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1 Introduction

We consider the monadic second-order theory of linear order. For the sake of

brevity, linearly ordered sets will be called chains.

Let A = hA <i be a chain. A formula �(t) with one free individual variable t

de�nes a point-set on A which contains the points of A that satisfy �(t). As

usually we identify a subset of A with its characteristic predicate and we will

say that such a formula de�nes a predicate on A.

A formula �(X) with one free monadic predicate variable de�nes the set of

predicates (or family of point-sets) on A that satisfy �(X). This family is said

to be de�nable by �(X) in A: Suppose that A is a subchain of B = hB; <i.

With a formula �(X; A) we associate the following family of point-sets (or set

of predicates) fP : P � A and �(P;A) holds in Bg on A: This family is said

to be de�nable by � in A with B at the background.

�This author is on leave of absence from the University of Michigan. His work on the paper

was supported by the grant CCR 95-04375.
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Note that in such a de�nition bound individual (respectively predicate) variables

of � range over B (respectively over subsets of B). Hence, it is reasonable to

expect that the presence of a background chain B allows one to de�ne point sets

(or families of point-sets ) on A which are not de�nable inside A. We show

Theorem 1 A family of point-sets is de�nable in the chain N of natural num-

bers if and only if it is de�nable in N with the chain of reals at the background.

Hence, the quanti�cation over the reals does not allow to de�ne more point-set

families on the natural numbers.

Let us point out some di�culties which arise when one attempts to prove The-

orem 1 and the techniques used to overcome these di�culties. The only-if part

of the theorem is easily obtained by the method of interpretation (see Theorem

5). This method provides an algorithm that for a formula �(X) constructs a

formula ��(X;A) such that for any chain B and its subchain A = hA; <i a

family of point-sets on A is de�nable by �(X) in A if and only if it is de�n-

able by ��(X; A) in A with B at the background. Hence, de�nability with a

background is at least as powerful as de�nability without any background. To

show the other direction of Theorem 1 one may also try to look for a translation

algorithm. However,

Theorem 2 There is no algorithm that translates an arbitrary monadic formula

�(X; A) into a monadic formula �(X) in such a way that the point-set family

de�ned by �(X) in N is equal to the point-set family de�ned in N by �(X; A)

with R at the background.

In the above theorem and below we use the convention that X; A are monadic

predicate variables and a formula does not contain free variables except for those

shown explicitly.

In order to see that Theorem 2 holds recall that the satis�ability problem for

the monadic theory of real order is undecidable [6]. On the other hand, the

satis�ability problem is decidable over the natural numbers [1]. Now observe

that if � is a sentence, then it is satis�able over the reals i� �^X � A de�nes (in

N with the reals at the background) the family of all point-sets on the natural

numbers. Hence, the translation of � ^ X � A should be a formula ��(X)

such that 8X: ��(X) is satis�able over the natural numbers. In this way the
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undecidable problem of satis�ability over the reals is reduced by the translation

mapping to the decidable problem of satis�ability over the natural numbers.

Hence, the translation cannot be recursive.

The proof of the if direction of Theorem 1 will be based on the composition

theorem [6, 2]. The composition theorem is a very powerful theorem for the

proofs of decidability of various theories [6, 3]. Here is the �rst application of

the composition theorem to de�nability. The method of interpretation is also

used extensively in our proof.

The rest of the paper is organized as follows. In Section 2 we �x notations

and terminology, state some preliminary results and provide a formulation of

the composition theorem which is needed later. This version of the composition

theorem is weaker than the version in [6], however, its formulation is simple. We

recall also the method of interpretation and show the easy direction of Theorem

1.

In Section 3 Theorem 1 is proved. The results of Section 4 imply

Theorem 3 For any closed subset F of the reals, a family of point-sets is de-

�nable in the subchain F = hF; <i of reals if and only if it is de�nable in F

with the chain of reals at the background.

In fact, we prove a somewhat stronger theorem, Theorem 13, in Section 4.

We show that there is a uniform way to translate a de�nition (in the closed

subchains of the reals) with the reals at the background into a de�nition without

background. It is instructive to contrast Theorem 3 with

Theorem 4 There exists an open subset G of the reals and a formula �(X; G)

such that the family of point-sets is de�nable by �(X; G) in G = hG; <i with

the reals at the background is not de�nable in G.

Indeed, let G0 be the open subset (0; 1)+ (1; 2)+ (2; 3)+ : : : of the reals. Since

there are only countably many de�nable point-families, there is a subset P of

natural numbers such that the family f(i; i + 1) : i 2 Pg is not de�nable in

hG0; <i. The desired G is the open set
S
f(2i; 2i+ 2) : i =2 Pg [

S
f(2i; 2i+

1) : i 2 Pg. SinceG is isomorphic toG0, the point-set family f(2i; 2i+1) : i 2

Pg is not de�nable in G. Yet this family is de�nable in G with the reals at
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the background; it consists of all maximal intervals in G with a positive length

interval of R�G adjacent to it at the right.

We conclude this section with

Open Problem: Is it true that a family of point-sets is de�nable in the chain

Q of rationals if and only if it is de�nable in Q with the chain of reals at the

background.

2 Preliminaries

2.1 Notations and terminology

N is the set of natural numbers; R is the set of real numbers, R�0 is the set

of non negative reals; BOOL is the set of booleans and � is a non-empty �nite

set. A �-predicate or �-coloring over a set A is a function from A into �; the

letters P; Q range over �-predicates. Whenever the domain A and the range

� of P is clear from the context we use `predicate' or `coloring' for `�-predicate

over A'. A subset B of a set A will be identi�ed with the corresponding boolean

predicate over B. Accordingly a point-set family is identi�ed with the set of

corresponding boolean predicates. It is well-known that if � is an alphabet of

size n > 1 and k is the least positive integer such that n < 2k then �-colorings

can be coded with k boolean predicates. The restriction of a predicate P onto

a set A will be denoted by P � A

A chain is a linearly ordered set. Calligraphic letters A; B range over chains;

corresponding bold upper-case letters denote the domains of chains and bold

lower-case letters t; t0 range over the domain of a chain. In particular, N and

R are the chains of natural and real numbers, respectively. By an abuse of

notation we will use f0; 1; : : :; kg both for the subset of natural numbers and for

the corresponding subchain of N . Similarly, for t1; t2 2 R we use [t1; t2) both

for the subinterval and for the subchain of reals.

2.2 A variant of monadic theory of order

It will be slightly more convenient for us to deal with the following variant of

second-order monadic logic of order. The language (of this variant) of monadic
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second-order theory of order (see e.g. [8]) has two types of variables: (1) �rst-

order (or individual) variables, and (2) �-predicate (or �-color) variables for

each �nite non-empty set �.

The letter t with subscripts and superscripts ranges over individual variables;

and upper-case case Latin letters are used for predicate variables. The atomic

formulas are formulas of the form: t1 < t2 and X(t) = �, where X is a �-

predicate variable and � is an element of �. The formulas are constructed from

atomic formulas by logical connectives and �rst and second-order quanti�ers.

We write �(X1; : : : ; Xn; t) to indicate that the free variables of � are among

fX1; : : : ; Xn; tg.

The formulas are interpreted over chains. When a formula is interpreted over a

chain A = hA; <i, its individual variables range over the elements of A and the

�-predicates variables range over the functions in A! �.

We write A; P1; P2; t j= �(X1; X2; t) if the assignment of Pi to Xi and t

to t satis�es �(X1; X2; t) in the chain A. When there is no confusion we use

A j= �(P1; P2; t) for A; P1;P2; t j= �(X1; X2; t).

We use standard abbreviations, e.g., for a boolean predicate variable X, we

write X(t) for X(t) = TRUE, for boolean predicates X; X0 we write X � X0

for 8t: X(t) ! X0(t) and for f�1; : : : ; �kg-predicate Y we write Y (t1) = Y (t)

for (Y (t1) = �1 ^ Y (t) = �1) _ : : :_ (Y (t1) = �k ^ Y (t) = �k).

2.3 Method of Interpretation

The following theorem is immediately obtained by interpreting a subchain A of

B in the chain B augmented by a unary predicate A (see [5] for the detailed

description of the methods of interpretation).

Theorem 5 Let B = hB; <i be a chain and A = hA; <i be a subchain of B.

Let �A(X1; : : : ; Xn; A) be the formula constructed by relativizing all �rst-order

quanti�ers of a formula �(X1; : : : ; Xn) to a boolean predicate variable A (see

Fig. 1). Then

1. B; P1; : : : ;Pn; A j= �A(X1; : : : ; Xn; A) i� A; P1 � A; : : : ;Pn � A j=

�(X1; : : : ; Xn).
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Input: A formula � and a monadic boolean predicate variable A that does
not occurs in �.

Output: A formula �A whose free variables are those of � plus A.

�A is de�ned inductively on the structure of � by the following rules:

1. If � is without quanti�ers, then �A = �

2. If � = �1 ^ �2, or � = �1 _ �2, or � = :�1 then �A = �A1 ^ �
A
2 , or

�A = �A1 _ �
A
2 or �A = :�A1 , respectively.

3. If � = 9X:�1 or � = 8X: �1, where X is a predicate variable, then
�A = (9X:�A1 ) or �

A = (8X:�A1 ), respectively.

4. If � = 9t:�1 or � = 8t: �1, where t is a �rst-order variable, then
�A = 9t:(A(t) ^ �A1 ) or �

A = 8t:(A(t)! �A1 ), respectively.

Figure 1: Relativizing all �rst-order variables of � to A

2. If X1; : : : ; Xn are boolean predicate variables then

B; P1; : : : ;Pn;A j= �A(X1; : : : ; Xn; ; A) ^X1 � A ^ : : :^Xn � A i�

A; P1; : : : ;Pn j= �(X1; : : : ; Xn)

Corollary 6 If a family of point-sets is de�nable in A, then it is de�nable in

A with B at the background.

2.4 Coloring Indices Theorem

De�nition 1 (Partition) Formulas �1(X1; : : : ; Xn), . . . , �k(X1; : : : ; Xn) form

a partition if �1 _ �2 _ : : : _ �k is valid and for all i 6= j the formulas �i ^ �j
are unsatis�able.

We often say \a set f�1; : : : ; �kg is a partition" instead of \formulas �1; : : : ; �k

form a partition".

De�nition 2 (Lexicographic Sum) The lexicographic sum of (disjoint) chains

Ai with respect to a chain Ind (notation L�hAi : i 2 Indi) is the chain A =

hA; <i, where A = [i2IndAi and point t 2 Ai precedes point t
0 2 Aj in A if i

precedes j in Ind or i = j and t precedes t0 in Ai.
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We write A0 + A1 for L�hAi : i 2 f0; 1gi. We refer to Ai as the summand

chains and to Ind as the indices chain of L�hAi : i 2 Indi.

De�nition 3 (Induced predicate or induced coloring of indices) Let �1(X1; : : : ; Xn);

. . . ; �k(X1; : : : ; Xn) be a partition. Let P1; : : : ;Pn be predicates over L�hAi :

i 2 Indi. The predicate Q : Ind ! f1; : : : ; kg is said to be induced by

P1; : : : ;Pn with respect to the partition �1; : : : ; �k (and L�hAi : i 2 Indi)

if Q is de�ned as follows:

Q(i) = j if and only if Ai; P1 � Ai; : : : ;Pn � Ai j= �j(X1; : : : ; Xn):

We often refer to Q de�ned as above as coloring of indices induced by P1; : : : ;Pn

with respect to the partition �1; : : : ; �k.

Note that the requirement that �1; : : : ; �k is a partition guarantees that Q is

well de�ned.

The following theorem is a weak version of Composition Theorem (Shelah [6]).

Its proof will be sketched in the Appendix.

Theorem 7 (Colored Indices Theorem.) For every formula �(X1; : : : ; Xn) there

exist a partition �1(X1; : : : ; Xn); �2(X1; : : : ; Xn); : : : ; �k(X1; : : : ; Xn) and a for-

mula �(Y ) such that L�hAi : i 2 Indi;P1; : : :Pn j= �(X1; : : : ; Xn) if and only if

Ind; Q j= �(Y ) where Q is induced by P1; : : : ;Pn with respect to the partition

�1; : : : ; �k. Moreover, there exists an algorithm that constructs �1; �2; : : : ; �k

and � from �.

The next lemma follows from the colored indices theorem and will be referred

later.

Lemma 8 For every chain B and for every formula �(X1; : : : ; Xn) (Xi are

boolean predicate variables) there exist formulas �r(X1; : : : ; Xn) and �
l(X1; : : : ; Xn)

such that for every chain A=hA; <i and subsets P1; : : : ;Pn of A

1. A+B; P1; : : : ;Pn j= �(X1; : : : ; Xn) i� A; P1; : : : ;Pn j= �r(X1; : : : ; Xn)

2. B + A; P1; : : : ;Pn j= �(X; : : : ;Xn) i� A; P1; : : :Pn j= �l(X; : : : ;Xn)
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Proof: Below only the case when � has only one free predicate variable X is

considered and formula �r(X) is constructed. The case with n free variables

and the construction of �l is similar.

By the colored indices theorem there is a partition �1(X); : : : ; �k(X) and a

formula �(Y ) such that

A+ B; P j= �(X) i� f0; 1g;Q j= �(Y );

where Q(0) = i i� A;P j= �i(X) and Q(1) = j i� B; ; j= �j(X).

Observe that every �(Y ) is equivalent over f0; 1g to a quanti�er free formula

�0(Y ) of the form
Wn

i=1(Y (0) = mi ^ Y (1) = ki).

Let jB be such that B; ; j= �jB(X) (such j is unique because �1; : : : ; �k is a

partition).

Let �r(X) be obtained from �0(Y ) as follows:

Step 1 - Eliminate Y (1): Replace Y (1) = ki by TRUE if ki = jB and by FALSE

otherwise.

Step 2 - Eliminate Y (0): Replace Y (0) = mi by �mi
(X)

It is clear that the constructed formula �r(X) satis�es the conclusion of the

lemma. 2

Remark 9 Note that the construction of �r (or �l) from � is not necessarily

recursive, because Step 1 that eliminates occurrences of Y (1) is not necessary

recursive (this step is recursive whenever satis�ability of monadic formulas over

B is decidable). All other steps in the construction of �r from � are recursive.

Let us demonstrate that if the monadic theory of B is undecidable then �r cannot

be recursive in �. Take any sentence � and an individual variable t0 that does

not occur in �. Let ��(t0) be obtained from � by relativizing its �rst-order

quanti�ers as follows: replace \9t" by \9t > t0" and \8t" by \8t > t0". Observe

that B j= � i� f0g + B j= 9t0:(��(t0) ^ :9t:t < t0). Hence, the translation of

X � X ^ 9t0:(��(t0) ^:9t:t < t0) is equivalent to TRUE over one point chain

f0g if and only if B j= �. Since, by the assumption, the satis�ability problem

for B is undecidable and the equivalence problem over one element chain is

decidable, it follows that there is no recursive translation.
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3 De�nability in N with the reals at the back-

ground

Theorem 10 For every �(X; A) there exists  (X) such that

R; P;N j= �(X; A) ^X � A i� N ; P j=  (X)

Proof: Below we show that for every �(X; A) there exists  (X) such that

R�0; P;N j= �(X; A) ^X � A i� N ; P j=  (X) (1)

Theorem 10 follows immediately from (1) and Lemma 8(2).

First note that R�0 is the lexicographic sum L�h[i; i+1) : i 2 Ni. Therefore,

by the colored indices theorem there is a partition �1(X; A); : : : ; �k(X; A) and

a formula �(Y ) such that

R�0; P;N j= �(X; A) ^X � A i� N ; Q j= �(Y ); where

Q is induced by P;N wrt �1(X; A); : : : ; �k(X; A):
(2)

Observe that if R�0; P;N j= �(X; A) ^ X � A then P � N. Therefore,

P\ [i; i + 1) is either the empty set or the singleton set fig.

Since, �1(X; A); : : : ; �k(X; A) is a partition there are j0 and j1 such that

[i; i + 1); ;; fig j= �j0(X; A) and [i; i+ 1); fig; fig j= �j1(X; A) (3)

For P � N de�ne Q : N! f1; : : : ; kg as follows:

Q(i) =

(
j0 if P \ [i; i + 1) = ;

j1 if P \ [i; i + 1) = fig
(4)

Suppose that P; N satisfy �(X; A)^X � A. Then Q is induced by P; N wrt

�1; : : : ; �k if and only if (4) holds.
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Let ��(Y ) be the formula which is obtained from �(Y ) when the sub-formulas

Y (t) = m are replaced by FALSE for m 62 fj0; j1g.

8i: Q(i) 2 fj0; j1g implies that N ; Q j= �(Y ) i� N ; Q j= ��(Y ) (5)

Let  (X) be obtained from ��(Y ) by eliminatingY (t) as follows: replace Y (t) =

j0 by :X(t) and replace Y (t) = j1 by X(t). It is clear that for every P � N

and for Q de�ned as in (4)

N ;Q j= ��(Y ) i� N ; P j=  (X) (6)

Finally, to complete the proof observe that (1) follows from (2)-(6). 2

Remark 11 (Generalization) In the above proof we used the following property

of subintervals of reals:

Property 1: If a1 < b1 and a2 < b2 then the intervals (a1; b1) and (a2; b2)

have the same monadic theory.

We used also the following property of the natural numbers:

Property 2: For every a there exists b > a such that no c lies between a and b.

The same proof shows the following

Theorem 12 Let B be a chain that satis�es Property 1 and let A be a subchain

of B, which satis�es Property 2. Suppose that for every A0 � A

infft : t 2 B and 8a0 2 A0:t � a0g = infft : t 2 A and 8a0 2 A0:t � a0g:

Then a set of predicates is de�nable in A if it is de�nable in A with B at the

background.

Note that the set of rationals and the set of irrationals satisfy Property 1. Prop-

erty 2 is satis�ed by every well founded chain.

Let us illustrate that Property 1 is essential. Let P be a non-recursive subset of

natural numbers. Let R0 be obtained from R (the reals) by removing i+1=2 for
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all i in P. Then, having R0 at the background allows one to de�ne P which is

not de�nable in N .

Similarly, the requirement that infft : t 2 B and 8a0 2 A0:t � a0g = infft :

t 2 A and 8a0 2 A0:t � a0g for every A0 � A is essential. Let P be a non-

recursive subset of the positive natural numbers. Let A = N[ fk� 1

2n+2
: 0 <

n 2 N and 0 < k 2 Pg [ fk + 1

2
� 1

2n+2
: 0 < n 2 N and k 62 Pg. Notice that

the order type of A is !2. It is easy to check that P is not de�nable in A but it

is de�nable in A with R at the background.

4 De�nability in closed subchains of Reals

A subchain F = hF; <i of the reals is said to be closed if F is a closed subset of

the reals. The main result of this section is

Theorem 13 For every formula �(X; A) there exists a formula �c(X) such

that for every closed subchain F = hF; <i of the reals a set of predicates is

de�nable by �(X; A) in F with R at the background if and only if it is de�nable

by �c(X) in F .

This theorem immediately implies Theorem 3 stated in the Introduction.

In the �rst subsection the representation of closed subchains of reals as a lex-

icographic sum is given. Relying on this representation, we provide a proof of

Theorem 13 in the second subsection.

4.1 Representation of closed sets as a lexicographic sum

Let F be a subset of R. Real numbers t and t0 are said to be F-equivalent

(notations t �F t
0) if one of the following conditions holds: Let t1 = min(t; t0)

and let t2 = max(t; t0). Then

1. [t1; t2] � F.

2. [t1; t2] � R nF.

3. There exists t3 2 [t1; t2) such that [t1; t3] � F and (t3; t2] � R nF.
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Example 1 Let F be f0g [ f1
i

: i positive integerg. Then t1 �F t2 if t1 =

t2 = 0 or t1; t2 � 1 or t1; t2 < 0 or t1; t2 2 [ 1

i+1
; 1

i
).

It is clear that �F is an equivalence relation.

Let It be the set of all reals equivalent to t and let Ft be the set of all points

in F equivalent to t.

Suppose that F is a closed subset of the reals. Observe that if there exists

t1 2 F such that t1 < t then there exists t2 2 F such that t 2 It2 ; the desired

t2 = supft1 2 F : t1 < tg. It is also easy to see that for every t 2 F

either It = Ft or there are t1 < t2 both in F such that (1) t1 = sup(Ft); (2)

(t1; t2) \F = ; and (3) It = Ft [ (t1; t2).

Let It and Ft be the subchains of reals over the sets It and Ft. The above

observations imply

Lemma 14 Assume that F = hF; <i is a subchain of R and F is a closed

subset of reals. Then there exists a subchain Ind of F such that

1. F = L�hFi : i 2 Indi

2. R =

(
L�hIi : i 2 Indi If there exists no minimal element in F

(1; t) + L�hIi : i 2 Indi If t is the minimal element of F

3. For every i 2 Ind either Ii = Fi or there exists an open subinterval Bi of

reals such that Ii = Fi + Bi.

4. There are formulas full(t); equiv(t1; t2) (these formulas are independent

from F) such that

(a) F j= full(t) i� Ft = It.

(b) F j= equiv(t1; t2) if t1 �F t2.

4.2 Proof of Theorem 13

Let us �rst generalize Lemma 8 as follows:

Lemma 15 For every chain B there exist functions RightB and LeftB that

map formulas with free boolean predicate variables fX1; : : :Xn; Ag to formulas

with free variable fX1; : : : ; Xng and satisfy the following conditions: for every

chain A

12



1. ��(X1; : : : ; Xn) = RightB(�(A; X1; : : : ; Xn)) implies

A+ B; A; P1; : : : ;Pn j= �(A; X1; : : : ; Xn) ^X1 � A : : :^Xn � A i�

A; P1; : : :Pn j= ��(X1; : : : ; Xn):

2. ��(X1; : : : ; Xn) = LeftB(�(A; X1; : : : ; Xn)) implies

B +A; A; P1; : : : ;Pn j= �(A; X1; : : : ; Xn) ^X1 � A ^ : : :^Xn � A i�

A; P1; : : : ;Pn j= ��(X1; : : : ; Xn):

3. Moreover, if B1 and B1 have the same monadic theory then RightB1 =

RightB2 and LeftB1 = LeftB2 .

Proof: Below we explain only how RightB maps the formulas with free variables

fX; Ag. The case when the set of free variables is fX1; : : :Xn; Ag and the

construction of LeftB is similar.

Step 1. Apply the colored indices theorem and �nd a partition �1(A; X);

. . . ; �k(A; X) and a formula �(Y ) such that

A+ B; A; P j= �(A; X) ^X � A if and only if

f0; 1g; Q j= �(Y ); where Q is induced by A;P:

Step 2. Let �0(Y ) be a formula
Wn

i (Y (0) = mi ^ Y (1) = ki) which is equivalent

to �(Y ) over f0; 1g.

Step 3. Let jB be such that B; ;; ; j= �jB(A; X).

Step 4. Let ��(Y ) be obtained from �0(Y ) by eliminating Y (1) as follows:

replace Y (1) = m by TRUE for m = jB and by FALSE otherwise.

Step 5. Let ��i (X) be obtained from �i(A; X) when A(t) are replaced by TRUE.

Step 6. Let ��(X) be obtained from ��(Y ) by eliminating Y (0) as follows:

replace Y (0) = m by ��m(X).

Observe that only step 4, depends on B and for chains B1 and B2 with the same

monadic theory, the same formulas are constructed.

Let us check that the constructed formula ��(X) satis�es the the conclusion of

the lemma.

13



The if direction: Assume that A;P j= ��(X). Let Q be induced by A;P wrt

�1; : : : ; �k and A+ B.. Then

Q(1) = jB; (because P � A) (7)

and Q(0) = i i� A; A; P j= �i(A; X).

By construction of step 5 it follows that

Q(0) = m if and only if A; P j= ��m(X) (8)

From (8), (7) and the constructions in steps 4 and 6, it follows that

f0; 1g; Q j= �0(Y ) (9)

Hence, by step 2

f0; 1g; Q j= �(Y ) (10)

and by step 1,

A+ B; A; P j= �(A; X) ^X � A

The only-if direction: Assume that A + B; A; P j= �(A; X) ^X � A.

Let Q be induced by A;P. Then

Q(1) = jB; (because P � A) and (11)

Q(0) = m i� A; A; P j= �m(A; X): (12)

f0; 1g; Q j= �(Y ); by the colored indices theorem (13)

From (11), (12), (13) and the construction of �� it follows that A;P j= ��(X).

2

Let us proceed now with the proof of Theorem 13.

By Lemma8, one can construct for every formula �(X1; X2) a formula �l(X1; X2)

such that for all t and all subsets P1; P2 of [t;1)

(�1; t) + [t;1);P1;P2 j= �(X1; X2) ^X1 � X2 if and only if

[t;1);P1;P2 j= �l(X1; X2) ^X1 � X2

14



Hence, if a set F has a minimal element t, then for every �(X; A) there exists

�lb(X; A) such that

R;P;F j= �(X; A) ^X � A i� [t;1);P;F j= �lb(X; A) ^X � A (14)

Let lbound be the sentence 9t8t0:t0 � t and let  (X; A) be de�ned as (:lbound!

�(X; A)) ^ (lbound! �lb(X; A))

From (14), de�nition of  and Lemma 14(2) it follows that for every closed F

R;P;F j= �(X; A) ^X � A i�

L�hIi : i 2 Indi;P;F j=  (X; A) ^X � A:
(15)

where Ind and Ii are as in Lemma 14.

Below we are going to construct �c(X) from  (X; A) such that

L�hIi : i 2 Indi; P;F j=  (X; A) ^X � A i� F ; P j= �c(X) (16)

Theorem 13 is immediately obtained from (15) and (16).

Formula �c(X) is constructed by the following steps:

Step 1: Apply the colored indexes theorem to formula  (X; A) ^X � A and

�nd a partition �1(X; A); : : : ; �k(X; A) and a formula �(Y ) such that L�hAi :

i 2 Indi; P1; P2 j=  (X; A) ^X � A if and only if Ind; Q j= �(Y ) where Q

is induced by P1; P2 with respect to the partition �1(X; A); : : : ; �k(X; A).

In particular, let F be a closed subset of the set R of reals and let Ind; Fi and

Ii be as in Lemma 14. Then

L�hIi : i 2 Indi; P; F j=  (X; A) ^X � A if and only if Ind; Q j= �(Y );

for Q de�ned as Q(i) = j if Ii; P � Ii; Fi j= �j(X; A):

Step 2: Let equiv(t1; t2) be the formula from Lemma 14(4). We say that a

predicate Z respects equiv if it satis�es the formula

Respect(Z)
�

= 8t1:8t2:(equiv(t1; t2)! Z(t1) = Z(t2)):

Let �0(Y ) be obtained from �(Y ) when (A) atomic formulas t1 < t2 are re-

placed by t1 < t2 ^:equiv(t1; t2), and (B) monadic quanti�ers are replaced by

15



the quanti�cation over predicates that respects equiv, i.e., by replacing \8Z:"

(respectively \9Z:") by \8Z:Respect(Z) ! " (respectively \9Z:Respect(Z)^").

Let '(Y ) be �0(Y ) ^Respect(Y ).

Observe that '(Y ) on F \simulates" �(Y ) on Ind in the following sense:

if Ind;Q j= �(Y ) and 8i 2 Ind8t 2 Fi: Q
0(t) = Q(i)

then F ;Q0 j= '(Y ):

if F ;Q0 j= '(Y ) and Q0 is the restriction of Q0 on Ind

then Ind;Q j= �(Y ) and 8i 2 Ind8t 2 Fi: Q
0(t) = Q(i):

Step 3: Let full-colorm(t; X) be formula 9Z:(�m(X; Z)^8t0:(Z(t0)$ equiv(t; t0)):

Suppose that t 2 Fi and Fi = Ii. Then

F ; P; t j= full-colorm(t; X) i� Q(i) = m;

where Q is the coloring induced by F; P wrt �1(X; A); . . . , �k(X; A) and

L�hIi : i 2 Indi.

Let �:fulli (X; Z) be obtained from �i(X; A) as follows: �rst let ��i (X) be

the result of applying RightB to �i(X; A), where B is any open subinterval of

reals and RightB is the function from Lemma 15; second relativize all �rst-order

variables in ��i (X) to Z. (see Fig. 1 in the proof of Theorem 5).

Let notfull-colorm(t; X) be formula 9Z:(�:fullm (X; Z)^8t0Z(t0)$ equiv(t; t0)):

Suppose that t 2 Fi and Fi 6= Ii. Then

F ; P; t j= notfull-colorm(t; X) i� Q(i) = m;

where Q is the coloring induced by F; P wrt �1(X; A); . . .�k(X; A) and

L�hIi : i 2 Indi.

Step 4: Finally, let �c(X) be obtained from the formula '(Y ) constructed in

Step 2, by eliminating Y (t) as follows: replace \Y (t) = m" by \(full(t) !

full-colorm(t; X)) ^ (:full(t) ! notfull-colorm(t; X)), where full(t) is the

formulas from Lemma 14(4).
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It is a routine task to verify that �c(x) indeed satis�es (16) and this completes

the proof of Theorem 13.

Remark 16 Slightly modifying the above proof one can show

Theorem 17 Let Ai; Bi be chains for every i in a chain Ind. Let C be de�ned

as L�hAi + Bi : i 2 Indi and let A = L�hAi : i 2 Indi. Suppose that

1. All Bi have the same monadic theory and

2. There exists a formula equiv(t1; t2) such that A j= equiv(t1; t2) i� t1; t2 2

Ai for some i 2 Ind.

Then for every formula �(X; A) there exists a formula ��(X) such that

C; P; A j= �(X; A) ^X � A i� A;P j= ��(X):

Assumption 1 can be replaced by a weaker assumption

3. There exist a partition �1(t); : : : ; �k(t) and chains D1; : : : ;Dk such that if

A j= �m(t) and t 2 Ai then Bi and Dm have the same monadic theory.

Notice that this theorem does not generalize the theorem about closed subchains

because every Bi is non-empty. However, one can formulate a theorem that

generalizes both these theorems.
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A A proof of Colored Indices Theorem

We presume that the reader knows subsections 3.1 and 3.2 of [3].

Letter � ranges over �nite sequences of natural numbers (such sequences are

called alternation types in [3]).

In [3], for every � and a natural number l a �nite set called �� l- Box is de�ned.

Then to every element b of � � l- Box a formula �b(X1; : : : ; Xl) is assigned

(Theorem 1.2 in [2]). The construction of boxes and the formulas assigned to

the elements of the boxes is recursive. It will be convenient to view the elements

of every � � l-Box as ordered in some way and we will refer to an element of a

box by its place in this order. Let us mention the following

Fact 1:

1. The set of formulas assigned to the elements of ��l- Box forms a partition.

2. For every formula �(X1; : : : ; Xl) whose free variables are among fX1; : : : ; Xlg

there are � and a subset B of � � l-Box such that � is equivalent to the

disjunction _i2B�i(X1; : : : ; Xl). Moreover � and B are recursive in �.
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Remark 18 The above fact is easily extracted from the results in [6, 3, 2] for

the standard monadic second-order logic with only boolean predicate variables. It

has a proof similar to the proof of Theorem 1.2 in [2] or Lemma 2.1 in [6]. We

are not going to reprove it here for the following reasons: (1) The de�nitions of

boxes and the corresponding formulas require a considerable amount of notations

which are not needed elsewhere. (2) There is a well-written paper by W. Thomas

[7] which provides a clear exposition of the Composition Theorem with many

detailed examples; in [7] boxes are called types and the corresponding formulas

are called Hintika formulas.

Fact 1 also holds for the variant with �-predicate variables; a �-predicate can

be coded by a tuple of boolean predicates and the proof for our variant is an

immediate adaptation of the proofs for the boolean case.

Let � be a �nite sequence of natural numbers, let l be a natural number, n be the

number of elements in �� l- Box and let X=hX1; : : :Xli be a tuple of predicates

on L�hAi : i 2 Indi. The n-tuple P (�; l;X) = hPb(�; l;X) : 0 < b � ni of

boolean predicates on Ind is de�ned as follows:

Pb(i) holds i� Ai; X1 � Ai; : : :Xl � Ai j= �b(X1; : : : ; Xl):

Recall (De�nition 3 Section 2.4) that the coloring Q induced by X1; : : :Xl with

respect to partition f�b(X1; : : : ; Xl) : b 2 � � l � Boxg is de�ned by

Q(i) = b i� Ai; X1 � Ai; : : :Xl � Ai j= �b(X1; : : : ; Xl):

Hence Q codes the tuple P (�; l;X).

Theorem 19 (Composition Theorem) There exists a recursive function H(�; l)

that outputs a �nite sequence of natural numbers and for every b 2 � � l- Box

there is a boolean combination ��b(X1; : : : ; Xn) of the formulas �t, where n is

the number of elements in � � l- Box. and t is in H(�; l)-n-Box such that

L�hAi : i 2 Indi;X j= �b(X1; : : : ; Xl) i�

Ind; P (�; l;X) j= ��b(X1; : : : ; Xn):

Moreover, ��b(X1; : : : ; Xn) is computable from b.
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Remark 20 Actually, Theorem 3.2.3 in [3] states that (under the above as-

sumption) the set of formulas

f�b(X1; : : :Xl) : b 2 �� l�Box and L�hAi : i 2 Indi;X j= �b(X1; : : : ; Xl)g

is recursive in the set

f�i(X1; : : :Xn) : i 2 H(�; l)�n�Box and Ind; P (�; l;X) j= �i(X1; : : : ; Xn)g:

This together with the fact that every box has a �nite number of elements imply

the conclusion of Theorem 19.

Finally, Colored Indices Theorem is derived as follows:

Given a formula�(X1; : : : ; Xl). Let � andB � ��l-Box be such that �(X1; : : :Xl)

is equivalent to _b2B�b(X1; : : : ; Xl) (see Fact 1).

Let n be the number of the elements in � � l-Box and let ��b(X1; : : :Xn) be

obtained from �b(X1; : : : ; Xl) as in Theorem 19.

Let �(Y ) be obtained from _b2B��b(X1; : : : ; Xn) when the sub-formulas Xb(t)

are replaced by Y (t) = b.

It is routine to check that the partition f�b : b 2 �� l�Boxg and �(Y ) satisfy

the conclusion of Colored Indices Theorem.
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