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Abstract. We show that simultaneous rigid E-uni�cation, or SREU for
short, is decidable and in fact EXPTIME-complete in the case of one
variable. This result implies that the 8

�
98

� fragment of intuitionistic
logic with equality is decidable. Together with a previous result regarding
the undecidability of the 99-fragment, we obtain a complete classi�cation
of decidability of the prenex fragment of intuitionistic logic with equality,
in terms of the quanti�er pre�x. It is also proved that SREU with one
variable and a constant bound on the number of rigid equations is P-
complete.

1 Introduction

In Gallier, Raatz and Snyder [20] and Degtyarev, Gurevich and Voronkov [10], it
is explained why simultaneous rigid E-uni�cation, or SREU for short, plays such
a fundamental role in automatic proof methods in classical logic with equality
that are based on the Herbrand theorem, like semantic tableaux [17], the con-
nection method [2] or the mating method [1], model elimination [31], and others.

It was shown recently in Degtyarev and Voronkov [11] that SREU is un-
decidable. The strong connections between SREU and intuitionistic logic with
equality have led to new important decidability results in the latter area [12,44].
It follows, for example, that the 9�-fragment of intuitionistic logic with equality
is undecidable [13,14]. This result is improved in Veanes [42] to the following.

The 99-fragment of intuitionistic logic with equality is undecidable.
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The decidability of the 9-fragment of intuitionistic logic with equality, or equiv-
alenly SREU with one variable, has been an open problem which is settled in
this paper. We prove the following.

SREU with one variable is decidable, in fact EXPTIME-complete.

This result is obtained by a polynomial time reduction of SREU with one variable
to the intersection nonemptiness problem of �nite tree automata. The latter
problem is EXPTIME-complete [41]. By using an analogue of a Skolemization
result for intuitionistic logic [12] we can deduce the following result.

The 8�98�-fragment of intuitionistic logic with equality is decidable.

The above results imply the following main contribution of this paper.

A complete classi�cation of decidability of the prenex fragment of intuitionistic

logic with equality, in terms of the quanti�er pre�x.

We prove also that rigid E-uni�cation with one variable is P-complete and that
SREU with one variable and a constant bound on the number of rigid equations
is P-complete. One conclusion we can draw from this is that the intractability
of SREU with one variable is strongly related to the number of rigid equations
and not their size. With two variables, SREU is undecidable already with three

rigid equations [24].

2 Preliminaries

We will �rst establish some notation and terminology. We follow Chang and
Keisler [4] regarding �rst order languages and structures. For the purposes of
this paper it is enough to assume that the �rst order languages that we are
dealing with are languages with equality and contain only function symbols and
constants, so we will assume that from here on. We will in general use �, possibly
with an index, to stand for a signature, i.e., � is a collection of function symbols
with �xed arities. A function symbol of arity 0 is called a constant. We will
always assume that � contains at least one constant.

2.1 Terms and Formulas

Terms and formulas are de�ned in the standard manner. We refer to terms and
formulas collectively as expressions. In the following let X be an expression or
a set of expressions or a sequence of such.

We write �(X) for the signature of X , i.e., the set of all function sym-
bols that occur in X , V(X) for the set of all free variables in X . We write
X(x1; x2; : : : ; xn) to express that V(X) � fx1; x2; : : : ; xng. Let t1; t2; : : : ; tn be
terms, then X(t1; t2; : : : ; tn) denotes the result of replacing each (free) occurence
of xi in X by ti for 1 � i � n. By a substitution we mean a function from
variables to terms. We will use � to denote substitutions. We write X� for
X(�(x1); �(x2); : : : ; �(xn)).



We say that X is closed or ground if V(X) = ;. By T� or simply T we denote
the set of all ground terms over the signature �. A substitution is called ground

if its range consists of ground terms. A closed formula is called a sentence. Since
there are no relation symbols all the atomic formulas are equations, i.e., of the
form t � s where t and s are terms and `�' is the formal equality sign.

2.2 First Order Structures

First order structures will (in general) be denoted by upper case gothic letters
like A andB and their domains by corresponding capital roman letters like A and
B respectively. A �rst order structure in a signature � is called a �-structure.
For F 2 � we write FA for the interpretation of F in A.

For X a sentence or a set of sentences, A j= X means that the structure
A is a model of or satis�es X according to Tarski's truth de�nition. A set of
sentences is called satis�able if it has a model. If X and Y are (sets of) sentences
then X j= Y means that Y is a logical consequence of X , i.e., that every model
of X is a model of Y . We write X � Y when X j= Y and Y j= X . We write
j= X to say that X is valid, i.e., true in all models.

By the free algebra over � we mean the �-structure A, with domain T� , such
that for each n-ary function symbol f 2 � and t1; : : : ; tn 2 T� , fA(t1; : : : ; tn) =
f(t1; : : : ; tn). We let T� also stand for the free algebra over �.

Let E be a set of ground equations. De�ne the equivalence relation =E on T
by s =E t i� E j= s � t. By T�=E (or simply T=E) we denote the quotient of T�
over =E . Thus, for all s; t 2 T ,

T=E j= s � t , E j= s � t:

We call T=E the canonical model of E. Structures that are isomorphic with the
canonical model of a �nite set of ground equations are sometimes called �nitely

presented algebras. Various problems that are related to �nitely presented alge-
bras, and their computational complexity, have been studied in Kozen [26,27].
Below, we will make use of some of those results.

2.3 Simultaneous Rigid E-Uni�cation

A rigid equation is an expression of the form E 8̀ s � t where E is a �nite
set of equations, called the left-hand side of the rigid equation, and s and t are
arbitrary terms. A system of rigid equations is a �nite set of rigid equations. A
substitution � is a solution of or solves a rigid equation E 8̀ s � t if

j= (
^

e2E

e�)) s� � t�;

and � is a solution of or solves a system of rigid equations if it solves each
member of that system. The problem of solvability of systems of rigid equations
is called simultaneous rigid E-uni�cation or SREU for short. Solvability of a
single rigid equation is called rigid E-uni�cation. Rigid E-uni�cation is known
to be decidable, in fact NP-complete [19].



2.4 Term Rewriting

In some cases it is convenient to consider a system of ground equations as a
rewrite system. We will assume that the reader is familiar with basic notions
regarding ground term rewrite systems [15]. We will only use very elementary
properties. In particular, we will use the following property of canonical (or
convergent) rewrite systems. Let R be a ground and canonical rewrite system
and consider it also as as a set of equations. For any ground term t, let t#R
denote the normal form of t with respect to R. Then, for all ground terms t and
s, (cf [15, Section 2.4])

R j= t � s , t#R = s#R:

A reduced set of rules R is such that for each rule l ! r in R, l is irreducible
with respect to R n fl! rg and r is irreducible with respect to R. In the case of
ground rules, a reduced set of rules is also canonical [38]. It is always possible to
�nd a reduced set of ground rewite rules that is equivalent to a given �nite set
of ground equations [29]. Moreover, this can be done in O(n logn) time [38].

2.5 Finite Tree Automata

Finite tree automata, or simply tree automata from here on, is a generalization of
classical automata. Tree automata were introduced, independently, in Doner [16]
and Thatcher and Wright [40]. The main motivation was to obtain decidability
results for the weak monadic second-order logic of the binary tree. Here we adopt
the following de�nition of tree automata, that is based on rewrite rules [5,7].

I A tree automaton or TA A is a quadruple (Q;�;R; F ) where
� Q is a �nite set of constants called states,
� � is a signature that is disjoint from Q,
� R is a set of rules of the form f(q1; : : : ; qn)! q, where f 2 � has arity
n � 0 and q; q1; : : : ; qn 2 Q,

� F � Q is the set of �nal states.
A is called a deterministic TA or DTA if there are no two di�erent rules in
R with the same left-hand side.

It is also assumed that Q and � are disjoint. Note that if A is deterministic then
R is a reduced set of ground rewrite rules and thus canonical [38]. Tree automata
as de�ned above are usually also called bottom-up tree automata. Acceptance
for tree automata or recognizability is de�ned as follows.

I The set of terms recognized by a TA A = (Q;�;R; F ) is the set

T (A) = f � 2 T� j (9q 2 F ) �
�
�!R q g:

A set of terms is called recognizable if it is recognized by some TA.

Two tree automata are equivalent if they recognize the same set of terms. It is
well known that the nondeterministic and the deterministic versions of TAs have
the same expressive power [16,21,40], i.e., for any TA there is an equivalent DTA.
For an overview of the notion of recognizability in general algebraic structures
see Courcelle [6] and the fundamental paper by Mezei and Wright [32].



3 Decidability of SREU with One Variable

In this section we will formally establish the decidability of SREU with one
variable. The proof has two parts.

1. First we prove that rigid E-uni�cation with one variable can be reduced to
the problem of testing membership in a �nite union of congruence classes.

2. By using the property that any �nite union of congruence classes is recogniz-
able, we then reduce SREU with one variable to the intersection nonempti-
ness problem of �nite tree automata.

The decidability of SREU with one variable follows then from the fact that
recognizable sets are closed under boolean operations and that the nonemptiness
problem of �nite tree automata is decidable. In Section 4 we will address the
computational complexity of this reduction.

3.1 Reduction to Membership in a Union of Congruence Classes

We start by proving two lemmas. Roughly, these lemmas allow us to reduce
an arbitrary rigid equation S(x) with one variable to a �nite collection of rigid
equations fSi(x) j i < n g such that, for all substitutions �, � solves S i� �

solves some Si. Furthermore, each of the Si's has the form E 8̀ x = ti where E
is ground and ti is some ground term. The set E is common to all the Si's.

Let E be a set of ground equations and t a ground term. We denote by [t]E
the interpretation of t in T=E , in other words [t]E is the congruence class induced
by =E on T that includes t. For a set T of ground terms we will write [T ]E for
f [t]E j t 2 T g. We write Terms(E) for the set of all terms that occur in E,
in particular Terms(E) is closed under the subterm relation. We will use the
following lemma. Lemma 1 follows also from a more general statement in de
Kogel [8, Theorem 5.11].

Lemma 1. Let t be a ground term, c a constant, E a �nite set of ground equa-

tions and e a ground equation. Let T = Terms(E [ feg). If [t]E 62 [T ]E and

E [ ft � cg j= e then E j= e.

Proof. Assume that [t]E 62 [T ]E and that E [ ft � cg j= e. Let E0 be a reduced
set of rules equivalent to E, such that c#E0 = c. Let t0 = t#E0 . If t0 = c then

E [ ft � cg � E0 [ ft � cg � E0 [ ft0 � cg � E

and the statement follows immediately. So assume that t0 6= c. Let R = E0[ft0 !
cg. Let l ! r be a rule in E0. Neither l nor r can be reduced with the rule t0 ! c

because [t0]E = [t]E 62 [T ]E. Hence R is reduced, and thus canonical [38]. Also,
R � E [ ft � cg. (Note that t0 2 [t]E and [T ]E = [T ]E0 .)

Let e = t0 � s0 and let u = t0#R = s0#R. We have that

t0
�
�!R u; s0

�
�!R u:



Consider the reduction t0
�
�!R u and let ti �! ti+1 be any rewrite step in that

reduction. Obviously, if each subterm of ti is in some congruence class in [T ]E
then the rule t0 ! c is not applicable since [t0]E 62 [T ]E and it follows also that
each subterm of ti+1 is in some congruence class in [T ]E . It follows by induction
on i that the rule t0 ! c is not used in the reduction. The same argument holds
for s0

�
�!R u. Hence

t0
�
�!E0 u; s0

�
�!E0 u;

and thus E0 j= t0 � s0. Hence E j= e. ut

Consider a system S of rigid equations. There is an extreme case of rigid
equations that are easy to handle from the point of view of solvability of S,
namely the redundant ones:

I A rigid equation is redundant if all substitutions solve it.

To decide if a rigid equation E(x) 8̀ s(x) � t(x) is redundant, it is enough to
decide if E(c) j= s(c) � t(c) where c is a new constant.

I The uniform word problem for ground equations is the following decision
problem. Given a set of ground equations E and a ground equation e, is e a
logical consequence of E?

We will use the following complexity result [26,27].

Theorem 2 (Kozen). The uniform word problem for ground equations is P-

complete.

So redundancy of rigid equations is decidable in polynomial time.

Lemma 3. Let E(x) 8̀ e(x) be a rigid equation, c be a new constant and t be a

ground term not containing c. Then

E(c) [ ft � cg j= e(c) , E(t) j= e(t):

Proof. The only non-obvious direction is `)'. Since t does not include c, E(c)[
ft � cg j= e(c) holds with c replaced by t, but then the equation t � t is simply
superuous. ut

Clearly, S is solvable i� the set of rigid equtions in S that are not redundant, is
solvable. We will use the following lemma.

Lemma 4. Let E(x) 8̀ s0(x) � t0(x) be a non-redundant rigid equation of one

variable x and let c be a new constant. There exists a �nite set of ground terms

T such that, for any ground term t not containing c the following holds:

E(t) j= s0(t) � t0(t) , E(c) j= t � s for some s 2 T :

Furthermore, T can be obtained in polynomial time.



Proof. Let T 0 be the set Terms(E(c) [ fs0(c) � t0(c)g). Let

T = f s 2 T 0 j E(c) [ fs � cg j= s0(c) � t0(c) g:

Note that T may be empty. Let t be any ground term that does not contain
c. By using Lemma 3, it is enough to prove that the following statements are
equivalent:

1. E(c) [ ft � cg j= s0(c) � t0(c),
2. E(c) j= t � s for some s 2 T .

Assume �rst that [t]E(c) 62 [T 0]E(c). In particular [t]E(c) 62 [T ]E(c), so statement 2
is trivially false. Suppose (by contradiction) that statement 1 holds. But then
E(c) j= s0(c) � t0(c) by Lemma 1, which contradicts the assumption that the
rigid equation is not redundant.

Assume now that [t]E(c) = [s]E(c) for some s 2 T 0. Thus

E(c) [ fs � cg � E(c) [ ft � cg: (1)

So, if s 2 T then statement 2 is trivially true and statement 1 is true by (1) and
the de�nition of T . If on the other hand s 62 T then statement 2 is trivially false
and statement 1 is false by (1) and the de�nition of T .

Observe that the size of T 0 is proportional to the size of the rigid equation,
and to decide if some term in T 0 belongs to T takes polynomial time by Kozen's
result. So the construction of T takes polynomial time. ut

From Lemma 4 we get the following result.

Theorem 5. Rigid E-uni�cation with one variable is P-complete.

Proof. P-hardness of rigid E-uni�cation with one variable follows immediately
from P-hardness of the uniform word problem for ground equations. Inclusion
in P is proved as follows. Let S(x) = E(x) 8̀ e(x) be a rigid equation. Test
�rst that S(x) is not redundant. If so, use Lemma 4 to obtain T . Now, S(x) is
solvable i� T is nonempty. ut

This P-completeness result is extended in Section 4.3 to SREU with one variable
and a constant bound on the number of rigid equations.

4 Computational Complexity of SREU with One Variable

In the previous section we showed that SREU with one variable is decidable.
We paid little or no attention to the actual computational complexity of this
decision problem. Here we take a closer look at the reduction and show that
SREU with one variable is in fact EXPTIME-complete. We �rst introduce the
following de�nition.



I The intersection nonemptiness problem of DTAs orDTAI is the following de-
cision problem. Given a collection fAi j 1 � i � n g of DTAs, is

Tn
i=1 T (Ai)

nonempty?

The following result has been observed by other authors [18,22,36] and strictly
proved in Veanes [41].

Theorem 6 (Veanes). DTAI is EXPTIME-complete.

We will �rst show that SREU with one variable reduces to DTAI in polynomial
time. This establishes the inclusion of SREU with one variable in EXPTIME.
We then show that DTAI reduces to SREU with one variable, which shows the
hardness part. The construction that we will use is in fact based on a construction
in de Kogel [8, Theorems 4.1 and 4.2] that is based on Shostak's congruence
closure algorithm [37].1 A similar construction is used also in Gurevich and
Voronkov [25].

4.1 SREU with one variable is in EXPTIME

In the following we will assume that none of the rigid equations are redundant.
Lemma 4 tells us that the set of solutions of a rigid equation E(x) 8̀ e(x) with
one variable is given by the union of a �nite number of congruence classes

[

s2T

f t j E(c) j= s � t g;

where T � Terms(E(c) [ fe(c)g) and c is a new constant. We will now give a
polynomial time construction of a DTA that recognizes the above set of terms.
Our considerations lead naturally to the following de�nition. Let E be a set of
ground equations and T a subset of Terms(E).

I A DTA A = (Q;�;R; F ) is presented by (E; T ) if A has the following form
(modulo renaming of states). First, let qC be a new state for each C 2
[Terms(E)]E .

Q = f qC j C 2 [Terms(E)]E g;

� = �(E);

F = f qC j C 2 [T ]E g;

R = f f(q[t1]E ; : : : ; q[tn]E )! q[t]E j t = f(t1; : : : ; tn) 2 Terms(E) g:

It is clear that the above de�nition is well de�ned. It follows from elementary
properties of congruence relations that A is deterministic and thus R is reduced.
Note that for each constant c in �(E), there is a rule c! q[c]E in R. Note also
that for any equation s � t in E, both s and t reduce to the same normal form
q[s]E = q[t]E with respect to R, since they belong to Terms(E). We will use the
following lemma.

1 De Kogel does not use tree automata but the main idea is the same.



Lemma 7. Let E be a set of ground equations and T � Terms(E). Let A be a

DTA presented by (E; T ). Then

1. T (A) = f t 2 T�(E) j (9s 2 T )E j= t � s g,
2. A can be constructed in polynomial time from E and T .

Proof. By using some results in de Kogel [8] and Theorem 2. (See [9].) ut

We prove now that SREU with one variable is in EXPTIME.

Lemma 8. SREU with one variable is in EXPTIME.

Proof. Let S(x) = fSi(x) j 1 � i � n g be a system of rigid equations. Assume,
without loss of generality, that none of the rigid equations is redundant. Let
Si(x) = Ei(x) 8̀ ei(x). Let � be the signature of S. Use Lemma 4 to obtain, for
each i, 1 � i � n, a set of ground terms Ti in polynomial time such that, for all
t in T� ,

Ei(t) j= ei(t) , Ei(c) j= t � s for some s 2 Ti:

Use now Lemma 7 to obtain (in polynomial time) a DTA Ai that presents
(Ei(c); Ti), for 1 � i � n. It follows by Lemma 4 and the �rst part of Lemma 7
that

T (Ai) = f t 2 T� j Ei(t) j= ei(t) g (for 1 � i � n):

Thus, � is a solution to S(x) i� x� is recognizable by all T (Ai). Consequently,
S(x) is solvable i�

Tn
i=1 T (Ai) is nonempty. The lemma follows, since DTAI is

in EXPTIME. ut

Remark Decidability of SREU with one variable can also be proved by combining
Lemma 4 with a result by Brainerd [3] that states that, given a set R of a ground

rewrite rules and a set T of ground terms, then the set f t j (9s 2 T ) t
�
�!R s g is

recognizable. This proof would not give us the computational complexity result,
however.

4.2 SREU with one variable is EXPTIME-complete

We will reduce DTAI to SREU with one variable to establish the hardness part.
First, let us state some simple but useful facts.

Lemma 9. Let A = (Q;�;R; F ) be a DTA, f be a unary function symbol not

in �, and c be a constant not in Q or �. Let

S(x) = (R [ f f(q)! c j q 2 F g 8̀ x � c):

Then, for all � such that x� 2 T�[ffg,

� solves S(x) , x� = f(t) for some t 2 T (A):



Proof. Let E = R [ f f(q) ! c j q 2 F g. From the fact that R is reduced and
that f(q) is irreducible in E and c is irreducible in R, follows that E is reduced

and thus canonical. So, for any x� 2 T�[ffg, E j= x� � c i� x�
�
�!E c. But

x�
�
�!E c, x�

�
�!E f(q) �! c for some q 2 F

, x� = f(t) for some t 2 T� and t
�
�!R q

, x� = f(t) for some t 2 T (A):

ut

For a given signature �, and some constant c in it, let us denote by S�(x) the
following rigid equation:

S�(x) = (f�(c; : : : ; c) � c j � 2 � g 8̀ x � c):

The following lemma is elementary [14].

Lemma 10. For all �, � solves S�(x) i� x� 2 T�.

We have now reached the point where we can state and easily prove the following
result.

Theorem 11. SREU with one variable is EXPTIME-complete.

Proof. Inclusion in EXPTIME follows by Lemma 8. Let fAi j 1 � i � n g be a
collection of DTAs with a signature �. Let f be a new unary function symbol
and �0 = �[ffg. For each Ai, let Si(x) be the rigid equation given by Lemma 9.
So, for all � such that x� 2 T�0 ,

� solves Si(x) , x� = f(t) for some t 2 T (Ai):

Let
S(x) = fSi(x) j 1 � i � n g [ fS�0(x)g:

It follows by Lemma 10 that for any � that solves S(x), x� is in T�0 . Hence,
by Lemma 9, S(x) is solvable i�

Tn
i=1 T (Ai) is nonempty. Obviously, S(x) has

been constructed in polynomial time. The statement follows, since DTAI is
EXPTIME-hard. ut

So in the general case, SREU is already intractable with one variable. It
should be noted however that the exponential behaviour is strongly related to
the unboundedness of the number of rigid equations. (See Section 4.3.)

4.3 Bounded SREU with One Variable

The exponential worst case behaviour of SREU with one variable is strongly
related to the unboundedness of the number of rigid equations, and not to the
size or other parameters of the rigid equations. This behaviour is explained by



the fact that the intersection nonemptiness problem of a family of DTAs is in fact
the nonemptiness problem of the corresponding direct product of the family. The
size of a direct product of a family of DTAs is proportional to the product of the
sizes of the members of the family, and the time complexity of the nonemptiness
problem of a DTA is polynomial.

I Bounded SREU is SREU with a number of rigid equations that is bounded
by some �xed positive integer.

We will use the following de�nition.

I The nonemptiness problem of TAs is the following decision problem. Given
a TA A, is T (A) nonempty?

The nonemptiness problem of DTAs is basically the problem of generability of
�nitely presented algebras. The latter problem is P-complete [27] and thus, by a
very simple reduction, also the former problem [41].2 For bounded SREU with
one variable we get the following result.

Theorem 12. Bounded SREU with one variable is P-complete.

Proof. Let the number of rigid equtions be bounded by some �xed positive in-
teger n. P-hardness follows immediately from Theorem 5. Without loss of gen-
erality consider a system

S(x) = fSi(x) j 1 � i � n g

of exactly n rigid equations. For each Si construct a DTA Ai in polynomial time,
like in Lemma 8. Let A be the DTA that recognizes

Tn
i=1 T (Ai). For example,

A can be the direct product of fAi j 1 � i � n g (G�ecseg and Steinby [21]). It
is straightforward to construct A in time that is proportional to the product of
the sizes of the Ai's. Hence A is obtained in polynomial time (because n is �xed)
and T (A) is nonempty i� S(x) is solvable. ut

4.4 Monadic SREU with One Variable

When we restrict the signature to consist of function symbols of arity � 1,
i.e., when we consider the so-called monadic SREU then the complexity bounds
are di�erent. We can note that DTAs restricted to signatures with just unary
function symbols correspond to classical deterministic �nite automata or DFAs.
It was proved by Kozen that the computational complexity of the intersection
nonemptiness problem of DFAs is PSPACE-complete [28]. So, by using this fact
we can see that Theorem 11 proves that monadic SREU with one variable is
PSPACE-complete.

Monadic SREU is studied in detail elsewhere [25]. We can note that, in
general, the decidability of monadic SREU is still an open problem. There is
also a very close connection between monadic SREU and the prenex fragment of
intuitionistic logic with equality restricted to function symbols of arity � 1 [12].

2 The book of Greenlaw, Hoover and Ruzzo [23] includes an excellent up-to-date survey
of around 150 P-complete problems, including generability.



5 Implications to the Prenex Fragment of Intuitionistic

Logic

The prenex fragment of intuitionistic logic is the collection of all intuitionisti-
cally provable prenex formulas. Many new decidability results about the prenex
fragment have been obtained quite recently by Degtyarev and Voronkov [12{14]
and Voronkov [43]. Some of these results are:

1. Decidability, and in particular PSPACE-completeness, of the prenex frag-
ment of intuitionistic logic without equality [43].

2. Prenex fragment of intuitionistic logic with equality but without function
symbols is PSPACE-complete [12]. Decidability of this fragment was proved
in Orevkov [35].

3. Prenex fragment of intuitionistic logic with equality in the language with
one unary function symbol is decidable [12].

4. 9�-fragment of intuitionistic logic with equality is undecidable [13,14].

In some of the above results, the corresponding result has �rst been obtained
for a fragment of SREU with similar restrictions. For example, the proof of the
last statement is based on the undecidability of SREU. The undecidability of
the 9�-fragment is improved in Veanes [42] where it is proved that, already the

5. 99-fragment of intuitionistic logic with equality is undecidable.

With the following result we obtain a complete characterization of decidability of
the prenex fragment of intutionistic logic with equality with respect to quanti�er
pre�x.

Theorem 13. The 8�98�-fragment of intuitionistic logic with equality is decid-

able and EXPTIME-hard.

Proof. Intuitionistic provability of any formula in the 8�98�-fragment can be
reduced to solvability of SREU with one variable [12]. Conversely, solvability
of a system of rigid equations with one variable reduces trivially to provability
of a corresponding formula in the 9-fragment [12]. The statement follows by
Theorem 11. ut

Remark The undecidability of the 99-fragment holds if there is one binary func-
tion symbol in the signature. The reduction in Theorem 13 from a 8�98�-formula
to SREU with one variable may take exponential time, so the precise computa-
tional complexity for this fragment is unkown at this moment.

Other fragments Decidability problems for other fragments of intuitionistic logic
have been studied by Orevkov [34,35], Mints [33], Statman [39] and Lifschitz [30].
Orevkov proves that the ::89-fragment of intuitionistic logic with function sym-
bols is undecidable [34]. Lifschitz proves that intuitionistic logic with equality and
without function symbols is undecidable, i.e., that the pure constructive theory of
equality is undecidable [30]. Orevkov shows decidability of some fragments (that
are close to the prenex fragment) of intuitionistic logic with equality [35]. Stat-
man proves that the intuitionistic propositional logic is PSPACE-complete [39].



6 Current Status of SREU and Open Problems

Some other fragments of SREU, besides the one variable case, have been shown
to be decidable and there are some subfragments of the two variable case that
have been shown to be undecidable. A list of such results, including some other
results related to SREU, is given in Degtyarev, Gurevich, Narendran, Veanes
and Voronkov [9]. The unsolved cases are:

1. Decidability of monadic SREU [25].
2. Decidability of SREU with two rigid equations.

Both problems are highly non-trivial.
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