
help of another agent or agents.

A: On the higher abstraction level where matrix multiplication is done in one step,
we ignore how multiplication is actually performed. All we care is that our agent
does it in one step.

Q: Are you through with your description of sequential algorithms?

A: No, not yet. There is also a problem, how much work can a sequential al-
gorithm do in one step? For example, let us consider an algorithm which, given
a graph (V,E) with distinguished vertices Source, Target, checks whether Target
is reachable from Source. An auxiliary relation R (an allusion to “reachable”) is
initially empty. The algorithm iterates the following step:

if ¬R(Source) then R(Source) := true
elseif ∃x∃y(R(x) ∧ E(x, y) ∧ ¬R(y)) then

do for all x, y with R(x) ∧ E(x, y) ∧ ¬R(y)
R(y) := true

enddo
else Output := R(Target)
endif

Is this algorithm sequential?

Q: Definitely not. This algorithm is highly parallel, not sequential. It performs a
number of actions at the same time.

A: A sequential algorithm also can perform several actions a time. For example,
at one step, a Turing machine may change its control state, print a symbol at the
current tape cell and move its head. Similarly, a programming language interpreter
may perform an arithmetic operation and change the program counter; it may also
change the procedure stack at the same occasion.

Q: There is a difference in the amount of parallelism. A sequential algorithm may
perform only so many actions a time. I guess your fifth point is that the number
of actions performed by a sequential algorithm at any step is bounded; is that it?

A: We are getting there. What do you mean by an action?

Q: Something that changes the state.

A: Consider the following algorithm which checks whether the given graph (V,E)
has isolated points.

7



if ∀x∃yE(x, y) then Output := false
else Output := true

Q: I see. The algorithm does not change much but is massively parallel nonethe-
less. Obviously we should take into account actions that inspect the state without
changing it. I am not sure how to count such inspection actions. Coming to think
of it, I am not sure how to count actions that do change the state. One may claim
that every Turing machine performs only one action a time, but that action have
several parts. The number of parts is in the eye of the beholder. You counted
three parts. I can count four parts by requiring that the old symbol is erased
before the new symbol is printed. Also, the new symbol may be composed, e.g.
“12”. Printing a composed symbol can be a composed action all by itself.

A: Now I am ready to formulate my fifth and last point. The amount of work that
a sequential algorithm does at any step is bounded.

Q: But how do you define work? How do you measure work?

A: Good questions.

3 Derivation of Sequential ASMs

Q: I recall now that we spoke once about evolving algebras3. Have they been
renamed to abstract state machines?

A: Yes.

Q: Do you claim that the ASM model is algorithm-universal?

A: Well, this is the ASM thesis.

Q: The difference between a thesis and a theorem is, I guess, that a theorem has
a proof.

A: A theorem relates mathematical objects; its proof is a mathematical proof.
A thesis relates mathematical and non-mathematical objects. It cannot have a
mathematical proof, but it may be affirmed or negated by experimentation. It
may also have some kind of speculative justification. For example, Turing gave a
convincing speculative proof of his thesis.

3There was no previous discussion on the subject in this column. Quisani has in mind the
tutorial [Gurevich 1991].
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Q: Speculate about your thesis.

A: OK. I will formulate portions of the thesis as claims (or subtheses if you will).
Let A range over sequential algorithms.

Claim 1 Every state of A can be viewed as a first-order structure of a finite vo-
cabulary. Furthermore, the collection of states is closed under isomorphisms.

Q: What do you mean by “can be viewed as a first-order structure”?

A: Can be adequately described as a first-order structure and therefore can be
identified with that structure.

Q: Why is the collection of states closed under isomorphism?

A: We abstract from any particular presentation of a state and thus only the
isomorphism type of the state matters.

Q: Are you thinking about highly abstract algorithms?

A: No, the abstraction level does not have to be high. It may be for example
the level of assembly language. But the abstraction level should be fixed. If some
details of the presentation of the state still matter, this means that the abstraction
level has not been chosen correctly. Details that matter should be incorporated
into the state.

Q: I need to see examples. Describe the states of a Turing machine as structures.

A: A state of a Turing machine can be formalized as follows. The basic set of the
structure includes the union

Control ∪ Alphabet ∪ Tape

of three disjoint sets. Formally Control, Alphabet and Tape are unary relations,
but it is convenient to view them as separate universes (or subuniverses).

• Control is (or represents) the set of states of the finite control. Each element
of Control is distinguished, that is, has a name in the language. These names
are nullary function names. In addition, there is a dynamic distinguished
element CurrentControl that “lives” in Control but may change its value
from one state of the machine to another. Speaking more accurately, we have
the nullary function name CurrentControl whose value may change from one
state to another.

• Alphabet is the tape alphabet. Each element of Alphabet is distinguished as
well. One of this elements is called Blank.
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• Tape can be taken to be the set of natural numbers (representing tape cells)
complete with 0 as a distinguished element and with the unary operations
Successor and Predecessor (with Predecessor(0) = 0 for example). There is
also a dynamic nullary function name Head that takes values in Tape.

Finally, we have a unary function

Content : Tape → Alphabet

which assigns Blank to all but finitely many cells.

You can use this notation to write Turing instructions. For example,

if CurrentControl = q1 and Content(Head) = σ1 then
do in-parallel

CurrentControl := q2
Content(Head) := σ2

Head := Successor(Head)
enddo

endif

Q: Give me another example. How about the Euclidean algorithm?

A: The Euclidean algorithm computes the greatest common divisor d of two given
natural numbers a and b. One step of it can be described as follows:

if b = 0 then d := a
elseif b = 1 then d := 1
else

do in-parallel
a := b
b := a mod b

enddo
endif

Now it is pretty obvious what the states are. The basic set includes the set of
natural numbers which comes with 0, 1 as distinguished elements and with the
binary operationmod. In addition, there are three dynamic distinguished elements
a, b and d.

Q:Why do you think that the notion of first-order structure is sufficient to describe
the states of arbitrary algorithms?

A: Logic experience shows that any kind of static mathematical situation can be
adequately described as a first-order structure.
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Q: Then why do logicians use other kinds of structures, e.g. second-order struc-
tures? How would you deal, for example, with a graph algorithm that manipulates
not only vertices but also sets of vertices?

A: Second-order structures can be seen as special first-order structures. The
second-order graph structure can be viewed as a two-sorted first-order structure
where elements of the first sort are vertices and elements of the second sort are
vertex sets; in addition to the edge relation on the first sort, there is also a cross-
sort binary relation ε(x, y) expressing that a vertex x belongs to a vertex set y.
Formally speaking, sorts are just unary relations.

Q: Then who needs second-order logic?

A: There is more to second-order logic than just the definition of second-order
structures. There are various second-order calculi. Presently we are concerned
only with structures, not with the ways to reason about them.

Q: In the case of Turing machines, you set Predecessor(0) = 0. It would be more
natural to declare that Predecessor(0) is undefined, but you cannot do that. The
operations of a first-order structure are everywhere defined.

A: Indeed, I tried to simplify things a little. In reality, we restrict attention to
structures satisfying the following requirements.

• Every structure contains a distinguished element called undef (or default).

This allows us to deal with partial functions.

• Every structure contains distinguished elements true and false.

This allows us to view relations as special functions.

• Every structure contains the equality relation and the standard Boolean con-
nectives which behave in the expected way over {true, false}.

The states described above should be augmented to accommodate these obligatory
functions.

Q: According to Claim 1, a computation is a sequence of various structures. What
does it buy you?

A: This question brings us to the next claim which strengthens Claim 1. Recall
that A is an arbitrary sequential algorithm.
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Claim 2 All states of A are structures of the same finite vocabulary. In particular,
the vocabulary does not change during the computation.

Q: Why doesn’t the vocabulary change during the computation? I can imagine an
algorithm that needs more and more functions or relations as it runs. For example,
an algorithm that colors natural numbers may need more and more colors. It is
natural to think of colors as disjoint unary relations. Thus we have a growing
collection of unary relations.

A: In a proper formalization, the vocabulary reflects only truly invariant features of
the algorithm rather than details of a particular state. In your example, how does
the coloring algorithm refer to various colors? It may use for example an array of
colors. Mathematically this gives rise to a binary relation C(i, x) where the ith color
is {x : C(i, x)}. In general, if an algorithm needs more and more j-ary functions
of some kind, it may really deal with a (j + 1)-ary function. Alternatively, it may
be appropriate to treat these j-ary functions as elements of a special universe.

Q: There are so-called “non-von-Neumann” algorithms which change their pro-
grams during the computation.

A: I think that, for such an algorithm, the so-called program is just a part of data.
The real program changes that part of data, and the real program does not change.

Q: According to Claim 2, a computation is not just a sequence of structures, but
a sequence of structures of the same vocabulary. What does it tell us?

A: That the vocabulary does not change during the computation. Think about a
computation as an evolution of the initial state. The vocabulary does not change
during that evolution.

Q: Does the basic set change during the evolution?

A: Without loss of generality, we may assume that it doesn’t.

Q: I do not understand this. I think the basic set may change. For example, a
graph algorithm may require that new vertices are added to the graph.

A: Sure, but where do the new vertices come from? The initial state can have
an infinite reserve where potential vertices “live”. In general, it is convenient to
assume that the initial state has enough material for the evolution and thus the
basic set does not change during the evolution. Let me formulate this as another
claim. Again, let ϕ be the state transformation performed by our algorithm A in
one step.

Claim 3 The one-step transformation ϕ does not change the basic set of any state.
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Q: I have to think about that.

A: Let us continue.

Claim 4 If ι is an isomorphism from a state S to another state S ′, then it is also
an isomorphism from ϕS to ϕS ′.

Q: Why?

A: View S ′ as just another representation of S. An element a of S is represented
by an element ι(a) of S ′. But the representation of a state should not matter.
Accordingly ϕ operates in the same way at both structures.

Q: So what does change during the evolution?

A: Some basic functions of the structure may change. In the case of Turing
machines, the functions CurrentState, Head and Content change. In the case of
the Euclidean algorithm, the nullary functions a, b and d change.

It is convenient to think about a state S as a memory of a kind. If f is a j-ary
function name and ā is a j-tuple of elements of (the basic set of) S, then the pair
(f, ā) is a location. The content of that location is the value ValueS(f(ā)) of f at ā
in S. Since the one-step transformation ϕ changes neither the vocabulary nor the
basic set of a given set S, the resulting state ϕS has exactly the same locations.
Of course, some locations may have different contents in ϕS.

One important observation is that the change imposed by ϕ on S splits into atomic,
indivisible changes. If � is a location of a state S and b is an element of S, call
the pair (�, b) an update of S. Let ContentS(�) denote the content of � in S. The
update (�, b) is trivial if b = ContentS(�). A non-trivial update represents an
atomic change. The full change imposed by ϕ on S is the set UpdateSetϕ(S) of
nontrivial updates

(�,ContentϕS(�))

over S. To reflect atomic changes, the sequential ASM programming language
provides special update rules.

Recall the recursive definition of ground terms. For brevity, I will omit the adjective
ground.

• Every nullary function name f is a term.

• If f is a function name of arity j > 0 and t1, . . . , tj are terms, then f(t1, . . . , tj)
is a term.

Given a structure S consider only terms t such that every function name in t
belongs to the vocabulary of S. The value ValueS(t) of t in S is defined in the
obvious way.
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An update rule has the form

f(t1, . . . , tj) := t0

where j is the arity of f and t0, . . . , tj are terms. To fire the rule at a structure
S where the terms t0, . . . , tj evaluate to elements a0, . . . , aj respectively, imple-
ment update (�, a0) over S where � = (f, (a1, . . . , aj)). Since relations are special
functions, update rules allow us to update relations as well.

Q: I do not see how update rules allow you to change arbitrary locations. An
update rule deals only with a location (f, (a1, . . . , aj)) where each element ai is
specified by a term. The new value that it puts into the location has to be specified
by a term as well.

A: You are right. Let me call an element a of a state S accessible if there exists
a term t with ValueS(t) = a. A tuple (a1, . . . , aj) is accessible if every element ai
is accessible. A location (f, ā) is accessible if the tuple ā is accessible. Indeed, the
update rules deal only with accessible locations and accessible values. But this is
by design. Let again A be an arbitrary sequential algorithm and ϕ be the one-step
state transformation of A.

Claim 5 ϕ cannot change the content of an inaccessible location or put an inac-
cessible element into an accessible location.

Q: Why do you believe that?

A: Imagine yourself being an executor of ϕ at a state S. Since you cannot take
advantage of a particular representation of the elements, the only way to access
elements of S is to use the basic functions of S. Essentially you use S as an oracle.
If you can name a location � then S will give you ContentS(�). You can find out the
value ValueS(f) of any nullary function name f . If f is a function name of arity j
and you can name elements a0, a1, . . . , aj, then you can name element f(a1, . . . , aj)
and you can put a0 into location (f, (a1, . . . , aj)). That is all that you can do.

Q: I wonder if there are other means to point to an element without using any
representation of it.

A: What do you mean by pointing to an element?

Q: Consider for example an algorithm that works with directed graphs with a
distinguished vertex Star, so that Star is the only accessible vertex. If a is the
unique vertex with an edge to Star, then a is uniquely identified by its description,
even though it may be inaccessible.
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A: In order to determine that a is the unique vertex with an edge to Star, the
executor must check all vertices. So going from Star to a is not bounded work.

Q: It may be bounded work on a higher abstraction level. Maybe the code of the
algorithm contains some procedure which, given a vertex x, checks whether it has
exactly one incoming edge and, if yes, produces the source of that edge. But I do
not want to know anything about that procedure. I’d like to be on the abstraction
level where, by some kind of magic, we can go from any given vertex x with exactly
one incoming edge, to the source of that edge in one step.

A: To abstract from the procedure, introduce a new basic function Source(x). If x
has exactly one incoming edge (y, x), then Source(x) = y; otherwise Source(x) =
undef.

Let me add that parallelism and nondeterminism allow one to deal with term-
unreachable elements and locations, but here we consider only deterministic se-
quential algorithms.

Q: What else do you have in the ASM programming language?

A: Since an algorithm can perform several changes at a time, the ASM program-
ming language provides rules of the form

do in-parallel
R1

R2
...
Rk

enddo

where R1, . . . , Rk are constituent rules constructed earlier. The keywords “do in-
parallel” and “enddo” are often omitted. To fire a do-in-parallel rule, fire the
constituent rules simultaneously. In other words, the update set generated by the
do-in-parallel rule is the union of the update sets generated by the constituent
rules.

Q: What if R1 and R2 contradict each other? For example, how do you execute
the following?

do in-parallel
Head := Predecessor(Head)
Head := Successor(Head)

enddo
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A: You cannot execute that. Formally speaking, the computation halts.

Q: Why not choose one of the two possible actions and execute it?

A: This will introduce nondeterminism. We are talking about deterministic algo-
rithms presently.

Q: But nondeterminism may be convenient.

A: Sure. The notion of nondeterministic ASM is one of several generalizations of
the notion of deterministic sequential ASM [Gurevich 1995].

Q: The keyword “do in-parallel” appeared earlier in our discussion. I guess you
have been using the ASM programming language all along.

A: I have. And thus you have also seen conditional rules. If ϕ is a Boolean-valued
term (essentially a quantifier-free first-order formula) and R1, R2 are rules, then

if ϕ then
R1

else
R2

endif

is a rule as well. The elseif that you saw in the Euclidean algorithm resulted
from nesting two conditional rules. It is obvious how to fire a conditional rule.

Q:What else is there in the deterministic sequential ASM programming language?

A: There are no other ways to generate rules.

Q: And what is a program?

A: A program is just a rule.

Q: And what is an ASM?

A: An ASM M is given by a vocabulary, a program of that vocabulary (so that
all function names of the program occur in the vocabulary), a collection of states
of M , and a collection of initial states of M . It is supposed of course that every
state of M is a state of the vocabulary of M , and every initial state of M is a
state of M , and firing the program of M at any state of M results in a state of M .
Intentionally, M is an algorithm. Notice that the program describes only one step
of the algorithm and is supposed to be fired over and over again.

We concentrate on the dynamic part and impose no a priori restriction on how to
describe the collection of states and the collection of initial states.
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Q: There is no sequential composition of rules? I mean something like

R1 ; R2

First do R1 and then do R2.

A: There is no sequential composition. Recall that the program of an ASM de-
scribes only one step of the algorithm. It is an unusual programming style; it forces
you to stay on one level of abstraction. The sequential composition allows you to
compose trees, and forests, and bushes, and grass, which makes reasoning harder.

Q: Can ASMs handle recursion?

A: Yes, but we view recursive computations being implicitly multi-agent [Gurevich
and Spielmann 1997].

Q: Your programming language seems poor to me.

A: Nevertheless, the full sequential ASM thesis is that every bounded-work se-
quential algorithm can be adequately represented by an appropriate ASM. Actu-
ally it can be proved given the claims above and given an appropriate definition of
bounded work.

Q: I would like to see how you do that.

4 Bounded Work

A: Again, let A range over sequential algorithms, and let ϕ be the state transfor-
mation induced by one step of A. By Claim 2, the states of A are structures of
the same finite vocabulary Υ. Recall the stipulation that ϕS = S for every final
state of A, so that ϕ is defined at every state of A.

Call ϕ a bounded-work transformation if there exists a finite set T of terms such
that UpdateSetϕ(S1) = UpdateSetϕ(S2) whenever ValueS1(t) = ValueS2(t) for all
t ∈ T .

Theorem 1 If ϕ is bounded-work, then there exists an ASM program Π such that
Vocabulary(Π) ⊆ Υ and the one-step transformation ψ associated with Π coincides
with ϕ on all states of A. In other words,

UpdateSetϕ(S) = UpdateSetψ(S)

for all states S of A.
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Proof Let T witness that ϕ is bounded-work. Without loss of generality, T is
closed under subterms. Terms in T will be called critical. For every state S, the
elements ValueS(t) with t ∈ T will be called critical elements of S.

Lemma 1 If u = (�, a0) ∈ UpdateSetϕ(S) and � = (f, (a1, . . . , aj)), then the ele-
ments a0, . . . , aj are critical.

It follows that there is a bound on the size of UpdateSetϕ(S) that depends on ϕ
but not on S.

Proof of Lemma 1. By contradiction, assume that some ai is not critical. Let
bi be a fresh element and let S ′ be the state isomorphic to S which is obtained
from S by replacing ai with bi. It is easy to see that, for every critical term t,
ValueS(t) = ValueS′(t). It follows that UpdateSetϕ(S) = UpdateSetϕ(S ′). There-
fore the update u belongs to UpdateSetϕ(S ′) but this is impossible because u
involves element ai which isn’t an element of S ′. ✷

At each state S, the equality relation between critical elements induces an equiv-
alence relation

ES(t1, t2) : ⇐⇒ ValueS(t1) = ValueS(t2)

over critical terms. Call states S, S ′ similar if ES = ES′ . Notice that, since
there are only finitely many critical terms, there are only finitely many possible
equivalence relations ES. In other words, there is a finite collection {S1, . . . Sm} of
states such that every state is similar to one of the states Si.

Lemma 2 For every state S of A, there exists an ASM program ΠS such that
Vocabulary(ΠS) ⊆ Υ and the one-step transformation ψS associated with ΠS coin-
cides with ϕ on all states of A similar to S.

Proof of Lemma 2. Consider any update u = (�, a0) ∈ UpdateSetϕ(S) where � =
(f, (a1, . . . , aj)). By Lemma 1, there exist critical terms t0, . . . , tj with ValueS(ti) =
ai, so that u can be generated by the following update rule Ru:

f(t1, . . . , tj) := t0

We show that, over any state S ′ similar to S, the update

(�′,ValueS′(t0)) where �′ = (f, (ValueS′(t1), . . . ,ValueS′(tj)))

generated by Ru belongs to UpdateSetϕ(S ′). Without loss of generality, S and S ′

have no common elements. Change S ′ by replacing every critical element ValueS′(t)
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with the corresponding critical element ValueS(t) in S. The resulting structure S ′′

is isomorphic to S ′; by Claim 1, S ′′ is a state of A. Further, S ′′ has the same
values for the critical terms as S does. Thus UpdateSetϕ(S) = UpdateSetϕ(S ′′)
and therefore Ru generates one of the updates in UpdateSetϕ(S ′′). Since S ′ and
S ′′ are isomorphic, Ru generates one of the updates in UpdateSetϕ(S ′).

The desired ΠS is the do-in-parallel block of all rules Ru where u ranges over
UpdateSetϕ(S). ✷

Q: Something bothers me in that proof. Suppose that A itself is given by a block
Π of update rules and that one of the update rules, let me call it R, is f(s) := t
where the terms s, t are critical but the term f(s) is not. Suppose further that f(s)
and t have the same values in S but different values in S ′. Since R does nothing
over S, ΠS will overlook R. However, R generates a nontrivial update over S ′, and
so ΠS will not simulate Π correctly over S ′.

A: That scenario seems plausible but it is contradictory. Since S ′′ is isomor-
phic to S ′, R generates a nontrivial update over S ′′. But UpdateSetϕ(S) =
UpdateSetϕ(S ′′) and thus, contrary to one of your assumptions, R generates a
nontrivial update over S.

Now let’s finish the proof of the theorem. Notice that, for every S, there exists a
Boolean-valued term δS that takes value true in a structure S ′ if and only if S ′ is
similar to S. Let ΠS be as in Lemma 2. Consider a maximal collection S1, . . . , Sm
of states of A such that every state is similar to one of the states Si. The desired
ASM program Π is the program

if δS1 then ΠS1

elseif δS2 then ΠS2

...
elseif δSm then ΠSm

endif

That completes the proof of the Theorem. ✷

5 Sequential Algorithms and their Environments

Q: Until now, we have discussed sequential algorithms that do not interact with
the outside world, closed algorithms. In reality, many sequential algorithms do
interact with their environments. How do you incorporate the environment into
the picture?

A: Intuitively, an active environment is an outside agent.
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Q: In reality there may be several outside agents influencing our algorithm.

A: True. In the distributed paradigm, we deal explicitly with multiple agents
[Gurevich 1995]. In the sequential paradigm, agents are implicit, and the environ-
ment accounts for all outside agents. Typically, we do not have a program for the
active environment, but we may know some restrictions, or integrity constraints,
on its actions. Consider for example the following version of the Euclidean algo-
rithm which repeatedly computes the greatest common divisor. For brevity, I omit
the keywords “do in-parallel” and “enddo”; this is a common practice in ASM
applications.

if Mode = Initial then
a := Input1, b := Input2, Mode := Compute

endif

if Mode = Compute then
if b = 0 then

d := a, Mode := Initial
elseif b = 1 then

d := 1, Mode := Initial
else

a := b, b := a mod b
endif

endif

Here Input1 and Input2 are changed by the environment. It is assumed though
that they are natural numbers.

Q: What else can they be? I thought that the basic set of the Euclidean algorithm
contains only natural numbers.

A: Recall that every state contains (elements called) true, false, undef. The
definition of states of the generalized Euclidean algorithm may allow you to have
other elements, even though those additional elements are irrelevant as far as our
algorithm is concerned.

Q: Do you want to reconsider any of the five claims in Section 3?

A: No, the five claims can be justified as before.

Q: But the situation is quite different. A sequential algorithm can input and
output data as it runs.

A: We can abstract from the output phenomenon. As far as our algorithm is
concerned, the output is miraculously taken away. To account for the input phe-
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nomenon, change the notion of run. Again, let A be a sequential algorithm and
ϕ be the state transformation induced by executing one step of A. If A is not
influenced by the environment, then a run of A is a sequence

S0, S1, S2, . . .

of states where S0 is an initial state and every Si+1 = ϕSi. In general, a run is a
sequence

S0, S1, S
′
1, S2, S

′
2, . . .

of states where S0 is an initial state, S1 = ϕS0, S ′
1 is obtained from S1 by an

action of the environment, S2 = ϕS ′
1, S

′
2 is obtained from S2 by an action of the

environment, and so on.

Q: Do you mean that there is a particular state transformation ψ such that S ′
i =

ψSi?

A: If particular means deterministic, then the answer is no. It may be possible
that Si coincides with Sj, but S ′

i differs from S ′
j. Consider for example a run of

the generalized Euclidean algorithm where the first pair of inputs equals the third
pair of inputs. The fourth pair of inputs can be different from the second pair.

A related phenomenon is that, in the case of active environment, a computation
that comes across contradicting updates may not halt forever. You may have a
scenario where the update set of, say, S ′

7 is contradictory, so that S8 = S ′
7, but —

due to the active environment — S ′
8 differs from S8, and the update set of S ′

8 is
consistent.

Q: Or the update set of S0 is contradictory, S1 = S0 and the update set of S ′
1 is

consistent.

A: Right.

Q: It is strange that the algorithm and the environment take turns to act. In
the case of the generalized Euclidean algorithm for example, the environment may
prepare new Input1 and Input2 at the time that the algorithm works on the old
Input1 and Input2.

A: The definition of run reflects the point of view of the executor of our algorithm.
He will not see the new inputs until he finishes with the old ones. As far as he
is concerned, the new inputs could appear after he finishes with the old ones.
Different agents may see the same computation very differently.

Q: I guess Theorem 1 remains valid.

A: Yes. There is no need to extend the ASM programming language.
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Q: Isn’t the new definition of run too general? S ′
i may be any state, independently

of what Si is.

A: I think the generality is needed, but indeed, in applications, the environment
usually satisfies stringent restrictions. For example, it may change only particular
functions or particular locations. Typically, it changes only a bounded number of
locations at a time. Often, as in the case of the generalized Euclidean algorithm,
there are several functions f1, . . . , fk under complete control of the environment,
but the environment cannot change any other function. In such a case, it may be
convenient to think that the algorithm computes Si+1 directly from Si querying
the environment about the values of external (or monitored) functions fi.

Q: What if A reaches some state Si and then queries the environment, but the
environment does not reply, so that A is stuck forever in Si. I can imagine for
example that the generalized Euclidean algorithm waits for me to provide Input1
and Input2, but I have no intention to do so.

A: Then Si is the last state of the run.

Q: A practical algorithm may use a timer and thus wait only so long.

A: True. But the notion of real-time algorithm is one of those generalizations that
we will have to discuss some other time.

Q: Let me come back to Claim 3 according to which the basic set does not change
during the computation. A program that runs on your computer may require
additional space from time to time. It may issue a NEW command or something
like that and get more space.

A: On a higher abstraction level, we may not see the space. We will see only new
elements.

Q: I understand that. The problem is that our algorithm does not do anything to
acquire the new elements except for asking for them. You’ve mentioned that the
initial state of a computation may have a reserve of potential elements. How is
one supposed to get elements from the reserve?

A: What do you think?

Q: I don’t know. You may assume that the reserve is organized as natural numbers
with a distinguished initial element and a unary successor function. When you need
another element, you remove that initial element from the reserve and make its
successor initial. This is not much work, but this is something that the original
algorithm does not do.

A: Who does this work?
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Q: I see where you are going. It is the task of the environment to provide new
elements.

A: Right. Intuitively, the reserve is a naked set. We may use one of those external
functions to fish out an element from the reserve. It seemed convenient to me
to pretend nevertheless that our algorithm does the work. To this end, the ASM
programming language provides special create (or import) rules

create x
R(x)

endcreate

This create reflects a request to the environment for more resources. The envi-
ronment obliges and provides a new element. Typically a create rule is used to
extend some particular universe U and then it is abbreviated as extend U. For
example, consider a Turing machine with finite tape where Last is the rightmost
cell. An instruction may involve an extension of the tape:

extend Tape with x
do in-parallel

Successor(Last) := x
Predecessor(x) := Last
Last := x

enddo
endextend

Q: I guess Successor(x) = Predecessor(x) = undef for the reserve elements.

A: Correct. The reserve elements have no meaningful relationships except for the
equality/inequality relationships.

Q: If you use create rules then your terms are not ground anymore.

A: Right. Some definitions have to be refined. For example, a program is now a
rule without free variables.

Q: If you don’t fish the new elements from the reserve but bring them from outside,
then you have to extend all your functions. Of course, the extension is almost
everywhere trivial, but still it involves unbounded work.

A: We do not require that the active environment is bounded-work. On the other
hand, this discussion is supposed to be bounded-work. Let’s finish here. It was a
pleasure. See you around.

Q: Thank you. Bye.
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6 Remarks

Now that my inquisitive friend is gone, let me throw in some quick remarks.

6.1 Nondeterministic Sequential Algorithms

One can argue that a real algorithm, being an exact recipe for execution, has to
be deterministic, that a nondeterministic algorithm is a contradiction in terms.
Even if you buy the first claim (that real algorithms are deterministic), you may
want to reject the second (that a nondeterministic algorithm is a contradiction in
terms). In reality, nondeterministic algorithms are useful, for example, as higher
level descriptions (specifications) of “real” algorithms.

Imagine now that you execute a nondeterministic algorithm A. In a given state,
you may have several alternatives for your actions and you have to choose one
of the available alternatives. The program of A gives you no instructions how to
make the choice. What can you do? Not much. Somebody should make the choice
for you. In our setup, the active environment will make the choices. External
functions can be used to manifest the choices made by the active environment. In
that sense, nondeterminism has been handled already.

It may be convenient though to pretend that the sequential algorithm itself chooses
among nondeterministic alternatives. Taking into account that one-step transfor-
mation should be bounded work, it is natural to require that nondeterminism is
bounded, so that, at each step, the choice is limited to a bounded number of
alternatives. One example is nondeterministic Turing machines.

The programming language of nondeterministic sequential ASMs is the program-
ming language of deterministic sequential ASMs enriched with a choose-among
constructor that allows one to construct rules of the form

choose among
R1

. . .
Rk

endchoose

where R1, . . . , Rk are previously constructed rules. It is easy to see that Theorem 1
remains valid in the nondeterministic sequential case.
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6.2 Beyond the Sequential Paradigm

I would like to emphasize that general ASMs are not necessarily sequential. They
can be parallel, distributed and can involve explicit unbounded nondeterminism
[Gurevich 1995]. There are also real-time ASMs. Further, a computer system may
involve numerous abstraction levels, in which case it is described not by a single
ASM but by a hierarchy of ASMs. The ASM computation model gave rise to a
formal method applied in hardware and software engineering [Börger 1995]. All
this is beyond the scope of this article. Again, we refer the reader to [Börger and
Huggins 1998, ASM Michigan, ASM Paderborn]. Generalizations of the sequential
ASM thesis will be addressed elsewhere.

6.3 Higher-Order Structures

First-order structures are versatile and provide the necessary generality. (We use
first-order structures without limiting ourselves to first-order logic, which is a com-
mon practice in mathematics; think for example about graph theory, group theory
or set theory.) In particular, first-order structures support informal typing. How-
ever, there are reasons (e.g. debugging) to introduce formal, explicit typing. Many
programming languages went this way. Typed ASMs can be found e.g. in [Del
Castillo, Gurevich and Stroetmann 1998]. Typing leads naturally to (what logi-
cians call) higher-order structures.

6.4 Positive Information Only

In 1970, E. F. Codd introduced the relational database model [Codd 1970] accord-
ing to which database states by definition are first-order structures, albeit purely
relational. A relation is thought of as a set and represented by a table that contains
only positive information; a tuple ā does not belong to a relation R if it differs from
every tuple in R. Assuming this positive-information-only representation, one can
reasonably argue that the work of adding a new element to a relational structure is
bounded. The positive-information-only representation can be extended naturally
to structures with functions provided that every function has a default value.

6.5 The Frugal Syntax of ASMs

The sequential ASM thesis speaks about the expressive power of ASMs. By expres-
sive power I mean here the power to model algorithms in step-for-step fashion. One
may argue that there are programming languages with parallelism whose expres-
sive power exceeds that of the ASM programming language. In that connection,
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it may be surprising how frugal the ASM syntax is. In my eyes, the frugal syntax,
clear semantics and rich expressivity of the ASM programming language make it
an appetizing vehicle for specification, verification, design, etc.

The syntax of sequential ASM rules can be further simplified by means of normal
forms. One normal form can be derived from the proof of Theorem 1. Another
normal form is a do-in-parallel block of conditional updates. One needs, however,
to balance logical simplicity and programming convenience. In this connection see
the Pragmatic Occam Razor in [Gurevich 1995].

6.6 Denotational Semantics and ASMs

In the denotational approach, the meaning of a program is an element of some
mathematical domain. That works well in many simple cases. For example, the
meaning of an ASM program at a given state, in the sense of firing the program
just once, is a set of updates. In general, however, the meaning of a program may
be way too hard to compute. Consider for example the halting problem for Turing
machines that take no input. It is reasonable to assume that the meaning of such
a machine includes the indication whether it halts or does not halt, and thus the
meaning is not computable. In practice, the question that people address usually
in denotational papers is not what is the meaning of a program but what is the
type of that meaning, hence the close and fruitful connection between denotational
semantics and type theory. The ASM approach is less ambitious but more realistic.
A given algorithm is modeled by an ASM (or a hierarchy of ASMs); that gives a
precise meaning to the algorithm. But if you want to establish some properties of
your algorithm, you need to analyse the mathematical model.

Lowering of ambition has its advantages. In the denotational literature, usually,
the meaning of a program reflects only the input-output behavior of the program.
Accordingly, the meaning of a nonterminating program is the bottom element of
the appropriate mathematical domain. In the ASM approach, the input-output
behaviour is only one aspect of a program, and meaningful computations can be
nonterminating. Very often, in denotational literature, a particular approach is
explained on a toy programming language, and it is not clear how to extend the
approach to the languages of real-world programs, say, to the C programming
language. The ASM community tends to deal with real-world languages. For ex-
ample, Egon Börger explained full Prolog in [Börger 1990a, 1990b, 1992]. Using
a successive refinement method, Börger and Rosenzweig established the correct-
ness of the standard Prolog implementation [Börger and Rosenzweig 1994]. The C
programming language has been addressed in [Gurevich and Huggins 1992]. The
extension of the denotational approach to distributed computing is problematic.
The extension of the ASM approach to distributed computing was natural [Gure-
vich 1995].
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6.7 Algebraic Specifications and ASMs

In the science of universal algebra, an algebra is a (possibly many-sorted) first-
order structure whose vocabulary contains (in addition to the symbols of sorts)
only function symbols. An abstract data type is an isomorphism class of algebras,
and an algebraic specification is a description of one or more such abstract data
types; see [Wirsing 1990]. The descriptions are typically systems of term equations.
How does a system E of equations define an algebra? One popular solution is to
take the initial algebra in the category of algebras defined by E. The algebra of
terms (of the vocabulary of E) factored over E (so that terms t1, t2 are made equal
if the equality t1 = t2 follows from E) is such an initial algebra.

The equational approach, so natural in algebra [Tarski 1966], has been used widely
in programming theory. In particular it was suggested to describe program states
by means of equations. Here one encounters an obvious limitation. While more
standard data structures admit simple equational characterizations, an easy infor-
mation argument shows that most states do not admit simple axiomatizations of
any fixed type. Furthermore, one does not need to go far to find natural states that
do not suit the equational approach well. Think about finite graphs or databases
for example. The equational approach is too restrictive to deal with the states of
arbitrary sequential (let alone distributed) algorithms.

In the ASM approach, relations are viewed as special functions, and thus the states
of ASMs can be viewed as algebras as well. (Accordingly a run of an ASM can be
seen as an evolution of an algebra, hence the older term “evolving algebra” for an
abstract state machine.) However, in the ASM approach, there is no prescribed
way to represent a state. Again, the ASM approach is less ambitious and more
realistic. In cases when we need state representations, e.g. to build ASM tools,
we use representations most convenient for the purpose. Term equations may be
a part of the picture, e.g. as integrity constraints.

6.8 Some Related or Unrelated Work

I do not know of any other author who has worked explicitly on the task of captur-
ing sequential algorithms in the strong sense discussed above. Turing’s thesis was
elaborated by Robin Gandy in [Gandy 1980]. There is a similarity between Unity
[Chandy and Misra 1988], which builds on Dijkstra’s guarded command approach
[Dijkstra 1976], and parallel ASMs. Since parallelism is so inherent in Unity and
since this article is devoted primarily to sequential ASMs, I will delay the ASM
vs. Unity issue to another occasion.

The concepts involved in the definition of sequential ASMs are few. With the
notable exception of the do-in-parallel constructor, they are very common. Con-
sequently, one may not see much novelty in the notion of ASM. Lately several
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colleagues, including Cremers, Ganzinger and Rajlich, brought to my attention
their articles, in particular [Cremers and Hibbard 1978, Cremers and Hibbard
1985, Ganzinger 1983, Rajlich 1977], supposedly similar to the ASM approach. I
certainly want to be fair and give my colleagues their due. However, I have not
found any of these articles particularly similar to the ASM approach. For brevity,
let me address only one of the similarity claims.

[Ganzinger 1983] is a denotational semantics article. Its example programming
language is a while-language with procedures and abstract data types. The mean-
ing of a while statement is the least fixed point of a recursive equation. If the
loop does not terminate, its meaning is the bottom element of the appropriate
category of algebras. [Ganzinger 1983] is also an algebraic specification article.
Its declared goal is to extend denotational semantics to “programs over abstractly
specified data types”. The program states in [Ganzinger 1983] are initial algebras
in categories defined by systems of equations. Since ASM states are algebras as
well, there is a similarity there. However, as I explained above, in the remark on
Algebraic Specifications vs. ASMs, the similarity hides a substantial dissimilarity.
In the spirit of algebraic specifications, Ganzinger proves that the state transfor-
mations described by his programs are functorial. But the functoriality comes at
a price: a severe restriction on equality tests in the programming language. Is the
price worth paying? What does functoriality buy us? There is no explanation in
the paper.

6.9 The Early ASM Paper Trail

In 1982, I moved from logic to computer science (and to Michigan). Teaching
Pascal and noting that different compilers interpret Pascal differently, I wondered
— as many did before me — what are programming languages, mathematically
speaking. For a while, I studied the wisdom of the time, especially denotational
semantics and algebraic specifications. Certain aspects of those approaches ap-
pealed to this logician and former algebraist. I felt though that neither approach
was realistic. It occurred to me that, in a sense, Turing solved the problem of the
semantics of programs. Each program can be simulated and thus given a precise
meaning by a Turing machine. The obvious problem was that Turing machines
were so low level. I worried also about reflecting properly the bounded resources of
a computation. All that led me to “Reconsidering Turing’s Thesis: Toward More
Realistic Semantics of Programs” [Gurevich 1984] and then to “A New Thesis”
[Gurevich 1985]. “Logic and the challenge of computer science” [Gurevich 1988a]
was written about the same time though the publication of the book was much
delayed by the publisher. Another early paper was “Algorithms in the world of
bounded resources” [Gurevich 1988b]. The first full-language study resulted in
the doctoral dissertation “Algebraic operational semantics and Modula-2” [Morris
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1988] with an extended abstract [Gurevich and Morris 1987]. During the 1989
conference on Computer Science Logics (CSL’89), Egon Börger presented the first
part of his fundamental study of full Prolog by means of ASMs [Börger 1990a],
and Gurevich and Moss presented the first distributed ASM [Gurevich and Moss
1990].

My early ASM work contained no references to [Kolmogorov and Uspenski 1958] or
[Schönhage 1980] because I learned about these two articles later. Neither article
puts forward a foundational thesis explicitly. The speculation in [Gurevich 1988c]
about the thesis behind the notion of Kolmogorov-Uspenski machine was later
confirmed by Vladimir Uspenski [Uspenski 1992, page 396].
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