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1 Introduction

According to the Evolving Algebra thesis [3], evolving algebras should allow one to specify succinctly
any algorithm. There exists substantial evidence con�rming this thesis in the case of sequential
algorithms (see the annotated bibliography in [3]). In other papers, e.g., [1, 5], evolving algebras
are used to specify distributed algorithms. For this paper, we wanted to look at a time-constrained
algorithm that does something useful and poses some challenge to specify and verify. Our colleague
Farnam Jahanian brought Cristian's article on group membership protocols [2] to our attention. In
this paper, we specify and verify one of the protocols presented in that article. It is an interesting
protocol to verify as we need to specify and prove both timing as well as functional properties.

Group membership protocols [2, 6, 7] are used mainly to provide fault tolerance for distributed
computing services. One possible way of ensuring service availability in a distributed system despite
processor failures is to have several servers cooperate to provide the service (each such set of servers
is termed a server group) and to replicate information relevant to the service (this is termed service
state information) at all the sites in the network. For example, if the service in question is a
C compiler then the state information may include a list of servers o�ering this service that are
currently alive and information regarding how heavily loaded each of these servers is. The purpose
of group membership and other related protocols is to ensure that the state information stored at
each group member remains up-to-date and that in the steady state, all group members see the
same state information { despite information propagation delays and server failures.

Central to the problem of server-group membership is processor-group membership which, to
put it briey, is the problem of achieving global agreement about the set of all correctly functioning
processors in the system. Given a solution for the processor group membership problem, it is
possible to use it to construct a solution to the server-group membership problem. The protocol
we consider in this paper is a solution to the processor-group membership problem in synchronous
systems.

�To appear in E. B�orger editor, Speci�cation and Validation Methods for Programming Languages and Systems,
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2 Overview of the Protocol

In this section, we describe the assumptions about the system, the protocol itself and �nally the
goals that the protocol is supposed to achieve. In an attempt to simplify the exposition and make
this paper self-contained, we allow ourselves slight changes of terminology.

In the following two subsections, we describe our interpretation of the assumptions made by
Cristian about the system. It turns out that not all his assumptions are necessary.

2.1 Synchronous Communication Network

There is a �xed �nite collection of processors p, each with its own clock Clock(p) or Clockp. You
may think about Clockp as a real-valued function of real time. Cristian assumes that every Clockp

is strictly monotone (\successive readings yield strictly increasing values") and there is a bound
on the deviations j Clockp(t) � t j. It follows that there is a bound on the skew between any pair
of clocks. In our speci�cation, we do not make any assumption about the connection between the
clocks and real time. We do not assume directly the existence of a skew bound though a weaker
form of that assumption will follow from one of our later assumptions.

Each processor hosts various processes, and processes handle tasks. Processors can be inter-
rupted but a task is run until completion. Typically, a task has a start deadline (henceforth, simply
deadline). Scheduling is assumed to be earliest deadline �rst. A task may not be scheduled well in
advance of its deadline { more precisely, if the deadline of the task is d then it may not be scheduled
until time d � du, where du is a constant called the scheduling uncertainty. A task may, however,
be scheduled after its deadline has passed { this can happen when tasks with earlier deadlines take
too long to complete, thus preventing the task in question from being scheduled in timely fashion.
du is one of a series of system related bounds and constants we will be describing in this section.
When we say that such and such bound exists we mean that it exists and is known.

Cristian speaks about correct and incorrect processors. The following abstraction seems appro-
priate. A processor can be crashed, recovering or sober. It is assumed that there is a minimum
delay of dr time units (the recovery bound) between the time a processor crashes and the time it
next becomes sober. A processor is correct at a particular instant of time if it is sober and it has no
pending tasks whose deadlines have been exceeded. This latter situation is termed a performance
failure.

A reliable broadcast mechanism is assumed. It guarantees that every message m broadcast by
a correct processor p will be delivered to every processor on the network. The only reason for a
scheduled broadcast not reaching all the processors on the network is if the sender crashes or su�ers
a performance failure. It is also assumed that performance failures can be detected and turned into
crashes. We make the same assumptions here.

Moreover, there is a bound on the time taken to carrym over from p to any processor q. The time
can be \measured on any processor clock" [2]. It seems a little more natural to measure the time of
sending on Clock(p) and the time of delivery on Clock(q). We will assume that there is a carry-over
bound dc with the following property: If the sending time of m is t1 with respect to Clock(p) and
the delivery time is t2 with respect to Clock(q) then 0 < Clock(q)� Clock(p) � dc. This, in fact,
is the only assumption we make relating the clocks of two di�erent processors and follows from
Cristian's assumptions related to time; of course a natural way to satisfy our assumption is to
satisfy the time related assumptions of Cristian. Cristian assumes also that messages are seen in
order of their deadlines and that two messages with the same deadline are seen in the same order
by all correct processors. The latter assumption turns out to be unnecessary.
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In this protocol, the only type of message send is a broadcast { therefore, in this document, the
terms \send" and \broadcast" will be synonymous.

2.2 Informal Description of the Protocol

Each processor p hosts a membership server MS(p) that handles the entry of the processor into a
processor-group and helps maintain state information while the processor is alive, and a broadcast
server BS(p) that periodically sends a broadcast to all the other processors in the system. In
addition to these, there may be other processes running on the processor. The only way these can
a�ect the protocol are by using up time and hence delaying protocol related tasks. Tasks relevant
to the protocol are { recovering from a crash, processing an incoming message (both handled by
the MS(p)) and sending a broadcast (handled by the BS(p)).

MS(p) maintains the state information stored at p and processes incoming messages. The state
information stored at p consists of

� The group identi�er of p's group { New groups are created each time a processor fails or recovers.
In this protocol, a group identi�er is a timestamp that indicates when the group was formed.

� Identi�ers of the processors in p's current group { the membership view of p.

In [2] the state information includes a ag that indicates whether or not p is currently part of a
group. We can do away with this as the desired property can be determined from whether or not
the group id (or the membership view) is de�ned.

BS(p) sends broadcasts at periodic intervals { these heartbeats inform other processors that p is
alive. If p misses a heartbeat then the other processors conclude that the p has failed. The interval
between two successive heartbeats is a system-wide constant and is denoted dh in this document.
When BS(p) is scheduled, one of the following two situations can arise.

� Clock(p) is greater than the deadline of the currently scheduled heartbeat { This means that p
has missed a deadline and therefore is, in some sense, not functioning correctly. In such a case,
the BS(p) concludes that p has failed and removes p from its current group.

� Clock(p) is less than or equal to the deadline t of the currently scheduled heartbeat { In this
case, when scheduled, the BS(p) sends a present message with timestamp t and sets the time of
the next heartbeat to t + dh.

MS(p) operates as follows

� When recovering from a failure, MS(p) initializes the state variables, and broadcasts a new gp

message { this message indicates to all other processors that p is rejoining the system and
attempting to form a new group. The timestamp t of this message is equal to the sum of
Clock(p) and a constant dn which is larger than the maximum network propagation delay { the
idea being to ensure that the message is seen by every correctly functioning processor q before
Clock(q) = t.

� If MS(p) sees a new gp message then one of the following two situations can arise.

{ Clock(p) is greater than the timestamp of the new gp message { In such a case,MS(p) assumes
that p has failed and removes p from its current group.

{ Clock(p) is not greater than the timestamp t of the new gp message { In such a case, MS(p)
cancels any pending heartbeat, sets the time for the next heartbeat to t + dh and broadcasts
a present message with timestamp t. This present message indicates to all other processors
that p is going to join the new group. MS(p) sends no further present messages until the next
new gp message arrives. All other present messages from p are sent by BS(p).
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� If MS(p) sees a present message m then it does the following

{ It checks its box of incoming messages for present messages from other processors with the
same timestamp as m, removes all of them (including m) and computes the union v of their
sender processor ids.

{ If v is identical to the membership view of p then it does nothing else.

{ If v is di�erent from the membership view of p then it makes v the new membership view and
sets the group id of p to the timestamp of m.

2.3 Summary of Bounds and Constants

du: an upper bound on the uncertainty in scheduling.

dc: an upper bound on the time taken to carry a message over the network.

dh: the heartbeat interval.

dn: the new gp timestamp increment.

dr: a lower bound on the time between a crash and a subsequent recovery.

It is assumed that dh > du, dn > dc + du and dr > dh + du.

2.4 Goals of the Protocol

Whenever we mention a time value in the context of a processor p, it will mean the time as recorded
by Clock(p).

G1. Stability of local views: Once a processor joins a group, it stays in that group until either a
processor fails or one recovers and attempts to rejoin.

G2. Agreement on history: If p and q are joined to a common group g during a run of the system
then if the next groups joined by p and q after leaving g are gp and gq respectively, and neither
processor crashes in the interval between the time it joined g and the time it joined its next
group then, gp = gq.

G3. Agreement on group membership: If p and q are joined to the same group and are both alive
then their membership views are identical.

G4. Reexivity: If p is alive and joined to a group then its id will be included in its membership
view.

G5. Bounded join delays: There exists a time constant dj such that if a processor becomes sober at
time t then, by time t + dj , it will join a new group g along with every other processor q that
stays correct in the interval [t; t+ dj ].

G6. Bounded failure detection delays: There exists a time constant df such that if a processor
belonging to group g fails at time t then, by time t + df , all the members of g that that stay
correct in the interval [t; t+ df ] will join a group g0 that does not contain p.

3 The Program

The semantics of evolving algebras are described in [4]. In order to understand the material in this
paper, the reader need only read about ground distributed evolving algebras. We use variables in
this paper only to make the rules easier to read. Variables are, in fact, not needed and can easily
be eliminated.
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The algebra is modeled as �ve module templates. MembershipServer and BroadcastServer
model the membership and broadcast servers of the protocol respectively. Scheduler handles re-
covery from crashes and scheduling of processes, MessageCarrier handles transmission of messages
across the network and Custodian handles orderly delivery of messages to the membership server.

The transition rules are all named. We have also named the clauses in these transition rules
that we shall be referring to often.

In this section we will observe the following conventions. Variables p and q range over processors;
variable m ranges over messages. Abbreviations are written in Small Caps and external functions
are written in Slanted Sans Serif .

3.1 Vocabulary

We do not describe the vocabulary explicitly since most of it is quite obvious from the program
but we explain here some of the less obvious functions and abbreviations.

If t is a term then Defined(t) is an abbreviation for t 6= undef.
We de�ne MessageType to be the universe containing two objects present and new gp. Real

is the universe of real numbers, Processor is the universe of processor ids. A message m is a
triple (x; y; z) 2 MessageType � Real �2Processor; x is MesType(m), y is Timestamp(m) and z is
V iew(m). Let Message be the universe of messages.

Messages have deadlines associated with them. The deadline of a messagem (written Deadline

(m)) is de�ned as follows.

1. if m is a new gp message then Deadline(m) = Timestamp(m).

2. if m is a present message then Deadline(m) = Timestamp(m) + dn.

We de�ne the following dynamic functions. InBox(p) 2 2Message is the set of messages that
have been delivered to p but have not been seen by the membership server. CurMes(p) stores the
message currently being seen by the membership server. It turns out that this message has the
earliest deadline among all current messages. BCastT ime(p) gives the time for which the next
broadcast is scheduled.

The deadline for a process x (written Dline(x)) is the minimum among the deadlines of the
tasks waiting to be handled by x. The two processes we are concerned with here are the mem-
bership and broadcast servers. The relevant tasks handled by the membership server are (i) ini-
tializing the internal functions of the processor after recovering from a crash and (ii) handling
incoming messages. Each incoming message corresponds to a separate task. The dynamic function
CurMes(p) should always store a message with the earliest deadline. Dline(MS(p)) abbreviates,
therefore, Deadline(CurMes(p)). The tasks handled by the broadcast server are broadcast sends.
In this protocol, there is at most one broadcast scheduled at a given processor at any given time.
Dline(BS(p)) abbreviates, therefore, BCastT ime(p).

Enabled(MS(p)) abbreviates

Defined(CurMes(p))^ (Dline(MS(p)) � Clock(p)� du)

and Enabled(BS(p)) abbreviates

(Dline(BS(p)) � Clock(p)� du).

Informally, AptPart(p) is the set of messages m in InBox(p) such that Deadline(m) �
Clock(p) � du. More formally, de�ne the static function Apt as follows. Given an element I 2

2Message and two reals t1 and t2, it computes an element J 2 2Message which (viewed as a set) com-
prises all messagesm 2 I such that (Deadline(m)� t1�du)^(Timestamp(m) � t2). AptPart(p)
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abbreviates Apt(InBox(p);Clock(p); StartUpTime(p)). Here StartUpTime(p) is the time at which
p recovered from its last crash.

3.2 Scheduler(p)

Each processor hosts a number of processes. The Scheduler agent for a processor p handles recovery
from crashes and scheduling of processes on the processor. The two processes on p that we are
concerned with in this speci�cation are the membership server process MS(p) and the broadcast
server process BS(p). These are the two processes that implement the protocol { we assume that
the other processes running on the processor do not a�ect the protocol in any way other than using
up time.

Transition Recover

if Status(p) = crashed then

Status(p) := recovered, CurProc(p) := MS(p)
endif

When a processor has recovered from a crash, the only process that can execute is the membership
server. Scheduling a process on p is modeled by setting CurProc(p) (the process currently running
on p) to the appropriate value.

Transition Schedule

if (CurProc(p) = undef) ^ (Status(p) = sober)^
((AptPart(p) = ;)_Defined(CurMes(p)))^
[((x = MS(p))^ (y = BS(p))) _ ((x = BS(p))^ (y = MS(p)))] then
if Enabled(x) ^ :Enabled(y) then CurProc(p) := x
elseif Enabled(x) ^Enabled(y) then

if Dline(x) < Dline(y) then CurProc(p) := x
else CurProc(p) := y

endif

endif

endif

Scheduling is earliest-deadline-�rst and non-preemptive. To ensure non-preemption, we add the
term CurProc(p) = undef to the guard of transition Schedule and CurProc(p) = MS(p) and
CurProc(p) = BS(p) to the guards of the transitions of the MembershipServer and BroadcastServer
modules respectively. When the membership server or broadcast server of p completes its current
task, it sets CurProc(p) to undef { which enables the scheduler to run. The scheduler then schedules
the next process by setting CurProc(p) to the appropriate value.

AptPart(p) is the set of messages from which CurMes(p) is chosen. If AptPart(p) = ; then
there are currently no messages available for the membership server to see, hence the scheduler
goes ahead. If AptPart(p) is not empty then there are messages available; the scheduler therefore
waits till one of these messages has been selected (in other words, till CurMes(p) becomes de�ned).

In addition to the membership and broadcast servers there may be other processes running
tasks unrelated to our protocol. These tasks need to be taken into account because they can a�ect
our protocol by taking too much time to execute and causing the protocol-related tasks to miss
their deadlines. We can model this situation using the nondeterminism of transition rules. To put
it another way, a transition rule need not �re the instant it is enabled. The time between the
instant the transition rule was enabled to the instant it �red can be considered to be time utilized
by some other process.
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3.3 MembershipServer(p)

Transition Initialize

if (Status(p) = recovered) ^ (CurProc(p) = MS(p)) then
BCastT ime(p) := undef, CurMes(p) := undef

GroupId(p) := undef, Members(p) := undef

StartUpTime(p) := Clock(p) + dn
InTransit((new gp;Clock(p) + dn; fpg)) := true

Status(p) := sober, CurProc(p) := undef

endif

The above rule initializes the state information and broadcasts a new gp message. The state
information stored by the membership server of a processor p consists the group identi�er of p's
current group (GroupId(p)), a set containing the members of p's group (Members(p)) and the time
at which the processor recovered from its last crash (StartUpTime(p)).

Sending a broadcast m is modeled by setting InTransit(m) to true { this signi�es that m is
currently being propagated on the network.

Add (Status(p) = sober)^(CurProc(p) = MS(p)) to the guards of the following two transitions.

Transition HandleNewGpMes

if (MesType(CurMes(p)) = new gp) then
if (Clock(p) > Timestamp(CurMes(p))) then Crash MS

Status(p) := crashed

else PrMesSend MS

InTransit((present; T imestamp(CurMes(p)); fpg)) := true

BCastT ime(p) := Timestamp(CurMes(p)) + dh
CurMes(p) := undef, CurProc(p) := undef

endif

endif

If the membership server of gets scheduled after the deadline of the message has been exceeded,
it removes itself from the group it is currently a member. This \removal" is modeled by setting
Status(p) to crashed

Transition HandlePresentMes

if (MesType(CurMes(p)) = present) then
if (Members(p) 6= V iew(CurMes(p))) then ChangeGp

Members(p) := V iew(CurrMes(p))
GroupId(p) := Timestamp(CurMes(p))

endif

CurMes(p) := undef, CurProc(p) := undef

endif

3.4 BroadcastServer(p)

Transition HandleBCast

if (Status(p) = sober) ^ (CurProc(p) = BS(p)) then
if (Clock(p) > BCastT ime(p)) then Crash BS

Status(p) := crashed

7



else PrMesSend BS

InTransit((present; BCastT ime(p); fpg)) := true

BCastT ime(p) := BCastT ime(p) + dh, CurProc(p) := undef

endif

endif

3.5 MessageCarrier(p)

To model the transmission of a message from one processor to another, we introduce a Message-
Carrier agent for each processor p; this agent delivers messages intended for p to p. The \delivery"
is done by incorporating the message into InBox(p) which is an element of 2Message { the set of
�nite sets of messages. We view InBox(p) both as an element as well as a set.

An incoming message m of type new gp is simply added to the InBox(p). Messages of type
present with identical timestamps are however, bunched together into one message. If m is an
incoming message (to p) of type present and there is no present message in InBox(p) with the
same timestamp as m, then m is simply added to InBox(p). If there exists a single present

message m0 with the same timestamp as m then m0 is deleted from InBox(p) and the message
(present; T imestamp(m); V iew(m) [ V iew(m0)) is added in its place. It is easy to see that there
can never be more than one present message with the same timestamp in InBox(p). The message
to be incorporated into InBox(p) is given by the external function InMes(p). More will be said
about this function in section 4.

Transition DeliverIncomingMes

if (InMes(p) = (a; b; c)) then
if (a = new gp) then InBox(p) := InBox(p) [ fInMes(p)g
elseif (Present(InBox(p); b) = undef) then

InBox(p) := InBox(p) [ InMes(p)g
elseif (Present(InBox(p); b) = m) then

InBox(p) := (InBox(p)� fmg) [ f(a; b; V iew(m)[ c)g
endif

endif

The static function Present is de�ned as follows. Given I 2 2Message and a real t, if there exists a
unique present message m 2 I with timestamp t then Present(I; t) = m otherwise Present(I; t) =
undef.

Note that transition DeliverIncomingMes never removes any message from InTransit, thus al-
lowing InTransit to grow in an unbounded manner. If we wish to keep the size of InTransit
bounded, we can modify the program as follows. Currently, if we wish to broadcast a message
m, we set InTransit(m) to true, thus sending a single copy of m to the entire group. Instead of
doing this we can send a separate copy of m to each processor q, by making InTransit a binary
function { the �rst argument being the message sent and the second being its target { and replacing
all updates of the form InTransit(m) := true with InTransit(m; q) := true. Then, the message
carrier of each processor can remove its copy of m from InTransit when it incorporates m into its
InBox.

3.6 Custodian(p)

The protocol requires that the all the membership servers see the messages in order of their dead-
lines. Since the message carrier need not deliver the messages in this order, we have an agent
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Custodian for every processor p which delivers a message with the minimal timestamp to the
membership server.

Transition SelectCurMes

if (Status(p) = sober) ^ (CurMes(p) = undef)^
(AptPart(p) 6= ;) ^MinDl(m;AptPart(p)) then
CurMes(p) := m, InBox(p) := InBox(p)�m

endif

Given a message m and a set I , MinDl(m; I) is true if m 2 I and there is no message m0 2 I

whose deadline is less than that of m.
Note that the custodian of p removes those messages that have been seen by the membership

server from InBox(p). However, the messages that arrive while the processor is crashed may
never be seen by the membership server and hence are never removed. Thus, InBox(p) can grow
in an unbounded manner. To keep the number of messages in InBox(p) bounded, we can have
the custodian periodically remove from InBox(p) those messages that can never be selected by
transition SelectCurMes. For example, when the processor is crashed, we could remove all those
messages whose timestamp is less than Clock(p) and when the processor is alive, we could remove
all those messages whose timestamp is less than StartUpTime(p). Removal of these \unselectable"
messages, however, does not relate to the protocol we are specifying; therefore, we do not deal with
it in our speci�cation.

4 Semantics: De�nitions and Discussion

In subsection 4.1, we describe our \o�cial" semantics. Real-time versions of that semantics and
various other issues are discussed in subsection 4.2.

4.1 De�nitions

For each processor p, let E(p) be the restriction of our evolving algebra E that involves only the
�ve agents related to p: the scheduler, membership server, broadcast server, message carrier and
custodian of p. For simplicity, we drop the processor name from the arguments of functions if it is
clear from the context which processor we are referring to.

Semantics of E(p):

Vocabulary: Let �(p) be the vocabulary of E(p) excluding function InTransit.

Internal and external functions: Functions Clock and InMes are external input functions of
E(p). From the point of view of E(p), their values are provided by the environment. Function
InTransit is an output external function; that is why it does not belong to �(p). The other
functions in the vocabulary �(p) of E(p) are internal. Let ��(p) be the internal vocabulary of E(p).

States: For brevity, we speak about states and runs of p rather than E(p). A state of p is a
static �(p)-algebra. An internal state of p is a static ��(p)-algebra. If S is a state, let S� be the
corresponding internal state.
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Runs: Let I range over initial segments of natural numbers. A (sequential) run of p is a sequence
�p = hSn : n 2 Ii of states of p such that, for each positive n, S�

n is obtained from Sn�1 by executing
one rule r(n) of E(p) at Sn. Notice that �p uniquely determines rules r(n) and each rule uniquely
determines the agent whose program contains the rule. Call run �p monotone if it satis�es the
following condition

R1. Monotonicity of the clock: The values of Clock at states S0; S1; S2; etc. form a strictly increasing
sequence. If there is �nal state then Clock =1 in the �nal state.

Restrict attention to monotone runs. States Sn are stages of p in �p = hSn : n 2 Ii. If n 6= max(I)
then rule r(n+1) �res at stage Sn. Notice that all stages have the same superuniverse. An extended
�(p)-term (relative to a run) is an expression built from elements of the superuniverse by means of
functions in �(p).

Abbreviations: Let �p = hSn : n 2 Ii be a run of p and a = Sn. If k is a (possibly negative)
integer and n + k 2 I then a + k = Sn+k. If � is an extended �(p)-term, then �a is the value of �
at stage a. Suppose that n 6= max(I) so that some rule r = r(n+ 1) �res at a. If r assigns value x
to a �(p)-term � , we say that p sets � to x at stage a or � gets value x at stage a + 1. If r(n+ 1)
assigns value true to InTransit(m), we say that p sends message m at stage a. Call a monotone
run �p = hSn : n 2 Ii of p regular if it satis�es the following two conditions

R2. Lower bound on recovery time: If Statusa = crashed and Statusa+k = recovered and k > 0 then
Clocka+k � Clocka � dr.

R3. Initial state: If a is the initial state then Statusa = crashed and InBoxa = ;, and CurMesa,
GroupIda, Membersa, StartUpTimea, BCastT imea are all undef.

We de�ne a run � of the whole evolving algebra E to be simply a collection of runs �p of p where
p ranges over the processors. � is regular if all constituent runs �p are regular and � satis�es the
following condition

R4. Carry time bound: If p sends message m = (x; y; z) to q at some stage a then there is a unique
stage b of q such that
1. InMes(q) = m and
2. There exists m0 = (x; y; z0) in InBox(p)b+1 where z0 � z and
3. 0 < Clock(q)b � Clock(p)a � dc.

4.2 Discussion

We could use real-time semantics with either zero-time or prolonged actions, like in [1], but the
material lends itself to simpler semantics which is more general in a sense.

Sequential Runs: According to [4], a sequential run is a sequence of states together with the
agent-witness function. Since the sequence of states uniquely determines the agent-witness function
in our case, we have simpli�ed the de�nition. Also, we took advantage of the fact that agents of
E(p) can �re only one rule a time and further simpli�ed the de�nition.

Partially Ordered Runs: We restrict attention to sequential runs only to simplify the exposi-
tion. There are no signi�cant changes in the correctness proof if one uses partially ordered runs as
de�ned in [4].
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Stages: Usually stages of a run �p = hSn : n 2 Ii are pairs (n; Sn). The �rst component ensures
that the distinctness of stages and is not needed in the case of our monotone runs.

Initial states: Condition R3 can be generalized.

InMes Function: We don't care about the value of InMes(p) at stage a unless the message carrier
of p acts at a; it may be undef. It is probably more honest to remove InMes from the vocabularies
of those stages where the message carrier is passive, but this would complicate a little the de�nition
of run.

InMes and InTransit Functions: The only connection between InMes(p) and InTransit is the
condition R4. It is assumed that the environment that supplies InMes satis�es R4. In the case of
real-time semantics (say with zero-time actions), we do not need the environment to supply InMes .
Just add the following rule to the program of the message carrier of p:

Transition: SelectIncomingMes

if (InMes(p) = undef) ^ InTransit(m) ^ (Target(m) = p) then
InMes(p) :=m

endif

This rule seems inconsistent because there may be more than one messages to p in transit. According
to the de�nition of evolving algebras, inconsistency is resolved by means of nondeterminism. If p
has several incoming message then MessageCarrier(p) nondeterministically chooses one of them.

4.3 More Abbreviations and De�nitions

De�nition 1 The predicate Correct(p) is true for processor p at stage s if the following conditions
are met

1. Clock(p)s � StartUpTime(p)s.

2. For allm 2 InBox(p)s, if TimeStamp(m) � StartUpTime(p)s thenDeadline(m) � Clock(p)s.

3. BCastT ime(p)s � Clock(p)s.

We also de�ne correctness in intervals

De�nition 2 1. If a � b are stages of p, then p is correct in [a; b] if it is correct at any stage c
with a � c � b.

2. Let I be a real interval and t1 = inf(I), t2 = sup(I). Then, p is correct in I if it is correct in
the stage interval [a; b] where C (p)a � t1 < C(p)a+1 and C(p)b�1 < t2 � C(p)b

For brevity, we shorten the names of some functions { Clock is now C , Timestamp is TStamp,
StartUpTime is UpTime, CurMes is Mes, MesType is Type, GroupId is GpId and the abbrevi-
ation Defined is Def. For readability, we give the following de�nitions

D1. p joins group g { There is a stage s of p such that GpId(p)s = g

D2. a message (a; b; c) is added to InBox(p) at stage s by time t {
C(p)s � t and there exists a message (a; b; c0) 2 InBox(p)s+1 such that
(a = present)! (c0 � c) and (a = new gp)! (c0 = c)

D3. a message from q with timestamp t is in InBox(p) at stage s { 9m = (a; t; c) 2 InBox(p)s
such that q 2 c
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D4. p sees a message with timestamp t at stage s { Status(p)s = sober and CurProc(p)s = MS(p)
and TStamp(Mes(p))s = t

D5. p fails at stage s { At least one of the following conditions is true at stage s and none is true
at stage s� 1.
a. BCastT ime(p)s < C(p)s
b. (Type(Mes(p))s = new gp) and (TStamp(Mes(p))s < C(p)s)
c. 9m 2 InBox(p)s such that (Type(m) = new gp) and (UpTime(p)s � TStamp(m) < C(p)s)

4.4 What we shall be proving

The following are the properties that we will be proving about every regular run of E . These
correspond to goals G1 through G6 described in section 2.4.

Theorem 4: Stability of local views
For every p and all stages a < b of p, the following holds. If undef 6= GpIda 6= GpIdb then there
is a stage c < b such that either
1. c � a and Statusc = crashed or
2. c � a and Type(Mes)c = present and Membersc � V iew(Mes)c 6= ; or
3. p sees a new gp message m at c from some processor q 6= p and TStamp(m) 2 (GpId(p)a;
GpId(p)b].

Theorem 2: Agreement on history
Suppose that
1. GpId(p)a = GpId(q)c 6= undef and
2. b is the �rst stage > a such that undef 6= GpId(p)b 6= GpId(p)a and
3. d is the �rst stage > c such that undef 6= GpId(q)d 6= GpId(q)c and
then, if GpId(p)b and GpId(q)d are not undef, they are equal.

Theorem 1: Agreement on group membership
If GpId(p)a = GpId(q)b 6= undef then Members(p)a = Members(q)b.

Theorem 3: Reexivity
For every p and stage a of p if GpIda 6= undef then p 2Memberss.

Theorem 5: Bounded join delays
There exists a positive real dj satisfying the following condition. If
1. Status(p) is set to sober at stage a and
2. p is correct in the interval I = (C (p)a;C(p)a + dj ]
then there exists a group id g > C(p)a such that for every q correct in I

GpId(q) is set to g at some stage b of q with C(q)b 2 I .

Theorem 6: Bounded failure detection delays
There exists a positive real df satisfying the following condition. If
1. p fails at stage a and
2. I = (C (p)a;C(p)a + df ] and GpId(p)a = g 6= undef

then there exists g0 > g such that
1. p never joins group g0 and
2. for every q that joins group g and is correct in I

GpId(q)b = g0 for some stage b of q with C (q)b 2 I .
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5 Proof of Protocol

Fix any regular run �. In some of the proofs, we will be considering sums of stages. We de�ne the
sum of two stages a and b as follows. If a is the ith stage of p and b is the jth stage of q then a+ b

is the number i+ j. The initial state of any processor p is stage number 0.

5.1 Propositions Dealing With Message Sends and Receives

Proposition 1 If p sends a message m to q at stage a then m is added to InBox(q) at some stage
b such that C (q)b < Deadline(m)� du.

Proof: Recall that TStamp(m) = C(p)a + dn if m is a new gp message. Examining rules Han-

dleNewGpMes and HandleBCast (which are the only rules which can send a present message)
we see that TStamp(m) � C (p)a if m is a present message. Also recall that Deadline(m) =
TStamp(m) if m is a new gp message and = TStamp(m)+dn if m is a present message. Therefore
Deadline(m) � C (p)a+dn in either case. By the carry time bound constraint, C (q)b � C (p)a+dc �
Deadline(m)� dn + dc. But dn > dc + du (see section 2.3). Therefore C (q)b < Deadline(m)� du.
2

Proposition 2 If Mes(p)a = (x; y; z) and q 2 z then there exists a stage b of q at which q sends
the message (x; y; fqg).

Proof: Straightforward. 2

5.2 Properties Satis�ed at any Stage of any Processor

Proposition 3 If Status(p)a = sober and Def(BCastT ime(p)a) then BCastT ime(p)a � UpTime

(p)a.

Proof: By induction on �.
Basis Case: At the initial stage a0 of p, Status(p)a0 = crashed, hence the claim is vacuously true.
Induction Step: Assume that the statement is true at stage a � 1. The only interesting case is
if Status(p)a = sober and Def(BCastT ime(p)a). If the value of BCastT ime(p) does not change
between a�1 and a, we know by induction hypothesis that the claim holds at a. The only transitions
that can change BCastT ime(p) or UpTime(p) are Initialize, PrMesSend MS and PrMesSend BS.

Initialize sets BCastT ime(p) to undef so it cannot violate the claim. PrMesSend BS just in-
crements BCastT ime(p) so it cannot violate the claim. PrMesSend MS sets BCastT ime(p) to
TStamp(Mes(p)) + dh. From examination of the custodian we can see that TStamp(Mes(p)) has
to be � UpTime(p) { therefore, �ring PrMesSend MS cannot violate the claim. 2

Proposition 4 If p sends a present message with timestamp t in a stage a then the UpTime(p)a �
t.

Proof: By induction on �.
Basis Case: At the initial stage a0 of p, Status(p)a0 = crashed, hence the claim is vacuously true.
Induction Step: Assume that the statement is true at stage a � 1. There are two ways a present

message can be sent at stage a.
Case 1: PrMesSend BS �res at a. The timestamp of the message sent is equal to BCastT ime(p)a
which, by Proposition 3 is � UpTime(p)a.
Case 2: PrMesSend MS �res at a. The timestamp of the message sent is equal to TStamp(Mes(p))a.
From examination of the custodian, we can see that this is � UpTime(p)a. 2
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5.3 Relationships Between Di�erent Stages of the Same Processor

Proposition 5 If a < b then UpTime(p)a � UpTime(p)b.

Proof: Observe that UpTime(p) is set only when Initialize is �red and moreover, the new value is
C(p) + dn. Since C (p) monotonically increases, we can say the same about UpTime(p). 2

Proposition 6 If GpId(p)c = g 6= undef then there exists a stage a < c such that
1. GpId(p) was set to g at a by the �ring of ChangeGp and
2. ChangeGp was not �red at any stage b 2 (a; c)

Proof: Observe that ChangeGp is the only clause that sets GpId(p) to a value 6= undef. If
GpId(p)c = g 6= undef, the value must have been set by the last �ring of ChangeGp. 2

Proposition 7 If q 2Members(p)c then there is a stage a < c and message m such that
1. q 2 V iew(m) and p sees m at a but not at a+ 1
2. For all stages b 2 (a; c),
either Mes(p)b = Mes(p)c or Mes(p)b = undef and
neither Initialize nor HandlePresentMes is �red at b.

Proof: Since Def(Members(p)c), we can see that this value is set by some �ring of ChangeGp
before c. Therefore HandlePresentMes �res at some state s < c and Initialize is not �red in [s; c).
Let a be the latest stage < c at which HandlePresentMes �res. Examining the rules, we can see
that Mes(p)a+1 = undef.

If p sees a present message m0 6= Mes(p)c at some b 2 (a + 1; c) then from examination of the
rules we can see that HandlePresentMes �res at some stage b0 2 [b; s). This is impossible since we
have assumed that a is the latest stage before c at which HandlePresentMes �res. We can see from
examining HandlePresentMes that Members(p)a+1 = V iew(m) and since ChangeGp does not �re in
(a; c), Members(p)c = Members(p)a+1. Therefore if q 2Members(p)c, q 2 V iew(m). 2

Proposition 8 Suppose GpId(p)a = g and c is the �rst stage > a such that p sees a present

message m at c and V iew(m) 6= Members(p)c and p stays sober in the interval [a; c]. Then for all
stages b 2 [a; c], GpId(p)a = g.

Proof: Observe that while p stays sober, the only way that GpId(p) can change is if p sees a present
message m such that V iew(m) 6= Members(p)c at some stage c > a. 2

Proposition 9 If Mes(p)b = m and Def(m) then
1. C (p)b�1 � Deadline(m)� du and
2. there exists an a < b such that
m 2 InBox(p)a and C(p)a�1 < Deadline(m)� du.

Proof: Let us without loss of generality assume that b is the �rst stage where Mes(p) = m. This
implies that Mes(p) is set to m at b � 1. From examination of the custodian, we can see that
C(p)b�1 � Deadline(m)� du { this proves the �rst part of the claim. Consider any q 2 V iew(m).
By Proposition 2, this implies that q sent a message m0 to p with timestamp equal to TStamp(m).
By Proposition 1, m0 is added to InBox(p) by time Deadline(m) � du. This proves the second
part of the claim. 2

Proposition 10 If p sees a present message m at stage a but not at a+ 1 and a present message
m0 at stage b > a then TStamp(m) 6= TStamp(m0).
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Proof: By contradiction. Assume that TStamp(m) = TStamp(m0). By Proposition 9, there
exists a stage a0 such that C(p)a0

�1 < Deadline(m) � du and m 2 InBox(p)a0 . There exists
a similar stage b0 for m0. Proposition 9 also tells us that if at any stage c, Mes(p)c = m or
Mes(p)c = m0 then C (p)c�1 � Deadline(m)�du. This implies that there exists a stage d such that
C(p)d�1 < Deadline(m)� du and m;m0 2 InBox(p)d. From examination of the message carrier,
we can see that this is impossible. Therefore TStamp(m) 6= TStamp(m0). 2

Proposition 11 If m = Mes(p)s 6= undef and m0 = Mes(p)s0 6= undef and Deadline(m) <
Deadline(m0) then s < s0.

Proof: By contradiction. By Proposition 9, there exists an a < s such that C(p)a�1 < Deadline(m)
� du and m 2 InBox(p)a and that there exists an a0 < s0 such that C (p)a0

�1 < Deadline(m0)� du
and m0 2 InBox(p)a0 . Assume that s0 < s. We know from examination of the custodian that
Mes(p) cannot be set to m0 until time Deadline(m0)� du.

Let b0 < s0 be a stage such thatMes(p) is set tom0 at b0 andMes(p) stays unchanged in [b0+1; s0].
Therefore, C (p)b0 � Deadline(m0)� du > Deadline(m)� du. Since C (p)a�1 < Deadline(m)� du,
a � b0 < s0.

Let b be the stage at which Mes(p) is set to m. We know that setting Mes(p) to m will also
cause m to be removed from InBox(p). Since p seesm at stage s and since s0 < s, we conclude that
b0 < b. Since a � b0, we can conclude that m 2 InBox(p)b0 { this implies that there is a message
with an earlier deadline than that of m0 in InBox(p) when Mes(p) is set to m0.

The only way this can happen is if m is ineligible for selection { in this case, that implies
UpTime(p)b0 > TStamp(m). But we know thatMes(p) is set to m at stage b > b0. By Proposition
5, UpTime(p)b0 � UpTime(p)b which implies m is not ineligible at b0 { a contradiction. 2

Proposition 12 If a < b, Def(GpId(p)a) and Def(GpId(p)b) then GpId(p)a � GpId(p)b.

Proof: By contradiction. The only interesting case is when GpId(p)a 6= GpId(p)b. By Proposition
6, if GpId(p)a = g and GpId(p)b = g0 then there exists a0 < a such that Type(Mes(p))a0 = present,
TStamp(Mes(p))a0 = g, ChangeGp is �red in stage a0, ChangeGp is not �red at any stage in
(a0; a) and there exists a stage b0 < b such that Type(Mes(p))b0 = present, TStamp(Mes(p))b0 =
g0,ChangeGp is �red in stage b0 and ChangeGp is not �red at any stage in (b0; b). Since we are
considering the case where GpId(p)a 6= GpId(p)b, a0 6= b0.

Assume the claim is false { in other words, that GpId(p)a > GpId(p)b. This implies that
TStamp(Mes(p))a0 > TStamp(Mes(p))b0. By Proposition 11, that implies a0 > b0. But we know
that a < b and that ChangeGp does not �re in (a0; a). This implies a0 � b0 { a contradiction. 2

Proposition 13 If a < c, m1 = Mes(p)a 6= undef, m2 = Mes(p)c 6= undef, p stays sober in the
interval [a; c] and there exists a message m3 = (x; y; z) and stage s such that m3 2 InBox(p)s and
Deadline(m1) < Deadline(m3) < Deadline(m2) then there exists a stage b 2 (a; c) at which p sees
a message m4 = (x; y; z0) where z0 � z.

Proof: Argument similar to Proposition 11. 2

Proposition 14 If m1 = Mes(p)b 6= undef, UpTime(p)b = t, and there exists a stage s and
message m2 = (x; y; z) such that m2 2 InBox(p)s and t � Deadline(m2) < Deadline(m1) then
there exists a stage a < b at which p sees a message m3 = (x; y; z0) where z0 � z.

Proof: Argument similar to Proposition 11. 2
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Proposition 15 If p gets sober at stage a then there exists an b > a such that
1. p stays sober in [a; b] and
2. p sees a new gp message m0 at b such that TStamp(m) = UpTime(p)b and
3. p does not see any message in [a; b).

Proof: Since p gets sober at stage a, transition Initialize must have been �red at stage a � 1
sending a new gp message (call it m) to p. By Proposition 1, m is added to InBox(p) at some
stage c > s. Examining the rules, we can see that the two ways p can crash are by the �ring of
transition Crash MS or Crash BS. In the �rst case, p sees a new gp message before crashing. In
the second case, BCastT ime(p) has to be de�ned. BCastT ime(p) becomes de�ned only when a
new gp message is seen by p. In both cases, p will see some message before crashing.

Let the �rst stage > a in which p sees a message be b and let the message seen be m0. Since p
sends new gp message m in a, UpTime(p)a+1 = TStamp(m). Since p does not crash in [a + 1; b],
UpTime(p) remains TStamp(m) in [a + 1; b]. Examining the custodian therefore, we can see
that TStamp(m0) � TStamp(m). Since m is a new gp message, Deadline(m) = TStamp(m).
Therefore, Deadline(m0) � Deadline(m). If Deadline(m0) > Deadline(m), then by Proposition
14, p sees m at some stage d 2 (a; b) { which contradicts our earlier assumption that m0 is the �rst
message seen by p since a. Therefore Deadline(m0) = Deadline(m).

We know TStamp(m0) � TStamp(m). TStamp(m0) cannot be greater than TStamp(m) since
that would mean that Deadline(m0) > Deadline(m). Therefore, TStamp(m0) = TStamp(m).
Since the timestamps and deadlines of m0 and m are the same and since m is a new gp message,
so is m0. This proves the claim. 2

Proposition 16 If p gets sober at stage a and there exists an b such that
1. p stays sober in [a; b] and
2. p sees a present message at b and
3. p does not see any present messages in [a; b)
then TStamp(Mes(p))b = UpTime(p)b

Proof: Argument similar to Proposition 15 2

Proposition 17 If p sends a present message with timestamp t at stage a and there exists a stage
b > a such that Status(p)b = sober and Type(Mes(p))b = present and TStamp(Mes(p))b = t then
p stays sober in (a; b).

Proof: By contradiction. Let m be Mes(p)b. From examining the custodian, we know that
UpTime(p)b � TStamp(m) = t. From examination of rules PrMesSend MS and PrMesSend BS we
can see that C (p)a � t � du. If there is some stage c 2 (a; b) such that Status(p)c = crashed), we
know, from our premise, that there must be some other stage d 2 (c; b] such that Status(p)d = sober.

Without loss of generality, assume that d is the �rst such stage since c. By our failure and
recovery constraints, UpTime(p)d > t. Since d � b, by Proposition 5, UpTime(p)d � UpTime(p)b
and therefore UpTime(p)b > t. This contradicts our earlier conclusion that UpTime(p)b � t. 2

Proposition 18 Let x = CurProc(p)s and x0 = CurProc(p)s0. If Def(x), Def(x0), x 6= x0 and
Dline(x)s < Dline(x0)s0 then s < s0.

Proof: By contradiction. There are two cases.
Case 1: x = MS(p) and x0 = BS(p). Let m denote Mes(p)s. Let t denote Deadline(m) and t0

denote BCastT ime(p)s0 . From premise, we know t < t0. Assume that s0 < s. Let a0 < s0 be
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the stage such that CurProc(p) is set to BS(p) at a0 and BCastT ime(p)a0 = t0. Examining the
scheduler, we know that C (p)a0 � t0 � du > t � du. From Proposition 9, there exists a stage a < s
such that m 2 InBox(p)a and C(p)a < t � du. Since C (p)a0 > t� du, a < a0.

Since p sees m at s, there is some stage c < s such that Mes(p) is set to m at c and Mes(p)
stays unchanged in [c+ 1; s]. We consider two cases.

First, that c < a0. In that case, Mes(p)a0 = m. This means that at a0, the broadcast server is
scheduled when there existsa message with an earlier deadline { a contradiction.

The other case is c � a0. If Def(Mes(p)a0) then by Proposition 11, Deadline(Mes(p))a0 � t.
This once again means that at a0, the broadcast server is scheduled when there exists a message
with an earlier deadline { a contradiction. Therefore, Mes(p)a0 = undef.

We know from Proposition 10 that there cannot be a state d < a0 such that Type(Mes(p))d =
Type(m) and TStamp(Mes(p))d = TStamp(m). We also know that there is a stage a < a0

such that m 2 InBox(p)a. Since the only transition that removes a message from InBox(p) is
SelectCurMes, m 2 InBox(p)a0 . Since C(p) > t � du, m 2 AptPart(p)a0 . This however means
that transition Schedule cannot �re at a0 { a contradiction.
Case 2: x = BS(p) and x0 = MS(p). Let m0 denote Mes(p)s0. Let t = BCastT ime(p)s and
t0 = Deadline(m0). Let a be the latest stage < s such that BCastT ime(p)a 6= t. Therefore,
BCastT ime(p)a+1 = t and it stays unchanged in (a + 1; s]. BCastT ime(p) can be set by either
PrMesSend MS or by PsMesSend BS. In either case, we can see by examining the scheduler that
C(p)a � t � dh � du.

Examining rules HandleNewGpMes and HandlePresentMes, we can see that C(p)a � t � dh.
Assume s0 < s. Let a0 be the latest stage < s0 such that CurProc(p)a0 6= MS(p). By examining
scheduler, we can see that Mes(p)a0 = m0. From examination of the custodian, we can see that
Mes(p) can be set to m0 only when C (p) � t0 � du. Therefore, C(p)a0 � t0 � du. We know that
C(p)a � t� dh. Since t < t0 and du < dh, a < a0. Since a0 < s0 < s, BCastT ime(p)0a = t. But this
means that the broadcast task had an earlier deadline than the membership server task that was
scheduled at a0 { a contradiction. 2

Proposition 19 If p sees a new gp message at stage a then BCastT ime(p)a � TStamp(Mes(p))a
+ dh.

Proof: By induction on �.
Basis Case: At the initial stage a0 of p, Status(p)a0 = crashed, therefore p cannot see any message
at a0, hence the claim is vacuously true.
Induction Step: Assume that the statement is true for all stages < a. Let m be Mes(p)a. Let
Type(m) = new gp and let t denote TStamp(m). Assume thatBCastT ime(p)a > t+dh. This value
is not set by the previous �ring of PrMesSend MS since, by Proposition 11, the timestamp of the last
new gp message seen by p is � t. So, the value is set by the last execution of the broadcast server.
This implies that there exists a stage b < a such that (CurProc(p)b = BS(p))^(BCastT ime(p)b >
t). But this is impossible since it violates Proposition 18. 2

Proposition 20 If Def(BCastT ime(p)a) then BCastT ime(p)a � C (p)a�1 + dh + du.

Proof: By induction on �.
Basis Case: At the initial stage a0 of p, BCastT ime(p)a0 = undef, hence the claim is vacuously
true.
Induction Step: Assume that the statement is true for all stages < a. The di�erence between
BCastT ime(p)a and C (p)a�1 will be greatest if BCastT ime(p) is changed at a � 1. Thereafter,
the di�erence shrinks until we get to the next stage at which BCastT ime(p) is changed. There are
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two possible ways at which BCastT ime(p) can be changed.
Case 1: PrMesSend MS �res at a�1. From examination of scheduler rules we can see that C(p)a�1 �
TStamp(Mes(p))a�1 � du and from examination of HandleNewGpMes, we can see that C (p)a�1 �
TStamp(Mes(p))a�1. Since BCastT ime(p)a = TStamp(Mes(p))a�1+ dh, the claim is true.
Case 2: PrMesSend BS �res at a � 1. Examining the scheduler rules, we can see that C (p)a�1 �
BCastT ime(p)a�1�du and examining HandleBCast, we can see that C(p)a�1 � BCastT ime(p)a�1.
Since BCastT ime(p)a = BCastT ime(p)a�1 + dh, the claim is true. 2

Proposition 21 If a < b, Def(BCastT ime(p)a) and Def(BCastT ime(p)b) then BCastT ime(p)a
� BCastT ime(p)b.

Proof: Let t = BCastT ime(p)a and t0 = BCastT ime(p)b. Without loss of generality, we can
restrict our attention to the following two cases.
Case 1: A transition �red at a causes the processor to crash and b is the �rst stage after the crash
where Def(BCastT ime(p)). By Proposition 20, t � C (p)a�1 + dh + du. From our failure and
recovery constraints, we can see that UpTime(p)b > t. Let t00 = UpTime(p)b. We can also see from
examination of the algebra that BCastT ime(p) is set by the �rst new gp message seen by p after
the crash. By Proposition 15, the timestamp of that message is equal to t00. Examining transition
HandlePresentMes, we can see that t0 = t00+ dh > t+ dh. Therefore the claim cannot be violated in
this case.
Case 2: p stays alive between a and b and b is the �rst stage> a at which the value of BCastT ime(p)
is di�erent from BCastT ime(p)a. The value of BCastT ime(p) can be changed by two transitions
{ PrMesSend MS and PrMesSend BS. If the value is changed by transition PrMesSend BS, the new
value will obviously be greater than the previous one. Consider the case when the value is changed
by PrMesSend MS. We know thatBCastT ime(p)b�1 = t. By Proposition 19, TStamp(Mes(p))b�1+
dh � t. Therefore t0 > t. 2

Proposition 22 If a < c, v1 = CurProc(p)a, v2 = CurProc(p)c, p stays sober in [a; c] and there
exists stage s of p and message m = (x; y; z) such that
1. m 2 InBox(p)s and
2. Dline(v1) < Deadline(m) < Dline(v2)
then there exists a stage b 2 (a; c) at which p sees a message m0 = (x; y; z0) where z0 � z.

Proof: Argument similar to that for Proposition 18. 2

Proposition 23 If a < c, v1 = CurProc(p)a, v2 = CurProc(p)c, p stays sober in [a; c] and there
exists stage s of p such that Dline(v1) < BCastT ime(p)s < Dline(v2) then there exists a stage
b 2 (a; c) such that BCastT ime(p)s = BCastT ime(p)b and CurProc(p)b = BS(p).

Proof: Argument similar to that for Proposition 18. 2

Proposition 24 Let m = Mes(p)a and m0 = Mes(p)a0. Then, if a0 < a, and
1. Type(m0) = Type(m) = present and
2. p 2 V iew(m0) and
2. p stays sober and does not see any present messages other than m and m0 in [a0; a]
then 0 � TStamp(m)� TStamp(m0) � dh

Proof: By contradiction. Let t = TStamp(m) and t0 = TStamp(m0). Assume that t � t0 > dh.
If m = m0 then the claim is trivially true, so assume m 6= m0. By Propositions 10 and 11,
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t � t0 > 0. Since p 2 V iew(m0), by Proposition 2, p sends a present message with timestamp
t0 at some stage b0 < a0. Examining the membership and broadcast servers, we can see that
BCastT ime(p)b0+1 = t0 + dh.

By Proposition 17, p stays sober in (b0; a0). From the premise, p stays sober in [a0; a]. Therefore,
p stays sober in (b0; a]. By Propositions 22 and 23, either this broadcast is sent or is preempted
by the arrival of a new gp message. In either case, p sends a present message with timestamp
t1 2 (t0; t0 + dh].

By Propositions 1 and 13, p sees a present message with timestamp t1 at some stage a1 2 (a0; a).
This is a contradiction since, by our premise, p does not see any present messages other than m
and m0 in (a0; a). 2

5.4 Relationships Between Stages of Two Processors

Proposition 25 If Mes(p)s = (x; y; z) then for any processor q
1. There exists a stage a such that (x; y; z) 2 InBox(q)a and
2. There is no stage b such that (x; y; z0) 2 InBox(q)b where z0 � z 6= ;.

Proof: By examining the custodian, we can see that there exists an s0 < s such that (x; y; z) 2
InBox(p)s0 . By Propositions 2 and 1, for every r 2 z, a message (x; y; frg) is added to InBox(q)
by time Deadline((x; y; z))� du.

We can see from examination of the message carrier that any incoming new gp messages are
simply added to InBox and not \bunched" together as present messages are. Therefore, for any
new gp message m, V iew(m) always contains exactly one processor id. Therefore, if x = new gp, z
contains exactly one processor id { which means that (x; y; z) is added to InBox(q) at some stage
a, then (x; y; z) 2 InBox(q)a+1. This proves the claim.

If x = present, we can see from examining the message carrier that all present messages with
the same timestamp are \compressed" into one message. By examining the custodian, we can see
that this message cannot be removed from InBox(q) until time y + dn � du. We know that for
every r 2 z, (x; y; frg) is added to InBox(q) by time y + dn� du. Therefore, there exists a stage a
such that (x; y; z0) 2 InBox(q)a where z

0 � z. By symmetry, any message (x; y; frg) that is added
to InBox(p) is also added to InBox(q), hence z � z0. This means that z0 = z. 2

Proposition 26 If Type(Mes(p))a = Type(Mes(q))b = present and
TStamp(Mes(p))a = TStamp(Mes(q))b then Mes(p)a = Mes(q)b.

Proof: By contradiction. Let m1 = Mes(p)a and m2 = Mes(q)b. We have to show that
V iew(m1) = V iew(m2). Assume the converse. By examining the custodian, we know that there
exists an a0 < a such that m1 2 InBox(p)a0 and there exists a b0 < b such that m2 2 InBox(p)b0.
But, by Proposition 25, such a situation is impossible. 2

5.5 The First Group of Theorems

Lemma 1 If x = CurProc(p)a, y = CurProc(p)b, Def(x), Def(y) and Dline(x)a < Dline(y)b
then a < b.

Proof: Recall that the deadline for a membership server task isDeadline(Mes(p)) and the deadline
for a broadcast is BCastT ime(p). There are three cases.
Case 1: x = y = MS(p). The claim follows from Proposition 11.
Case 2: x = y = BS(p). The claim follows from Proposition 21.
Case 3: x 6= y. The claim follows from Proposition 18. 2
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Theorem 1 If GpId(p)a = GpId(q)b 6= undef then Members(p)a = Members(q)b.

Proof: By induction on a+ b.
Basis Case: a + b = 0. In that case GpId(p)a = GpId(q)b = undef hence the claim is vacuously
true.
Induction Step: Assume that the statement is true for a + b < k. There are three cases.
Case 1: GpId(p)a�1 = GpId(p)a = g. All we have to show is that Members(p)a�1 = Members(p)a
and the claim follows from the induction hypothesis. Assume thatMembers(p)a�1 6= Members(p)a.
The only way that this can happen is if p sees a present message with timestamp g at stage a� 1
and transition ChangeGp is �red. Since GpId(p)a�1 = g, we know from Proposition 6 that there
exists a stage c < a� 1 at which p sees a present message and ChangeGp is �red. From examination
of rule HandlePresentMes, we can see that Mes(p)c+1 = undef. This implies that p sees two present

messages with the same timestamp. This violates Proposition 10 { a contradiction.
Case 2: GpId(q)b�1 = GpId(q)b = g. Argument similar to Case 1.
Case 3:GpId(p)a�1 6= GpId(p)a andGpId(q)b�1 6= GpId(q)b. This implies that transition ChangeGp
is �red at both a � 1 and b � 1 which implies that Members(p)a = V iew(Mes(p))a�1 and
Members(q)b = V iew(Mes(q))b�1. Since GpId(p)a = GpId(q)b, we know that TStamp(Mes(p))a�1
= TStamp(Mes(q))b�1. This implies, by Proposition 26 that V iew(Mes(p))a�1 = V iew(Mes

(q))b�1 which implies Members(p)a = Members(q)b. 2

Theorem 2 Suppose that
1. GpId(p)a = GpId(q)b 6= undef and
2. a0 is the �rst stage > a such that GpId(p)a0 6= GpId(p)a and
3. b0 is the �rst stage > b such that GpId(q)b0 6= GpId(q)b
then, if GpId(p)a0 and GpId(q)b0 are not undef, they are equal.

Proof: By contradiction. Without loss of generality assume that a0 = a + 1 and b0 = b+ 1. Let
g = GpId(p)a = GpId(q)b and let ga = GpId(p)a0 and gb = GpId(q)b0. By Proposition 12, g < ga
and g < gb. Assume the claim is false. Assume without loss of generality that gb < ga.

By Proposition 6, there exists a stage c < a at which p sees a present message with timestamp
g and at which ChangeGp �res and for all c0 2 (c; a], GpId(p)c0 = g. Since Status(p)a = sober and
since GpId(p) does not change in (c; a] we can conclude that p stays sober in (c; a].

Since GpId(p) changes at a and GpId(q) changes at b we know that ChangeGp �res in both
stages. Let m = (x; y; z) = Mes(q)b. By Proposition 25, there exists stage d of p such that
m 2 InBox(p)d and that there is no stage d0 and message m0 = (x; y; z0) such thatm0 2 InBox(p)d0

and z0 � z 6= ;.
Comparing group Ids, we can see that Deadline(Mes(p)c) < Deadline(m) < Deadline(Mes

(p)a). By Proposition 13 therefore, there exists a stage e 2 (c; a) and message m0 = (x; y; z0) such
that p sees m0 at e and z0 � z. We already know that z0 � z = ;, therefore z0 = z which implies
m0 = m. Since e 2 (c; a), GpId(p)e = g. Since GpId(p) doesn't change at stage e + 1, we know
that Members(p)e = V iew(m). Since GpId(q) does change at b, we know that Members(q)b 6=
V iew(m). But GpId(p)e = GpId(q)b = g. Therefore Members(p)e = Members(q)b { a contradic-
tion. 2

Lemma 2 Let m = Mes(p)a, t = TStamp(m), m0 = Mes(p)a0 and t0 = TStamp(m0). Suppose
that p 6= q, a0 < a and
1. q sends a present message with timestamp t at stage b by �ring PrMesSend BS. and
2. Type(m0) = Type(m) = present and
3. for all s < a, if Type(Mes(p))s = present then p 2 V iew(Mes(p))s and
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4. p stays sober and does not see any present messages other than m0 and m in [a0; a]
then, t � t0 = dh.

Proof: By contradiction. Assume that t0 6= t � dh. By our premise, p 2 V iew(m0). This implies
by Proposition 2 that p sends a present message at some stage a1 < a0 and the message sent has
timestamp equal to t0. This implies that either PrMesSend MS or PrMesSend BS is �red at a1. In
either case, BCastT ime(p)a1+1 = t0 + dh. There are two possible cases.
Case 1: t0 < t � dh. We know from Proposition 24 that this cannot occur.
Case 2: t0 > t � dh. Since PrMesSend BS is �red, we know a broadcast is sent. We can see from
examination of the membership and broadcast servers that BCastT ime(q) is set to t at some stage
b0 < b where a present message m1 with timestamp equal to t� dh is sent.

We �rst show that q =2 V iew(m0) by contradiction. Assume that q 2 V iew(m0). This implies by
Proposition 2 that q sends a present message with timestamp t0 at some stage b1. From Lemma 1,
b1 < b. Examining the broadcast and membership servers, we can see that BCastT ime(q)b1+1 > t.
By Proposition 21, the value BCastT ime(a)b > t. This however means that PrMesSend MS is �red
at b and not PrMesSend BS { which contradicts our premise.

We have established that q =2 V iew(m0) and that q sends a present message m1 with timestamp
equal to t� dh. There are two possible subcases
Subcase 2.1: There is a stage a2 of p at which p sees a present message with timestamp equal to
TStamp(m1).

By Proposition 11, a2 < a0. By our premise, p 2 V iew(Mes(p))a2. Therefore, by Proposition 2,
there exists an a3 < a2 at which a present message with timestamp equal to TStamp(m1) is sent. By
Lemma 1, a3 < a1. This implies that BCastT ime(p)a3+1 = TStamp(m1)+dh. Since t�t

0 < dh and
TStamp(m1) = t�dh, p sends a message with timestamp less than TStamp(m1)+dh. The only way
this can happen is if PrMesSend MS is �red at stage a1. This implies that Type(Mes(p))a1 = new gp

and TStamp(Mes(p))a1 = t0.
Subcase 2.2: There is no stage of p at which p sees a present message with timestamp equal to
TStamp(m1). By Proposition 1, there exists a stage a2 of p and present message m2 such thatm2 2
InBox(p)a2 and TStamp(m2) = TStamp(m1). Since p does seem0 we know from examination of the
custodian that UpTime(p)a0 � t0. We also know that UpTime(p)a0 > TStamp(m1) since otherwise,
Proposition 14 will be violated. Therefore, TStamp(m1) = t � dh < UpTime(p)a0 � t0. Since p is
sober at a0, there exists a stage a3 such that p gets sober at a3, UpTime(p)a3 = UpTime(p)a0 and
a new gp message with timestamp equal to UpTime(p)a0 is sent and p stays sober in (a3; a0].

By Proposition 14, this new gp message is seen by p at some stage a4 2 (a3; a
0). Since p stays

sober in (a3; a], we know that p sends a present message with timestamp equal to UpTime(p)a0 at
some stage a5 � a4. Since the timestamp of the new gp message seen at a4 is in (t � dh; t

0] and
since t � t0 < dh, we can see from examination of HandleNewGpMes that BCastT ime(p)a5+1 >
t0. Therefore, PrMesSend MS is �red at a1. This implies that Type(Mes(p))a1 = new gp and
TStamp(Mes(p))a1 = t0.

In both subcases, we can see from Proposition 2 that some processor r sends a new gp message
with timestamp t0. Call this message m2. By Proposition 1, m2 is added to InBox(q). From our
failure and recovery constraints, we can see that q stays sober in (b0; b). Therefore, by Proposition
22, q sees m2 at some stage b1 2 (b0; b). Since q stays sober in (b0; b), we know that q sends a
present message with timestamp t0 in reply to this new gp message. This however, implies that
q 2 V iew(m0) { a contradiction. 2

Lemma 3 If Type(Mes(p))a = present then p 2 V iew(Mes(p))a.
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Proof: We prove this by induction.
Basis Case: At the initial stage a0 of p, Mes(p)a0 = undef, hence the claim is vacuously true.
Induction Step: Assume that the statement is true for all stages < a. Let m = Mes(p)a. We
need concern ourselves only with the case where Type(m) = present and p =2 V iew(m). Consider a
processor q 2 V iew(m). By Proposition 2, there exists a stage b at which a present message with
timestamp equal to TStamp(m) is sent. This implies that either PrMesSend MS or PrMesSend BS

is �red at b.
Case 1: PrMesSend MS is �red at b. By Proposition 2, there exists a processor r and stage c of
r such that a new gp message mr with timestamp equal to TStamp(m) is sent. We know from
examination of the custodian that UpTime(p)a � TStamp(m). Therefore, by Propositions 1 and
14, p sees message mr at some stage a0.

Examining the custodian, we can see that C (p)a0
�1 � TStamp(m)� du. Therefore, if p crashes

in the interval (a0; a), we know from our failure and recovery constraints that UpTime(p)a >
TStamp(m) { therefore, p stays sober in (a0; a). This implies that at some stage a1 > a0 PrMesSend

MS is �red. From this, Proposition 1 and examination of the custodian, we can conclude that
p 2 V iew(m) { a contradiction.
Case 2: PrMesSend BS is �red at b. Since HandleBCast sends a broadcast, BCastT ime(q) has been
set at some stage b0 < b where a present message with timestamp equal to TStamp(m) � dh was
sent. There are two subcases to consider.
Subcase 2.1: p sees a present message at stage a0 < a and stays sober in (a0; a). Let m0 = Mes(p)a0 .
Without loss of generality, assume that p does not see any present messages other than m in (a0; a).

By Lemma 2, TStamp(m) � TStamp(m0) = dh. By induction hypothesis, p 2 V iew(m0).
Therefore, by Proposition 2, p sends a present message with timestamp equal to TStamp(m0) at
stage a1 < a0. We can see that BCastT ime(p)a1+1 = TStamp(m). There are only two ways this
scheduled broadcast can be preempted.

The �rst is if there exists a2 > a1 at which PrMesSend MS �res and the timestamp of the
present message sent is between TStamp(m)� dh and TStamp(m). In that case, by Propositions
1 and 13, there exists an a3 2 (a0; a) at which p sees a present message and TStamp(m) � dh <
TStamp(Mes(p))a3 < TStamp(m)). This is impossible since m0 is the last present message seen
by p before m.

The other way in which the broadcast can be preempted is if there exists a stage in (a1; a) at
which p gets crashed. In that case, by our our failure and recovery constraints, UpTime(p)a >

TStamp(m). Let a4 � a be the �rst stage such that Mes(p)a4 = m. Examining the custodian,
we can see that UpTime(p)a4�1 � TStamp(m) and since p stays sober in [a4; a], we know that
UpTime(p)a � TStamp(m) { a contradiction. Therefore, a present message with timestamp equal
to TStamp(m) is sent by p. This implies, from Proposition 1 and examination of the custodian
that p 2 V iew(m).
Subcase 2.2: Between stage a and its immediately previous crash, p sees no present messages. By
Proposition 16, UpTime(p)a = TStamp(m). Let a0 be a stage such that Status(p) gets sober at a0

and p stays sober in [a0; a]. We know that p sends a new gp message (call it m1) with timestamp
equal to TStamp(m) in a0 � 1. By Proposition 15, p sees m1 at some stage a1 2 (a0; a). Since p

stays sober in [a0; a], we know that there exists a stage a2 2 [a1; a) such that p sees m1 at a2 and
PrMesSend MS is �red at a2, thus sending a present message with timestamp equal to TStamp(m).
This, however, implies that p 2 V iew(m). 2

Theorem 3 If Def(GpId(p)a), p 2Members(p)a.

Proof: By induction on �.
Basis Case: Let s0 be the initial stage of p. We know that GpId(p)s0 = undef { hence the claim is

22



vacuously true.
Induction Step: Assume that the claim is true for all stages � a. The only interesting case is if
ChangeGp is �red at a. Otherwise, Members(p) remains unchanged and by induction hypothesis,
the claim is true. Let V = V iew(Mes(p))a. We can see from examining rule HandlePresentMes

that Members(p)a+1 = V . By Lemma 3, p 2 V . Therefore p 2Members(p)a+1 { which proves the
claim. 2

5.6 The Second Group of Theorems

Lemma 4 If p sees a present message m at stage a and b is the �rst stage > a such that
1. p sees a present message m0 6= m at b
2. p stays sober in (a; b)
then 0 � TStamp(m0)� TStamp(m) � dh.

Proof: By Lemma 3, p 2 V iew(m). The claim then follows from Proposition 24. 2

Lemma 5 If p sees present messages m 6= m0 at stages a < b, p stays sober in (a; b) and
TStamp(m0) � TStamp(m) < dh then there exists a processor q 6= p and stage s of q such that q
sends a new gp message with timestamp equal to TStamp(m0) in s.

Proof: Without loss of generality, assume that m0 is the �rst present message seen by p after m.
By Lemma 3, p 2 V iew(m) and p 2 V iew(m0). Since p 2 V iew(m) we know by Proposition 2 that
there is a stage a0 < a at which p sends a present message with timestamp equal to TStamp(m).
Similarly, there exists a stage b0 < b at which p sends a present message with timestamp equal to
TStamp(m0). We can see from Lemma 1 that a0 < b0.

We can show that there exists no c0 2 (a0; b0) at which a present message with timestamp
in (TStamp(m); TStamp(m0)) is sent. We proceed as follows. If there were such a stage then,
by Proposition 1, a present message with timestamp in (TStamp(m); TStamp(m0)) is added to
InBox(p). Since p stays sober in [a; b], we have by Proposition 13 that p sees a present message
with timestamp in (TStamp(m); TStamp(m0)) at some stage c 2 (a; b). This contradicts our
assumption that m0 is the �rst present message seen by p since m.

We know, from examination of the rules, that at stage a0+1, BCastT ime(p)a0+1 = TStamp(m)+
dh. If this broadcast is sent then TStamp(m0) = TStamp(m)+dh which is not true. Therefore, the
broadcast is preempted by a �ring of PrMesSend MS and the message sent has timestamp equal to
TStamp(m0). This, however, implies that there exists a q and stage s at which q sends a new gp

message. 2

Theorem 4 For all stages a < b of p, the following holds. If undef 6= GpId(p)a 6= GpId(p)b then
there is a stage c < b such that either
1. c � a and Status(p)c 6= sober or
2. c � a and Type(Mes(p))c = present and Members(p)c � V iew(Mes(p))c 6= ; or
3. p sees a new gp message m at c from some processor q 6= p and TStamp(m) 2 (GpId(p)a;
GpId(p)b].

Proof: We have to show that whenever GpId(p) changes, one of the above three scenarios will
hold. Without loss of generality assume b is the �rst stage > a such that GpId(p)b 6= GpId(p)a.
This implies that the value of GpId(p) changes at stage b� 1. There are only two transitions that
can change the value of GpId(p)
Case 1: Initialize. This implies that Status(p)b�1 = recovered { which corresponds to the �rst
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scenario.
Case 2: ChangeGp. For the rest of the proof, we use abbreviations tb�1 for TStamp(Mes(p))b�1,
Vb�1 for V iew(Mes(p))b�1 and Mb�1 for Members(p)b�1. If ChangeGp �res, Mb�1 6= Vb�1. If
Mb�1 � Vb�1 6= ;, we have our second scenario. Therefore assume that Vb�1�Mb�1 6= ;. We prove
by contradiction that in this case, the third scenario holds.

By Proposition 6, there is a state a0 < a such that ChangeGp �res in a0, TStamp(Mes(p))a0 =
GpId(p)a and neither ChangeGp nor Initialize �res in (a0; a). Since ChangeGp �res in a0 and
TStamp(Mes(p))a0 = GpId(p)a, we know that GpId(p)a0+1 = GpId(p)a. Since neither Initialize

nor ChangeGp �re in (a0; a), we know that GpId(p) does not change in (a0; a). Therefore b is the
�rst state > a0 + 1 in which the value of GpId(p) is di�erent from GpId(p)a. Therefore, p stays
sober in [a0; b].

By Proposition 4, UpTime(p)a0 � GpId(p)a. Since p stays sober in [a0; b], Uptime(p)b �
GpId(p)a. If p sent a new gp message with timestamp in (GpIda; GpId(p)b], we know by Lemma 1
that it would have been sent before b, which implies by Proposition 5 that UpTime(p)b > GpId(p)a
{ which contradicts our earlier conclusion that UpTime(p)b � GpId(p)a. Therefore, p does not
send a new gp message with timestamp in (GpId(p)a; GpId(p)b].

If p sees a new gp message with timestamp in (GpId(p)a; GpId(p)b] from some processor other
than p, we have our third scenario. Therefore, assume that there is no stage c < b and processor r
that satis�es the third scenario.

Since ChangeGp �res at b� 1, we know that p sees a present message with timestamp equal to
GpId(p)b at b�1. Since Def(GpId(p)a) and since GpId(p)a = GpId(p)b�1, we know by Proposition
6 that there exists a stage d < a < b� 1 at which p sees a present message and that p stays sober in
(d; a). Let s be latest stage< b�1 such that p sees a present message at s andMes(p)s 6= Mes(p)b�1.

Since we have assumed that p does not see any new gp messages with timestamps in (GpId(p)a;
GpId(p)b], we have by Lemma 5 that TStamp(Mes(p))s = tb�1�dh. Consider any q 2 Vb�1�Mb�1.
By Theorem 3, p 2Mb�1, therefore, q 6= p. All we have to show that there exists a stage c < b such
that p sees a new gp message m from q at c and TStamp(m) 2 (GpId(p)a; GpId(p)b] and we have
a contradiction.

Since q =2Mb�1, we have by Proposition 7 that q =2 V iew(Mes(p))s. Since q 2 Vb�1 we know by
Proposition 2 that there exists a stage e of q at which q sends a present message with timestamp
equal to tb�1. Let e

0 be a stage of q such that q gets sober at e0 and stays sober in [e0; e].
It easy to see that q cannot send a present message in (e0; e) that has timestamp less than tb�1.

We proceed as follows. If there were such a message (call it m1) then we can see from examination
of the algebra that tb�1 � dh � TStamp(m1) < tb�1. Since q sends m1, by Proposition 1, it is
added to InBox(p). TStamp(m1) 6= tb�1� dh since q =2 V iew(Mes(p))s. TStamp(m1) 6> tb�1 � dh
implies, by Proposition 13, that p will see a present message in (s; b � 1) with timestamp equal
to TStamp(m1). But we know that p does not see any present messages in (s; b� 1) other than
Mes(p)s and Mes(p)b�1.

Therefore the �rst present message sent by q since e0 has timestamp equal to tb�1. This how-
ever implies that UpTime(q)e = tb�1 which in turn implies that q sends a new gp message with
timestamp tb�1 st stage e0 � 1. By Propositions 1 and 14, it follows that p sees this message { a
contradiction. 2

Lemma 6 If p sees a new gp message from q with timestamp t at stage a and a present message
with timestamp t at stage b > a and Def(Members(p)b) then q =2Members(p)b.

Proof: There are two cases.
Case 1: p has seen no present messages between the time Status(p) last became sober and stage b.
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From examination of the algebra we can see that this implies that Members(p)b = undef - which
proves the claim.
Case 2: p has received at least one present message between the time Status(p) last became sober

and stage b. Assume the claim to be false. In other words, assume that q 2 Members(p)b. Let
m = Mes(p)b. Let b0 be the latest stage before b at which p sees a present message m0 6= m.

By Lemma 4, TStamp(m) � TStamp(m0) � dh. By Proposition 7, q 2 V iew(m0). This
implies, by Proposition 2, that q sends a present message at some stage c with timestamp equal to
TStamp(m0). By Proposition 2, q sent a new gp message at some stage d with timestamp equal
to t. By Proposition 4, UpTime(q)c � TStamp(m0) < t. Since sending a present message does not
change the value of UpTime(p) we have UpTime(q)c+1 < t. Since q sends a new gp message with
timestamp t, we can see that UpTime(q)d+1 = t. Therefore, by Proposition 5, c+ 1 < d+ 1, hence
c < d.

This implies that q crashes somewhere in the interval (c; d). Examining the scheduler, we can
see that C(q)c � TStamp(m0) � du which implies, by our failure and recovery constraints, that
C(q)d > TStamp(m0)+dh > t, which implies that UpTime(q)d+1 > TStamp(m) { a contradiction.
2

Theorem 5 There exists a positive real dj satisfying the following condition. If
1. Status(p) is set to sober at stage a and
2. p is correct in the interval I = (C(p)a;C(p)a + dj]
then there exists a group id g > C(p)a such that for every q correct in I

GpId(q) is set to g at some stage b of q with C (q)b 2 I.

Proof: Let t = C(p)a. Let dj be any constant > 2dn. If Status(p) is set to sober at stage a, then
it sends a new gp message m with timestamp t+ dn.

Since p is correct in the interval [t + dn � du; t+ dj], we can conclude that there exists a stage
b > a such that p sees m at b and PrMesSend MS is �red at b. This causes a present message with
timestamp t + dn to be sent.

Consider any q that is correct in the interval [t+dn�du; t+dj]. Since q is correct in the interval
[t+ dn � du; t+ dj], q sees m and and q sees a present message with timestamp t+ dn. Let c be a
stage of q at which q sees a present message with timestamp t+dn. Since p sends a present message
with timestamp t+ dn, p 2 V iew(Mes(p))c.

By Lemma 6, either Members(q)c = undef or p =2Members(q)c. In either case,Members(q)c 6=
V iew(Mes(q))c. This implies that at some stage d > c, GpId(q) is set to t + dn. Since q stays
correct in [t+ dn � du; t+ dj], we can conclude that C(q)d � t+ dj. 2

Lemma 7 If p sees present message m at stage a and q sees m in stage a0 then GpId(p)a =
GpId(q)a0.

Proof: By induction on a+ a0.
Basis Case: a + a0 = 0. This means that both p and q are at their initial stages. Since Mes(p)0 =
Mes(q)0 = undef, the claim is vacuously true.
Induction Step: Assume that the statement is true for a + a0 < k. Consider a + a0 = k. Let
g = GpId(p)a and g0 = GpId(q)a0. Assume g 6= g0. Without loss of generality, let g0 > g. The only
interesting case is if p sees a present message m at a and q sees the same message m at a0.

By Propositions 6 and 11, g < TStamp(m) and g0 < TStamp(m). By Proposition 6, there exists
stage b0 < a0 at which q sees a present message with timestamp equal to g0, that GpId(q)b0+1 = g0

and that there exists stage b < a at which p sees a present message with timestamp equal to g and
that p stays alive in the interval (b; a).
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Therefore, by Propositions 25 and 13 and the fact that g < g0 < TStamp(m), there exists a
stage c 2 (b; a) at which p sees a present message with timestamp equal to g0. By Proposition 26,
V iew(Mes(p))c = V iew(Mes(q))b0. Therefore, Mes(p)c = Mes(q)b0 .

By induction hypothesis, therefore, GpId(p)c = GpId(q)b0. This implies by Theorem 1 that
Members(p)c = Members(q)b0 which implies that GpId(p)c+1 = GpId(q)b0+1 = g0. But c + 1 � a

and GpId(p)c+1 > GpId(p)a. This contradicts Proposition 12. Therefore GpId(p)a = GpId(q)a0. 2

Lemma 8 Let I be the interval (t; t + �), where � > dh + dn + du. Then, if q is correct in I, q
sends a present message with timestamp t0 2 (t; t+ dh + du].

Proof: Consider any q correct in I . Let s be the latest stage of q such that C (q)s � t. Consider
the value of BCastT ime(p)s. Since q is correct in I , we know that UpTime(q)s � t. We also know
that Status(q)s = sober.

Let s0 < s be a stage such that q becomes sober at s0 and stays sober in (s0; s]. This implies
that q sends new gp message m1 with timestamp equal to UpTime(q)s at s

0 and stays sober at all
stages in (s0; s].

By Proposition 1, m1 is added to InBox(q) at some stage in (s0; s) and from the de�nition of
correctness that there exists a stage s1 2 (s0; s] such that q sees m1 at s1 and PrMesSend MS is
�red at s1. If this were not the case, q will not be correct at s.

The �ring of PrMesSend MS sets BCastT ime(q) to some value that is not undef. Since q does
not crash in [s1; s], we know that Def(BCastT ime(p)s). Since q is correct at s, we know that
BCastT ime(q)s � C (q)s. By Proposition 20, BCastT ime(q)s � C (q)s + dh + du. By our initial
assumption, C (q)s � t.

We can also deduce that C (q)s � t � dh � du. We proceed as follows. Assume that C (p)s <
t�dh�du. This means that BCastT ime(q)s < t. Consider the value of BCastT ime(q) at s+1. If it
does not change at s, then BCastT ime(q)s+1 < t. Since C (q)s+1 > t, this implies that q is incorrect
at s+1 { a contradiction. Now consider the case where BCastT ime(q) does change at s. There are
two clauses that can change BCastT ime(q) { PrMesSend MS and PrMesSend BS. If PrMesSend BS

�res at s, then we can see by examining the scheduler that BCastT ime(q)s < t � dh. This means
that BCastT ime(q)s+1 < t { which makes q incorrect at s+ 1 { a contradiction. If PrMesSend MS

�res at s then BCastT ime(q)s+1 = TStamp(Mes(q))s+dh. We can see by examining the scheduler
that TStamp(Mes(q))s < t � dh. Therefore BCastT ime(q)s+1 < t { which makes q incorrect at
s+ 1 { a contradiction. By a similar argument, we can show that BCastT ime(p)s > t � dh.

What is the value of BCastT ime(p) at s+1? The highest possible value of C(q)s is t. Hence by
Proposition 20, BCastT ime(q)s � t+dh+du. Since q is correct at s+1, BCastT ime(q)s+1 > t. Us-
ing an argument similar to the one in the previous paragraph, we can show thatBCastT ime(q)s+1 �
t + dh + du. Therefore BCastT ime(q)s+1 2 (t; t+ dh + du].

Since q stays correct in this interval, this broadcast will either be sent or will be preempted
by the arrival of a new gp message whose timestamp is less than BCastT ime(p)s+1. Since q stays
correct in (t; t+dh+du], the timestamp of this new gp message is > t. Therefore, q sends a present

message with timestamp t0 2 (t; t+ dh + du]. 2

Theorem 6 There exists a positive real df satisfying the following condition. If
1. p fails at stage a and
2. I = (C(p)a;C(p)a + df ] and GpId(p)a = g 6= undef

then there exists g0 > g such that
1. p never joins group g0 and
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2. for every q that joins group g and is correct in I

GpId(q) is set to g0 at some stage b of q with C(q)b 2 I.

Proof: Let t = C(p)a. Let df be any real constant > dh + du+ dn. Since p fails at time t, we have
by Lemma 1 and our failure and recovery constraints that p cannot send a present message with
timestamp in (t; t+ dh + du].

Consider any q correct in I . By Lemma 8, q sends a present message with timestamp t0 2
(t; t+ dh + du]. By Proposition 1 and the de�nition of correctness, every processor that is correct
in I sees a present message with timestamp t0. By Proposition 26, all processors correct in I will
see the same present message m with timestamp t0.

Consider any r 6= q that stays correct in I . Since both q and r stay correct in I , both of them see
m. We know that since p does not send a present message with timestamp t0, p =2 V iew(m). Since
q is correct in I , there will be a stage bq in which q sees m, C(q)bq 2 I and HandlePresentMes �res.
There is a similar stage br of r. By Lemma 7, we know that GpId(q)bq = GpId(r)br. Therefore,
by Theorem 1, Members(q)bq = Members(r)br . We also know that p =2 V iew(m). Therefore,
GpId(q)bq+1 = GpId(r)br+1 and p is not contained in either Members set. 2
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