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1 Introduction

We consider the monadic second-order theory of linear order. For the sake of

brevity, linearly ordered sets will be called chains.

Let A = (A <) be a chain. A formula ¢(¢) with one free individual variable ¢
defines a point-set on A which contains the points of A that satisfy ¢(¢). As
usually we identify a subset of A with its characteristic predicate and we will

say that such a formula defines a predicate on A.

A formula x(X) with one free monadic predicate variable defines the set of
predicates (or family of point-sets) on A that satisfy x(X). This family is said
to be definable by x(X) in A. Suppose that A is a subchain of B = (B, <).
With a formula x(X, A) we associate the following family of point-sets (or set
of predicates) {P : P C A and x(P, A) holds in B} on A. This family is said
to be definable by x in A with B at the background.

*This author is on leave of absence from the University of Michigan. His work on the paper
was supported by the grant CCR 95-04375.



Note that in such a definition bound individual (respectively predicate) variables
of x range over B (respectively over subsets of B). Hence, it is reasonable to
expect that the presence of a background chain B allows one to define point sets

(or families of point-sets ) on A which are not definable inside A. We show

Theorem 1 A family of point-sets is definable in the chain N of natural num-
bers if and only if it is definable in N with the chain of reals at the background.

Hence, the quantification over the reals does not allow to define more point-set

families on the natural numbers.

Let us point out some difficulties which arise when one attempts to prove The-
orem 1 and the techniques used to overcome these difficulties. The only-if part
of the theorem is easily obtained by the method of interpretation (see Theorem
5). This method provides an algorithm that for a formula x(X) constructs a
formula x*(X, A) such that for any chain B and its subchain A = (A, <) a
family of point-sets on A is definable by x(X) in A if and only if it is defin-
able by x*(X, A) in A with B at the background. Hence, definability with a
background is at least as powerful as definability without any background. To
show the other direction of Theorem 1 one may also try to look for a translation

algorithm. However,

Theorem 2 There is no algorithm that translates an arbitrary monadic formula
x(X, A) into a monadic formula $(X) in such a way that the point-set family
defined by ¢(X) in N is equal to the point-set family defined in N by x(X, A)
with R at the background.

In the above theorem and below we use the convention that X, A are monadic
predicate variables and a formula does not contain free variables except for those

shown explicitly.

In order to see that Theorem 2 holds recall that the satisfiability problem for
the monadic theory of real order is undecidable [6]. On the other hand, the
satisflability problem is decidable over the natural numbers [1]. Now observe
that if ¢ is a sentence, then it is satisfiable over the reals iff ¢ AX C A defines (in
N with the reals at the background) the family of all point-sets on the natural
numbers. Hence, the translation of ¢ A X C A should be a formula ¢*(X)
such that VX. ¢*(X) is satisfiable over the natural numbers. In this way the



undecidable problem of satisfiability over the reals is reduced by the translation
mapping to the decidable problem of satisfiability over the natural numbers.

Hence, the translation cannot be recursive.

The proof of the #f direction of Theorem 1 will be based on the composition
theorem [6, 2]. The composition theorem is a very powerful theorem for the
proofs of decidability of various theories [6, 3]. Here is the first application of
the composition theorem to definability. The method of interpretation is also

used extensively in our proof.

The rest of the paper is organized as follows. In Section 2 we fix notations
and terminology, state some preliminary results and provide a formulation of
the composition theorem which is needed later. This version of the composition
theorem is weaker than the version in [6], however, its formulation is simple. We
recall also the method of interpretation and show the easy direction of Theorem

1.

In Section 3 Theorem 1 is proved. The results of Section 4 imply

Theorem 3 For any closed subset F of the reals, a family of point-sets is de-
finable in the subchain F = (F, <) of reals if and only if it is definable in F
with the chain of reals at the background.

In fact, we prove a somewhat stronger theorem, Theorem 13, in Section 4.
We show that there is a uniform way to translate a definition (in the closed
subchains of the reals) with the reals at the background into a definition without

background. It is instructive to contrast Theorem 3 with

Theorem 4 There exists an open subset G of the reals and a formula x(X, G)
such that the family of point-sets is definable by x(X, G) in G = (G, <) with
the reals at the background is not definable in G.

Indeed, let Gg be the open subset (0,1)+ (1,2)+(2,3)+ ... of the reals. Since
there are only countably many definable point-families, there is a subset P of
natural numbers such that the family {(3,2 + 1) : 4 € P} is not definable in
(Go, <). The desired G is the open set [J{(2¢,2¢+2): ¢ ¢ P}U[J{(2¢,2i+
1) : i € P}. Since G is isomorphic to Go, the point-set family {(2¢,2¢+1) : ¢ €
P} is not definable in G. Yet this family is definable in G with the reals at



the background; it consists of all maximal intervals in G with a positive length
interval of R — G adjacent to it at the right.

We conclude this section with

Open Problem: Is it true that a family of point-sets is definable in the chain
Q of rationals if and only if it is definable in @ with the chain of reals at the
background.

2 Preliminaries

2.1 Notations and terminology

N is the set of natural numbers; R is the set of real numbers, R2° is the set
of non negative reals; BOOL is the set of booleans and ¥ is a non-empty finite
set. A Y-predicate or X-coloring over a set A is a function from A into %; the
letters P, Q range over X-predicates. Whenever the domain A and the range
3 of P is clear from the context we use ‘predicate’ or ‘coloring’ for ‘X-predicate
over A’. A subset B of a set A will be identified with the corresponding boolean
predicate over B. Accordingly a point-set family is identified with the set of
corresponding boolean predicates. It is well-known that if ¥ is an alphabet of
size n > 1 and k is the least positive integer such that n < 2% then ¥-colorings
can be coded with k boolean predicates. The restriction of a predicate P onto
a set A will be denoted by P [ A

A chain is a linearly ordered set. Calligraphic letters A, B range over chains;
corresponding bold upper-case letters denote the domains of chains and bold
lower-case letters t, t' range over the domain of a chain. In particular, A" and
R are the chains of natural and real numbers, respectively. By an abuse of
notation we will use {0, 1, ..., k} both for the subset of natural numbers and for
the corresponding subchain of A/. Similarly, for t;,t2 € R we use [t,t3) both

for the subinterval and for the subchain of reals.

2.2 A variant of monadic theory of order

It will be slightly more convenient for us to deal with the following variant of

second-order monadic logic of order. The language (of this variant) of monadic



second-order theory of order (see e.g. [8]) has two types of variables: (1) first-
order (or individual) variables, and (2) Z-predicate (or X-color) variables for

each finite non-empty set 3.

The letter ¢ with subscripts and superscripts ranges over individual variables;
and upper-case case Latin letters are used for predicate variables. The atomic
formulas are formulas of the form: ¢; < ¢ and X(¢) = o, where X is a X-
predicate variable and o is an element of 3. The formulas are constructed from
atomic formulas by logical connectives and first and second-order quantifiers.
We write ¢(X1,...,Xn, t) to indicate that the free variables of ¢ are among
{X1,..., Xn, t}.

The formulas are interpreted over chains. When a formula is interpreted over a
chain A = (A, <), its individual variables range over the elements of A and the

3-predicates variables range over the functions in A — X.

We write A, Py, P2, t &= ¢(X1, X3, t) if the assignment of P; to X; and t
to t satisfles ¢(X1, X2, ¢) in the chain ,A. When there is no confusion we use
A ': ¢(P1, Pz, t) fOI‘ A, P]_,Pz, t 'Z d)(Xl, Xz, t)

We use standard abbreviations, e.g., for a boolean predicate variable X, we
write X (t) for X(¢) = TRUE, for boolean predicates X, X' we write X C X'
for Vt. X(t) — X'(t) and for {o1,...,0x}-predicate ¥ we write Y (¢;) = Y (¢)
for (Y(t1) =01 AY () =01) V...V (Y ($1) = ox AY () = 0%).

2.3 Method of Interpretation

The following theorem is immediately obtained by interpreting a subchain A of
B in the chain B augmented by a unary predicate A (see [5] for the detailed

description of the methods of interpretation).

Theorem 5 Let B = (B, <) be a chain and A = (A, <) be a subchain of B.
Let ¢4(X1,...,Xn, A) be the formula constructed by relativizing all first-order
quantifiers of a formulae ¢(X1,...,X,) to a boolean predicate variable A (see
Fig. 1). Then

1.B, Py,...,Py, AE¢4(Xy,...,Xn, A)iffA P11 A,..,P, | AE
B(X1,..., Xn).



Input: A formula ¢ and a monadic boolean predicate variable A that does
not occurs in ¢.

Output: A formula ¢$* whose free variables are those of ¢ plus A.

#4 is defined inductively on the structure of ¢ by the following rules:
1. If ¢ is without quantifiers, then ¢4 = ¢

2. If ¢ = ¢1 Aga, or ¢ = $1V ¢2, or ¢ = ¢y then ¢# = ¢ A $Z, or
¢4 = ¢t v ¢4 or ¢4 = —¢# | respectively.

3. If ¢ = 3X.¢1 or ¢ = VX. ¢1, where X is a predicate variable, then
4 = (3X.¢%) or ¢4 = (VX.4%), respectively.

4. If ¢ = Ft.¢py or ¢ = Vi. ¢y, where ¢ is a first-order variable, then
¢4 = Ft.(A() A 3) or ¢4 = Vi.(A(t) — ¢2), respectively.

Figure 1: Relativizing all first-order variables of ¢ to A

2. If X4,..., X, are boolean predicate variables then

B, Pi,....,Pn, A ¢A(X1,..., Xn, ,AVAX1 CAN...ANXn CAff
Aa Pla"'aPn ':¢(X1aaXn)

Corollary 6 If a family of point-sets is definable in A, then it is definable in
A with B at the background.

2.4 Coloring Indices Theorem

Definition 1 (Partition) Formulas ¢1(X1,...,Xn), ..., ox(X1,...,Xn) form
a partition if g1V ¢a V...V ¢y is valid and for all 1 # j the formulas ¢; A ¢;

are unsatisfiable.

We often say “a set {¢1,...,¢r} is a partition” instead of “formulas ¢1, ..., d%

form a partition”.

Definition 2 (Lezicographic Sum) The lexicographic sum of (disjoint) chains
A; with respect to a chain Ind (notation LX({A; : i € Ind)) is the chain A =
(A, <), where A = UicrnaAi and point t € A; precedes point t' € A in A if i
precedes 7 in Ind or i = j and t precedes t' in A;.



We write Ag + A; for LE(A; : 4 € {0, 1}). We refer to .A; as the summand
chains and to Ind as the indices chain of LX(A; : i € Ind).

Definition 3 (Induced predicate or induced coloring of indices) Let ¢1(X1,..., Xn),
vy 8(X1, ..., Xn) be a partition. Let Py,..., Py be predicates over LX(A; :

t € Indy. The predicate Q : Ind — {1,...,k} is said to be induced by
Pi,...,P, with respect to the partition ¢1,...,¢r (and LE(A; : i € Ind))

if Q is defined as follows:

Q@) =jifand only if Ai, P1 T Ay, .. ,Pa [ A E¢i(Xy,..., Xn).

We often refer to Q defined as above as coloring of indices induced by P4, ..., P,
with respect to the partition ¢1,..., dk.

Note that the requirement that ¢1,..., ¢, is a partition guarantees that Q is
well defined.

The following theorem is a weak version of Composition Theorem (Shelah [6]).

Its proof will be sketched in the Appendix.

Theorem 7 (Colored Indices Theorem.) For every formula x(X1, ..., Xp) there
ezist @ partition ¢1(X1,..., Xn), 02(X1,..., Xn),-. -, 0x(X1,..., Xn) and a for-
mula ¢(Y') such that LX(A; : i € Ind),P1,... Py E x(X1,...,Xy) if and only if
Ind, Q = ¢(Y) where Q is induced by Py, ..., P, with respect to the partition
®1,...,0r. Moreover, there exists an algorithm that constructs ¢1,¢2,..., ¢k

and ¢ from x.

The next lemma follows from the colored indices theorem and will be referred

later.

Lemma 8 For every chain B and for every formula x(X1,...,Xn) (Xi are
boolean predicate variables) there ezist formulas x" (X1, ..., Xsn) and x' (X1, ..., Xn)
such that for every chain A=(A, <) and subsets P1,...,P, of A

1. A+B, Py, Pu = x(X1,. ., Xn) iff A, Pry.o o Po = X (X, Xn)

2. B+A Py, Polx(X,...,Xn) iff A, Py,.. Py EX (X,..., Xn)



Proof: Below only the case when x has only one free predicate variable X is
considered and formula x"(X) is constructed. The case with n free variables

and the construction of x! is similar.

By the colored indices theorem there is a partition ¢1(X),...,¢x(X) and a
formula ¢(Y") such that

A+ B, P = x(X)iff {0, 1},Q k= 4(Y),

where Q(0) = ¢ iff A, P |= ¢;(X) and Q(1) = j iff B, = ¢;(X).

Observe that every ¢(Y) is equivalent over {0, 1} to a quantifier free formula
¢'(Y) of the form \/I_ (Y (0) = mi AY (1) = k;).

Let jg be such that B, | ¢;,(X) (such j is unique because ¢1,...,d% is a

partition).

Let x"(X) be obtained from ¢'(Y") as follows:

Step 1 - Eliminate Y (1): Replace Y (1) = k; by TRUE if k; = jg and by FALSE

otherwise.

Step 2 - Eliminate Y (0): Replace Y (0) = my; by ¢m,;(X)

It is clear that the constructed formula x"(X) satisfies the conclusion of the

lemma. O

Remark 9 Note that the construction of X" (or x') from x is not necessarily
recursive, because Step 1 that eliminates occurrences of Y (1) is not necessary
recursive (this step is recursive whenever satisfiability of monadic formulas over

B is decidable). All other steps in the construction of X" from x are recursive.

Let us demonstrate that if the monadic theory of B is undecidable then x™ cannot
be recursive in x. Take any sentence ¢ and an individual variable to that does
not occur in ¢. Let ¢*(to) be obtained from ¢ by relativizing its first-order
quantifiers as follows: replace “AU” by “It > to” and Nt” by Vi > to”. Observe
that B = ¢ iff {0} + B = Jto.(¢*(t0) A -3t < to). Hence, the translation of
X C X ATto.(¢*(t0) ATt < to) is equivalent to TRUE over one point chain
{0} if and only if B | ¢. Since, by the assumption, the satisfiability problem
for B s undecidable and the equivalence problem over one element chain s

decidable, it follows that there is no recursive translation.



3 Definability in A" with the reals at the back-
ground
Theorem 10 For every x(X, A) there exists (X)) such that

R, P,N E x(X, A)AX C Aiff N, P | $(X)

Proof: Below we show that for every x(X, A) there exists 9(X) such that
R2% P,N = x(X, A)AX CAiff N, P = ¢(X) (1)

Theorem 10 follows immediately from (1) and Lemma 8(2).

First note that R2° is the lexicographic sum LE([i, i+ 1) : i € N). Therefore,
by the colored indices theorem there is a partition ¢1(X, A),...,¢r(X, A4) and
a formula ¢(Y") such that

R2% PN Ex(X, A)AX CAiIf N, Q & ¢(Y), where

2
Q is induced by P, N wrt ¢1(X, 4),...,dx(X, A). 2)

Observe that if R2%, P,N | x(X, A)A X C A then P C N. Therefore,
PN i, ¢4 1) is either the empty set or the singleton set {4}.

Since, ¢1(X, A),...,¢x(X, A) is a partition there are jo and j; such that

¢, ++ 1)a 0, {i} E ¢ju(Xa A) and [z, i+ 1)a {i}, {3 ¢j1(Xa A) (3)
For P C N define Q : N — {1,...,k} as follows:

g #PAL i+1)=0
Q(z)_{jl PN, i+1) = {i} ()

Suppose that P, N satisfy x(X, A)AX C A. Then Q is induced by P, N wrt
#1,- .., ¢x if and only if (4) holds.



Let ¢*(Y) be the formula which is obtained from ¢(Y) when the sub-formulas
Y (¢t) = m are replaced by FALSE for m ¢ {jo, j1}-

Let 9(X) be obtained from ¢*(Y) by eliminating Y (¢) as follows: replace Y () =
Jo by =X (t) and replace Y (¢) = j1 by X(t). It is clear that for every P C N
and for Q defined as in (4)

N, QE¢'(Y)ff N, P E ¢(X) (6)

Finally, to complete the proof observe that (1) follows from (2)-(6). ad

Remark 11 (Generalization) In the above proof we used the following property

of subintervals of reals:

Property 1: If a1 < by and ax < by then the intervals (a1, b1) and (a2, b3)

have the same monadic theory.
We used also the following property of the natural numbers:
Property 2: For every a there exists b > a such that no c lies between a and b.
The same proof shows the following

Theorem 12 Let B be a chain that satisfies Property 1 and let A be a subchain
of B, which satisfies Property 2. Suppose that for every A' C A

inf{t :teBandVa'c A't>a'} =inf{t :tc A andVa' € A't > a'}.

Then a set of predicates is definable in A if it is definable in A with B at the
background.

Note that the set of rationals and the set of irrationals satisfy Property 1. Prop-
erty 2 is satisfied by every well founded chain.

Let us illustrate that Property 1 is essential. Let P be a non-recursive subset of

natural numbers. Let R’ be obtained from R (the reals) by removing i+ 1/2 for

10



all i in P. Then, having R’ at the background allows one to define P which is
not definable in N.

Similarly, the requirement that inf{t :t € B andVa' € A't > a'}l = inf{t :
t € AandVa € A't > a'} for every A’ C A is essential. Let P be a non-
recursive subset of the positive natural numbers. Let A = N U {k — # : 0<
nENand0<kePYU{k+3— 527 : 0<n€N and k ¢ P}. Notice that
the order type of A is w?. It is easy to check that P is not definable in A but it

is definable in A with R at the background.

4 Definability in closed subchains of Reals

A subchain F = (F, <) of the reals is said to be closed if F is a closed subset of

the reals. The main result of this section is

Theorem 13 For every formula x(X, A) there exists a formula x°(X) such
that for every closed subchain F = (F,<) of the reals a set of predicates is
definable by x(X, A) in F with R at the background if and only if it is definable
by x°(X) in F.

This theorem immediately implies Theorem 3 stated in the Introduction.

In the first subsection the representation of closed subchains of reals as a lex-
icographic sum is given. Relying on this representation, we provide a proof of

Theorem 13 in the second subsection.

4.1 Representation of closed sets as a lexicographic sum

Let F be a subset of R. Real numbers t and t' are said to be F-equivalent
(notations t ~ t') if one of the following conditions holds: Let t; = min(t, t')
and let t; = maz(t, t'). Then

1. [t1, t] CF.
2. [t1, ts] CR\F.

3. There exists ts € [t1, t2) such that [t1, t3] C F and (t3, t2] CR\F.

11



Example 1 Let F be {0} U{} : i positive integer}. Then t1 ~p tz if t1 =
ta =0 orty, t2>1 orty,t2 <0 orty,ts €[y, 1)

It is clear that ~p is an equivalence relation.

Let I; be the set of all reals equivalent to t and let F¢ be the set of all points

in F equivalent to t.

Suppose that F is a closed subset of the reals. Observe that if there exists
t1 € F such that t; < t then there exists t; € F such that t € I;,; the desired
ts = sup{t; € F :t; < t}. It is also easy to see that for every t € F
either Iy = F¢ or there are t; < tz both in F such that (1) t; = sup(F¢); (2)
(t1, t2)NF =0 and (3) Iy = Fy U (t1, t2).

Let T; and F; be the subchains of reals over the sets I; and F;. The above

observations imply

Lemma 14 Assume that F = (F, <) is a subchain of R and F is a closed
subset of reals. Then there exists a subchain Ind of F such that

1. F=LS(F : icInd)

5 R LE(Z; : i€ Ind) If there exists no minimal element in F
"] (oo, t)+LE(T; : i€ Ind) If t is the minimal element of F

3. For every i € Ind either I; = F; or there exists an open subinterval B; of
reals such that T; = F; + B;.

4. There are formulas full(t), equiv(t1, t2) (these formulas are independent
from F) such that

(b) F 'Z equiv(tl, tz) thl ~Eg tz.

4.2 Proof of Theorem 13

Let us first generalize Lemma 8 as follows:

Lemma 15 For every chain B there exist functions Rightg and Leftg that
map formulas with free boolean predicate variables {X1,...X,, A} to formulas
with free variable {X1,...,X,} and satisfy the following conditions: for every
chain A

12



1. x*(X1,...,Xn) = Rightg(x(4, X1,...,X,)) implies

A+B, A, Py,....P Ex(4 X1,..., X )AX1 CA...AX, CAff
A, Pl,...Pn 'ZX*(Xl,,Xn)

2. x*(X1,...,Xn) = Leftg(x(4, X1,...,Xn)) tmplies

B4+A, A, Py,...,P=x(4, X1,...,X))AX1 CAAN...AXn CAff
A, Pl,...,Pn 'ZX*(Xl,,Xn)

3. Moreover, if By and Bi have the same monadic theory then Rightg, =
Rightp, and Leftg, = Leftg,.

Proof: Below we explain only how Rightg maps the formulas with free variables
{X, A}. The case when the set of free variables is {X;,...X,, A} and the

construction of Leftg is similar.
Step 1. Apply the colored indices theorem and find a partition ¢1(4, X),
.., ¢x(4, X) and a formula ¢(Y') such that

A+ B, A, PEx(4, X)ANX C Aif and only if
{0,1}, Q E ¢(Y), where Q is induced by A, P.

Step 2. Let ¢'(Y) be a formula \/I (Y (0) = m; AY(1) = k;) which is equivalent
to ¢(Y) over {0, 1}.

Step 3. Let jg be such that B,0,0 = ¢;,(4, X).

Step 4. Let ¢*(Y) be obtained from ¢'(Y) by eliminating Y (1) as follows:
replace Y (1) = m by TRUE for m = jg and by FALSE otherwise.

Step 5. Let ¢} (X) be obtained from ¢;( A4, X) when A(t) are replaced by TRUE.

Step 6. Let x*(X) be obtained from ¢*(Y) by eliminating Y (0) as follows:
replace Y (0) = m by ¢, (X).

Observe that only step 4, depends on B and for chains B; and By with the same

monadic theory, the same formulas are constructed.

Let us check that the constructed formula x*(X) satisfies the the conclusion of

the lemma.

13



The if direction: Assume that A, P = x*(X). Let Q be induced by A, P wrt
é1,...,¢x and A+ B.. Then

Q(1) = jg, (because P C A) (7)

and Q(0) =i iff A, A, P = ¢;(4, X).

By construction of step b it follows that
Q(0) =m if and only if A, P | ¢, (X) (8)
From (8), (7) and the constructions in steps 4 and 6, it follows that
{0, 1}, Q E4'(Y) (9)

Hence, by step 2
{0, 1}, Q E ¢(Y) (10)
and by step 1,
A+B, A,PEx(4, X)AXCA
The only-if direction: Assume that A+ B, A, P =x(A4, X)AX C A
Let Q be induced by A, P. Then

Q(1) = js, (because P C A) and (11)
Q0)=miff A, A, P | ¢n(4, X). (12)
{0, 1}, Q = ¢(Y), by the colored indices theorem (13)

From (11), (12), (13) and the construction of x* it follows that A, P = x*(X).
O

Let us proceed now with the proof of Theorem 13.

By Lemma 8, one can construct for every formula 8(X;, X,) aformula 6(X;, X,)
such that for all t and all subsets Py, P of [t, 00)

(—o0, t)+[t,00),P1, P2 E6(X1, X2) A X1 C X3 if and only if

[t,OO),Pl,Pz 'Z gl(Xl, Xz) ANX1CXs

14



Hence, if a set F has a minimal element t, then for every x(X, A) there exists
x®(X, A) such that

R,P,Fl=x(X, AAANX CAiff[t,00),P,FEX®(X, AANXCA (14

Let lbound be the sentence 3tVt'.¢’ > ¢ and let (X, A) be defined as (—lbound —
x(X, A)) A (lbound — x'*(X, A))

From (14), definition of ¢ and Lemma 14(2) it follows that for every closed F

R,P,F = x(X, A)AX C Aiff (1)
LY(T; : i€ Ind),P,FEy(X, A)AX C A.

where Ind and T; are as in Lemma 14.

Below we are going to construct x°(X) from ¢(X, A) such that
LS(T; : i€ Ind), P,F=9(X, AANX CAIffF, PE=x(X)  (16)

Theorem 13 is immediately obtained from (15) and (186).
Formula x°(X) is constructed by the following steps:

Step 1: Apply the colored indexes theorem to formula %(X, A)A X C A and
find a partition ¢1(X, 4),...,¢x(X, A) and a formula ¢(Y") such that LX(4; :
1€ Ind), Py, P E9(X, A)AX C Aif and only if Ind, Q = ¢(Y) where Q
is induced by Py, P with respect to the partition ¢1(X, A4),..., ¢x(X, A).

In particular, let F be a closed subset of the set R of reals and let Ind, F; and
Z; be as in Lemma 14. Then

LY(TZ; :i€Ind), P, FE¥(X, A)AX C Aif and only if Ind, Q E ¢(Y),
for Q defined as Q(¢) = j if Z;, P [ I;, F; E ¢,(X, A).

Step 2: Let equiv(ty, ta2) be the formula from Lemma 14(4). We say that a

predicate Z respects equiv if it satisfies the formula

Respect(Z) = V1. Via.(equiv(ty, t2) = Z(t1) = Z(¢2)).

Let ¢'(Y) be obtained from ¢(Y) when (A) atomic formulas t; < t; are re-
placed by t1 < t2 A —equiv(ty, t2), and (B) monadic quantifiers are replaced by
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the quantification over predicates that respects equiv, i.e., by replacing “vZ.”
(respectively “3Z.”) by “VZ.Respect(Z) — ” (respectively “3Z.Respect(Z)A”).

Let ¢(Y) be ¢'(Y') A Respect(Y).
Observe that ¢(Y) on F “simulates” ¢(Y') on Ind in the following sense:

if Ind,Q = ¢(Y) and Vi € Indvt € F;. Q'(t) = Q(3)
then F,Q' = o(Y).

if F,Q" E ¢(Y) and Q' is the restriction of Q' on Ind
then Ind, Q = ¢(Y) and Vi € Indvt € F;. Q'(t) = Q(4).

Step 3: Let full-colory, (¢, X) be formula3Z.(¢m (X, Z)AVE.(Z(t') + equiv(t, t')).
Suppose that t € F; and F; = Z;. Then

F, P,t = full-color, (¢, X) iff Q(z) = m,
where Q is the coloring induced by F, P wrt ¢:1(X, A), ..., ¢x(X, A) and
LE(Z; : i€ Ind).

Let ¢>i_'fu”(X, Z) be obtained from ¢;(X, A) as follows: first let ¢¥(X) be
the result of applying Rightg to ¢;(X, A), where B is any open subinterval of
reals and Rightg is the function from Lemma 15; second relativize all first-order
variables in ¢}(X) to Z. (see Fig. 1 in the proof of Theorem 5).

Let notfull-colory, (¢, X) be formula 3Z.(¢, 7% (X, Z)AVE Z(t') > equiv(t, t')).
Suppose that t € F; and F; # Z;. Then

F, P,t = notfull-color,, (¢, X) iff Q(z) = m,
where Q is the coloring induced by F, P wrt ¢1(X, A), ...¢x(X, A) and
LE(Z; : i€ Ind).

Step 4: Finally, let x°(X) be obtained from the formula ¢(Y') constructed in
Step 2, by eliminating Y (¢) as follows: replace “Y(t) = m” by “(full(¢) —
full-colory, (¢, X)) A (—full(¢) — notfull-colory, (¢, X)), where full(t) is the

formulas from Lemma 14(4).
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It is a routine task to verify that x°(z) indeed satisfies (16) and this completes
the proof of Theorem 13.

Remark 16 Slightly modifying the above proof one can show

Theorem 17 Let A;, B; be chains for every i in a chain Ind. Let C be defined
as LY{A;+ B; : i€ Ind) and let A= L3(A; : i€ Ind). Suppose that

1. All B; have the same monadic theory and

2. There ezists o formula equiv(ty1,t2) such that A |= equiv(ty, ta) iff t1,t2 €
A; for some i € Ind.

Then for every formula x(X, A) there exists a formula x*(X) such that

C, P, Al=x(X, A)AX C Aiff AP E x*(X).

Assumption I can be replaced by a weaker assumption

3. There exist a partition ¢1(t), ..., ¢x(t) and chains D1, ..., Dy such that if
A E ¢m(t) and t € A; then B; and D, have the same monadic theory.

Notice that this theorem does not generalize the theorem about closed subchains
because every B; is non-empty. However, one can formulate a theorem that

generalizes both these theorems.
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A A proof of Colored Indices Theorem

We presume that the reader knows subsections 3.1 and 3.2 of [3].

Letter £ ranges over finite sequences of natural numbers (such sequences are

called alternation types in [3]).

In [3], for every £ and a natural number ! a finite set called £ — I- Box is defined.
Then to every element b of £ — I- Box a formula ¢3(X1,...,X;) is assigned
(Theorem 1.2 in [2]). The construction of boxes and the formulas assigned to
the elements of the boxes is recursive. It will be convenient to view the elements
of every £ — [-Box as ordered in some way and we will refer to an element of a

box by its place in this order. Let us mention the following

Fact 1:

1. The set of formulas assigned to the elements of £ —I- Box forms a partition.

2. For every formula (X1, ..., X;) whose free variables are among { X1, ..., X}
there are £ and a subset B of £ — [-Box such that 8 is equivalent to the

disjunction V;ep¢i(X1,..., X1). Moreover £ and B are recursive in 6.
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Remark 18 The above fact is easily extracted from the results in [6, 3, 2] for
the standard monadic second-order logic with only boolean predicate variables. It
has a proof similar to the proof of Theorem 1.2 in [2] or Lemma 2.1 in [6]. We
are not going to reprove it here for the following reasons: (1) The definitions of
bozes and the corresponding formulas require a considerable amount of notations
which are not needed elsewhere. (2) There is a well-written paper by W. Thomas
[7] which provides a clear exposition of the Composition Theorem with many
detatled ezamples; in [7] bozes are called types and the corresponding formulas

are called Hintika formulas.

Fact 1 also holds for the variant with X-predicate variables; a X-predicate can
be coded by a tuple of boolean predicates and the proof for our variant is an

immediate adaptation of the proofs for the boolean case.

Let £ be a finite sequence of natural numbers, let [ be a natural number, n be the
number of elements in £ —I- Box and let X=(X,...X;) be a tuple of predicates
on LE{A; : i € Ind). The n-tuple P(£,1,X) = (Pp(£,1,X) : 0 < b < n)of

boolean predicates on Ind is defined as follows:

Pb(z) holds lﬂ‘.A,L, Xl fAi,...Xl fAi 'Z ¢b(X1,---,Xl)-

Recall (Definition 3 Section 2.4) that the coloring Q induced by X, ...X; with
respect to partition {¢p(X1,...,X;) : b€ € —1— Boz} is defined by

Q(i) = biff Ai, Xy Aiy. . X [ Ai E du(X1,..., X))

Hence Q codes the tuple P(¢, 1, X).

Theorem 19 (Composition Theorem) There exists a recursive function H(E, 1)
that outputs a finite sequence of natural numbers and for every b € £ — - Boz
there is a boolean combination ¢}(X1,...,Xy) of the formulas ¢,, where n is
the number of elements in £ — - Boz. and t is in H(E, l)-n-Boz such that

LY A ¢ i€ Ind), X E ¢p(Xy,..., X)) iff
Ind, P(£,1,X) £ 3 (X1,. .., Xn).

Moreover, ¢;(X1,...,Xn) is computable from b.
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Remark 20 Actually, Theorem 3.2.8 in [3] states that (under the above as-

sumption) the set of formulas

{¢p(X1,...X1) : b€ —1—Boz and LE{A; : 1 € Ind),X = ¢p(X1,...,X1)}
1§ recursive in the set

{6i(X1,... Xpn) :1€ HE,l)—n—Boz and Ind,P(£,1,X) = éi(X1,...,Xn)}

This together with the fact that every boz has a finite number of elements imply

the conclusion of Theorem 19.

Finally, Colored Indices Theorem is derived as follows:

Given a formula x(X1, ..., X;). Let £ and B C {—I-Box be such that x(X1,... X))
is equivalent to Veepds(X1,. .., X;) (see Fact 1).

Let n be the number of the elements in § — I-Box and let ¢}(Xq,...X,) be
obtained from ¢3(X1, ..., X;) as in Theorem 19.

Let ¢(Y') be obtained from Viepd}(X1,...,Xn) when the sub-formulas X;(t)
are replaced by Y (t) = b.

It is routine to check that the partition {¢p : b € { —l— Boz} and ¢(Y") satisfy

the conclusion of Colored Indices Theorem.
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