
The Linear Time Hierarchy Theorems for

Abstract State Machines and RAMs

Andreas Blass
1

Yuri Gurevich
2

Abstract

We prove the Linear Time Hierarchy Theorems for random access machines and

Gurevich abstract state machines. One long-term goal of this line or research is to

prove lower bounds for natural linear time problems.

1 Introduction

In [J], Neil Jones exhibited a computation model where the linear speed-up theorem fails
and, instead, a linear time hierarchy theorem holds: There exists a positive constant c such
that, for every positive d, Time(c � d � n)� Time(d � n) 6= ;. In fact, Jones exhibited several
computation models of that kind. One long-term goal of this exciting line or research is to
prove lower bounds for linear time problems. The models described in detail in Jones's paper
were particularly designed for the linear time hierarchy theorem, but he mentioned that the
linear time hierarchy theorem also holds for Sch�onhage's storage modi�cation machines [S].
In an appropriate sense, storage modi�cation machines are equivalent to random access
machine whose only arithmetical operation is successor (Successor RAMs) [S].

In general, even the Successor RAM model is too restrictive for many applications, e.g.,
computational geometry. One result of this paper is the Linear Time Hierarchy Theorem
for random access machines with the usual arithmetical operations; see Section 9.

Contrary to polynomial time, linear time is not a robust notion. Successor RAMs, RAMs
with addition, RAMs with addition and multiplication, etc. all give di�erent versions of
linear time. The most versatile machine model we know is the abstract state machine (ASM)
model [G1, G2]. These machines are also known as Gurevich (abstract state) machines
or evolving algebras. Unary ASMs (using no basic functions of arity � 2) with limited
interaction with the outside world are equivalent to the storage modi�cation machines of
Sch�onhage [BGG]. One can easily de�ne a kind of ASMs equivalent to Addition RAMs,
Addition and Multiplication RAMs, etc. According to the ASM thesis, any algorithm can
be closely simulated, on its natural abstraction level, by an appropriate ASM [G1]. The
thesis has been con�rmed in numerous applications [B,C,H]. The ASM model o�ers an
abstract parametrized version of linear time. Tell us what operations you suppose to be
performed in constant time and we will tailor an appropriate ASM model.

1Partially supported by NSF grant DMS{9505118. Mathematics Department, University of Michigan,

Ann Arbor, MI 48109-1109, ablass@umich.edu
2Partially supported by NSF and ONR. EECS Department, University of Michigan, Ann Arbor, MI

48109-2122, gurevich@umich.edu

1

In this paper, we prove the linear time hierarchy theorem for sequential ASMs with
arbitrarily (but �nitely) many internal dynamic functions and no restriction on the arities.
We presume, however, that there are no external functions and thus the ASMs do not
interact with the environment. Elsewhere, we intend to generalize the linear time hierachy
theorem to reactive ASMs [BG2]. We presume also that initial states do not have any
prede�ned static non-logic universes and functions. But incorporating static universes and
functions is relatively easy; we explain the necessary changes.

The paper is organized as follows.

Section 2: Preliminaries. A particular notion of lock-step simulation is introduced.
Roughly speaking, a simulation of one algorithm by another is lock-step3 if the simulating
algorithm (the \predator") makes only a bounded number of steps to simulate one step of
the simulated algorithm (the \prey") [G1]. The term \lock-step" replaces the term \real
time" used by Michael Rabin and others in 1960s; the reason is that the term \real time"
has a di�erent meaning now. The notions of equivalence mentioned above utilize lock-step
simulations.

Section 3: Abstract State Machines. We recall the notion of abstract state machine
appropriate for this paper.

Section 4: More on Abstract State Machines. We make particular input/output con-
ventions and de�ne (skipping some details) the honest time for ASMs.

Section 5: Diagonalization Theorem. Given an arbitrary vocabulary �, we describe a
diagonalizing �-ASM (the predator) that lock-step simulates any �-ASM (the prey) and
then changes the output (if any); the actual predator program is found in Section 6. The
simulation is with preprocessing, and it is not required that the predator halts if the prey's
computation hangs. It is possible to achieve a simulation without preprocessing and with
hang-state recognition but the proof is much harder and is not needed for proving the
ASM linear time hierarchy theorem. We intend to give the proof in [BG2] where these
improvements are needed.

Section 6: Diagonalization Program. We interleave the rules of the diagonalization
program with explanations.

Section 7: ASM Linear Time Hierarchy Theorem. We prove the hierarchy theorem and
give some comments. The theorem has this form: For every vocabulary � with enough
nullary and unary function names, there exists a constant c such that, for every positive
integer d, Time(c � d � n)� Time(d � n) 6= ;.

Section 8: Comments. We comment on the proof of the ASM linear time hierarchy
theorem and, in particular, explain how to generalize it to the case where initial states
contain some prede�ned static universes and functions, e.g. a copy of integers (or reals)
with standard order, addition and multiplication.

Section 9: Random Access Machines. We prove the Diagonaliziation Theorem for RAMs
and then derive the RAM Linear Time Hierarchy Theorem. In the case of RAMs, the
diagonalizing predator lock-step simulates a given prey without preprocessing. A recognition
of hang states can be easily achieved as well.

The results of this paper have been announced in [BG1].

2

2 Preliminaries

2.1 Provisos

In this paper, we consider a restricted class of algorithms satisfying the following conditions.
An algorithm A has a program Program(A) and a well de�ned collection States(A) of states.
The collection States(A) has distinguished subcollections of initial and �nal states. Each
initial state is an input of A and may be called an input state. Each �nal state yields a
Boolean output.

The states of A split into enabling states where A is enabled and disabling states where
A is disabled. Any �nal state is disabling. Non-�nal disabling states are hang states.

In one step, A transforms a given enabling stateA into a stateA0; symbolically A)A A0.
The state A0 is the successor of A with respect to A. Further, let)k

A
be the k-fold iteration

of the successor relation)A, let)
+
A
be the transitive closure of)A, and let)�

A
be the

re
exive transitive closure of)A. A state A of A is reachable if I)�
A
A for some initial

state I .
In this paper, the letters A and B are reserved to denote algorithms.

2.2 Runs

Recall that the �rst in�nite ordinal ! is the collection of all natural (that is non-negative
integer) numbers. For every ordinal �, � < ! if and only if � 2 !. Let � range over
non-empty ordinals � !.

De�nition 1 Let � be a sequence hAi : i < �i of states of A.

� � is a partial run of A if Ai)A Ai+1 for all i with i+ 1 < �. If � is �nite, then the
number �� 1 is the length of �. (Notice that the length is the number of steps rather
than the number of states.)

� A partial run � is a run of A if (i) A0 is an initial state, and (ii) if � is �nite, then
A��1 is disabling. (Notice that there is no interaction between an algorithm and the
environment. An initial state uniquely de�nes the run.)

� Suppose that � is a run. If � is �nite and the state A��1 is �nal, then A converges
on A0; otherwise it diverges on A0. If A converges on A0, then the output yielded by
A��1 is the output of A on A0. If � is �nite but A diverges on A0, then A hangs on
A0.

2

A accepts (respectively rejects) an input state I if it converges on I and outputs true
(respectively false).

2.3 Simulations

To distinguish more vividly between the simulated and simulating algorithms, we call the
�rst a prey and the second a predator. We are primarily interested in the case where initial
states of the prey are also initial states of the predator.

3

De�nition 2 [Preliminary Simulation De�nition] Let be a mapping from States(A) to
States(B). States in the range of are pose states of B. B simulates A with respect to if,
for every run hAi : i < �i of A, the following condition is satis�ed.

S0 The pose states of B in the run of B on A0 form the sequence h Ai : i < �i (for the
same �). Furthermore, if � is �nite and A��1 is �nal, then A��1 is �nal and yields
the same output.

2

The intuitive meaning of is encoding. A state A of the prey is encoded as the state A
of the predator. It is not required in general that A0 is an initial state of the predator; this
allow some preprocessing. Thus the predator starts with some preprocessing and eventually
arrives at the pose state A0. Then it simulates the �rst step of A until it arrives at the
pose state A1. And so on.

One natural strengthening of De�nition 2 is to forbid preprocessing: B simulates A
without preprocessingwith respect to the given encoding if, in addition to S0, the following
condition is satis�ed.

S1 A0 = A0.

Another natural strenghtening is that the predator recognizes not only �nal but all
disabling states: B simulates A with disabling state recognition with respect to the given
encoding if, in addition to S0, the following condition is satis�ed.

S2 If � is �nite and A��1 is a disabling state, then A��1 is a �nal state.

On the other hand, De�nition 2 is too restrictive. It requires a deterministic encoding
of prey states. It makes sense to replace with a mapping � from some collection POSE
of predator states to the collection of prey states. Intuitively, A = �B means that B is one
of the encodings of A.

De�nition 3 Let POSE be a collection of states of B, and let � be a mapping from POSE
to States(A). B simulates A with respect to POSE and � if, for every run hAi : i < �i of
A, the following condition is satis�ed.

S3 The pose states of B in the run of B on A0 form a sequence hBi : i < �i (for the same
�), with �Bi = Ai. Furthermore, if � is �nite and A��1 is �nal, then B��1 is �nal
and yields the same output.

2

We say that B simulates A without preprocessing (respectively with disabling state
recognition) if, in addition to S3, condition S1 (respectively S2) is satis�ed.

If A0 is obtained from A by restricting the collection of initial states to a subset I and
if B simulates A0, then we say that B simulates A on I. This terminology may be applied
to any simulation mode: with or without preprocessing, with or without disabling state
recognition.

4

2.4 Honest Time and Lock-Step Simulations

It is customary to de�ne the computation time of an algorithm A as the number of steps.
But the program of A may be written on a higher abstraction level which hides details, so
that one step of A involves a number of microsteps. In this connection, we assume that
each algorithm A comes with a function HTA whose domain consists of the enabling states
of A. Think about HTA(A) as the number of microsteps, the honest time, necessary to
transform A to its successor.

De�nition 4 If A)�
A
B and A0; : : : ; Ak is the shortest partial run with A0 = A and

Ak = B, then

HTA(A;B) =
k�1X

i=0

HTA(Ai):

2

Notice that, since A is deterministic, any partial run of A from A to B begins with the
shortest partial run from A to B.

De�nition 5 Suppose that B simulates A (with or without preprocessing, with or without
disabling state recognition) with respect to a collection POSE of the predator's states and a
mapping � from POSE to prey states. The simulation is lock-step if there exists a positive
integer c such that, for every run � = hAi : i < �i of A, the following condition is satis�ed.
Recall that the run � of the prey gives rise to a sequence hBi : i < �i of predator pose
states.

S4 HTB(Bi; Bi+1) � c �HTA(Ai; Ai+1) for all i with i+ 1 < �� 1.

The smallest appropriate c is the lag factor of the simulation.
2

3 Abstract State Machines

For the reader's convenience, we recall here Gurevich abstract state machines (ASMs) also
known as evolving algebras. More details can be found in [G2]. ASM experts can skip most
of this section; read only about the normal form at the end of the section.

3.1 States and Updates

Vocabularies and Terms As usual in logic, a vocabulary is a �nite collection of relation
and function names of �xed arities. However relation names are treated as special function
names. Every name in a vocabulary is a function name, but some function names are
tagged to be relation names. Similarly, some function names may be tagged to be static.
It is assumed that every vocabulary contains the following logic function names: nullary
names true ; false and undef , a unary relation name Bool, the names of the standard Boolean
operations and the equality sign. All logic names are static.

Terms are de�ned as in �rst-order logic. Boolean-valued terms are Boolean combinations
of terms P (�x) where P is a relation name. A ground term is a term with no free variables.

5

States A state A of vocabulary � consists of (i) a set X , called the superuniverse of A,
and (ii) the interpretations of the function names in � on X , called the basic functions of A.
An r-ary function name is interpreted as a function from Xr to X . Nullary function names
true , false, undef are interpreted by di�erent elements. We do not distinguish between
these names and their interpretations.

The boolean values true and false are the only possible values of any relation name. In
particular, the equality sign is interpeted as the identity relation. An equality t1 = t2 can be
viewed as a Boolean-valued term or a statement that the terms t1; t2 are equal. Usually, the
context resolves the ambiguity. A relation F is identi�ed with the set f�x : R(�x) = trueg.
In particular Bool = ftrue ; falseg.

The nullary function undef allows us to deal with partial functions. We say that a basic
function f is unde�ned at a tuple �a if f(�a) = undef . The Boolean connectives are unde�ned
if at least one of the arguments is not Boolean; over Bool they are interpreted as expected.

Finally, the superuniverse includes an in�nite set called the reserve of A which is intu-
itively a \naked" outside set. The reserve can be de�ned as the collection of elements of A
satisfying the following conditions:

� No function produces a reserve value.

� Every basic relation, with the exception of equality, evaluates to false if at least one
of the arguments is in the reserve.

� Every other function evaluates to undef if at least one of the arguments is in the
reserve.

(This simpler semantical de�nition of the reserve di�ers inessentially from the more syn-
tactical de�nition in [Gu2].) In this paper, non-reserve elements di�erent from true , false,
undef will be called regular.

It is often convenient to think about a state A as a map from locations to contents.
Locations have the form (f; �a) where f is a function name of some arity r and �a is an
r-tuple of elements of the superuniverse. The content of location (f; �a) is the element f(�a).

Variable Assignments The only variables we will have are individual variables ranging
over the reserve Y of a given state A. Let V be a collection of variable names. A variable
assignment with domain V over the state A is an injective map � : V ! Y . The pair (A; �)
may be called an expanded state.

In a sense, there is only one variable assignment with the given domain over the given
state: for every variable assignments �1; �2 with the same domain V , there is an automor-
phism of A that takes every �1(v) to �2(v).

Updates An update of a state A is a pair � = (`; a) where ` is a location over A and a
an element of A. To �re (`; a), put a into ` (that is, set the context of ` to a) and leave the
other locations intact.

A set U of updates of a state A is contradictory if it contains a pair of updates (`; a)
and (`; b) where a 6= b; otherwise U is consistent. To �re a contradictory update set, do
nothing; the new state is identical to the old one. To execute a consistent update set
(`1; a1); : : : ; (`k; ak), put elements a1; : : : ; ak into locations `1; : : : ; `k respectively and leave
the other locations intact.

6

3.2 Rules

Syntactically, update sets are speci�ed by means of (transition) rules constructed inductively
from atomic rules by means of several rule constructors. In order to apply a rule R to an
expanded state (A; �), we require that the vocabulary of A should contain every function
name that occurs in R and the domain of � should contain every variable that is free in R.
[Free and bound variables will be de�ned after the de�nition of import rules | the only
rules that bind variables.] In the rest of this section, we suppose that the vocabulary of a
given expanded state is su�ciently rich in this sense.

The evaluation of a rule R at a state A under a variable assignment � produces an
update set U = US(R;A; �). To �re R, �re U ; the result is the successor of A with respect
to R. R is consistent (respectively contradictory) at (A; �) if U is so.

Atomic Rules An atomic (or update) rule R is an expression f(t1; : : : ; tr) := t0 where
each ti is a term and f is a non-static r-ary function name; if f is a relation name then t0 is
a Boolean-valued term. Given an expanded state (A; �), evaluate all terms ti. Let ai be the
resulting value of ti, �a = (a1; : : : ; ar) and ` the location (f; �a). Then US(R;A; �) = f(`; a0)g.

Block Rules A block rule R has the form

block

R1
...

Rk

endblock

where each Ri is a rule. For readability, the reserved words \block" and \endblock" are often
omitted. Given an expanded state (A; �), evaluate all rules Ri. US(A; �) =

S
iUS(Ri; A; �).

Conditional Rules A conditional rule R has the form

if g0 then R0

elseif g1 then R1
...

elseif gk then Rk

endif

where k � 0, each gi is a Boolean-valued term and each Ri is a rule. A line \(else)if gi
then Ri" is a clause with the guard gi and the body Ri. If the last guard gk is the nullary
function name true then the last clause can be abbreviated to \else Rk".

Given an expanded state (A; �), evaluate the guards one after another. If all the guards
evaluate to false, then US(R;A; �) = ;. And if gi is the �rst guard that evaluates to true ,
then US(R;A; �) = US(Ri; A; �).

Import Rules An import rule R has the form

import v
R0

endimport

7

where v is a variable and R0 is a rule, the body of R. Given a state A and a variable
assignment � with domain V , let V 0 = V [fvg and �0 be the variable assignment with domain
V 0 obtained from � by picking a fresh (that is outside of the range of �) reserve element a
and setting or resetting �0(v) = a. Evaluate R0 at A; �

0. US(R;A; �) = US(R0; A; �
0).

Free and bound variables and occurrences of variables are de�ned in the usual way with
\import v" binding v. Successive imports can be abbreviated to a rule of the form:

import v1; : : : ; vm
R

endimport

Programs A program is a rule without free variables. It can therefore be �red at a state,
with the empty assignment, and this �ring produces a state. Thus it makes sense to �re a
program repeatedly, producing a sequence of states. Usually, we use the word \program"
only when such an interation is envisaged.

A state of a program � is any state A of the vocabulary of �.

3.3 A normal form

Call two programs of the same vocabulary � equivalent if they generate the same update
set at every �-state. Call a program consistent if it is consistent at every state. Every
program is equivalent to a consistent program. Moreover, all imports can be done at the
beginning, so that the program has a prenex form with respect to imports.

Lemma 1 (Normal Form) Every �-program is equivalent to a �-program of the form

import v1; : : : ; vm
R

endimport

where R is consistent in every �-state. Moreover, there is a polynomial time algorithm that
transforms any given program to a normal form program.

The proof, found in [DDG], consists essentially of three steps. First, rename variables
so that no two imports (that is, occurrences of the import command) use the same variable.
Second, move all imports to the beginning of the program and all endimports to the end.
Finally, add at the beginning of the program a guard that checks the consistency of all
the intended updates. Notice, that the normal form of a given program may import extra
elements but those elements will be inaccessible and will make no di�erence.

4 More on Abstract State Machines

For simplicity of exposition, we restrict attention to vocabularies without any non-logic
static names. To improve readability, we sometimes write unary functions after their argu-
ments; thus t:f means f(t). In this section, we describe our conventions related to input
and output, and then discuss the honest time for abstract state machines.

8

4.1 The Input/Output Related Conventions

Vocabularies Every vocabulary contains nullary function names 0, Mode, Output and a
unary function name Succ. The name Output is relational, and the other three names are
not relational.

Initial States A state A is initial if it isomorphic to a state A0 satisfying the following
conditions.

� The regular elements form a segment [0; n) of natural numbers with n � 2, the symbol
0 has the obvious interpretation and Succ is the successor function. Furthermore,
Succ(n� 1) = Succ(undef) = undef .

� Mode = 1 and Output = false.

A0 is the canonic version of A. The number n is the size of A. For clarity, we use \Initial"
as an alias for Succ(0), so that Mode = Initial at A.

Final States A state A is �nal if Mode = 0 at A. The output of a �nal state A is the
value of Output at A. For clarity, we use \Final" as an alias for 0, so that Mode = Final

at A.

Remark According to Section 2, �nal states are disabling. Programs written by us pro-
duce no updates at �nal states. One may want to impose such a requirement on all programs,
for example by requiring that every program has the form \if Mode 6= Final then. . . ". We
do not impose any syntactical constraint of this sort. Instead we use semantical means,
namely the de�nition of run: the part of a run following the �rst �nal state is simply
ignored and the �nal state is considered to be the last state of the run. 2

Machines vs. Programs By default, an abstract state machine A is a program P (as
de�ned in the previous section) whose states (respectively initial states, �nal states) are
those of the vocabulary of P . However, we reserve the right to restrict the collection of
initial states.

A state B of A is enabling if it is non-�nal and the update set U of P at B (with the
empty assignment) is consistent; otherwise B is disabling. Thus B is a hang state if U is
contradictory and B is not �nal.

4.2 Parse Trees

Trees Here, a tree is a �nite structure with one partial unary function Parent satisfying
the following condition. There exists a element x (the root) such that Parent is unde�ned
at x and every other element y can be transformed to x by repeated applications of Parent.
The elements of a tree are called nodes.

Oriented Trees An oriented tree is a tree where the children of any node are linearly
ordered by means of partial unary functions First Child and Next Sibling. We use abbrevi-
ations FC and NS for First Child and Next Sibling respectively.

9

Labeled Trees A labeled tree is an oriented tree with label function or functions. The
domain of a label function L is a set of nodes, so that, in general, L is partial.

A labeled tree T is a composition of labeled trees T1; : : : ; Tk with the same label-function
names as T , if the root of T has exactly k childen and the corresponding k labeled subtrees
are isomorphic to T1; : : : ; Tk in this order. Notice that nothing is said about the labels of
the root of T .

Abstract Parse Trees A parse tree is a labeled tree with a total label function Type
and a partial label function Nomen.

We de�ne, by induction, abstract parse trees APT(e) for various syntactical entities e.

� If e is a variable, then APT(e) is a one-node tree. The type of (that is the value of
Type at) the root is \Var". The nomen of (that is the value of Nomen at) the root is
\e" itself.

� If e is a term f(t1; : : : ; tr), then APT(e) is the composition of parse trees for t1; : : : ; tr.
The type of the root is \Fun" and the nomen is \f".

� If e is an atomic rule f(t1; : : : ; tr) := tr+1, then APT(e) is the composition of the parse
trees for t1; : : : ; tr; tr+1. The type of the root is \Update" and the nomen is \f".

� If e is a block rule with constituent rules R1; : : : ; Rk, then APT(e) is the composition
of the parse trees for R1; : : : ; Rk. The type of the root is \Block".

� If e is a clause with guard g and body R, then APT(e) is the composition of the parse
trees for g and R. The node type of the root is \Clause".

� If e is a conditional rule with clauses R0; : : : ; Rk, then APT(e) is the composition of
the parse trees for R0; : : : ; Rk. The type of the root is \Cond".

� If e is an import rule with variable v and body R and T is the parse tree of R, then
APT(e) is obtained as follows. First, construct the composition of T (all by itself)
(that is add a parent to the root of T). Let x be the new root. Second, set the type
of x to \Import" and the nomen of x to x itself. Third, for every node y of T whose
nomen is v, rede�ne the nomen of y to x.

Concerning the last item, notice that, for every node y of T with nomen v, the occurrence
of v corresponding to y is free in R.

Concrete Parse Trees Fix a vocabulary � and linearly order it arbitrarily. For every
function name f in � (including the logic names), denote by f -code the ordinal number of
f in the linear order. Let P be a program in the vocabulary �.

De�nition 6 The concrete parse tree CPT�(P) of P is the presentation of the abstract
parse tree APT(P) of P obtained as follows.

� Order the nodes of APT(P) in the depth-�rst manner and then replace every node
with its ordinal number (starting with zero).

� Modify the type function, by replacing the labels Block, Clause, Cond, Fun, Import,
Update, Var with numbers 0; 1; 2; 3; 4; 5; 6 respectively.

10

� Modify the nomen function by replacing every nomen f with its f -code.

2

4.3 Input Structures Encoding Programs

Fix a vocabulary � containing (in addition to 0, Succ, Mode and Output) the unary function
names Parent, FC, NS, Type and Nomen and let P be a program of vocabulary �. De�ne
the size of P to be the number of nodes in the concrete parse tree CPT�(P) of P . Without
loss of generality, we restrict attention to programs whose size is at least 6 and at least as
large as the total number of function names in � (including the logic names).

De�nition 7 An initial state A of vocabulary � encodes an �-program P if the canonic
version A0 of A satis�es the following conditions.

� The regular elements with functions Parent, FC, NS, Type, Nomen (restricted to
regular elements) form CPT�(P).

� Any function name f 2 � di�erent from 0, Succ, Mode, Output, Parent, FC, NS,
Type and Nomen, is interpreted in the default way, that is, every f(�x) = false is f is
relational and every f(�x) = undef otherwise.

2

Remark Some readers may be disappointed to �nd out that our inputs are not strings.
We could rede�ne inputs to be strings but do not feel compelled to do that. The popular
string representation of inputs is an outcome of a restricted computation model, namely
the Turing Machine Model. More
exible machine models do not require their inputs to be
strings. 2

4.4 Honest Time

How to execute one step of a given program P at a given state A? (Imagine you write
an interpreter or compiler for ASM programs.) Here is one way. First you evaluate all the
terms (the evaluation phase). Second, you check the updates for consistency (the consistency
check phase). Third, you �re the updates if they are consistent (the �ring phase).

1. The evaluation phase. Traverse the parse tree depth-�rst evaluating all the terms but
skipping the parts of the parse tree made irrelevant by their guards, namely (i) the
bodies of clauses whose guards are false at A and (ii) the clauses having older siblings
with guards true at A. During the evaluation traversal, construct a linked list of
relevant update nodes.

2. The consistency check phase. Consistency check can be done during one traversal of
the update linked list as follows. Let (`1; a1); : : : ; (`m; am) be the updates of the list
where each `i is a location and each ai is an element. Go through the list doing the
following. On stage 1, put a fake version a01 of a1 into `1. On stage i+1, compare the
current content a of `i with ai. If a is a genuine element, then put a fake version a0i
of ai to `i and proceed to the next stage. If a is the fake version of ai, proceed to the
next stage; you may also remove (`i; ai) from the linked list. If a is a fake version of
some element di�erent from ai, then halt because you have discovered inconsistency.

11

3. The �ring phase. Traverse the update linked list and �re the updates one after another.

If it is known that the given program P is consistent (for example, if you restrict at-
tention to programs in the normal form described at the end of Section 3) or if you don't
care what happens if P is inconsistent, you may want to skip the consistency check. Our
diagonalization program will use this simpli�ed execution strategy.

We de�ne inductively the honest evaluation time HETA(e) for evaluating various syn-
tactical entities e at a state A of su�ciently rich vocabulary.

� If e is a variable then HETA(e) = 1.

� If e is a term f(t1; : : : ; tr), then HETA(e) = 1 +
P

iHETA(ti).

� If e is an atomic instruction f(t1; : : : ; tr) := t0, then HETA(e) = 1 +
Pr

i=0HETA(ti).

� If e is a block rule with constituents R1; : : : ; Rk, then HETA(e) = 1+
Pk

i=1HETA(Ri).

� Suppose that e is a clause \(else)if g then R". If g holds at A, then HETA(e) =
1 + HETA(g) + HETA(R); otherwise HETA(e) = 1 + HETA(g).

� Suppose that e is a conditional rule with clauses C1; : : : ; Ck. If none of the k guards
g1; : : : ; gk holds in A, then HETA(e) = 1+

Pk
i=1HETA(Ci). If j is the smallest index

such that gj holds in A then HETA(e) = 1 +
Pj

i=1HETA(Ci).

� If e is an import rule with body R, then HETA(e) = 1 + HETA(R).

This completes the de�nition of honest evaluation time.

Lemma 2 HETA(e) is the number of nodes in the parse tree of e visited when one traverses
the parse tree depth-�rst skipping (i) the bodies of clauses whose guards are false at A and
(ii) the clauses having older siblings with guards true at A.

Proof An easy induction on e. 2

It is convenient to think about HETA(P) of a program P as the number of microsteps
needed to evaluate P at state A. This includes evaluation of all terms in the program except
those whose values are not used because of their guards. We also included in HETA(P) the
microsteps needed to move around in the parse tree of the program. It is obvious that

H1 HETA(P) � HTA(P).

There is also a simple inequality in the opposite direction. In fact, HTA(P) � 3 �
HETA(P) if the consistency check is done e�ciently as explained above. But we will not
use this fact in the present paper. Instead, we will use a simpler fact H2 below.

De�nition 8 Let K be a collection of states of a program P . The one-step honest time
complexity of P on K is the maximum of the numbers HTA(P) where A ranges over enabling
states in K. IfK is the collection of all states of P , then the one-step honest time complexity
of P on K is the total one-step honest time complexity of P . 2

Now we are ready for formulate H2.

12

H2 For every program P , the total one-step honest time complexity of P is �nite.

De�nition 9 A class K of input structures in the vocabulary � is decidable within honest
time T (n) if there exists an ASM A of vocabulary � such that, for every input structure
I of vocabulary � in K (respectively outside K), A accepts (respectively rejects) I within
honest time T (n) where n is the size of I . HT�(T (n)) is the collection of input classes K
decidable within honest time T (n). 2

5 Diagonalization Theorem

Recall that the simulated and simulating algorithms are called the prey and predator re-
spectively. Given a representation R of a prey Turing machine, the classical diagonalizing
Turing machine (the predator) starts by copying R (which constitutes the preprocessing
stage) and then simulates the steps of the prey using one copy of R as a program and
the other as data. (The Turing predator also changes the result of the computation, but
we ignore that aspect for the time being). In this section, we generalize this to abstract
state machines of a �xed ordered vocabulary �. The greater
exibility of the ASM model
allows us to achieve a lock-step simulation. More exactly, it is a lock-step simulation with
preprocessing and without disabling state recognition, which is su�cient for our purpose
(of proving the ASM Linear Time Hierarchy Theorem) in this paper. It is possible to
achieve a lock step simulation without preprocessing and with disabling state recognition;
this requires a much more subtle construction and will be done elsewhere.

We start with a technicality. Notice that every program P is equivalent to the program

block

P

endblock

which will be denoted P + 1. Even though P and P + 1 are equivalent and have the same
runs, there is a slight di�erence between the initial states encoding P and P + 1. We will
exploit that di�erence. De�ne inductively P + (i+ 1) = (P + i) + 1. For every vocabulary
� and every �-program P , let I(�; P) be the canonic initial state encoding the �-program
P +m where m is the number of non-logic nullary symbols in �.

Call a vocabulary diagonalization-solvent if, in addition to the obligatory function names
(the logic function names and the names 0, Succ, Mode and Output; see Section 4), it
contains the nullary function names C, LastUpdate and unary function names Parent, FC,
NS, Type, Nomen, Val, NextUpdate. Of course, it may contain arbitrarily many additional
names.

Theorem 1 (Diagonalization Theorem) For every diagonalization-solvent vocabulary
�, there exist an �-program Diag, a collection POSE of states of Diag and a mapping �
from POSE to �-states such that Diag lock-step simulates (with preprocessing and without
disabling state recognition) any �-program P on the initial state I = I(�; P), except that
Diag changes the output of P (if P converges). Moreover, there exist positive constants
c0; c1; c2 (depending on � but not on P) such that, if the run � of P on I converges, n is
the size of I and p is the honest time of �, then the honest time of the run of Diag on I is
bounded by c0 + c1n+ c2p.

13

Here c0 is the initialization honest time, c1n is the preprocessing honest time, and c2p
is the simulation honest time.

Proof Fix a diagonalization-solvent vocabulary � and order it in such a way that

� all non-logic nullary names come �rst, and

� The ordinal number of 0 is zero, and the ordinal number of Mode is one.

If i is the ordinal number of a name f , then the term 0.Succi will be denoted f -ordinal.
Our de�nition of I(�; P) was designed to ensure that, for every non-logic nullary name f ,
the f -ordinal is a block node, that is f -ordinal.Type = Block. We will take advantage of
this feature.

The desired Diag is the program exhibited in Section 6 where we also explain how it
works provided that the initial state has the form I(�; P). To improve readability, we
use Final, Initial, Clone, Copy, Pose, Descend, Ascend, Execute as aliases for the terms
0, 0.Succ, 0.Succ2, etc. Since Diag does not alter the values of these terms, Final, Initial,
Clone, Copy, Pose, Descend, Ascend, Execute denote numbers 0; 1; 2; 3; 4; 5; 6; 7.

The desired POSE. A state B of Diag is a pose state if there exists an initial state
I = I(�; P) such that the following conditions are satis�ed. Recall that non-logic non-
reserve elements of any state A are called regular elements of A. The interpretation of a
basic function name f at a state A will be denoted fA.

0 The superuniverse of I is included in that of B and includes the reserve of B. Logic
constants true ; false; undef have the same interpretations in the two states. Call
elements of I original elements of B. Regular original elements will be called noble;
the other elements of B will be called plebeian.

1 First, 0 has the same interpretation in B and I . Second, if f is any of the unary names
Succ, Parent, FC, NS, Type, Nomen, then fI is the restriction of fB to the elements of
I . (Intuitively this means that Diag does not alter 0 and does not alter Succ, Parent,
FC, NS, Type, Nomen on original elements.)

2 Every fB of positive arity takes plebeian values on plebeian arguments.

3 Every nullary fB is an original element. The range of Val consists of plebeian elements.

4 In B, Mode = Pose.

The desired mapping �. Let B be a pose state of Diag. To construct A = �B, transform
B as follows.

� Remove all nobles.

� Restrict the basic functions of positive arities to plebeians.

� Reset every basic non-logic nullary function f to f -ordinal.Val.

Employing the simpli�ed executing strategy (that is not checking update consistency),
Diag simulates any given �-program P on I(�; P) with respect to POSE and � but
ips
the value of Output when (and if) P arrives to a �nal state. The simpli�ed strategy is

14

su�cient because we are interested only in converging runs. If hAi : i � �i is a converging
run of P (so that A� is �nal) then P is consistent at every state Ai with i < �.

The preprocessing stage splits into two phases. First, Diag clones the regular elements
of I(�; P). In terminology of the de�nition of POSE, Diag creates plebeian clones of its
noble elements. Second, Diag copies the given parse tree to the clones.

In Section 6, we interleave the rules of Diag with explanations how it runs on input
I(�; P). Let us explain here why we use the initial state I(�; P) rather than the canonic
initial state encoding P . The problem is that Diag cannot use a non-logic nullary function
f to hold the prey's value of f unless it does not use f for other purposes. Our solution is
to record the prey's value of f by means of the term f -ordinal.Val. To this end, we should
make sure that these values of Val are not used for other purposes. In fact, the values of Val
on the nodes of types Import and Fun, are used for other purposes. If x is an import node
then the prey's value of the corresponding variable is represented as x.Val, and if x is the
node of some term t then the prey's value of t is represented by x.Val. By augmenting the
parse tree of P with initial block nodes, we provided nodes x such that x.Val can be safely
used to keep track of the prey's values of nullary functions. Of course, there are numerous
other solutions of that problem.

Now let us address the issue of honest time. The desired c0 is the one-step honest time
complexity of Diag on the states with Mode = Initial. The number of preprocessing steps
of the predator is 2n. Let b1 be the one-step honest time complexity of Diag on states with
Mode = Clone or Mode = Copy. Then the preprocessing honest time is bounded by 2b1n,
so that the desired c1 = 2b1.

Let b2 be the one-step honest time complexity of Diag on states where Mode equals
Descend, Ascend, Execute or Pose. To simulate one step of the prey, the predator traverses
the parse tree of P (except for the parts made irrelevant by guards). It visits every leaf
once and every non-leaf node twice. Taking into account Lemma 2 and the fact H1 in
Subsection 4.4, it is easy to see that, if a step of the prey takes honest time t, then the
predator simulates it in < 2t steps and thus spends honest time < 2b2t. The desired c2 is
2b2. 2

Notice that the predator program does not alter 0 and does not alter Succ on the original
elements. We formalize this observation for future use.

Corollary 1 Let B be any state in the run of the program of Section 6 on a canonic initial
state of size n. At B, 0 denotes the number zero, and i:Succ = i+ 1 for every i � n � 1,
and (n� 1):Succ= undef :Succ = undef

6 Diagonalization Program

We present a program Diag (the predator) and explain how it runs on the initial state
I = I(�; P) for a given �-program P (the prey). Diag has the form

15

block

Initial Rule

Preprocess Rule

Pose Rule

Evaluation Rule

Execution Rule

endblock

6.1 The Initial Rule

if Mode = Initial then

C := 0, Mode := Clone

endif

6.2 The Preprocess Rule

The Preprocess Rule has the form:

block

Clone Rule

Copy Rule

endblock

6.2.1 The Clone Rule

if Mode = Clone then

if C 6= undef then

import new Val(C) := new endimport

C := Succ(C)

else C := 0, Mode := Copy

endif

For every regular element x of I , we create a clone x0 and assign it to x:Val. We will say
that x is a noble element and x0 is its plebeian clone. The function Val allows us to access
clones at this stage. Later it will be used for other purposes as well.

6.2.2 Copy Rule

The Copy Rule has the form

if Mode = Copy then

if C 6= undef then

COPY, C := Succ(C)

else C := 0, Mode := Pose

endif endif

16

where COPY is the rule

block

Succ(C.Val) := C.Succ.Val

Parent(C.Val) := C.Parent.Val

FC(C.Val) := C.FC.Val

NS(C.Val) := C.NS.Val

Type(C.Val) := C.Type.Val

Nomen(C.Val) := C.Nomen.Val

endblock

The successor function and the whole parse tree is copied onto the clones. This takes
care of all non-logic positive-arity functions fI whose range is di�erent from fundef g. There
is no need to copy logic functions or non-logic functions fI with range fundef g.

According to the general recipe explained in Section 1, the prey's value of a non-logic
nullary function f is represented by f -ordinal.Val. We should ensure that the values f -
ordinal.Val are properly initialized during the preprocessing stage. There are only three
non-logic nullary functions of I with values di�erent from undef , namely 0, Mode and
Output. 0-ordinal.Val is automatically initialized to 0.Val because 0-ordinal = 0. Similarly
Mode-ordinal.Val is automatically initialized to Initial.Val because Mode-ordinal = 0.Succ
= Initial. The initialization of Output is unnecessary because Diag does not play with
Output until the very end. It uses Output itself to hold the prey's value of it and thus does
not need to use Output-ordinal.Val at all.

Remark. Similarly, Diag does not need to use f -ordinal.Val for any nullary name f
that it does not play with. But it is simpler to use the terms f -ordinal.Val for such nullary
names f because it makes the program more robust in case we want to augment it with
new rules (as we will do in the next section).

6.3 Pose Rule

if Mode = Pose then

if Mode-ordinal.Val = Final then

Output := not(Output), Mode := Final

else

LastUpdate := 0, Mode := Descend

endif

endif

When Mode = Pose, Diag examines the prey's value of Mode. In case the prey halts,
Diag changes the output of the prey and halts. Otherwise it initializes LastUpdate and
moves to the evaluation phase.

6.4 The Evaluation Rule

The Evaluation Rule has the form

17

if Mode = Descend then

Descend Rule

if Type(C) = Import then Import Rule endif

if Type(C) = Update then Update Rule endif

endif

if Mode = Ascend then

if Parent(C) 6= undef then Ascend Rule endif

if Type(C) = Var then Var Evaluation Rule endif

if Type(C) = Fun then Fun Evaluation Rule endif

endif

Intuitively C is the current position in the prey parse tree. C traverses the prey parse
tree depth-�rst. It moves down when Mode = Descend and it moves right or up when Mode
= Ascend. Imports are done while Mode = Descend. Also, the linked list of Updates is set
up while Mode = Descend. The evaluation of terms is done while Mode = Ascend.

6.4.1 The Descend Rule

if FC(C) = undef

then Mode := Ascend

else C:=FC(C)

endif

6.4.2 The Import Rule

import new

Val(C) = new

endimport

The imported value of a variable is represented as x.Val where x is the corresponding
import node of the noble parse tree.

6.4.3 The Update Rule

NextUpdate(LastUpdate) := C, LastUpdate := C

The nullary function LastUpdate and the unary function NextUpdate are used to create
a linked list of the update nodes visited during the evaluation stage. The linked list includes
0 as the initial point even though 0 is not an update node. Notice that, if x is the last node
in the linked list, then x.NextUpdate is unde�ned.

6.4.4 The Ascend Rule

In general, C will move to the right after visiting a node that has a next sibling. There are,
however, two exceptions.

18

� C visits a false guard of some clause. Since the guard is false, there is no need to
evaluate the body of the clause.

� C visits a clause with a true guard. There may be more clauses in the same conditional
rule but there is no need to evaluate them.

Accordingly the ASCEND Rule is the rule

if (C visits a false guard or a true-guard clause) then

C := Parent(C)

elseif NS(C) 6= undef then

C := NS(C), Mode := Descend

elseif C 6= 0 then

C := Parent(C)

else

Mode := Execute

endif

where (C visits a false guard or a true-guard clause) is an appropriate abbreviation.

6.4.5 The Var Evaluation Rule

Val(C) := C.Nomen.Val

C.Nomen gives the appropriate Import node x such that x.Val holds the prey's value of
the variable.

6.4.6 The Fun Evaluation Rule

The Fun Evaluation Rule is a block of rules

if Nomen(C) = f-ordinal then

EVALUATE-f

endif

where f ranges over �. Recall that f -ordinal is the term 0:Succi where i is the ordinal
number of f in �. Let r be the arity of f , Child-1 = FC(C) and Child-(i+ 1) = NS(Child-
i). EVALUATE-F is the obvious rule.

Val(C) := f(Child-1.Val,...,Child-r.Val)

if r > 0 or if f is a nullary logic name or the name Output. Otherwise (if f is a non-logic
nullary name di�erent from Output), EVALUATE-f is the rule

Val(f) = f-ordinal.Val

19

6.5 Execution Rule

if Mode = Execute then

if NextUpdate(C) 6= undef then

C := NextUpdate(C), NextUpdate(C):=undef

else C := 0, Mode := Pose

UPDATE

endif

Diag traverses the update linked list, executing updates and removing the portions of
the liked list which are not needed anymore and thus making room for the next linked list
(if any).

UPDATE is the block of rules

if Nomen(C) = f-ordinal then

UPDATE-f
endif

where f ranges over non-logic functions in �. Let r be the arity of f , Child-1 = FC(C) and
Child-(i + 1) = NS(Child-i). UPDATE-f is the rule

f(Child-1.Val,...,Child-r.Val) := Child-(r+ 1).Val

if r > 0 or if f is Output. Otherwise (that is if f is nullary and di�erent from Ouput),
UPDATE-f is the rule

Val(f-ordinal) = Child-1.Val

7 ASM Linear Time Hierarchy Theorem

Call a vocabulary � hierarchy-solvent if, in addition to the obligatory names (the logic
names and the names 0, Succ, Mode and Output), it contains at least �ve non-relational
nullary names and at least seven non-relational unary names. Of course, it may contain
arbitrarily many additional names. Recall the de�nition of honest time classes HT(T (n))
in Section 4.

Theorem 2 (ASM Linear Time Hierarchy Theorem)

For every hierarchy-solvent vocabulary �, there exists a constant c such that, for every
positive integer d,

HT(c � d � n)�HT(d � n) 6= ;:

Proof Without loss of generality, we may assume that a given hierarchy-solvent vocabulary
� is diagonalization solvent (see Section 5) and contains three additional non-relational
nullary names Hour, HourLimit, Minute. Order � as in Section 5. We augment the program
Diag of Section 6 with two additional rules: Clock Initialization Rule and Clock Advance
Rule. The latter rule depends on a given d. More exactly, let Timed Diag be the program
of the form

20

block

Clock Initialization Rule

Clock Advance Rule

if NOCLASH then Diag endif

endblock

where Diag is the program of Section 6. The Clock Initialization Rule is the rule

if Mode = Initial then

if 0.Succd+2 = undef then Mode := Final

else Hour := 0, Minute := 0, HourLimit := 0.Succd+2

endif

endif

The Clock Advance Rule is the rule

if Mode 6= Initial and Mode 6= Final then

if Hour = HourLimit then Mode := Final

elseif Succ(Minute) = undef then

Hour := Succ(Hour), Minute := 0

else Minute := Succ(Minute)

endif

Finally, NOCLASH is the following guard

0.Succd+2 6= undef and (Mode = Initial or Hour 6= HourLimit)

which shuts Diag down when the clock sets Mode to Final; the guard allows us to avoid a
possible clash between Diag and the clock (when they try to set Mode to di�erent values)
and the ensuing hang state.

The idea behind our clock is quite obvious. Starting from 0, Minute advances every step
till it reaches n�1. During the next step, Minute is reset to 0, and Hour is advanced. Then
again Minute advances until it reaches n � 1 and then again it is reset to 0 and Hour is
advanced. This goes on until the program halts or Hour reaches HourLimit, at which point
the clock shuts the program down. Notice that the clock counts neither the initial step,
which sets up the clock, nor the �nal step, which happens after Hour reaches HourLimit.
Thus the clock shuts the program down after (d + 2)n + 2 steps (unless it does so on the
very �rst step). The guard 0.Succd+2 6= undef and Hour 6= HourLimit disables Diag when
the clock shuts the program down, so that Diag does not prevent the clock from setting
Mode to Final.

Lemma 3 Let I be an initial state of size n. The length of any run of Timed Diag on I is
� (d+ 2)n+ 2.

Proof Without loss of generality, I is a canonic initial state. The new rules do not alter
0 or Succ and thus Timed Diag sati�es Corollary 1 of the Diagonalization Theorem.

If n � d+2, then the Clock Initialization Rule stops Timed Diag at once. Assume that
n > d + 2 and let hB0; B1; B2; : : :i be the run of Timed Diag on I , so that B0 = I . If the
length of the run (that is the number of steps) is < (d + 2)n + 2, we have �nished. We
suppose that the length is � (d+ 2)n+ 2 and prove that it equals (d+ 2)n+ 2.

21

By the Clock Initialization Rule, Hour = Minute = 0 at B1. Now we use the Clock
Advance Rule. At every Bi with i � n, Minute = i� 1, so that Minute.Succ = undef at Bn

and therefore Hour = 1, Minute = 0 at Bn+1. Similarly Hour reaches 2 at B2n+1, reaches
3 at B3n+1 and reaches d+ 2 at state B(d+2)n+1, so that Hour = HourLimit at B(d+2)n+1,
Mode = Final at B(d+2)n+2 and the run length equals (d+ 2)n+ 2. 2

As in the case of Diag, there are constants c0; c1; c2 satisfying the following condition:
if P is an �-program, I = I(�; P), n is the size of I , the run � of P on I converges, and
p is the honest time of �, then the honest time of the run of Timed Diag on I is bounded
by c0+ c1n+ c2p. This time around, the constants are somewhat larger because of the two
clock rules.

Let L be the collection of initial �-states I accepted by Timed Diag. Since Timed Diag
always halts, it decides L. Let b be the one-step honest time complexity of Timed Diag. By
Lemma 3, the honest time of any computation of Timed Diag is bounded by b(dn+2n+2).
Choose any c such that cdn � b(dn + 2n + 2) for all positive integers d and all n. Then
L 2 HT(cdn). (Actually, it su�ces to chose c such that cdn � b(dn+ 2n+ 2) for all d and
su�ciently large n.)

It remains to check that L =2 HT(dn). Toward a contradiction, assume that some �-
program P decides L within honest time dn. Let I = I(�; P) be the initial state coding
P and n the size of I . (If desired, P can be enlarged without altering the classes of input
structures that it accepts or rejects; thus n can be made su�ciently large.) Since P witnesses
L 2 HT(dn), the run � of P on I converges. Since the honest time of � is � dn, it involves
at most dn microsteps. It follows that the evaluation part of the run R of Timed Diag on
I has at most dn steps. Hence the length of R is � 1 + 2n + dn, so that R halts without
being shut down by the clock. But then R produces a di�erent output, which contradicts
the assumption that P accepts L. 2

8 Comments

Special Form of Timed Diag Only one variable is used in Timed Diag.

Minimizing the Solvency We did not attempt to minimize the vocabulary necessary
for proving the linear hierarchy theorem. The clarity of exposition was our main concern.

Notice that only nullary and unary non-logic functions are used explicitly in Timed Diag.
Of course, if a given vocabulary contains functions of arities � 2, then Timed Diag may
have to deal with them (to evaluate them and maybe update), but it does not introduce
any non-logic functions of arity � 2.

Preprocessing and Disabling-State Recognition Timed Diag simulates its prey with
preprocessing and without disabling state recognition. That su�ces for the Linear Time
Hierarchy Theorem. It is possible to get rid of preprocessing and achieve disabling-state
recognition, but this is not trivial. We will do that improvement elsewhere [BG2] where we
will be able to take advantage of these features.

Static Functions One may want to have initial states with universes and various static
functions. For example, one may want that every initial state contains a copy of integers
with the standard order, addition and multiplication. Such generalizations are easier than

22

getting rid of preprocessing. In fact, the proof of hierarchy theorem may be simpli�ed if
one can take advantage of static functions.

The presence of static function requires some changes in the Diagonalization Theorem,
but the only major change is this. After copying a given parse tree, use the copy, not the
original, for the bookkeeping purposes. Imagine, for example, that the original parse tree
\lives" on the given copy of integers and thus its nodes participate in too many relationships;
you cannot copy all the information onto the clone of the parse three. The clone parse tree
should be not accessible from outside, so that that the prey cannot modify it. The range
of the function Val should be the clone parse tree. The notion of f -ordinal should be
rede�ned so that f -ordinals live on the clone parse tree, and all values f -ordinal.Val should
be initialized.

9 Random Access Machines

In this section, we establish the analogs of Theorems 1 and 2 for random access machines
(RAMs) in place of abstract state machines. That is, we exhibit a diagonalizing RAM
program, which, given (the code of) an arbitrary RAM program P as input, simulates in
lock-step the operation of program P on the same input, stops after simulating at most
djP j steps (where d is a speci�ed constant and jP j is the length of P), and, if the simulated
computation has produced an output by this time, changes that output. As for abstract
state machines, the existence of such a diagonalizing RAM implies a linear time hierarchy
theorem.

There are numerous RAM models in the literature. We generally follow [AHU], but for
simplicity we avoid tapes by using registers not only for computation but also for input and
output. Also, we adopt the convention that the content of a register must be a non-negative
integer.

We begin by describing the particular RAM model that we use. Next, we indicate how
programs are to be coded in order to serve as input to computations. Then we indicate how
the diagonalizing machine is to be constructed. Finally, we explicitly write out this ma-
chine's program in a sort of pseudo-code that we hope is readable (for people) yet su�ciently
detailed to leave no doubt that the diagonalizing machine performs as claimed.

Our RAMs have a potentially in�nite supply of registers, indexed by the non-negative
integers, each capable of holding (as its content) an arbitrary non-negative integer. Register
0 plays a special role and is called the accumulator. The input to a RAM is a �nite sequence
of non-negative integers, initially stored in registers 1 through l for some l; the accumulator
and all registers after l initially hold 0. The result of a computation is the content of the
accumulator when (and if) a HALT operation is executed. (If a Boolean output is desired,
use the parity of the number in the accumulator.)

A RAM program is a list of instructions, each having the form \operation operand"
where the operand is a non-negative integer and the operation is one of the following, where
we have also indicated how to execute each instruction when the operand is a. The phrase
\Put t into register i" means to change the content of register i to be t while leaving the
contents of all other registers unchanged; c(i) means the content of register i.

1. LOAD= Put a into the accumulator.

23

2. LOAD Put c(a) into the accumulator.

3. LOAD* Put c(c(a)) into the accumulator.

4. STORE Put c(0) into register a.

5. STORE* Put c(0) into register c(a).

6. ADD= Add a to the accumulator,
i.e., put c(0) + a into the accumulator.

7. ADD Add c(a) to the accumulator.

8. ADD* Add c(c(a)) to the accumulator.

9. SUB= Subtract a from the accumulator
and if the result is negative then replace it with 0.

10. SUB Subtract c(a) from the accumulator
and if the result is negative then replace it with 0.

11. SUB* Subtract c(c(a)) from the accumulator
and if the result is negative then replace it with 0.

12. MULT= Multiply the accumulator by a.

13. MULT Multiply the accumulator by c(a).

14. MULT* Multiply the accumulator by c(c(a)).

15. DIV= Divide the accumulator by a
and round down to the next smaller integer.

16. DIV Divide the accumulator by c(a)
and round down to the next smaller integer.

17. DIV* Divide the accumulator by c(c(a))
and round down to the next smaller integer.

18. JUMP Continue with the instruction in position a in the program.

19. JGTZ If c(0) > 0 then continue with the instruction in position a;
otherwise continue with the next instruction after the current one.

20. JZERO If c(0) = 0 then continue with the instruction in position a;
otherwise continue with the next instruction after the current one.

24

21. HALT Halt.

For simplicity, we assume that the last instruction in a program is always HALT, with
an (irrelevant) operand of 0. (Adding this at the end of a program will cause no essential
change. At most, a program that previously hung may execute the �nal HALT instruction.)

A state of a RAM consists of the content of its registers, its program, and a program
counter pointing to the next instruction in the program to be executed. It is an initial state if
register 0 and all but �nitely many of the other registers contain 0 and the program counter
points to the �rst instruction in the program. It is a �nal state if the program counter points
to a HALT instruction. It is a hang state if the next instruction would require division by
zero or continuing with a non-existent instruction. In all enabling states, after the next
instruction is executed, the program counter is moved forward one step in the program
except as speci�ed in the instructions JUMP, JGTZ, and JZERO.

For simplicity, we use unit cost measures for RAMs. That is, the length of an input
is the number of the last register with non-zero content (or 1 if there is no such register),
and the time of a computation is the number of intsruction executions in it. If we used a
logarithmic cost measure instead, then our predator would not simulate the prey in lock-
step and in fact the cost of the predator's computation would not be bounded by a linear
function of the prey's computation cost. The reason is that, in order to copy the prey's
program, the predator uses registers with indices comparable to the prey program's length,
and the prey's computation may be much shorter than the length of its program. Notice,
however, that this di�culty arises only when the prey's computation cost is sublinear and
the predator's cost is linear. Thus, the linear time hierarchy theorem remains valid if we
use logarithmic cost measures.

In order to use a program as an input to a RAM computation, we must represent it as a
�nite sequence of non-negative integers. We do this by replacing each operation by a code,
namely its number in the list exhibited above. In addition, we put at the beginning of the
code the length of the program, i.e., the number of instructions in it. Thus, a program of
length l becomes a sequence of 2l + 1 integers, where term number 1 is l, term number 2i
is the code of the operation in the ith instruction, and term number 2i+ 1 is the operand
of that instruction.

Theorem 3 (Diagonalization Theorem for RAMs) There is a positive integer c such
that for any positive integer d, there is a RAM program � that operates in linear time and
diagonalizes in the following sense. Given, as input, the code of any RAM program P ,
it simulates the �rst djP j steps of the computation of P (or the whole computation if it's
shorter than djP j) on that same input and then adds 1 to the output (if any). Furthermore,
the simulation is done in lock-step with lag factor c and without preprocessing.

It turns out that the elimination of preprocessing is considerably easier for RAMs than
for ASMs, so we have included \without preprocessing" in this theorem. It would be easy
to include \with recognition of disabling states" as well, by modifying the predator to check
before each division whether the divisor is 0 and to check before each jump whether the
target of the jump is beyond the end of the program. If either of these happens, the predator
should simply halt.

25

Corollary 2 (Linear Time Hierarchy Theorem for RAMs) There exists c such that
for every d

HT(c � d � n)�HT(d � n) 6= ;:

Proof of the Corollary With notation as in the preceding theorem, let L be the set of
all x such that when � is run on input x it produces an odd number as output. Thus L
is decided in time c � d � n by �. If P were a RAM program deciding L in time d � n, then
it would to produce the same (parity of) ouptput as � when the input is the code x of P
itself. But � and P produce, on input x, ouputs that di�er by 1. 2

Proof of the Theorem We �rst describe approximately how the diagonalizing predator
RAM is to work. (The description is only approximate because it includes some prepro-
cessing that will be eliminated later and because it glosses over some details that will be
�lled in later.) Given as input the code of any prey RAM program it makes a second copy
of this code and then shuttles back and forth between the two copies, using the �rst (which
it never alters) to read what the prey would do and using the second, plus registers beyond
it, to do exactly the same thing (only in di�erent registers), except that if the prey halts
then the diagonalizing machine alters the output by adding 1 to it and then halts. To make
this approximate description more precise, the following points must be taken into account.

First, we must make sure that the predator operates in linear time on all inputs (with a
speci�ed proportionality factor in the linear function). More precisely, we have a constant
d such that the predator should simulate djP j steps of P if its input codes a RAM program
P . This will require at most 1

2kdn steps of the predator, where n = 2jP j is the length of
the input and k is the number of predator steps needed to simulate one prey step. This k
is a universal constant that could be read o� from the detailed description of our predator
below, and 1

2k is the c of the theorem. Furthermore, if the input to the predator has length
n and fails to code a RAM, then the predator should still take at most 1

2kdn steps before
halting.

In particular, if it is simulating a prey program which, on input equal to its own code,
runs for too many steps, then the predator must break o� the simulation when time runs
out. So we equip it with a clock that counts the steps of the prey as they are being simulated
and causes the computation to halt when the time limit is reached.

Determining the appropriate time limit is easy when the input codes a RAM program,
for then the number l of instructions in the program is the content of register 1, and the
length of the input is 2l (because the last operand is zero). For other inputs, doubling the
content of register 1 may seriously over- or underestimate the actual length of the input.
Underestimates do not present a problem, but overestimates do, for they would result in
the predator's clock allowing more time than it should. Fortunately, the problem is easy to
circumvent. The predator should read the content l of register 1 and check whether register
2l contains 0. If it doesn't, then 2l does not overestimate the input length, so it's safe to
set the clock accordingly. If register 2l does contain 0, then the input is not the code of
any program (because in the code of a program register 2l would contain the code 21 for a
HALT operation) so it is safe for the predator to immediately halt.

Second, we must set aside a small number of registers for the predator to use for \scratch
work" like keeping track of which instruction in P it is simulating.

Finally, the trickiest point is to avoid pre-processing. This means that we cannot simply
make a second copy of the input before starting the simulation. The copying would prevent
the simulation from being in lock-step. In fact, since the computations of some programs

26

P on their own codes are considerably shorter than the programs themselves, the copying
would make the simulation of such a program take more time than a constant multiple of
the prey's time. Our solution to this problem is that instead of copying the whole input at
the beginning, we copy it as needed. This entails a bit more bookkeeping, since we must not
confuse the two situations (a) a register contains 0 that has been copied and (b) a register
contains 0 because nothing has yet been copied to it. So when we copy we increase all
numbers by 1 (so any 0 is necessarily of type (b)), and of course we must compensate for
this addition when doing arithmetic. There is nothing particularly di�cult about this, but
it requires a certain amount of patience. The reader lacking that patience is invited to skip
the following, more detailed presentation of the diagonalizing RAM's program.

To describe the diagonalizing machine, we adopt the following conventions. As indicated
above, the prey program initially occupies registers 2 through 2l+1 (though the content of
register 2l+1 is 0) while register 1 contains the number of instructions in the prey program;
the content of these registers will not be altered during the computation. The predator will
use register 2l + 2 as a program counter, pointing to the register containing the operation
or operand needed at the moment. Register 2l + 3 serves as a clock, initialized to d � l and
decremented by 1 every time a step of the prey is simulated. A small number of registers,
from 2l+4 to 2l+s�1, and the accumulator, register 0, are used for the predator's scratch
work. The registers from 2l + s on are used to simulate the prey's computation, with
predator register 2l+ s+ i corresponding to prey register i but with the contents raised by
1 as described above. (When the prey has n in register i, the predator has n+ 1 in register
2l + s + i, unless the necessary copying has not yet been done, in which case the predator
has 0 there.)

In the preceding conventions, as well as in some comments below, we tacitly assume that
the input to the predator RAM is the code of a prey RAM program. For any other input,
it will not matter what the predator does, as long as it halts within time 1

2kdn, where n is
the length of the input.

We shall use the following abbreviations in presenting the program of the diagonalizing
RAM. Let c(i) denote the content of register i. Let l = c(1) (the number of instructions in
the prey program), pt = c(2l + 2) (the pointer to the current operation or operand), and
tm = c(2l+ 3) (the remaining time, i.e., the maximum number of prey steps that can still
be simulated). Also, by the pseudo-content pc(i), for any register number i � 2l + s, we
mean c(i)� 1 if c(i) > 0 and we mean c(i � 2l � s) if c(i) = 0. The idea behind pseudo-
content is this. A non-zero number n in a register i � 2l+ s of the predator represents the
presence of the number n � 1 in the corresponding register i � 2l � s of the prey at the
corresponding stage of the computation. A zero in such a register i means that this part of
the input has not yet been duplicated, and has therefore not yet been accessed by the prey
(for the predator will duplicate the contents of a register the �rst time the prey accesses
the register). So the content, at that stage, of the corresponding prey register i� 2l� s can
be ascertained by looking into the predator's register i � 2l � s, and that is exactly what
pseudo-content does. Thus, the content of prey register j at any stage of the computation
is the pseudo-content of predator register 2l+ s+ j at the corresponding stage.

With these explanations, we hope that the description below of the diagonalizing RAM
will be understandable. That it uses only a constant number of predator steps to simulate
one prey step should be clear by inspecting the modules in the de�nition once one realizes
the following two points. First, the availability of truncated subtraction and testing for
0 allows one to test for equality and inequality in a constant number of steps. Second,

27

the initialization module, which may look suspiciously like preprocessing, takes a constant
number of steps, independent of the input size, so it can safely be counted as part of the
simulation of the �rst step of the prey's computation. It increases k a little, but does no
real harm.

As already indicated, we present the diagonalizing RAM program as a sequence of
modules. There is one module for each of the 21 RAM operations, and in addition there are
four special modules: Initialize, which initializes pt, tm, and c(2l+s) (the program location,
the clock, and the predator's copy of the prey's accumulator); ReadOp, which reads the
current operation and passes control to the appropriate module; Step, which advances pt
to the next operation (unless this was overriden by a jump instruction); and Cycle, which,
after checking that pt has not gone past the end of the program and that time has not run
out, decrements the clock and starts the simulation of the prey's next step. Here are the
explicit instructions in all the modules. [We use square brackets for comments; these are
for the reader's bene�t and are not part of the program.]

Initialize

If register 2l contains 0 then pass control to module HALT.
Write 2 into register 2l+ 2. [This initializes pt.]
Write d � l into register register 2l + 3. [This initializes tm using the speci�ed factor d.]
Write 1 into register 2l+s. [This initializes the predator's copy of the prey's accumulator.

Remember that 0 in a prey register is represented by 1 in the predator's copy.]
Pass control to module ReadOp.

ReadOp

If c(pt) = 1 [meaning that the operation to which the program counter points is
LOAD=], then increment register 2l + 2 by 1 [so that pt points to the operand for the
LOAD= instruction] and pass control to module LOAD=.

Similarly for the other 20 operations.

LOAD=

Add 1 to c(pt) [the operand of the LOAD= instruction] and write the result into register
2l+ s.

Then pass control to module Step.

LOAD

Write 1 + pc(2l+ s+ c(pt)) into registers 2l+ s and 2l+ s+ c(pt). [c(pt) is the operand
of LOAD, the address whose content the prey would write into the accumulator. The
corresponding address for the predator is 2l+ s+ c(pt), so the predator writes the pseudo-
content of this register plus 1 into its copy of the prey's accumulator, namely register 2l+s.
It also writes the same thing into register 2l+s+c(pt), which doesn't change the content of
this register unless this content is 0. In that case, when the input has not yet been copied
into this register, the copying is done as part of this module.]

Then pass control to module Step.

28

LOAD�

Abbreviate c(pt) as z, abbreviate pc(2l+ s+ z) as y, and abbreviate pc(2l+ s+ y) as w.
If register 2l+ s+ z contains 0, then write y + 1 there.
In any case, write w + 1 into registers 2l+ s and 2l + s + y.
Pass control to Step.

STORE

Write the content of register 2l + s into register 2l + s + c(pt). [Recall that register
2l+ s, the predator's copy of the prey's accumulator, was set to 1 by module Initialize. So
we needn't use pseudo-contents here.]

Then pass control to module Step.

STORE�

Abbreviate pc(2l+ s+ c(pt)) as y.
If register 2l+ s+ c(pt) contains 0 then write y + 1 there.
In any case, write the content of register 2l+ s to register 2l+ s+ y.
Pass control to module Step.

ADD=

Add c(pt) to the content of register 2l+ s and write the result into register 2l+ s.
Pass control to module Step.

ADD

Abbreviate pc(2l+ s+ c(pt)) as y.
If the content of register 2l+ s+ c(pt) is 0 then write y + 1 there.
In any case, add y to the content of register 2l + s and write the result into register

2l+ s.
Pass control to module Step.

ADD�

Abbreviate pc(2l+s+c(pt)) as y and abbreviate pc(2l+s+y) as w. If register 2l+s+c(pt)
contains 0 then write y + 1 there.

If register 2l+ s+ y contains 0 then write w + 1 there.
In any case, add w to the content of register 2l + s and write the result into register

2l+ s.
Pass control to module Step.

SUB=, SUB, . . . , DIV�

The remaining arithmetical operations are handled like addition except that every phrase
of the form \add t to the content of register 2l+ s" is replaced by \subtract (resp. multiply,
divide) t from (resp. by, into) the pseudo-content of register 2l+ s and add 1 to the result."
[Since the content of register 2l + s isn't 0, the \pseudo" here just subtracts 1. In the case
of ADD, this just cancels the \add 1 to the result," but not in the other three cases.]

29

JUMP

Write 2c(pt) into register 2l+ 2. [c(pt) is the operand of the current JUMP instruction.
Doubling it gives the location, in the coded program, of the corresponding instruction. This
becomes the new value of pt.]

Pass control to module Cycle. [We don't go to module Step, since that updates pt in
non-jumping situations.]

JGTZ

If the content of register 2l + s is > 1 then write 2c(pt) into register 2l + 2 and pass
control to module Cycle.

Otherwise pass control to module Step.

JZERO

If the content of register 2l+s is 1 then write 2c(pt) into register 2l+2 and pass control
to module Cycle.

Otherwise pass control to module Step.

HALT

Write c(2l+ s) into register 0. Then halt. [Register 2l+ s is the predator's copy of the
prey's accumulator. Its content is one more than the prey's output. So this module ensures
that the output of the predator di�ers (by one) from the output of the prey.]

Step

Increment register 2l + 2 by 1. [The program counter, which pointed to the operand of
the instruction just executed, is advanced to point to the operation of the next instruction.]

Pass Control to module Cycle.

Cycle

If pt > 2l+ 1 or if tm = 0, then pass control to module HALT.
Otherwise, decrement register 2l+ 3 by 1 and pass control to module ReadOp. 2

References

AHU Alfred V. Aho, John E. Hopcroft and Je�rey D. Ullman, \The Design and Analysis
of Computer Algorithms", Addison-Wesley, 1974.

B Egon B�orger, \Annotated Bibliography on Evolving Algebras," in \Speci�cation and
Validation Methods", ed. E. B�orger, Oxford University Press, 1995, 37{51.

BG1 Andreas Blass and Yuri Gurevich, \Evolving Algebras and Linear Time Hierarchy",
in \IFIP 1994 World Computer Congress, Volume I: Technology and Foundations",
eds. B. Pehrson and I. Simon, North-Holland, Amsterdam, 383{390.

30

BG2 Andreas Blass and Yuri Gurevich, \The Linear Time Hierarchy Theorem for Reactive
Abstract State Machines", in preparation.

C Giuseppe del Castillo, editor, Abstract State Machines, Paderborn Home Page,
http://www.uni-paderborn.de/cs/asm.html.

DDG Scott Dexter, Patrick Doyle and Yuri Gurevich, \Gurevich Abstract State Machines
and Sch�onhage Storage Modi�cation Machines", J. of Universal Computer Science,
this issue.

G1 Yuri Gurevich, \Evolving Algebras: An Attempt to Discover Semantics", in \Current
Trends in Theoretical Computer Science", Eds. G. Rozenberg and A. Salomaa, World
Scienti�c, 1993, 266{292. Originally published in the Bulletin of European Association
for Theoretical Computer Science 43 (1991), 264{284.

G2 Yuri Gurevich, \Evolving Algebras 1993: Lipari Guide", in \Speci�cation and Valida-
tion Methods", Ed. E. B�orger, Oxford University Press, 1995, 9{36.

H James K. Huggins, editor, Abstract State Machines, Michigan Home Page,
http://www.eecs.umich.edu/gasm.

J Neil D. Jones, \Constant Time Factors Do Matter", ACM Symp. on Theory of Comput-
ing, 1993, 602{611.

S Arnold Sch�onhage, \Storage modi�cation machines", SIAM J. Computing, 9 (1980),
490-508.

31

