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Preface

This book is addressed to all those – logicians, computer scientists, mathe-
maticians, philosophers of science as well as the students in all these disci-
plines – who may be interested in the development and current status of one
of the major themes of mathematical logic in the twentieth century, namely
the classical decision problem known also as Hilbert’s Entscheidungsproblem.
The text provides a comprehensive modern treatment of the subject, includ-
ing complexity theoretic analysis.

We have made an effort to combine the features of a research monograph
and a textbook. Only the basic knowledge of the language of first-order logic
is required for understanding of the main parts of the book, and we use
standard terminology. The chapters are written in such a way that various
combinations of them can be used for introductory or advanced courses on
undecidability, decidability and complexity of logical decision problems. This
explains a few intended redundancies and repetitions in some of the chapters.
The annotated bibliography, the historical remarks at the end of the chap-
ters and the index allow the reader to use the text also for quick reference
purposes.

The book is the result of an effort which went over a decade. Many peo-
ple helped us in various ways: with English, with pictures and latex, with
comments and information. It is a great pleasure to thank David Basin,
Bertil Brandin, Martin Davis, Anatoli Degtyarev, Igor Durdanovic, Dieter
Ebbinghaus, Ron Fagin, Christian Fermüller, Phokion Kolaitis, Alex Leitsch,
Janos Makowsky, Karl Meinke, Jim Huggins, Silvia Mazzanti, Vladimir
Orevkov, Martin Otto, Eric Rosen, Rosario Salomone, Wolfgang Thomas,
Jurek Tyszkiewicz, Moshe Vardi, Stan Wainer and Suzanne Zeitman. This
list is incomplete and we apologize to those whose names have been inad-
vertently omitted. We are specially thankful to Saharon Shelah for his help
with the Shelah case and to Cyril Allauzen and Bruno Durand for providing
an appendix with a new, simplified proof for the unsolvability of the domino
problem. Also, we use this opportunity to thank Springer Verlag, the Omega
group, the Heidelberg Academy of Sciences and in particular Gert Müller for
the patience and belief in our longstanding promise to write this book.

August 1996 Egon Börger
Erich Grädel
Yuri Gurevich
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1. Introduction: The Classical Decision
Problem

1.1 The Original Problem

The original classical decision problem can be stated in several equivalent
ways.

– The satisfiability problem (or the consistency problem) for first-order logic:
given a first-order formula, decide if it is consistent.

– The validity problem for first-order logic: given a first-order formula, decide
if it is valid.

– The provability problem for a sound and complete formal proof system for
first-order logic: given a first-order formula, decide if it is provable in the
system.

Recall that a formula is satisfiable (or consistent) if it has a model. It is
valid (or logically true) if it holds in all models where it is defined. A proof
system is sound if every provable formula is valid; it is complete if every valid
formula is provable.

It was Hilbert who drew attention of mathematicians to the classical
decision problem and made it into a central problem of mathematical logic.
He called it das Entscheidungsproblem, literally “the decision problem”. In
the beginning of this century, he was developing the formalist programme for
the foundations of mathematics (see [263, 264, 525]) and thus was interested
in axiomatizing various branches of mathematics by means of finitely many
first-order axioms. In principle, such an axiomatization reduces proving a
mathematical statement to performing a mechanical derivation in a fixed
formal logical system; see below. Obviously, the Entscheidungsproblem is very
important in this context:

. . . stellt sich . . . die Frage der Widerspruchsfreiheit als ein Problem
der reinen Prädikaten-Logik dar . . .Eine solche Frage . . . fällt unter
das “Entscheidungsproblem”.1 [267, page 8]

Hilbert and Ackermann formulated a sound formal proof system for first-
order logic and conjectured that the system is complete [266]. Later Gödel

1 . . . the question of consistency presents itself as a problem of the pure predicate
logic . . . Such a question . . . falls under the ”Entscheidungsproblem”.
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proved the completeness [184]. The proof is found in standard logic textbooks,
e.g. [57, 142, 146, 307, 471]. For our purposes, the details of a formal system
are of no importance. We will simply assume that some sound and complete
formal proof system for first-order logic has been fixed. Notice that there
is a mechanical procedure that derives all valid first-order formulae in some
order.

To explain how proving a mathematical statement reduces to performing a
mechanical derivation, assume that T is a finitely axiomatizable mathemat-
ical theory. Without loss of generality, the axioms have no free individual
variables (that is, are sentences); indeed, if an axiom has free individual vari-
ables, replace it with its universal closure. Let α be the conjunction of the
axioms, β another first-order sentence (a mathematical claim in the termi-
nology of Hilbert), and γ the implication α → β. Then β is a theorem of T
if and only if γ is valid if and only if γ is provable in the fixed formal proof
system. Thus the mathematical question whether β is a theorem of T reduces
to the logical question whether γ is valid which, in its turn, reduces to the
question whether the mechanical procedure mentioned above derives γ.

Many important mathematical problems reduce to logic this way [266,
267]. Let us add another example.

Example. Reduction of the Riemann Hypothesis to the validity problem for
some first-order sentence γ. Recall that a Diophantine equation is an equation
P (x1, . . . , xk) = 0 where P is a polynomial with integers coefficients and the
variables xi range over integers. In [98], the authors exhibit a Diophantine
equation E that is solvable if and only if the Riemann Hypothesis fails. It
suffices to find a finitely axiomatizable theory T and a sentence β such that
β is provable in T if and only if E is solvable; the desired γ is then the
implication α → β where α is the conjunction of (the universal closures of)
the axioms of T .

Recall that the standard arithmetic A is the set of natural numbers with
distinguished element 0, the successor function, addition, multiplication and
the order relation ≤. Let L be the first-order language of A. Robinson’s sys-
tem Q is a finitely axiomatizable theory in L such that an arbitrary existential
L-sentence φ is provable in Q if and only if it holds in A [307]. (A similar
theory is called N in [471].)

Choose T to be Q. It suffices to construct an existential L-sentence β in
such a way that E is solvable if and only if β holds in A.

In fact, an arbitrary Diophantine equation D can be expressed by an exis-
tential formula βD in such a way. Since a disjunction of existential sentences
is equivalent to an existential sentence, it suffices to check that an existential
L-sentence can express the given equation P (x1, . . . , xk) = 0 together with an
atomic constraint xi ≥ 0 or xi ≤ 0 for every variable xi. But this is obvious.
For example, an equation x3 − y5 + 1 = 0 with constraints x ≤ 0, y ≤ 0 is
equivalent to an equation (−x)3−(−y)5+1 = 0 with constraints x ≥ 0, y ≥ 0
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which is equivalent to an equation y5 + 1 = x3 with constraints x ≥ 0, y ≥ 0
which is obviously expressible by an existential L-sentence.

The classical decision problem is called the main problem of mathematical
logic by Hilbert and Ackermann:

Das Entscheidungsproblem ist gelöst, wenn man ein Verfahren kennt,
das bei einem vorgelegten logischen Ausdruck durch endlich viele Op-
erationen die Entscheidung über die Allgemeingültigkeit bzw. Erfüll-
barkeit erlaubt. (. . .) Das Entscheidungsproblem muss als das Haupt-
problem der mathematischen Logik bezeichnet werden.2 [266, pp 73ff]

Hilbert and Ackermann were not alone in their evaluation of the impor-
tance of the classical decision problem. Their attitude has been shared by
other leading logicians of the time. Bernays and Schönfinkel wrote:

Das zentrale Problem der mathematischen Logik, welches auch mit
den Fragen der Axiomatik im engsten Zusammenhang steht, ist das
Entscheidungsproblem.3 [35].

Herbrand’s paper [253] starts with:

We could consider the fundamental problem of mathematics to be the
following. Problem A: What is the necessary and sufficient condition
for a theorem to be true in a given theory having only a finite number
of hypotheses?

The paper ends with:

The solution of this problem would yield a general method in math-
ematics and would enable mathematical logic to play with respect to
classical mathematics the role that analytic geometry plays with re-
spect to ordinary geometry.

In [254], Herbrand adds:

In a sense it [the classical decision problem – BGG] is the most
general problem of mathematics.

Ramsey wrote that his paper was

concerned with a special case of one of the leading problems in mathe-
matical logic, the problem of finding a regular procedure to determine
the truth or falsity of any given logical formula. [435, p. 264]

2 The Entscheidungsproblem is solved when we know a procedure that allows for
any given logical expression to decide by finitely many operations its validity
or satisfiability. (. . .) The Entscheidungsproblem must be considered the main
problem of mathematical logic.

3 The cental problem of mathematical logic, which is also most closely related to
the questions of axiomatics, is the Entscheidungsproblem.
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The roots of the classical decision problem can be traced while back.
Philosophers were interested in a general problem-solving method. The me-
dieval thinker Raimundus Lullus called such a method ars magna. Leibniz
was the first to realize that a comprehensive and precise symbolic language
(characteristica universalis) is a prerequisite for any general problem solv-
ing method. He thought about a calculus (calculus ratiocinator) to resolve
mechanically questions formulated in the universal language. A universal
symbolic language, restricted to mathematics, had to wait until 1879 when
Frege published [171]; the language allowed Russel and Whitehead [446] to
embed virtually the whole body of then known mathematics into a for-
mal framework.4 Leibniz distinguished between two different versions of ars
magna. The first version, ars inveniendi , finds all true scientific statements.
The other, ars iudicandi , allows one to decide whether any given scientific
statement is true or not [255].

In the framework of first-order logic, an ars inveniendi exists: the collec-
tion of valid first-order formulae is recursively enumerable, hence there is an
algorithm that lists all valid formulae. The classical decision problem can be
viewed as the ars iudicandi problem in the first-order framework. It can be
sharpened to a yes/no question: Does there exist an algorithm that decides
the validity of any given first-order formula? Some logicians felt sceptical
about ever finding such an algorithm. It wasn’t clear, however, whether the
scepticism could be justified by a theorem. John von Neumann wrote:

Es scheint also, daß es keinen Weg gibt, um das allgemeine Entschei-
dungskriterium dafür, ob eine gegebene Normalformel a beweisbar ist,
aufzufinden. (Nachweisen können wir freilich gegenwärtig nichts. Es
ist auch gar kein Anhaltspunkt dafür vorhanden, wie ein solcher Un-
entscheidbarkeitsbeweis zu führen wäre.) (. . . ) Und die Unentscheid-
barkeit ist sogar die Conditio sine qua non dafür, daß es überhaupt
einen Sinn habe, mit den heutigen heuristischen Methoden Mathe-
matik zu treiben. An dem Tage, an dem die Unentscheidbarkeit
aufhörte, würde auch die Mathematik im heutigen Sinne aufhören zu
existieren; an ihre Stelle würde eine absolut mechanische Vorschrift
treten, mit deren Hilfe jedermann von jeder gegebenen Aussage ent-
scheiden könnte, ob diese bewiesen werden kann oder nicht.
Wir müssen uns also auf den Standpunkt stellen: Es ist allgemein
unentscheidbar, ob eine gegebene Normalformel beweisbar ist oder
nicht. Das einzige, was wir tun können, ist, (. . . ), beliebig viele be-
weisbare Normalformeln aufzustellen. (. . . ) Auf diese Art können wir
von vielen Normalformeln feststellen, daß sie beweisbar sind. Aber
auf diesem Weg kann uns niemals die Feststellung gelingen, daß eine
Normalformel nicht beweisbar ist. 5 [525, pp 11–12]

4 See the forthcoming book by M. Davis [96] in this connection.
5 It appears thus that there is no way of finding the general criterion for deciding
whether or not a well-formed formula a is provable. (We cannot, however, at
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Gödel’s Incompleteness Theorem [185] was a breakthrough in logic. Can
one use a similar method to prove the nonexistence of a decision algorithm for
the classical decision problem? In an appendix to his paper “The fundamental
problem of mathematical logic” Herbrand wrote:

Note finally that, although at present it seems unlikely that the de-
cision problem can be solved, it has not yet been proved that it is
impossible to do so. [254]

Herbrand, Gödel and Kleene developed a very general notion of recursive
functions [307]. In 1936, Church put forward a bold thesis: Every computable
function from natural numbers to natural numbers is recursive in the sense of
Herbrand-Gödel-Kleene. He showed that no recursive function could decide
the validity of first-order sentences and concluded that that there was no
decision algorithm for the classical decision problem [80].

Independently, Alan Turing introduced computing devices which are
called now Turing machines. He put forward a similar thesis: a function from
strings to strings is computable if and only if it is computable by a Turing
machine [513]. He showed that no Turing machine could decide the validity of
first-order sentences and also concluded that there is no decision algorithm for
the classical decision problem. The equivalence of Church’s and Turing’s the-
ses was quickly established. The Church-Turing thesis was largely accepted
and thus it was accepted that the yes/no version of the classical decision
problem was solved negatively by Church and Turing.

1.2 The Transformation of the Classical Decision
Problem

By the time of Church’s and Turing’s theses, the area of the classical decision
problem had already a rich and fruitful history. Numerous fragments of first-
order logic were proved decidable for validity and numerous fragments were
shown to be as hard as the whole problem. What does it mean that a fragment
F is as hard for validity as the whole problem? This means that there exists

the moment demonstrate this. Indeed, we have no clue as to how such a proof
of undecidability would go.) (. . . ) The undecidability is even the conditio sine
qua non for the contemporary practice of mathematics, using as it does heuristic
methods, to make any sense. The very day on which the undecidability would
cease to exist, so would mathematics as we now understand it; it would be
replaced by an absolutely mechanical prescription, by means of which anyone
could decide the provability or unprovability of any given sentence.

Thus we have to take the position; it is generally undecidable, whether a
given well-formed formula is provable or not. The only thing we can do is (. . . )
to construct an arbitrary number of provable formulae. In this way, we can
establish for many well-formed formulae that they are provable. But in this way
we never succeed to establish that a well-formed formula is not provable.
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an algorithm A that transforms an arbitrary formula φ into a formula in F in
such a way that A(φ) is valid if and only if φ is so; such a fragment is called
a reduction class for validity. Actually, it had been more common to speak
about satisfiability and finite satisfiability, that is satisfiability in a finite
structure. Reduction classes for satisfiability (respectively finite satisfiability)
are defined similarly.

To convey a feeling of the field, let us quote some early results on frag-
ments of pure first-order predicate logic (first-order logic without function
symbols or equality). But first let us recall that a prenex formula is a formula
with all its quantifiers up front. View a string in the four-letter alphabet
{∀, ∃, ∀∗, ∃∗} as a regular expression denoting a collection of strings in the
two-letter alphabet {∀, ∃}. For example, ∀3∃∗ denotes the collection of strings
of the form ∀3∃j where j is an arbitrary natural number, and ∃∗∀2∃∗ denotes
the collection of strings of the form ∃i∀2∃j where i and j are arbitrary natural
numbers.

In 1915, Löwenheim [365] gave a decision procedure for the satisfiability
of predicate formulae with only unary predicates. He proved also that formu-
lae with binary predicates form a reduction class for satisfiability. In 1931,
Herbrand [254] sharpened the latter result showing that just three binary
predicates suffice. In 1936, Kalmár [295] showed that one binary predicate
suffices.

In 1920, Skolem [477] showed that ∀∗∃∗ sentences form a reduction class
for satisfiability. In 1928, Bernays and Schönfinkel [35] gave a decision pro-
cedure for the satisfiability of ∃∗∀∗ sentences. In 1928, Ackermann [16] gave
a decision procedure for the satisfiability of ∃∗∀∃∗ sentences. Gödel [186],
Kalmár [293] and Schütte [457], separately in 1932, 1933 and 1934 respec-
tively, discovered decision procedures for the satisfiability of pure ∃∗∀2∃∗ sen-
tences. In another paper, Gödel proved that every satisfiable ∃∗∀2∃∗ sentence
has a finite model and that ∀3∃∗ sentences form a reduction class for satis-
fiability [187]. (See [234] for a popular introduction to the classical decision
problem.)

The reaction of the logicians to the discoveries of Church and Turing was
that the classical decision problem was wider than the yes/no version of it.
Here is one of the earliest reactions:

Solche Reduktionen des Entscheidungsproblems werden hoffentlich
vorteilhaft sein für systematische Untersuchungen über die Zählaus-
drücke, z.B. wenn man versuchen will eine Übersicht zu bekommen,
für welche Klassen von solchen man das Entscheidungsproblem wirk-
lich lösen kann. Bekanntlich hat A. Church bewiesen, dass eine all-
gemeine Lösung dieses Problems nicht möglich ist.6 [482]

6 Such reductions [a reference to the reductions proposed by Skolem in the paper
cited — BGG] will hopefully be advantageous for systematic investigations of
first-order formulae, for example if one would like to try to arrive at a complete
picture, for which classes of such formulae one can really solve the Entschei-
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The logicians started to think about the classical decision problem as a
classification problem.

– Which fragments are decidable for satisfiability and which are undecidable?
– Which fragments are decidable for finite satisfiability and which are unde-

cidable?
– Which fragments have the finite model property and which contain axioms

of infinity (that is satisfiable formulae without finite models)?

For a long time the classical decision problem remained a central problem
of mathematical logic. With the development of computational complexity
theory, the problem has been refined. If a fragment of first-order logic is de-
cidable for satisfiability, then indeed there is an absolutely mechanical proce-
dure, that is an algorithm, for deciding the satisfiability or unsatisfiability of
any given sentence. But what is the computational complexity of determining
satisfiability? Similarly, if a given fragment is decidable for finite satisfiability,
what is the computational complexity of determining finite satisfiability?

Of course, the unrestricted classifiability problem is hopeless. There are
just too many fragments. Some of them are of no interest to anybody. Some
of them involve particular branches of mathematics. Consider for example
the satisfiability problem for sentences α∧β where α is (the universal closure
of) the conjunction of the axioms of fields and β is an arbitrary formula in
the vocabulary of fields; this problem rightfully belongs to field theory rather
than logic.

Eventually, the classical decision problem became to mean the restriction
of the classification problem described above to traditional fragments. This
description is admittedly not precise but it gives a good guidance which we
will follow. One can argue that the complexity issue does not really belong
to the traditional classical decision problem. This is true too, but it is impos-
sible to ignore the complexity issue these days, in particular because of the
relevance of the logical decision procedures to theorem proving and model
checking methods. We will try to cover the known complexity results.

As we have mentioned above, for a long time the classical decision problem
remained a central problem of mathematical logic. The literature on the
subject is huge and contains a great wealth of material. The classical decision
problem served as a laboratory for various logic methods7 and especially
reduction methods. The classification results have been used not only in logic
but also in theoretical computer science. In particular, they have been used
as a guide to the study of zero-one laws for fragments of second-order logic.
Classical techniques inspired some proofs on the zero-one laws and some of
classical techniques have been further extended. See [235, 313, 314, 315, 414,
415] in this connection.

dungsproblem. As it is known, A. Church has proved that a general solution of
this problem is not possible.

7 By the way, Ramsey proved his famous combinatorial lemma in a paper on the
classical decision problem [435].
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There is a number of books devoted to the classical decision problem. In
the 1950s, Ackermann gave a comprehensive treatment of the solvable cases
known at the time [18], and Surányi gave a complementary comprehensive
treatment of reduction classes known at the time [498]. The book [133] of
Dreben and Goldfarb illustrates the potential of the so-called Herbrand ex-
pansion technique in establishing solvability. The complementary book [351]
of Lewis covers many reduction results on classical fragments of pure pred-
icate logic. Together the two books give a systematic treatment of decision
problems for predicate logic without functions or equality.

Nevertheless, much of the wealth has never appeared in a book form.
Moreover, by now, the work on the classical decision problem is by and large
completed (though some open problems remain of course) and most of the
major classifications have not been ever covered in book form. That is exactly
what we intend to do in this book.

1.3 What Is and What Isn’t in this Book

We give most attention to the most traditional fragments of first-order logic,
namely, to collections of prenex formulae given by restrictions on the quan-
tifier prefix and/or vocabulary. (Recall that there is a simple algorithm for
transforming an arbitrary first-order formula to an equivalent one in the
prenex form.)

Strings in the two-letter alphabet {∀, ∃} will be called prefixes. A prefix set
is a set of prefixes. An arity sequence is a function p from the set of positive
integers to the set of non-negative integers augmented with the first infinite
ordinal ω.

Definition 1.3.1 (Prefix-Vocabulary Classes). For any prefix setΠ and
any arity sequences p and f , [Π, p, f ] (respectively, [Π, p, f ]=) is the collection
of all prenex formulae φ of first-order logic without equality (respectively with
equality) such that

– the prefix of φ belongs to Π,
– the number of n-ary predicate symbols in φ is ≤ p(n), and
– the number of n-ary function symbols in φ is ≤ f(n).
– φ has no nullary predicate symbols with the exception of the logic constants

true and false, no nullary function symbols and no free variables.

Let us explain the last clause. We will speak about logic without equality
but the same applies to logic with equality. It is easy to see that the status
(decidable or undecidable) of the (finite) satisfiability problem for a prefix-
vocabulary class does not change if nullary predicate symbols are allowed.
Now let us consider the rôle of nullary function symbols, that is individual
constants. Let C = [Π, p, f ] and C ′ be the version of C when one is allowed to
use say 7 individual constants. It is easy to see that the status of the (finite)
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satisfiability problem for C ′ is that of the (finite) satisfiability problem for
[Π ′, p, f ] whereΠ ′ = {∃7π : π ∈ Π}. Instead of individual constants, we could
speak about free individual variables. Thus allowing individual constants or
free individual variables does not give us more classes either.

The definition of prefix-vocabulary classes above seems to be excessively
general. Call a prefix set closed if it contains all substrings (even not contigu-
ous substrings) of its prefixes. Clearly, one can restrict attention to closed
prefix sets. Further, call a prefix set Π standard if either it is the set of
all prefixes or else it can be given by a string w in the four-letter alpha-
bet {∀, ∃, ∀∗, ∃∗}. In the first case Π is denoted all. Thus, every standard
prefix set has a succinct notation. Furthermore, we can require without loss
of generality that w is reduced in the following sense: ∀∗ cannot have ∀ as a
neighbor, and similarly ∃∗ cannot have ∃ as a neighbor. For example, a string
∀∗∀∃∃∗ reduces to ∀∗∃∗; clearly the two strings define the same prefix set.

Call an arity sequence p standard if it satisfies the following condition:
p(n) = ω whenever the sum p(n) + p(n+ 1) + · · · is infinite. Every standard
sequence can be given a succinct notation. The standard arity sequence that
assigns ω to each n will be denoted all. Any other standard sequence p has a
tail of zeroes, 0 = p(m) = p(m+1) = · · ·, and will be denoted by the sequence
(p(1), p(2), . . . , p(m − 1)). In case m = 1, for readability, we denote p with
(0) rather than (). Similar notation can be used for non-standard sequences
with a tail of zeroes. Notice that every arity sequence reduces (in a sense
made more precise in Sect. 2.3) to a standard arity sequence. For example,
[all, (0, ω), (0)] ⊆ [all, (ω, ω), (0)] and every sentence φ ∈ [all, (ω, ω), (0)] can
be easily rewritten as an equivalent sentence in [all, (0, ω), (0)]: just replace
formulae R(x) with formulae R′(x, x) where R′ is a binary predicate symbol
that does not occur in φ.

Definition 1.3.2. A prefix-vocabulary class [Π, p, f ] or [Π, p, f ]= is standard
if Π, p and f are standard.

The classification problem for the prefix-vocabulary fragments admits a
complete solution in a form of a finite table. In particular, there are only
finitely many minimal undecidable fragments with closed prefix sets, and all
these minimal fragments are standard. This follows from the Classifiability
Theorem of Gurevich proved in Sect. 2.3. Accordingly, in the main body of
the book, the prefix-vocabulary classes of interest will be almost exclusively
standard classes. The Classifiability Theorem has provided guidance for re-
search and it provides guidance for this book.

Let us review briefly the contents of the book. The main part of Chapter 2
is devoted to the reduction theory which we explain from scratch and develop
to a certain depth. The reduction theory helps us to give simpler proofs and
proper lower complexity bounds. The rest of Chapter 2 is devoted to the
Classifiability Theorem.
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In Chapters 3 and 4, we give a complete treatment of the undecidable
prefix-vocabulary fragments of first-order logic (with or without function
symbols, with or without equality). In Chapter 5, we present various other
undecidable fragments mainly defined in terms of additional restrictions on
the propositional structure of the formulae; we study in particular Krom and
Horn formulae which have played an important rôle in the theory of logic
programming.

In Chapters 6 and 7, we treat the decidable prefix-vocabulary fragments
of first-order logic (with or without function symbols, with or without equal-
ity). Together with the results of Chapters 3 and 4 this gives a complete
classification of the decidable and undecidable prefix-vocabulary classes. Ta-
bles 1.1 and 1.2 summarize the decidability/undecidability results on prefix-
vocabulary fragments.

Undecidable Cases
A: Pure predicate logic (without functions, without =)

(1) [∀∃∀, (ω, 1), (0)] (Kahr 1962)

(2) [∀3∃, (ω, 1), (0)] (Surányi 1959)

(3) [∀∗∃, (0, 1), (0)] (Kalmár-Surányi 1950)

(4) [∀∃∀∗, (0, 1), (0)] (Denton 1963)

(5) [∀∃∀∃∗, (0, 1), (0)] (Gurevich 1966)

(6) [∀3∃∗, (0, 1), (0)] (Kalmár-Surányi 1947)

(7) [∀∃∗∀, (0, 1), (0)] (Kostyrko-Genenz 1964)

(8) [∃∗∀∃∀, (0, 1), (0)] (Surányi 1959)

(9) [∃∗∀3∃, (0, 1), (0)] (Surányi 1959)

B: Classes with functions or equality

(10) [∀, (0), (2)]= (Gurevich 1976)

(11) [∀, (0), (0, 1)]= (Gurevich 1976)

(12) [∀2, (0, 1), (1)] (Gurevich 1969)

(13) [∀2, (1), (0, 1)] (Gurevich 1969)

(14) [∀2∃, (ω, 1), (0)]= (Goldfarb 1984)

(15) [∃∗∀2∃, (0, 1), (0)]= (Goldfarb 1984)

(16) [∀2∃∗, (0, 1), (0)]= (Goldfarb 1984)

Table 1.1. Minimal Undecidable Standard Classes
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Decidable Cases

A: Classes with the finite model property

(1) [∃∗∀∗, all, (0)]= (Ramsey 1930)

(2) [∃∗∀2∃∗, all, (0)] (Gödel 1932, Kalmár 1933, Schütte 1934)

(3) [all, (ω), (ω)] (Löb 1967, Gurevich 1969)

(4) [∃∗∀∃∗, all, all] (Maslov-Orevkov 1972, Gurevich 1973)

(5) [∃∗, all, all]= (Gurevich 1976)

B: Classes with infinity axioms

(6) [all, (ω), (1)]= (Rabin 1969)

(7) [∃∗∀∃∗, all, (1)]= (Shelah 1977)

Table 1.2. Maximal Decidable Standard Classes

We give also a fairly complete complexity analysis of the decidable cases.
One open problem is to find the exact complexities of the satisfiability and
finite satisfiability problems for the Shelah class. For most of the maximal de-
cidable standard fragments, the satisfiability problem has a very high compu-
tational complexity, typically deterministic or nondeterministic exponential
time, the complexity is even non-elementary in the case of the Rabin class. At
the end of Chapter 6 we also present a classification of the standard classes
that have the finite model property and of those having infinity axioms. The
decidability results in Chapter 7 rely (in our exposition) on a reduction to
S2S, the monadic second-order theory of the infinite binary tree. The de-
cidability of S2S, proved by Rabin [430], is one of the most important and
difficult decidability theorems for mathematical theories. We give a complete
proof of this result in Sect. 7.1. In Chapter 8 we present some other decidable
cases of the decision problem. In addition, the book contains a quite exten-
sive annotated bibliography and an appendix, written by Cyril Allauzen and
Bruno Durand, containing a new simplified proof for the unsolvability of the
unconstrained domino problem which is used at many places in this book.

Some classifications appear for the first time in a book: For example,
the classifications of prefix-vocabulary fragments in the cases of logic with
equality, functions or both. All complexity results appear for the first time in
a book. There are many new proofs, e.g. those (assisted by Shelah) related
to the Shelah class. There are also many new results.

On the other hand, there are many closely related topics that we do not
cover in this book. We are concerned here with fragments of first-order logic
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and do not deal with decision problems for second-order logic, higher-order
logic, intuitionistic logic (see [385, 412]), linear logic (see the forthcoming
book [362]) or any other logic. We do not deal with decision problems for
mathematical theories formalized in first-order or any other logic; in this
connection see [89, 97, 148, 166, 231, 432, 506].

Furthermore, even though the classical decision problem is more or less
finished in its most classical form, there are various other natural versions and
extensions of it that we do not deal with here systematically. For example,
we do not deal with classifications based on the resolution calculus; in this
connection see [163, 340]. But we do discuss various extensions of the classical
decision problem and various open problems on our way. Let us mention some
extensions and open problems here.

Extend the classifiability theorem in various directions. This is very im-
portant; without a proper direction, it is hard even to remember a myriad of
specific results.

Extend the prefix-vocabulary classification to important undecidable
mathematical theories; see [229] in this connection. Find the computational
complexity of decidable prefix-vocabulary classes of important mathematical
theories (see [201, 206]); in many cases even the computational complexity
of the theory itself is unknown. It would also be interesting to extend the
classification to different logics.

We were interested whether a given fragment contains a formula with-
out finite models. Does a given fragment contain a formula without recur-
sive models? This direction is still covered by the Classifiability Theorem;
in particular there are finitely many minimal prefix-vocabulary classes with
formulae without recursive models and each of them is standard. Instead
of recursivity, one can speak about other kinds of descriptive or computa-
tional complexity. Similarly, does a given fragment contain an axiom of an
essentially undecidable theory? Since the fragment may be not closed under
conjunction, it is meaningful to ask if the fragment includes a finite set of sen-
tences that form an axiomatization of an essentially undecidable theory. Also,
one may restrict attention to infinite models of certain complexity: primitive
recursive models, recursive models, models of such and such Turing degrees,
Borel models, etc.

In cases of fragments of reasonably low complexity bound, develop prac-
tical solutions of the decision problem. This problem is well recognized as a
major bottleneck for e.g. model checking [70], an important current method
for computer verification of hardware and software correctness claims.

One extension of the classical decision problem is related to the strictness
of reductions. If one cares only about satisfiability, it suffices to require that a
reduction transforms a given formula α into a formula α′ which is satisfiable
if and only if α is so. We usually care about satisfiability and finite satisfia-
bility and thus consider so called conservative reductions when it is required
that (i) α′ is satisfiable if and only if α is satisfiable, and (ii) α′ is finitely sat-
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isfiable if and only if α is finitely satisfiable. One may be interested in even
stricter reductions. For example, one may require that α and α′ have the
same spectra or – more generally – that there is a simple connection between
the spectra. (On several occasions, Surányi insisted that there should exist
a general method that transforms a given model of α′ to a model of α.) On
the other hand, one may consider not only recursive but also arithmetical,
Borel, etc. transformations.

There are many more specific problems. One is to examine Boolean com-
binations of prefix-vocabulary classes; see Section 5.4 in this connection.

The book is addressed to a wide audience and not only to professional
logicians. There are scattered remarks and exercises addressing more special
audiences (logicians, people familiar with logic programming, etc.) but the
main body requires only the familiarity with basic notions of mathematical
logic. (This does not mean of course that all parts are easy to read; some
proofs are quite involved even after much simplification). Finally, let us note
that sometimes we will omit the adjective “first-order”; formulae, languages
and theories are by default first-order in this book.
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Part I

Undecidable Classes

15





2. Reductions

This chapter starts from scratch, presupposing only basic notions from pred-
icate logic and complexity theory. We introduce a simple but general form of
the basic reduction technique which will be used throughout the book. We
show characteristic examples for the variety of applications of the reduction
technique to decision problems in predicate logic and complexity theory, thus
providing the ground and motivation for the systematic treatment of those
questions in the following chapters. In doing this we also fix the terminology
which will be used throughout the book. The reader who has already some
knowledge about logical decision problems may go directly to subsequent
chapters and come back here only as needed. We start with undecidability
results. First we prove the theorem of Church and Turing on the algorithmic
unsolvability of Hilbert’s Entscheidungsproblem and Trakhtenbrot’s variant of
that theorem for finite satisfiability. We prove both theorems by a reduction
from the halting problem for Turing machines.

We define the fundamental notion and exhibit simple examples of first-
order reduction classes for satisfiability and finite satisfiability. By showing
that a classK of formulae is a reduction class for satisfiability, we really prove
that the satisfiability problem for K is complete for the co-r.e. sets under
recursive reductions. Similarly, if K is a reduction class for finite satisfiability,
then the finite satisfiability problem for K is complete for the r.e. sets.
Reduction classes will concern us for much of the book; their introduction
here serves also the purpose to illustrate the crucial use of canonical models
(often also called Herbrand models) first brought into this area by Büchi.
In this introductory chapter we mainly rely upon refinements of Turing’s
method to express machines by logical formulae. These formulae essentially
define by logical means what in computer science is called the semantics of
machine programs. This allows us to give a uniform treatment of classical
questions about simple formulae – namely those which define the semantics
of programs – which in a natural way yields undecidability results related to
finitely axiomatizable first-order theories, to models of satisfiable formulae, to
interpolation procedures, and to explicit definitions (even over finite domains)
of implicitly defined predicates.

We exhibit analogous impossibility or completeness results in the realm
of the decidable. They can be obtained by applying the reduction technique
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to space or time bounded machines. The descriptions of such machines typi-
cally need only limited logical expressive means. Our first example is the ana-
logue of Hilbert’s Entscheidungsproblem for propositional logic which turns
out to be the fundamental problem in complexity theory, namely the prob-
lem whether P = NP. The theorem of Cook and Levin that the satisfiability
problem for propositional logic is NP-complete [91, 343] is proved by apply-
ing the reduction technique to propositional descriptions of non-deterministic
Turing machine computations with polynomial time bounds.

Descriptions of polynomial space bounded Turing machine computations
by formulae of quantified propositional logic yields the result of Stock-
meyer that the decision problem for quantified Boolean formulae is Pspace-
complete.

Another interesting example arises from the spectrum problem. The spec-
trum of a sentence is the class of cardinalities of its finite models. The spec-
trum problems is to characterize the class of spectra of first-order sentences,
and more generally, of the class of spectra of (the strong) logic of order n for
arbitrary n. The reduction technique yields a characterization of NP in terms
of generalized spectra (Fagin’s Theorem); more generally it yields a charac-
terization of the spectra of strong n-th order sentences as those sets which are
accepted by non-deterministic Turing machines in n-fold exponential time.
Fagin’s Theorem has inspired similar logical characterizations of other com-
plexity classes; we will explain a number of such results in Sect. 2.2.3.

We proceed to illustrate the effect of some natural syntactic restrictions on
the complexity of logical decision problems; in particular we consider prenex
formulae with restrictions on the prefix, on the arity and the number of pred-
icate or function symbols, and on the propositional structure of first-order
formulae. We use the reduction technique to exhibit two formulae classes
whose satisfiability problems are complete for Pspace and Exptime respec-
tively, i.e. complete for the sets accepted by deterministic Turing machines
with polynomial space or exponential time bounds respectively.

We conclude the chapter with Gurevich’s Classifiability Theorem that
justifies abstractly the study of decision problems for prenex formulas with
restrictions on the prefix, on the number and the arities of predicate symbols,
and on the number and the arities function symbols.

2.1 Undecidability and Conservative Reduction

2.1.1 The Church-Turing Theorem and Reduction Classes

It is a well known feature of first-order logic that it is rich enough to express
large parts of mathematics, and in particular a great variety of problems
that occur naturally in dealing with algorithms and computers. This includes
many problems which are known to be algorithmically unsolvable. Effective
reductions of such undecidable problems to the decision problem of first-order
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logic are the common feature of the many different proofs of the unsolvability
of Hilbert’s Entscheidungsproblem.

The essential ingredients of such an undecidability proof are as follows.
Given an instance p of a known undecidable problem P , one constructs a re-
duction formula αp and proves that p has a positive solution iff αp is logically
valid (or satisfiable, etc.). Thus, the undecidability of the given decision prob-
lem P yields the undecidability of the validity (or satisfiability, etc.) problem
for the class of all reduction formulae αp.

We follow here the approach of Turing [513] who proved the undecid-
ability of the Entscheidungsproblem by reducing to it an unsolvable problem
for Turing machine programs. We provide economical descriptions of non-
deterministic Turing and register machines variants of which will be used
throughout the book. This will give us also an occasion to present a simple
but fundamental observation, made by Büchi [64], how canonical models (also
called Herbrand models) can be used to relate in a simple and transparent
way combinatorial problems to logical decision problems.

Economical Description of Turing Machines. In order to show the uni-
formity of the procedure and for future use, we start by formulating a general
reduction scheme for non-deterministic Turing machine programs. The spe-
cialization of this scheme for the halting problem of deterministic Turing
machines will then yield a proof for the following fundamental result.

Theorem 2.1.1 (Church, Turing). The Entscheidungsproblem is algor-
ithmically unsolvable.

Later other specializations of the same scheme will also be given. For a
description of Turing machine computations, configurations (instantaneous
descriptions) C are expressed by logical statements C; each single compu-
tation step by which the given machine program M produces a successive
configuration C ′ from a given C, is described as logical derivation of C ′ from
C using a program formula STEPM :

C ∧ STEPM ⊢ C ′.

Initial formulae STARTC and end formulae ENDC′ will specify the initial
and final configurations C,C ′. (We will often omit C,C ′ when they are clear
from the context.) Thus the problem of whether M , started in configuration
C, will eventually reach C ′, will be reflected directly as a logical decision
problem, namely whether the formula ENDC′ is a logical consequence of
STARTC and STEPM .

Let M be a (possibly non-deterministic) program for a one-tape Turing
machine (which we assume without loss of generality to be one-way infinite
and with cells numbered in the natural way by 0,1,2,. . .).

We describe STEPM as a scheme in the basic formulae H(t, x), Tj(t, x),
Ii(t), S(t, t

′). These basic formulae are left unspecified here; for the time being
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the reader might think of them as atomic formulae. Depending on the case
where we want to apply the scheme, these basic formulae will be interpreted
as first order atomic formulae, as propositional variables, as atomic formulae
of order n, etc. The basic formulae come with parameters t (for time), x
(for tape cells, usually identified with their order numbers), j (for letters,
usually identified with number indices), i (for states of the machine, usually
identified with numbers) and the following intended interpretation over the
natural numbers:

– H(t, x) iff the head position at time t is cell x;
– Tj(t, x) iff the tape at time t contains letter j in cell x;
– Ii(t) iff at time t the machine is in state i;
– S(t, t′) iff the successor of t is t′.

For a configuration Ct of M at time t let Ct be a formula that describes
Ct in terms of appropriate basic formulae.

The reader might think for example of the conjunction of basic formulae
for all parameters needed to describe Ct. This can be a finite or an infinite
conjunction, depending on whether computations with finite or potentially
infinite time or space resources (finitely or infinitely many t, t′, x) are con-
sidered; in other cases the parameters t, t′, x might be quantified individual
variables; we will see these and other examples below. The program formula
scheme STEPM defined below satisfies the following

Lemma 2.1.2 (Simulation Lemma). Let C0 be an arbitrary initial con-
figuration of M and A a model of STEPM ∧ C0. Let t be arbitrary. Assume
that there is an M -computation of length t which starts at C0 and that there
are corresponding S-chains of length t (of time and cell parameters) in A.
Then there is at least one M -configuration Ct, reachable by M in t steps
from C0 along the given S-chains, for which A is a model of Ct.

Definition of STEPM . Let (the program of) M consist of instructions
(i, j, k, p,m) with the following meaning: being in internal state i and reading
letter j, print letter k, move the reading head one cell to the right, left or not
at all (for p = 1,−1, 0 respectively) and go to state m. Without loss of gener-
ality we assume that, for each pair (i, j), all instructions inM that begin with
(i, j) have the same value of p. STEPM is defined as the conjunction of the
following formulae for all parameters i,m (for states), j, k (for letters) and all
t, t′, x, x′, y concerned according to the underlying time and space-bounds:

– right movement instructions:

Ii(t) ∧H(t, x) ∧ Tj(t, x) ∧ S(t, t′) ∧ S(x, x′)

→
∨

(i,j,k,+1,m)∈M

Im(t′) ∧H(t′, x′) ∧ Tk(t′, x) (2.1)

– instructions without movement: the same with H(t′, x) in the conclusion
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– left movement instructions:

Ii(t) ∧H(t, x′) ∧ Tj(t, x′) ∧ S(t, t′) ∧ S(x, x′)

→
∨

(i,j,k,−1,m)∈M

Im(t′) ∧H(t′, x) ∧ Tk(t′, x′) (2.2)

– no change outside the head cell:

H(t, x) ∧ y ̸= x ∧ Tj(t, y) ∧ S(t, t′)→ Tj(t
′, y) (2.3)

Note that this conjunction is finite or infinite, depending on whether the
time and space resources are finite or infinite. Usually we treat halting states i
ofM as states with idle instructions (i, j, j, 0, i) thus allowing infinite configu-
ration sequences which become constant when a halting state is encountered;
however, sometimes it is convenient to consider halting states as states with-
out any instructions (i, . . .) whatsoever.

Exercise 2.1.3. Prove the Simulation Lemma by induction on t.

Remark. Note that the Simulation Lemma is really a scheme that receives
a concrete meaning once a particular logic is specified. For the reader who
knows other proofs in the literature, our formulae might look frugal: they
describe only what is needed for a machine transition to be reflected in a
model of the formula.

There are no conditions that, at any moment, the machine is in only one
internal state with only one reading head and only one symbol written in a
given cell. The preceding exercise should help the reader to convince him-
self/herself that these frugal formulae are indeed sufficient for our purposes.

Since the reduction formulae are composed from loosely specified basic
formulae, they can be used for different logics, corresponding to different def-
initions of the basic formulae and different compositions of the latter into the
reduction formulae: as (quantified or unquantified) propositional formulae,
as first- or higher-order formulae, etc. Using the Simulation Lemma, we now
prove the Church-Turing Theorem by specifying the basic formulae as atomic
first-order formulae and by composing them using quantifiers over time and
space parameters. It suffices to specify the preceding scheme for the following
variant of the halting problem for deterministic Turing machines with say 1
as a unique halting state:

H1 = {M : Starting in state 0 with the head at the left end of the
empty tape, M halts in state 1.}

It is well known that the set H1 is recursively enumerable but not recur-
sive. For such machines we can indeed prove the following equivalence.
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Reduction Property: Let ρM be the universal closure of

STEPM ∧ START ∧NONSTOP ∧ORDER

with START, NONSTOP and ORDER as defined below. Then M ,
started in state 0 with head positioned at the left end of the empty
tape, eventually halts in state 1 if and only if ρM is contradictory.

Since the formulae ρM can be effectively constructed from the programs
M , the undecidability of the halting problem implies the undecidability of
the non-satisfiability problem (and therefore of the satisfiability problem) for
the class of all reduction formulae ρM . This implies the undecidability of the
validity problem for formulae ¬ρm and therefore a fortiori for the class of all
first-order formulae. This proves the Church-Turing Theorem.

Let ORDER be a formula that axiomatizes a total order K with successor
relation S, intended to be interpreted over the natural numbers in the usual
way. ORDER is the conjunction of:

∀x¬Kxx
∀x∀y∀z(Kxy ∧Kyz → Kxz)

∀x∀y(Kxy ∨ x = y ∨Kyx)
∀x∀y(Sxy ↔ (Kxy ∧ ¬∃z(Kxz ∧Kzy))).

Let the order for this proof also satisfy ∀x∃ySxy, whereby it becomes
infinite. Let 0 be an individual constant, intended to be interpreted as num-
ber 0. Let Ii be monadic and H,Tj , S binary predicate symbols, let t, x be
individual variables. The variables will be universally quantified; intuitively
they range over the natural numbers. Define the initial formula by

START := I0(0) ∧H(0, 0) ∧ ∀xT0(0, x)

expressing this way that the machine starts at internal state 0 with the head
at the left end of the empty tape.

Define the end formula by

NONSTOP := ∀t¬I1(t)

expressing that at no time will the halting state 1 be reached.
It is now routine to check that the indicated intended interpretation sat-

isfies ρM if M , started at state 0 with head positioned at the left end of
the empty tape, does not halt at state 1. If ρM has a model then, by the
definition of ORDER and the assumption that 1 is the only halting state,
we can conclude from the Simulation Lemma that M does not halt. Note
that the additional assumption for S made in this proof guarantees the exis-
tence of sufficiently long (indeed infinite) S-chains in models of the reduction
formulae.



2.1 Undecidability and Conservative Reduction 23

We will use variants of this basic reduction scheme throughout the book.
The reduction property shows that unsolvability of the decision problem is
obtained not only for the class of all formulae, but for the subclass of all
reduction formulae ρM . Here is a different example, motivated by semigroup
theory.

Exercise 2.1.4. [371] A Thue process often also called Thue system is a
semigroup T with a finite number of generators gi (“letters” representable
as individual constants) and a finite number of identities Vj =Wj (“defining
relations ”) imposed on concatenations of generators (“words”). Reduce the
word problem for Thue systems – the question whether V = W holds for a
given Thue system T and given words V,W of T – to the satisfiability problem
for first order logic with equality as the only predicate symbol and with terms
built up from individual constants and one binary function symbol. By the
unsolvability of the word problem for Thue systems, this gives another proof
for the Theorem of Church and Turing.

Exercise 2.1.5. Derive from the previous exercise the undecidability of the
first order theory of semigroups. This is sharpened in [372] to the ∀∃-positive
theory of a free semigroup.

Reduction Classes. This brings us to a fundamental feature of such re-
duction proofs, which will be the object of extensive study in this book,
namely that the combinatorial structure of the reduced decision problem is
reflected in the syntactical structure of the class of reduction formulae. To
obtain undecidable classes of formulae of simple syntactical structure, we will
have to look for sophisticated logical encodings of undecidable decision prob-
lems with “simple” combinatorial structure. The ultimate goal is to classify
undecidable classes of “minimal” syntactic structure, i.e. such that further
restriction yields a decidable class of formulae. In our proofs we will pay par-
ticular attention to make it transparent how reduction formulae encode the
“data structure” – the basic objects and the basic transformations – of the
reduced computational problem. In doing this we will also obtain natural and
explicit ways to “look at” or “interpret” logical formulae of a great variety of
classes in a procedural manner as (describing) “algorithms” or “programs”;
thus the reduction formulae will represent a logical operational definition of
the semantics of those programs. This relates the study of logical decision
problems to the study of expressiveness and complexity of program classes
in logic programming languages (one representative of which is Prolog where
the procedural interpretation of Horn formulae has received some practical
significance through efficient implementations).

The above proof shows more than the mere undecidability of the class
of reduction formulae. As a matter of fact, the halting problem for Turing
machines used above is complete for the recursively enumerable sets. This
means that one can find for each r.e. set Y ⊆ N a recursive function f
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which associates to each number n a Turing machine program f(n) such that
the following equivalence holds: n ∈ Y iff f(n), started in state 0 with head
positioned at the left end of the empty tape, eventually halts in state 1. Since
the reduction procedure associating ¬ρM to M is also a recursive function
and since, by Gödel’s Completeness Theorem, the valid first-order formulae
form a recursively enumerable set, it follows that the validity problem for the
formulae ¬ρf(n) is not only recursively unsolvable but in fact complete for
the r.e. sets.

In the context of the Entscheidungsproblem, this completeness phe-
nomenon has played an eminent rôle. The Entscheidungsproblem (with re-
spect to validity) can be reduced to the validity problem for the class of
formulae ¬ρM by a recursive function f which associates with each first or-
der formula β a formula f(β) of form ¬ρM(β) in such a way that β is valid iff
f(β) is valid. The class X of our reduction formulae ¬ρM incorporates there-
fore the whole Entscheidungsproblem in the sense that the validity problem
for first-order logic can be effectively (many-one) reduced to the validity prob-
lem for X. Such a class of formulae is called a reduction class with respect to
validity.

The notion of reduction class was a central notion for the attempts to set-
tle the Entscheidungsproblem: the search for algorithms to solve the decision
problem for large classes of formulae was complemented by investigations to
reduce the Entscheidungsproblem to the decision problem for small reduction
classes, with the hope that the two efforts would match. From the unsolv-
ability of the Entscheidungsproblem it obviously follows that each reduction
class has an unsolvable validity problem (which is in fact hard for the r.e.
sets). After the negative solution of the Entscheidungsproblem, the interest in
reduction classes has been mainly motivated by a classification problem: are
there natural classifications of classes of first order formulae into decidable
and undecidable ones and which of the latter are of maximal computational
complexity (i.e. reduction classes)? Can the borderline between decidability
and undecidability be drawn sharply and on the basis of which logical crite-
ria? This classification problem will occupy us for much of the book, and its
methodological status will be analysed at the end of this chapter.

Actually is has been more common to speak abut satisfiability rather
than validity. We therefore fix here the notion of a reduction class in terms
of satisfiability.

Definition 2.1.6. A class X of formulae is called a reduction class (for sat-
isfiability) if there exists a recursive function f which maps each first order
formula ψ to a formula f(ψ) ∈ X such that ψ is satisfiable if and only if f(ψ)
is satisfiable.

Exercise 2.1.7. Show that the class of all formulae of the pure predicate
calculus is a reduction class. Hint: Eliminate function symbols and equality.
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Canonical (Herbrand) Models. In the above proof of the Church-Turing
Theorem, the basic data of Turing machine computations – letters, states and
tape positions – are logically represented using predicate symbols Tj , Ii,H,
and numbers. To assure the successor structure of the natural numbers
(through the individual constant 0 and the successor relation S) it was suffi-
cient to add an order axiom. In Exercise 2.1.4 on Thue systems the basic data
are words which can be represented as terms built up from finitely many 0-ary
function symbols (individual constants which stand for the letters of the un-
derlying alphabet) and a binary function symbol (which is interpreted as the
concatenation of words). To enforce the semigroup structure it is sufficient to
impose certain identities on these terms and the associativity of the binary
operation. In many reduction proofs in the literature such axiomatizations of
the intended domain of objects become very complicated and constitute much
of the difficulty of the whole reduction procedure. It was Büchi who in 1962
made the simple but crucial observation that a well known theorem of Skolem
in many cases guarantees a simple way to logically “implement” a given data
structure by a corresponding domain of terms, without any explicit axiomati-
zation of this object domain. Since we want to use this fundamental method
freely in the sequel, we are going to explain it here. The method allows us for
arbitrary first order formulae ψ without equality to restrict attention, after
Skolemization, to so-called canonical interpretations in the search for models
satisfying ψ. Canonical interpretations of ψ are interpretations over the do-
main of terms that are built using only the function symbols appearing in ψ
and where terms are interpreted by themselves. We start therefore from the
Skolem Normal Form Theorem for first order formulae.

Theorem 2.1.8 (Skolemization). With every first-order formula ψ one
can effectively associate a universal formula φ = ∀x1 · · · ∀xnη (where η is
quantifier-free) such that:

– ψ and φ have the same free individual variables and the same predicate
symbols.

– The function symbols of φ are those of ψ augmented by some new function
symbols.

– ψ and φ are satisfiable over the same domains.
– φ |= ψ.

The universal formula φ is called a Skolem normal form or also functional
form of ψ. We view individual constants as nullary function symbols.

Proof. The proof consists in iterated application of the following elimination
of an existential quantifier, applied from left to right to the prenex normal
form of the originally given formula:

Lemma 2.1.9. Let ψ be a first order formula of form ∀x1 · · · ∀xn∃yα.
Choose a new n-ary function symbol f and let φ = ∀x1 · · · ∀xnα[y/fx1 · · ·xn]
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be the result of deleting ∃y from ψ and of replacing y in α by fx1 · · ·xn. Then
ψ and φ are satisfiable over the same domains and φ |= ψ.

On the basis of the Axiom of Choice the proof of this lemma is obvious. ⊓⊔

The universal formula produced by this method is unique up to inessential
renaming of symbols; it may be called the Skolem normal form of the original
formula.

We can restrict attention to closed formulae, i.e. sentences, because a
formula ψ with free variables x1, . . . , xn is satisfiable over the same domains
as its existential closure ∃x1 · · · ∃xnψ.

Definition 2.1.10 (Canonical Domain). Let ψ be a first order sentence
and φ its Skolem normal form with constants c1, . . . , cn and function symbols
f1, . . . , fm of positive arity. (If no constants occur in ψ, i.e. if n = 0, then a
new constant c is added.) The set of terms built up from these constants and
function symbols is the canonical domain or the Herbrand universe of ψ.

Here are some examples of canonical domains for quantifier and function
free formulae β.

– The set of “natural numbers” 0, S0, SS0, . . . is the canonical domain of
prenex sentences ∃u∀x∃v∀yβ.

– The set of words over alphabet {a1, . . . , an} represents the canonical do-
main of prenex sentences ∀x∃v1 · · · ∃vnβ. For example, a word a1a2a1 cor-
responds to a term f1f2f1c.

– The canonical domain of prenex sentences ∀x∀y∃vβ is the set of terms built
from individual constant c by means of a binary operation ∗. Notice that
the operation is not supposed to be associative and thus one cannot ignore
parentheses. Example: ((c ∗ (c ∗ c)) ∗ c). Notice further that any expression
can be reconstructed from the pattern of parentheses. Thus the domain
can be represented by purely parenthetical expressions

Remark. The condition that in building the canonical domain of a given
formula ψ, we start from a new constant in case the Skolem normal form of
ψ has no 0-ary function symbol, assures the non-emptiness of these domains.
Note that if the Skolem normal form contains at least one function symbol
of positive arity, then the canonical domain is countably infinite.

Definition 2.1.11 (Canonical Model). A structure is a canonical struc-
ture or Herbrand structure of a given sentence ψ if its universe is the canonical
domain of ψ and each function symbol f of the Skolem normal form of ψ is
interpreted as the term building operator f , i.e., by f(t1, . . . , tm) = ft1 · · · tm.
A formula ψ is called canonically satisfiable if it is satisfiable by a canonical
structure. Such a structure will be called a canonical model of ψ.
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We are now ready for a succinct formulation of the above mentioned
theorem of Skolem which allows us to restrict attention to canonical models
without loss of generality. The universal closure of a formula φ with the free
variables x1, . . . , xn is the sentence ∀x1 · · · ∀xnφ.

Theorem 2.1.12 (Skolem). The universal closure of a quantifier free for-
mula without equality is satisfiable iff it is canonically satisfiable.

Proof. From a given model A for ∀x1 · · · ∀xnφ one obtains a canonical model
A∗ by interpreting the relation symbols P of ψ by

P ∗ := {(t1, . . . , tn) : A |= Pt1 · · · tn}.

⊓⊔

Exercise 2.1.13. [64] Show that in the reduction formulae ρM in the proof
of the Church-Turing Theorem, the successor relation S and the clauses of
ORDER in which it appears can be dispensed with if 0 is canonically inter-
preted as number 0 and ′ as +1.

Economical Description of Register Machines. We illustrate the use of
Skolem’s Theorem for a simple reduction of the halting problem for register
machines. We follow an idea from [2, 39] for eliminating also the explicit
mentioning of the time (or length) of computations used in reduction formulae
for Turing machines. In this way we obtain a further refinement – sharpening
the propositional structure of the quantifier free part to so-called Krom and
Horn formulae – and a simplification of the proof of the reduction property.

The following definitions go back to the American mathematicians A.
Horn and M. Krom.

Definition 2.1.14 (Krom and Horn Formulae). We call a disjunction
of atomic and negated atomic formulae a clause. A Horn clause is a clause
with at most one non-negated atom. Alternatively, a Horn clause can be
written as an implication α → β where α is a conjunction of non-negated
atoms and β is either an atom or the logical constant false. A Horn formula
is a first-order formula in prenex normal form whose quantifier-free part is
a conjunction of Horn clauses. We write HORN for the class of all Horn
formulae.

A Krom clause is a is a clause with at most two constituents. A Krom
formula is a first-order formula in prenex normal form whose quantifier-free
part is a conjunction of Krom clauses and KROM denotes the class of all
Krom formulae.

A two-register machine M is similar to a Turing machine but instead of
a tape it has two registers. Each register contains a natural number. In one
step, the machine can add 1 to the content of one of the registers or test
whether the content of the given register is zero and if not then subtract 1.
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In addition, M goes to a new state depending on which registers are empty
(that is contain zero). The basic data structure of register machines is the set
of natural numbers with zero and the successor function. It can be realized as
the canonical domain of a sentence ∃u∀x∃v∀y1 · · · ∀ynβ where β is quantifier
free and does not contain function symbols. This means that the variables
x, y1, . . . , yn can be used directly as ranging over register contents and that
a register machine configuration C can be completely described by a single
atomic formula C that involves all the register variables. This allows us to
express the M -reachability problem C ⇒M D (which means that M , started
in C, reaches D) directly as a logical derivability problem STEPM , C ⊢ D,
avoiding the need to introduce a further variable to describe the time (or
length) of M ’s computations. Starting from machines with two registers,
which are well known to have an r.e. complete halting problem (see [393, 469]),
we can restrict ourselves to using only two universal quantifiers. We thus
obtain:

Theorem 2.1.15 (Aanderaa, Börger). One can effectively associate with
every deterministic 2-register machine program M a prenex Krom and Horn
sentence ψM = ∃u∀x∃v∀yα of the pure predicate calculus with Skolem normal
form ∀x∀ySTEPM , and encode M -configurations C by atomic formulae C so
that:

Reduction Property: For all M -configurations C,D we have that C ⇒M D
if and only if the formula

∀x∀ySTEPM ∧ C → D

is logically valid.

Further, ψM contains only 2-place predicate symbols.

Proof. Let M be an arbitrary 2-register machine program with instructions
Ii for i = 0, . . . , r. The effect of program M on arbitrary M -configurations
(i,m, n) – with state i and register contents m,n in the first and second
registers respectively – is defined locally through the action performed by
instruction Ii on configurations (i,m, n). Correspondingly we will define the
program formula STEPM as a conjunction of all formulae εi each of which
expresses the meaning of the corresponding M -instruction Ii. The reduction
property tells us that the effect of Ii that we have to formalize is restricted
to a reachability question for configurations – namely whether starting from
C and applying M -instructions we can reach D. We will therefore represent
configurations (i,m, n) by (i,m, n) := Kimn, with binary predicate symbols
Ki and where, thanks to Skolem’s Theorem, the register contents m,n can
be identified with the corresponding logical terms (built up from 0 applying
the successor function ′).

Addition instructions Ii = (i, r, j): at state i, add 1 to the content of
register r and then to go to state j. In case r = 1, they are formalised
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by implications εi := Kixy → Kjx
′y, so that if a configuration (i,m, n) is

reached then also the configuration (j,m+ 1, n) is reached as well. The case
of r = 2 is similar.

Subtraction instructions Ii = (i, r, j, k): at state i, test whether the content
of the register r is 0; if yes then go to state j, and if not then subtract 1
from (the content of) register r and go to state k. In case r = 1, they are
formalised by the conjunction εi of the following two implications, reflecting
the two possible test result: Kix

′y → Kkxy and Ki0y → Kj0y. The case of
r = 2 is similar.

This ends the definition of the εi and therefore of STEPM and ψM . From
the preceding explanations it is easy to prove the reduction property. Indeed,
assume that ∀x∀ySTEPM ∧ C → D is logically valid. The intended inter-
pretation satisfies the premise ∀x∀ySTEPM ∧ C and therefore satisfies the
conclusion D. This implies C ⇒M D. Conversely, assume C ⇒M D. For each
canonical model A of ∀x∀ySTEPM ∧C, show the following simulation prop-
erty: for each t and each M -configuration E which is reached by M in t steps
starting from C, we have that A |= E. This is proved by a straightforward
induction on t, using the truth of C in A in the induction base case and the
truth of the appropriate εi for the induction step. From C ⇒M D, it then
follows that A |= D. ⊓⊔

Corollary 2.1.16. The class ∃∀∃∀∩KROM∩HORN with only binary pred-
icate symbols is a reduction class.

Proof. Since a formula ψ is not logically valid iff ¬ψ is satisfiable, Theo-
rem 2.1.15 implies: C ̸⇒M D iff ∀x∀ySTEPM ∧ C ∧ ¬D is satisfiable. The
same holds for the non-Skolemized prenex normal form βM,C,D which is in
the class ∃∀∃∀ ∩ KROM ∩ HORN with only binary predicate symbols. We
now specialize M to a program that enumerates all logically valid formu-
lae in the following sense: ψ is satisfiable iff M , started with configuration
C(ψ) = (0,m(ψ), 0) — with an appropriate 2-register machine encodingm(ψ)
of ψ — does not halt in state 1 with empty registers. Specializing therefore
C to C(ψ) and D to (1, 0, 0) yields the desired reduction: ψ is satisfiable iff
f(ψ) is satisfiable, where f(ψ) = βM,C(ψ),D. ⊓⊔

Exercise 2.1.17. Prove the analogous versions of Theorem 2.1.15 and Corol-
lary 2.1.16 for the prefix classes ∀∃∃∀ and ∀∃∧∀∃∀. Hint: Use terms x+, with
another “successor” function +, as 0.

Exercise 2.1.18. Prove the analogous versions of Theorem 2.1.15 and Corol-
lary 2.1.16 for the prefix ∃∀ ∧ ∀∃∀.

Exercise 2.1.19. (see [6]) Prove that the class of all relational Krom and
Horn sentences with equality, with prefix of form ∀∃∀∃, and only binary
predicate symbols is a reduction class. Hint: Modify the formulae from Corol-
lary 2.1.16 using an axiomatization of 0 by the formula
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∀x∃v∀y∃u(Nu ∧ (Nx→ x = u) ∧ (Ny → y = u)).

The rest of Sect. 2.1.1 is for the advanced reader and can be skipped.

Exercise 2.1.20 (Advanced). (see [227, 49]) Prove the reduction class
property for the class of all universal Horn sentences with only one vari-
able and a quantifier free conjunction built from equalities and inequalities
in which only one-place function symbols occur. Hint: Use the encoding by
terms

(i, p, q) := (kir
p
1r
q
2nx

with function symbols ki for M -states i and function symbols r1, r2 for the
registers. Require that r1r2x = r2r1x. The idea behind n is to create zero out
of x. Recall that we should be able to test whether a given register is empty.
To this end, introduce special unary function symbols n1, n2 and require the
following where j and k are distinct members of {1, 2}:

nknx = nx ∧ nkrkx ̸= rkx ∧ (nkx = x↔ nkrjx = rjx)

so that nkx = x iff x = rpjny for some p and y.

Remark. The formulae STEPM constructed in the preceding proof for 2-
register machine programs M can be seen as a logical definition for the se-
mantics of M . Since STEPM is a Horn formula one can look at it also as
a (pure) Prolog program. Each step of the register machine program corre-
sponds to the use — in the simulating logical deduction — of an implication
in the reduction formula and therefore to a resolution step of the correspond-
ing Prolog program. The reader is invited to verify that the equivalence proof
of the reduction property shows

C ⇒1
M D iff STEPM , C ⊢1res D,

where ⇒1
M and ⊢1res denote reachability in one step by M -computation and

by the resolution calculus, respectively (see [56]). This close correspondence
allows us to transfer many complexity-theoretic properties from machine deci-
sion problems to logical decision problems and vice versa. We will see various
applications of this correspondence later in this chapter, but let us cite here
already a few simple examples.

Example 2.1.21. The class of Horn formulae (or pure Prolog programs)
with only binary relations, number terms 0, x, x′, y, and procedure bodies
of length ≤ 1 is computation universal in the sense that, under appropri-
ate presentation of inputs and outputs, every partial recursive function is
computable by a program in that class. Similar universality results for pure
Prolog programs have been rediscovered and proved by other methods in the
1970s, see [20, 268, 279, 460, 503]. See also Exercises 2.1.22 and 2.1.42.
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Exercise 2.1.22 (Advanced). Find a single computation-universal Horn
formula (pure Prolog program). Hint: Start from a computation-universal
register machine program or interpret the state index in the reduction for-
mulae as third argument of a ternary predicate symbol.

Example 2.1.23. The above reduction procedure provides a simple but nev-
ertheless general scheme to derive undecidability proofs for run-time proper-
ties of Prolog programs from undecidable register machine properties. The
proof exploits the step-by-step correspondence between computations of reg-
ister machine programs M and their translation into the particular Prolog
programs STEPM . See [55] for details.

Example 2.1.24. The halting problem is recursively isomorphic to its im-
plementation as a logical derivability (and by the Completeness Theorem
therefore also semantical entailment) problem: For every set X of formulae,
let Ded(X) := {ψ ∈ X : ⊢ ψ} and

HD(M) := {C : C ⇒M D}
FD(M) := {∀x∀ySTEPM ∧ C → D : C is an M -configuration}

Then HD(M) ≡ Ded(FD(M)) where ≡ indicates the existence of a recur-
sive bijection. This recursive bijection allows one to identify the complexity of
various decision problems for recursive classes of formulae when the complex-
ity of the corresponding decision problems for the corresponding recursively
enumerable sets of integers is known. (We tacitly assume a standard arith-
metical representation of recursive classes of formulae.)

Here are some examples which are interesting in the context of logical
decision problems:

– The emptiness problem {F : Ded(F ) = ∅} (“F contains no logically valid
formula”) for recursive classes F of formulae is Π1-complete. Indeed this is
true for the emptiness problem of r.e. sets Wx which can be identified with
the sets HD(x), where D is the canonical stop configuration with empty
registers.

– The totality resp. infinity problem {F : F ⊆ Ded(F )} (“F contains only
logically valid formula”) resp. {F : Ded(F ) is infinite} (“F contains in-
finitely many logically valid formulae”) for recursive classes F of formulae
is Π2-complete because so are the corresponding problems for r.e. sets.

– The decision problem {F : Ded(F ) is recursive} and the reduction class
problem {F : F is a reduction class with respect to validity} are Σ3-
complete, because so are the problems of recursivity and ofΣ1-completeness
of r.e. sets respectively. Note that as we have seen above, F is a reduction
class with respect to validity iff Ded(F ) is Σ1-complete. (See [44].)

The recursive bijection between register machine halting problems and
their implementation as logical decision problems also carries over degree-
theoretic representation theorems from the former to the latter, see [58].
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Using the Friedberg-Muchnik Theorem (see e.g. [472, p. 57]), one gets the
positive answer to the question stated as an open problem in [498, p. 177]
whether there are undecidable classes of formulae which are not reduction
classes. In this connection, see also [243]. The theorem in [58] shows that
classes whose decision problem has degree complexity between 0 and 0′ are
as (un-)natural as those degrees. This answers the corresponding question in
[532, p. 54].

Example 2.1.25. In Exercise2.1.20, we had to consider only inputs of form
C, i.e. consisting only of an atomic formula. Therefore the step-by-step corre-
spondence holds even for the so called (positive) unit resolution, an important
refinement of general resolution where one of the two premises of rule appli-
cation has to be a (non negated) literal. In [252] it has been shown that
(positive) unit resolution provides a complete calculus for (definite) Horn
clauses, which for propositional Horn formulae yields a polynomial time sat-
isfiability test and a polynomial time interpolation procedure (see [94]). See
also [279] for further results derived from the step-by-step correspondence
between machine computation and logical resolution.

Remark. The Krom form of the program formulae STEPM could be achieved
because register machine configurations (i,m, n) have been completely en-
coded by a single atomic formula, namely Kimn. This has allowed us to
express the semantics of M -instructions Ii by implications in εi which have
one premise (for an arbitrary given configuration Kimn) and one conclusion
(for the immediately succeeding configuration). This yields the step-by-step
correspondence between the register machine program computations and the
corresponding logical (resolution) deductions. The Horn form of the reduc-
tion formulae STEPM could be achieved because the given programsM were
deterministic; in case of non-deterministic programs M the conclusions of
the implications in εi would become (positive) disjunctions, with one (non
negated) disjunct for each of the choices of Ii.

Remark. The program formulae STEPM can also be easily interpreted as
various classical computation formalisms; examples are semi-Thue systems,
Markov algorithms, Thue systems, Post canonical (normal) calculi, Post cor-
respondence systems, partial implication propositional calculi, etc.. Also for
these interpretations one can establish a step-by-step correlation between the
computation steps of M and those of STEPM . Again interesting complexity
theoretic properties are carried over from the interpreted to the interpret-
ing formalism. Thus the formulae STEPM appear as logical form of con-
ceptually different but semantically equivalent computational interpretations
which have the same or closely related complexity theoretic properties (see
[50, 52, 58, 60, 85]).
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2.1.2 Trakhtenbrot’s Theorem and Conservative Reductions

In many cases, the decidability of the satisfiability problem for a formula class
has been proved by showing that the given class has the finite model property:
Every satisfiable formula in the class also has a finite model. Due to the facts
that (i) up to isomorphism, the finite structures of a given finite vocabulary
are recursively enumerable, and (ii) the property that a given finite structure
is a model of a given first-order sentence is decidable (in fact of very low
complexity), it follows that the satisfiability problem of every formula class
with the finite model property is recursive.

It is easy to exhibit satisfiable formulae without finite models. An example
is the following formula ≺K (in the class [∀∃∀] ∩ KROM ∩ HORN) which
axiomatizes a relation K with the intended canonical interpretation “Kxu iff
x is smaller than u” over the natural numbers:

≺K := ∀x∃u∀y(¬Kxx ∧Kxu ∧ (Kyx→ Kyu)).

Exercise 2.1.26. Prove that ≺K has only infinite models.

From the unsolvability of Hilbert’s Entscheidungsproblem we can conclude
more than the existence of such infinity axioms (formulae that are satisfiable
but without finite models). There cannot be an effective reduction of satisfi-
ability to finite satisfiability and the class of infinity axioms is not recursive.

Definition 2.1.27. Let X be a class of formulae. We write

– Sat(X) for the the set of ψ ∈ X that are satisfiable;
– Val(X) for the set of logically valid ψ ∈ X;
– Fin-sat(X) for the set of ψ ∈ X that have a finite model;
– Inf-axioms(X) for Sat(X)− Fin-sat(X), the infinity axioms of X;
– Non-sat(X) for the set of unsatisfiable ψ ∈ X.

IfX is the set FO of all first-order formulae we usually adopt the simplified
notation Sat, Val, Fin-sat etc., instead of Sat(FO), Val(FO), Fin-sat(FO) etc.

To establish the desired strengthening we will use the following concept
from recursion theory.

Definition 2.1.28. Two disjoint sets X,Y are called recursively inseparable
if there is no recursive set R such that X ⊆ R and R ∩ Y = ∅.

Exercise 2.1.29. Show that the classes Inf-axioms and Non-sat are recur-
sively inseparable.

The natural question remains whether the finite satisfiability problem is
recursively solvable or not. A slight change of the reduction formulae con-
structed for the Church-Turing Theorem gives Trakhtenbrot’s negative an-
swer to the problem.
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Theorem 2.1.30 (Trakhtenbrot). The sets of all finitely satisfiable, all
unsatisfiable and all only infinitely satisfiable formulae Fin-sat, Non-sat, and
Inf-axioms are pairwise recursively inseparable.

Proof. After the preceding exercise it remains to prove the recursive insep-
arability of Non-sat, Fin-sat and of Inf-axioms, Fin-sat. The proof idea is
to apply the reduction procedure in the Theorem of Church and Turing to
recursively inseparable halting problems. In particular, this means to enrich
the reduction formulae appropriately. Note that the sets Fin-sat and Non-sat
and their union – the complement of Inf-axioms – are recursively enumerable.

Here are halting problems, which are known to be recursively enumerable
and pairwise recursively inseparable (see e.g.[57, 445]). Let i = 1, 2.

Hi = {M : (0, 0)00 . . .⇒M (i, 0)00 . . . , M a TM program}
H = {M : (0, 0)00 . . . ̸⇒M Halt, M a TM program }

Without loss of generality we restrict attention to programs which have only
the two stop states 1 and 2, where Halt stands for an arbitrary configuration
with halting state i (i = 1, 2) and (m, 0)00 . . . denotes the configuration with
state m and reading head at the left end of the empty one-way infinite tape.

The reduction property is refined as follows to formulae ρM,≺ which are
obtained from ρM in the Church-Turing Theorem by replacing ORDER with
≺K,M — a “relativization” of the above defined relation ≺K to visited tape
cells, see below. For the sake of simplicity we also remove the successor rela-
tion S by interpreting 0, x′ canonically.

Reduction Property: For all Turing machine programsM with stop states
1, 2 the following hold:
(i) M ∈ H1 iff ρM,≺ is contradictory
(ii) M ∈ H2 iff ρM,≺ is finitely satisfiable.

The reduction property transfers the recursive inseparability fromH2,H1 and
H,H2 to Fin-sat, Non-sat and Fin-sat, Inf-axioms: for if there were a recursive
R with Fin-sat ⊆ R and Non-sat ∩ R = ∅ (resp. Inf-axioms ∩ R = ∅), then
the recursive set {M : ρM,≺ ∈ R} would separate the sets H2,H1 resp. H2,H.

It remains therefore to show the refined reduction property. Intuitively
speaking, the formula ρM,≺ guarantees the initial configuration (0, 0)00 . . . ,
takes the closure with respect toM -computation steps and explicitly excludes
final configurations with stop state 1. It does not say anything about the
new halting state 2 and therefore will allow us to build finite models for
computations of M which terminate in state 2.

Let us disregard for a moment the conjunct ≺K,M of ρM,≺. The first claim
is the same as the reduction property in the Church-Turing Theorem. Also for
the direction from left to right in the second claim we can proceed as before: if
M ∈ H2, then the intended interpretation yields a model. This model can be
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made into a finite model by restricting the domain of elements to {0, . . . , k+1}
— where k is the length of the given M -computation terminating in state 2
— and by defining (k+ 1)′ (the “successor” of k+ 1) as k+ 1. (Note that in
k steps a Turing machine program, started in cell 0, can visit no cell to the
right of cell k.)

For the reverse direction in the second claim – which was used for the
proof of the recursive inseparability of Inf-axioms and Fin-sat – we do the
following.

– We sharpen the stop condition for the considered Turing machine programs
M in order to ensure that the sequence of M -configurations, computed
starting from the initial configuration (0, 0)00 . . . , becomes cyclic only
when M halts. (Given our normalization assumption on stop states, halt-
ing of M means that the configuration sequence becomes constant when
reaching a stop state.) This implies that any configuration sequence which
does not become cyclic will be infinite.

– We restrict the class of possible models of the logical description of such
computations in order to reflect that if a computation does not become
cyclic, then also all its logical models have to be infinite.

The sharpened stop condition can be assumed for M without loss of gen-
erality. (For example one can include a “step counter” which will be erased
only just before halting.) It can be reflected in the logical models of Tur-
ing machine computations by restricting the existential claim in the infinity
axiom ≺K (see the above exercise) to numbers of cells visited during the
computation of M . This will ensure what we need for the direction from
right to left in the second claim of the reduction property. Namely, for each
of the objects possibly occurring during a Turing machine computation, each
model must have a distinct representative. There must be infinitely many if
the computation does not become cyclic (and therefore visits infinitely many
cells); finitely many will suffice if the computation comes to a halt.

Here is the M -restricted version ≺K,M of the infinity axiom ≺K which
we add as conjunct in ρM,≺:

∀x∃u∀y(¬Kxx ∧ (Hyx→ Kxu) ∧ (Kyx→ Kyu)).

In the models constructed so far we can interpret K as the usual smaller
relation and thereby also satisfy the conjunct ≺K,M . In addition we can prove
now that ρM,≺ has only infinite models ifM ̸∈ H2. In fact ifM does not halt,
started in (0, 0)00 . . . , then in the course of that (acyclic) computation each
natural number n must occur at least once as number of a visited cell; in each
model of ρM,≺ their representatives n are linearly ordered by the relation K,
so that the model must be infinite. ⊓⊔

Exercise 2.1.31. [64] Show that ρM,≺ can be chosen as formula of the form
∃xZx ∧ ∀x∃u∀yβ where Z is a monadic predicate symbol and β a formula
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which contains no other variables than x, u, y and in which only the three
binary predicate symbols H,T0,K and finitely many monadic predicate sym-
bols occur. Hint: Use the universality of Turing machines with binary al-
phabet {0, 1}, interpret Zx as x = 0 and incorporate START into β as
Zy → START[0/y].

Remark. For use in the next chapter observe also that due to the subformula
Zxx→ Hxx, Büchi’s reduction formulae also satisfy ∃yHyy.

Exercise 2.1.32. Prove Trakhtenbrot’s Theorem using register machine for-
mulae ψM,≺ with Skolem normal form

∀x∀y(STEPM ∧ (0, 0, 0) ∧ ¬(1, 0, 0)∧ ≺K,M ) ,

where

≺K,M := ¬Kxx ∧ (Kyx→ Kyu) ∧
∧
i

((Kixy → Kxu) ∧ (Kiyx→ Kxu)).

Exercise 2.1.33. [299] Prove that there is an effective reduction of the deci-
sion problem for validity to the decision problem for finite satisfiability. Hint:
Use Herbrand’s Theorem; see also the proof in [498, Theorem XXI].

For the proof of Trakhtenbrot’s Theorem we have strengthened the re-
duction procedure in such a way that it works simultaneously for two halting
problems. One can apply this refinement to an enriched version of the “logic
machine” M introduced to establish the reduction class property in Corol-
lary 2.1.16. This will bring us to an interesting sharpening of the reduction
class property. Recall that C(ψ) is the starting configuration (0,m(ψ), 0) of
M , with an appropriate encoding m(ψ) of ψ, and consider the following two
special halting problems of such a machine M :

H ′
M,i = {ψ : C(ψ)⇒M (i, 0, 0), M a 2-RM program }

where halting in state 1 with empty registers is equivalent to the non satis-
fiability of ψ (validity of ¬ψ) and halting in state 2 with empty registers is
equivalent to the finite satisfiability of ψ. We add to the reduction formulae
βM,C(ψ),(1,0,0) in the proof of Corollary 2.1.16 the conjunct ≺K,M constructed
in the exercise to Trakhtenbrot’s Theorem. Thereby we obtain refined reduc-
tion formulae g(ψ) = βM,≺,C(ψ),(1,0,0) with Skolem normal form

∀x∀y(STEPM ∧ (0,m(ψ), 0) ∧ ¬(1, 0, 0)∧ ≺K,M )

which reduce simultaneously satisfiability and finite satisfiability of arbitrary
first order formulae ψ.

Exercise 2.1.34. Prove the preceding claim.

This exercise motivates the following definition.
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Definition 2.1.35 (Conservative Reduction). LetX and Y be recursive
classes of formulae. A conservative reduction from X to Y is a recursive
function g : X → Y such that for all ψ ∈ X:

(i) ψ is satisfiable if and only if g(ψ) is satisfiable;
(ii) ψ is finitely satisfiable if and only if g(ψ) is finitely satisfiable.

A formula class X is a conservative reduction class if there exists a conserva-
tive reduction from the set of all first-order formulae to X.

Exercise 2.1.36. Let X be a conservative reduction class. Prove that the
sets Non-sat(X), Fin-sat(X), and Inf-axioms(X) are pairwise recursively in-
separable.

Exercise 2.1.37. Show that the classes [∃∀∃∀] ∩ KROM ∩ HORN and
[∀∃∃∀] ∩ KROM ∩ HORN with only binary predicate symbols are conser-
vative reduction classes.

The following theorem tells us that to establish the conservative reduction
class property for a class of formulae it is sufficient to many-one reduce to
it the unsatisfiable and the finitely satisfiable formulae (semi-conservative
reduction). In terms of our reduction properties this means that we can prove
the simulation property without having to care about finiteness of the given
model and restrict attention to the intended model for the finite case. This
simplifies sometimes the reduction proofs.

Definition 2.1.38. A semi-conservative reduction fromX to Y is a recursive
function f : X → Y such that

(i) f(Non-sat(X)) ⊆ Non-sat(Y )
(ii) f(Fin-sat(X)) ⊆ Fin-sat(Y )

Theorem 2.1.39 (Gurevich). If there exists a semi-conservative reduction
from the set of all first-order formulae to a recursive class X ⊆ FO, then X
is a conservative reduction class.

Proof. The proof uses a recursion theoretic argument which can be recon-
structed from [485, Chap. V]. It uses the following variant of the inseparability
concept for pairs of sets. A pair (A,B) of disjoint sets is called effectively in-
separable if there exists a recursive function f such that for each pair (i, j) of
Gödel numbers of disjoint r.e. supersets Wi of A and Wj of B it holds that
f(i, j) ̸∈Wi ∪Wj . The recursion theoretic argument says that for every pair
of disjoint r.e. sets P1, P2 and every every pair of recursively enumerable,
effectively inseparable sets R1, R2, there exists a recursive function g such
that P1 = g−1(R1) and P2 = g−1(R2). We only have to apply this argu-
ment to the disjoint r.e. sets Non-sat,Fin-sat and the effectively inseparable
r.e. sets Non-sat(X), Fin-sat(X). The sets Non-sat(X) and Fin-sat(X) are
effectively inseparable since two effectively inseparable sets, namely Non-sat
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and Fin-sat, can be recursively embedded in them. (Note that Non-sat and
Fin-sat are effectively inseparable by the fact that the two effectively insep-
arable sets H1 and H2 can be recursively embedded into them as shown by
the above reduction property). ⊓⊔

Exercise 2.1.40. Show that each semi-conservative reduction preserves re-
cursive inseparability of contradictory and finitely satisfiable formulae, i.e.
formally: Let f : X → Y be a semi-conservative reduction from X to Y .
Then the following two properties hold:

1. If Non-sat(X) and Fin-sat(X) are recursively inseparable, then so are
Non-sat(Y ) and Fin-sat(Y ).

2. There exists a recursive function g : X → Y such that for each ψ ∈ X
it holds that ψ is (finitely) satisfiable if and only if g(ψ) is (finitely)
satisfiable.

2.1.3 Inseparability and Model Complexity

In the preceding sections we have related the halting problems of machine
programs to the unsatisfiability and finite satisfiability problems of logical
formulae. We show in this section how by a slightly different use of that
reduction the complexity of machine halting problems can also be easily re-
lated to the complexity of program formulae models or of the logical theories
constituted by those formulae. This gives a computational insight into some
classical, seemingly unrelated questions. We have only to push a bit further
the close relation we have discovered between programs — computational
mechanisms to derive, step by step, successive configurations from given ones
— and their logical descriptions as formulae on the basis of which, step by
step, all logical (configuration representing) conclusions are drawn from given
(configuration encoding) assumptions.

In the Aanderaa-Börger Theorem, we can read the reduction property as
saying that the formula ∀x∀ySTEPM , starting from the assumption ¬(1, 0, 0),
“disproves” or “refutes” (the logical description of) all configurations which
are rejected by M , i.e. which lead to the rejecting halting configuration
(1, 0, 0). Formally:

C ⇒M (1, 0, 0) iff ∀x∀ySTEPM ∧ ¬(1, 0, 0)→ ¬C is logically valid.

Thereby it is to be expected that this formula determines a logical theory
the complexity of which is related to that of the halting problem

HM,1 := {m : (0,m, 0)⇒M (1, 0, 0)}.

Similarly we can expect that the complexity of models of this formula is
related to the complexity of HM,1. Indeed we show that such formulae are
without recursive models and determine a non-recursive theory if M has re-
cursively inseparable halting problems HM,i(i = 1, 2). It suffices to guarantee
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that allM -rejected configurations are disproved, and further, that all configu-
rations C are “proved” which areM -accepted i.e. which lead to the accepting
halting configuration (2, 0, 0). This can be guaranteed by describing “inverse”
M -computations from (2, 0, 0) to C. We introduce the new “starting” config-
uration by adding (2, 0, 0) and take the closure with respect to the inverses
of all STEPM -implications. The resulting formula γM determines a logical
theory and has models whose complexity cannot be recursive, if the halting
problems HM,i, i = 1, 2 are recursively inseparable as we are going to show
in more detail now.

Technically it suffices to sharpen the reduction property in the Aanderaa-
Börger Theorem as follows.

Theorem 2.1.41 (Aanderaa, Börger (Second Version)). Let τM be the
result of replacing→ by↔ in the program formula STEPM for 2-register ma-
chine programsM . Let γM be ∀x∀yτM∧¬(1, 0, 0)∧(2, 0, 0). Then the following
holds for all M -configurations C:

(i) M rejects C iff γM disproves C, i.e.: C ⇒M (1, 0, 0) iff γM ⊢ ¬C
(ii) M accepts C iff γM proves C, i.e.: C ⇒M (2, 0, 0) iff γM ⊢ C

The claim holds in particular for the calculus of unit resolution.

Proof. If C ⇒M (1, 0, 0) then the assertion follows from the reduction prop-
erty in the first version of the Aanderaa-Börger Theorem because τM logically
implies STEPM .

If C ̸⇒M (1, 0, 0) then the formula γM ∧ C has a canonical model in the
interpretation

Kj = {(m,n) : (j,m, n) ̸⇒M (1, 0, 0)}.

If C ⇒M (2, 0, 0), let C0, . . . , Ck be the configuration sequence determined
by M and starting configuration C0 = C, breaking off with Ck = (2, 0, 0).
We paraphrase the proof of the reduction property for STEPM in the first
version of the theorem. Starting with Ck−0 := K200, the inverse of each step
of the given M -computation is simulated by a logical deduction (say unit
resolution) step through which (the resolvent) Ck−t−1 arises from Ck−t using
the inverse of the corresponding implication in the associated εi. (Formally
this is an induction on t ≤ k). Thus C is logically deducible from γM (by
unit resolution).

If γM ⊢ C, then each model of γM also satisfies C. Clearly

Kj(m,n) iff (j,m, n)⇒M (2, 0, 0)

yields a canonical model of γM . Therefore C also holds in this model. This
means that C ⇒M (2, 0, 0). ⊓⊔
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Exercise 2.1.42. Show that each k-ary computable function f can be com-
puted by a binary pure Prolog program (a set of Krom-Horn clauses) Cf with
number terms x, yi, 0, x

′ (0 ≤ i ≤ k + 1) such that for all m,n we have that:
f(m) = n iff Cf |= Fmn iff Cf ⊢unit−res Fmn. Hint: describe the r.e. graph
of f as acceptance set of an appropriate register machine program.

Definition 2.1.43. A theory T is essentially undecidable if it is consistent
and every consistent extension of it is undecidable. For a theory T the set of
T -refutable sentences is ¬T := {ψ : T |= ¬ψ}.

Note that the formula γM in Theorem 2.1.41 is a KROM∩HORN formula
without equality.

Corollary 2.1.44. If the halting problems HM,i(i = 1, 2) of M are recur-
sively inseparable, then

(i) γM is satisfiable but without recursive models
(ii) the first order theory TM := {ψ : γM |= ψ} axiomatized by the binary
pure Prolog program γM and the set ¬TM := {ψ : γM |= ¬ψ} of sentences
refuted by γM are recursively inseparable. In particular TM is essentially
undecidable.

Proof. γM is satisfied by the canonical interpretation: C is true iff C ̸⇒
(1, 0, 0). Let T = TM . The consistency of T follows from the satisfiability
of γM . Each set R that separates TM from ¬TM yields, by the reduction
properties of Theorem 2.1.41, the separating set {n : (0, n, 0) ∈ R} of HM,1

and HM,2. Similarly for each consistent extension T ′ of T , the “refutation
set”

R(T ′) := {n : T ′ |= ¬(0, n, 0)}

separates HM,1 and HM,2. For the same reason, in each model A of γM , the
“refutation set”

R(A) := {n : A |= ¬(0, n, 0)}

separates HM,1 and HM,2. Therefore there are no such recursive R, T ′,A if
HM,1 and HM,2 are recursively inseparable. ⊓⊔

Löwenheim [365] was the first to discover infinity axioms in first-order
logic. Hilbert and Bernays [267] conjectured that there exist sentences in
pure predicate logic that are satisfiable but without recursive models. The
conjecture has been proved by Kreisel [326] and Mostowski [397] through
first-order axiomatizations of a certain system of set theory going back to von
Neumann, Bernays and Gödel. The proof was simplified by Rabin [428], and
Mostowski [398] gives another proof which rests on a first-order description
of Post canonical calculi. Vaught [520] strengthens the result by showing
that besides monadic predicates only one binary predicate is needed for such
formulae. The impossibility of recursive models for our (Krom) formula γM
given above is lost when we pass to its non Skolemized prenex form in pure
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predicate logic. Indeed, each satisfiable Krom formula in pure predicate logic
admits a recursive model (see [11, 147]). But one can easily transform γM into
a non-Krom variant γ′M of pure predicate logic which has no recursive models;
it suffices to replace the Skolem functions occuring in γM by corresponding
axiomatizations as we are going to prove now.

Let γ′M be the conjunction of the following formulae, resulting from γM
by elimination of the Skolem functions 0,′.

1. ∀x∃vSxv (existence of successors) with a new binary predicate symbol
S.

2. ∃u∀yτM,0 where τM,0 is the conjunction of all conjuncts of γM in which
0 occurs and with 0 replaced by u.

3. ∀x∀v∀y(Sxv → τM,′), where τM,′ is the conjunction of all conjuncts of
γM in which x′ occurs and with x′ replaced by v. (Note that we really
mean the formula obtained by further reduction of the quantifier free
part to conjunctive normal form. This formula is a Horn formula.)

Corollary 2.1.45. If the halting problems HM,i(i = 1, 2) of M are recur-
sively inseparable, then the variant γ′M of γM defined above is a satisfiable
Horn formula of pure predicate logic without recursive models.

Proof. γ′M is satisfiable because γM is; obviously S is interpreted by the
graph of the successor function and 0 by an appropriate u. Let A be any
model of γ′M . Choose an element u0 which satisfies ∃u∀yτM,0 in A; using
the subformula ∀x∃vSxv enumerate a subset ω = {u0, u1, . . .} such that
A |= Sunun+1 for all n. Therefore the restriction of A to ω yields a model
for γM by interpreting 0 as u0 and u′n as un+1. If A were recursive, then the
enumeration procedure and therefore the restricted model for γM would be
recursive, in contradiction to Theorem 2.1.41. ⊓⊔

Exercise 2.1.46. The following variant γ′′M of γ′M – a Krom formula with
equality but without function symbols – is satisfiable but without recursive
models, if the halting problems HM,i(i = 1, 2) of M are recursively insepara-
ble:

∃u∀yτM,0∧∀x∃v∀y(Sxv∧τM,′)∧∀x∀y∀z∃w(Sxy → y = w)∧(Sxz → z = w).

Hint: Because of the functionality of S, γ′′M logically implies γ′M .

Exercise 2.1.47. The following formula δM is satisfiable but without Π1 ∪
Σ1 models, if the halting problems HM,i(i = 1, 2) of M are recursively insep-
arable:

δM := ∃x0 · · · ∃xr∃y0 · · · ∃yrγ′′′M ∧ ∀x∀y
∧
i≤r

(Pxixy ↔ ¬Pyixy).

Here, P is a ternary predicate symbol, γ′′′M arises from γ′M by replacing all
atomic formulae Kist by Pxist and Sst by Pxrst where r is the number of
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states of M . Hint: Via parametrisation, P represents each Ki and S as well
as their negations. Therefore a model for δM with Π1∪Σ1-predicate P would
yield (by the negation theorem of recursion theory) a recursive interpretation
of the Ki and S which satisfies γ′M .

Remark. The lower bound for the complexity of models of δM cannot be
improved because each consistent first order theory with a theorem predicate
in ∆2 and ∆1-language has a model in the Boolean closure of Σ1 (see [72]).

Exercise 2.1.48. Let En be the n-th class of the Grzegorczyk hierarchy of
primitive recursive functions. From (En+1 − En)-separable sets, construct
En+1-formulae which have En+1-models but no En-model.

From the existence of finitely axiomatizable theories with recursively in-
separable provability and refutability predicates, proved in Corollary 2.1.44,
one can infer an algorithmic limitation for interpolation in first order logic.

Definition 2.1.49. Let ψ → φ be a logically valid implication of first-order
formulae. An interpolant for ψ → φ is a formula θ containing only relation
and function symbols that appear in both ψ and φ, such that ψ → θ and
θ → φ are logically valid.

Craig’s Interpolation Theorem (see e.g. [76, pp. 87–89] or [270, p. 301])
states that every logically valid implication of first-order formulae has an
interpolant. Further, if neither ψ nor φ contains equality then ψ → φ has
an interpolant in which the equality sign does not occur. (However, if only
one of the formula ψ,φ is equality-free, then an interpolant without equality
need not exist.)

Theorem 2.1.50 (Kreisel). There is no recursive interpolation function
Int which for every valid implication ψ → φ of first-order formulae with-
out equality computes an interpolant Int(ψ,φ) without equality.

Proof. We fix a function φ 7→ φ′ where φ′ is obtained from φ by renaming
all function and predicate symbols. We show that for any total interpola-
tion function Int and every consistent first order theory T without equality
axiomatized by a single sentence ψ, the set of sentences

R := {α : Int(ψ ∧ α, ψ → α′) = true}

separates the theorems of T from the set of T -refutable sentences.
Indeed, suppose that ψ |= α or ψ |= ¬α. Then the implication (ψ ∧ α)→

(ψ′ → α′) is valid. Therefore

β := Int(ψ ∧ α,ψ′ → α′)

is an interpolant for ψ ∧ α and ψ′ → α′. Since due to renaming, the latter
formulae have no function or predicate symbol in common, and since the
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formulae do not contain equality, β must be one of the truth constants true
or false. If β = true then, by the interpolation property, |= ψ′ → α′ and
therefore ψ |= α. If β = false then, by the interpolation property |= ¬(ψ∧α),
hence ψ |= ¬α. Therefore α ∈ R if ψ |= α, and α ̸∈ R if ψ |= ¬α.

This set R would be recursive if Int were. Since we have seen above that
there are finitely axiomatized theories of this form with recursively insepara-
ble refutability and provability sets, there can be no recursive interpolation
function. ⊓⊔

Remark. Maehara and Tait have given a proof of the interpolation theorem
from which one can extract an effective procedure to compute an interpolant,
given a derivation for |= ψ → φ (see [157]).

Remark. In the preceding logical definitions of program semantics we have
deliberately produced “abstract” formulae which do not uniquely determine
their models, but only assure a formalization of that part of information in
the latter which is needed to reconstruct the computational problem. This
economy in logical specification results, as we have seen, in simple proofs
and smooth complexity correlations between machine computations and the
simulating logical deductions. It allows us also easy adaptability of the re-
duction formulae to various interpretations. This will become even clearer
from the applications in the next section. In the context of Craig’s Interpola-
tion Theorem and the related Definability Theorem for first order logic due
to Beth, one can give an interesting example where the opposite attitude
pays off, providing a proof for a theorem by Gurevich [230] showing a fun-
damental complexity theoretic limitation of interpolation and of explication
of implicitly defined predicates over finite structures. The computationally
needed specification is refined by additional auxiliary conditions on the ma-
chine environment which determine the computational model uniquely; this
provides a short implicit definition of complete (terminating but possibly
long) machine computations, each explicit equivalent or interpolant of which
over finite structures is very long (at least of the length of the described
computation). For details see [57, pages 455-461].

2.2 Logic and Complexity

In the preceding section we applied the method of first order program descrip-
tion to express halting problems without any restriction on the length or the
memory requirement of the described computations. Thereby the degree of
undecidability of these unrestricted halting problems was carried over to the
decision problem of the associated classes of formulae, of their theories and
models. In this section we show how to use the logical specification of com-
putations to formalize time-restricted or space-restricted halting problems in
syntactically restricted classes of formulae with solvable decision problem.
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We thus establish a close relationship between logical expressibility and com-
putational complexity. (In this section we suppose that the reader is familiar
with the basic notions of complexity theory, see e.g. [29, 57, 416, 530].)

2.2.1 Propositional Satisfiability

The propositional logic analogue of the undecidability of the decision prob-
lem for first order logic is the NP-completeness of SAT, i.e. the satisfiability
problem for propositional logic. This result follows from a simple proposi-
tional logic specification of the program formula scheme STEPM defined in
the preceding section.

Theorem 2.2.1 (Cook, Levin). The satisfiability problem for formulae of
propositional logic in conjunctive normal form is NP-complete.

Proof. It is easy to see that this problem is in NP: For an arbitrary input for-
mula α in conjunctive normal form guess nondeterministically an assignment
ε of truth values to the variables occurring in α. Then compute the truth
value ε(α) of α under this assignment, and accept iff ε(α) = 1. Obviously
this can be done in polynomial time in the length of α.

For the hardness part, let L be any problem in NP, accepted by a non-
deterministic Turing machine program in time s. We want to reduce this
problem by a deterministic polynomial-time algorithm to the satisfiability
problem for propositional formulae. For this purpose we compute proposi-
tional reduction formulae

γM,n,s := STEP ∧ STARTs,n ∧ACCEPTs,1.

These formulae are in conjunctive normal form and, for “input” variables
x0, . . . , xn−1, the following condition holds.

Reduction Property: M accepts input w0 · · ·wn−1 ∈ {0, 1}n in s steps iff the
formula γM,n,s(x0/w0, . . . , xn−1/wn−1) is satisfiable.

This will establish the completeness part of the theorem.
As STEP we specify the scheme STEPM , defined in the preceding section

for arbitrary Turing machine programs, as follows. We restrict the parameters
(for time and therefore also for space) by t, t′, x, x′, y ≤ s and read the basic
formulae H(t, x), Tj(t, x), Ii(t) as pairwise distinct propositional variables.
The conjuncts S(u, v) – meaning v = u+ 1 – and y ̸= x are read as external
conditions on the admissible parameters and are not part of the formula
itself. The initial configuration – namely (0, w0)w1 · · ·wn−12 · · · 2 (where 2
stands for the blank tape symbol) with reading head position 0 in state 0 –
is described by the formula STARTs,n defined as

I0(0) ∧H(0, 0) ∧
∧

0≤j<n

(T1(0, j)↔ xj) ∧ (T0(0, j)↔ ¬xj) ∧
∧

n≤j≤s

T2(0, j)
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(Note that we want the input formula to depend only on the length n of
input and not on the input w0 · · ·wn) itself; otherwise one could take simply
the conjunction of all T1(0, j) for wj = 1 and all T0(0, j) for wj = 0 instead
of the equivalences.) The acceptance condition of reaching (no state different
from) state 1 at the final moment s is expressed by

ACCEPTs,1 :=
∧
i ̸=1

¬Ii(s)

It is easy to see that γM,n,s can be written in conjunctive normal form. The
reduction property holds by the Simulation Lemma and the intended inter-
pretation given in the preceding section. Note the reason for the seemingly
roundabout way to express in ACCEPTs,1 state 1 as the accepting state.
Namely, the Simulation Lemma assures for non-deterministic programs M
that for each time t at least one of the states i which is reachable by M at
time t is reflected in models of the program formula by the truth of Ii(t); but
the Simulation Lemma does not guarantee this for a particular i.

⊓⊔

Exercise 2.2.2. Prove the NP-completeness of 3-SAT, i.e. the satisfiability
problem for propositional formulae

ψ :=
∧
i

(Yi,1 ∨ Yi,2 ∨ Yi,3)

in conjunctive normal form with (at most) three literals in each clause.

Exercise 2.2.3. ([91], see also [284]) Prove that the satisfiability problem
for propositional Krom formulae (2-SAT) is in P. Hint: Use the resolution
calculus, the fact that the resolvent of two Krom formulae is a Krom formula
and the fact that over n propositional variables there are at most (2n)2 Krom
clauses.

In fact, more sophisticated arguments show that 2-SAT is complete for
nondeterministic logarithmic space.

Exercise 2.2.4. Devise a polynomial-time satisfiability test for proposi-
tional Horn formulae. For an interesting strengthening of such an algorithm
to show the completeness of unit resolution for first order Horn formulae and
the polynomial-time decidability of propositional unit resolution, see [252]
and [283].

Remark. For deterministic programs M which compute an n-ary Boolean
function f , our reduction formulae

γM,n,s := STEP ∧ STARTs,n ∧ACCEPTs,1

(for appropriate s) define f via
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f(w0, . . . , wn−1) = 1 iff γM,n,s(x0/w0, . . . , xn−1/wn−1) is satisfiable

for each input w0, . . . , wn−1 ∈ {0, 1}n. In the light of the preceding exercise
it is interesting to note that these formulae are Horn except for the formal-
ization of input 0 in STARTs,n; furthermore, modulo trivial transformations
each instance γM,n,s(x0/w0, . . . , xn−1/wn−1) is Horn. This has led to define
the Horn complexity of Boolean functions f , which measures the minimal
length of definitions of f which are Horn except for their “input variables”
xj . Horn complexity is strongly related to the P = NP problem; as a mat-
ter of fact Horn complexity is polynomially equivalent to Turing complexity
and network complexity of Boolean functions, see [4, 5]. For another use of
the technique of economical description of Turing machines by propositional
formulae see [23].

A slightly more sophisticated propositional specification of the program
formula scheme STEPM using formulae of quantified propositional logic al-
lows a description of arbitrary Turing machine computations with polynomial
space bound. This establishes the Pspace-completeness of QBF, the decision
problem for quantified propositional logic.

Theorem 2.2.5 (Stockmeyer). The decision problem for quantified propo-
sitional logic is Pspace-complete.

Proof. We first show that the problem is Pspace-hard.
Let A be in Pspace and M be a deterministic Turing machine pro-

gram that decides A with space p(n). Since the number of different M -
configurations that use up to s tape cells is bounded by 2cs for some constant
c, it follows that M decides A in time 2cp(n).

We associate, by a polynomial-time procedure, with each input word w
for M a quantified propositional formula ACCEPTEDw which is valid if and
only if w is accepted by M .

As in previous proofs, such a formula will consist of a start, a program
steps and a stop part. We adopt the same propositional description C of ma-
chine configurations C (restricted to tapes of length p(n)) as for the Cook-
Levin Theorem, but the variables Ii(t),H(t, x), Tj(t, x) are grouped into dis-
joint sets U t depending on their time parameter t. We have to avoid the
exponential growth of the reduction formulae that would result if we used
all the 2cp(n) variable classes (one per time parameter) that occur in the ex-
plicit formalization of all M -computation steps. This problem can be solved
by exploiting an important technique of reusing variables along the following
lines. One has to describe by a short formula REACHt+1(X,Y ) (using vari-
ables from two sets X,Y ) that the configuration coded by Y can be reached
from the one coded by X by an M -computation of length ≤ 2t+1. For this
purpose the given computation is split into two computations of length at
most 2t. This allows us to define REACHt+1(X,Y ) inductively using only
one occurrence of REACHt(U, V ); this single occurrence is imposed for two
possible substitutions: U = X,V = Z for the first half and U = Z, V = Y for
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the second half, where Z is a new variable set representing an intermediate
configuration (see below for the precise definition of REACHt+1(X,Y )).

For given space bound s = p(n) let therefore U, V,W,X, Y, . . . be pairwise
disjoint sets of propositional variables Ii,H(x), Tj(x) as in the Cook-Levin
Theorem.

For everyM -configuration C (with space bound s) we can write the propo-
sitional formula C(X) saying that X encodes C, in the sense that the unique
assignment X → {0, 1} making C(X) true is the one corresponding to the
indented meaning of the variables Ii,H(x), Tj(x) in X with respect to con-
figuration C.

By the same techniques as in previous proof we then construct the fol-
lowing propositional formulae:

– The initial configuration C(w) with input word w is formalized by the
initial formula

STARTw(X) := C(w)(X).

– CONF(X) expresses that X indeed describes an M -configuration (at least
one state, one head position and in each tape cell one letter).

– ACC(X) says that X represents an accepting configuration, i.e. that M is
in an accepting state.

– NEXT(X,Y ) expresses that Y represents the successor configuration of X.
– EQ(X,Y ) expresses that X is equal to Y . Formally EQ(X,Y ) is the con-

junction of the equivalences of corresponding variables in the sets X and
Y .

Note that so far we didn’t need any quantifiers. We now construct, by
induction on t, formulae REACHt(X,Y ) with the following

Reduction Property: Let C,D be M -configurations with space bound
p(n). An assignment of X and Y makes REACHt(X,Y ) true if and only
if X and Y encode, via this assignment, two M -configurations C and D
such that M reaches D from C in at most 2t steps.

For the base of the induction, note that REACH0(X,Y ) has to express
that Y either represents the same configuration as X or its immediate suc-
cessor. Thus, we put

REACH0(X,Y ) := CONF(X) ∧ CONF(Y ) ∧ [EQ(X,Y ) ∨NEXT(X,Y )].

Inductive step: REACHt+1(X,Y ) has to express that M reaches in at
most 2t+1 steps the configuration coded by Y from the configuration coded
by X. This can be obtained by stating that M can go from X to some
intermediate configuration Z in at most 2t steps and then from Z to Y in at
most 2t steps. However, the straightforward idea to use

∃Z(CONF(Z) ∧ REACHt(X,Z) ∧ REACHt(Z, Y ))
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results in a formula of exponential length. But with the idea sketched above,
we can instead use the equivalent formula

REACHt+1(X,Y ) := ∃Z(CONF(Z) ∧ ∀U∀V ((EQ(U,X) ∧ EQ(V, Z)) ∨
(EQ(U,Z) ∧ EQ(V, Y ))→ REACHt(U, V )).

Note that REACHt+1 has length |REACHt(U, V )|+ q(n) for some poly-
nomial q (roughly p(n)2 log p(n)). Thus REACHt(X,Y ) has length O(tq(n))
and can be constructed in polynomial time.

The theorem now follows by defining the formula

ACCEPTEDw := ∃X∃Y (STARTw(X) ∧ REACHcp(n)(X,Y ) ∧ACC(Y )).

Obviously the formula ACCEPTEDw can be constructed in polynomial
time from w.

Exercise 2.2.6. Prove the reduction property.

It remains to show that there is an algorithm that uses only polynomial
space to test the validity of quantified propositional formulae. Since the va-
lidity of ∃xα is equivalent to the validity of α(x/0) ∨ α(x/1), it is possible
to split the test of validity of ∃xα into two subtests checking truth of α(x/0)
and α(x/1) under a given truth assignment to propositional variables. Since
these two tests are independent of each other, they can be computed using
the same space.

Exercise 2.2.7. Fill in the details for the above outlined algorithm. Hint:
see the proof of Savitch’s theorem in [449].

⊓⊔

2.2.2 The Spectrum Problem and Fagin’s Theorem

Trakhtenbrot’s Theorem suggests a special case of the general problem of
classifying the non-isomorphic models of logical theories, namely to char-
acterise the classes of cardinalities of finite models of first-order sentences.
This problem has been formulated as the spectrum problem [455], and has
attracted considerable interest in complexity theory. Fagin’s generalization
of spectra for existential second-order sentences [152] has revealed a fun-
damental relation between complexity theory and finite model theory and
constitutes a landmark for the development of the latter. In this subsection
we will exhibit a characterization of spectra and generalized spectra in terms
of computational complexity. It is obtained by an appropriate interpretation
of the reduction scheme for the description of Turing machine by first-order
formulae introduced above.
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It is reasonable in this context to restrict attention to finite models. In-
deed, by the Löwenheim-Skolem Theorem, every first-order sentence has ei-
ther no infinite models (in which case it also cannot have models of arbitrarily
large finite cardinality), or has infinite models of arbitrary cardinality. Fur-
thermore we will consider only formulae with equality because equality-free
formulae are closed under domain extension of models. Last but not least we
will consider only relational formulae. (Note that n-ary function symbols can
always be represented through their n+ 1-ary graph predicate.)

These considerations have led to the following definition.

Definition 2.2.8 (Hasenjäger, Markwald, Scholz). The spectrum of a
formula ψ is defined as the set of cardinalities of the finite models of ψ, i.e.

spectrum(ψ) := {k ∈ N : ψ has a model with k elements.}

Exercise 2.2.9. The spectra of first-order sentences with empty vocabulary
(i.e. with = as the only predicate symbol) are the finite and the co-finite sets.
Hint: If a closed equality formula ψ has an infinite model, then ¬ψ has no
infinite models so that spectrum(¬ψ) is finite.

Exercise 2.2.10. The spectra of first-order existential or universal sentences
are, respectively, the final segments {m : m ≥ n} and the initial segments
{m : m ≤ n} of N. It was proved by Ramsey [435] that the spectra of prenex
sentences with prefix of form ∃ · · · ∃∀ · · · ∀ are finite or co-finite. To establish
this result Ramsey proved his famous combinatorial theorem.

Fagin’s Theorem. We now present Fagin’s characterization of the complex-
ity class NP in terms of generalized spectra. The spectrum of a first-order
sentence φ of relational vocabulary τ = {R1, . . . , Rt} can be viewed as the
set of finite models of the existential second-order sentence

(∃R1) · · · (∃Rt)φ.

Since all relation symbols are quantified, this is a formula over the empty
vocabulary, i.e. its models are just sets. Thus there is a one to one corre-
spondence between the spectra of first-order sentences and the classes of
non-isomorphic finite models of existential second-order sentences over the
empty vocabulary. By allowing different vocabularies for existential second-
order sentences, this naturally leads to the notion of a generalized spectrum
[152].

Definition 2.2.11. A generalized spectrum is the class of finite models of a
sentence in existential second-order logic.

For instance, the class of bipartite graphs is a generalized spectrum. It is
defined by the sentence

(∃R)∀x∀y(Exy → (Rx↔ ¬Ry)).
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Exercise 2.2.12. Prove that the class of Hamiltonian graphs, the class of
k-colourable graphs (for any fixed k) and the class of graphs that admit a
perfect matching are generalized spectra. (A perfect matching in a graph
G = (V,E) is a setM ⊆ E of edges such that every node belongs to precisely
one edge of M .)

To formulate Fagin’s Theorem precisely we have to describe how struc-
tures are encoded by strings. At least implicitly, such an encoding requires
that we select an ordered representation of the structure.

Definition 2.2.13. The class O(τ) of ordered τ -structures is the class of all
structures (A, <) where A is a finite τ -structure and < is a linear order on A
(the universe of A).

For any ordered structure (A, <) of cardinality n and any k we can identify
the Cartesian product Ak with the set {0, . . . , nk − 1}, by associating each
k-tuple with its rank in the lexicographical ordering induced by < on Ak.
Ordered structures can be encoded as binary strings in many natural ways.
The particular choice of an encoding is not important. We only need the
following conditions to be satisfied.

Definition 2.2.14. An encoding code : O(τ)→ Γ ∗ (over any finite alphabet
Γ ) is good if it identifies isomorphic structures, its values are polynomially
bounded, if it is first-order definable and if it allows to compute efficiently
the values of atomic statements. Formally this means that the following con-
ditions are satisfied:

(i) code(A, <) = code(B, <) if and only if (A, <) ∼= (B, <).
(ii) |code(A, <)| ≤ p(|A|) for some polynomial p.
(iii) For all k ∈ N and all symbols σ ∈ Γ there exists a first-order formula
βσ(x1, . . . , xk) of vocabulary τ ∪{<} such that for all (A, <) ∈ O(τ) and
all ā ∈ Ak the following equivalence holds:

(A, <) |= βσ[ā] iff the ā-th symbol of code(A, <) is σ.

(iv) There exists a algorithm which, given code(A, <), a relation symbols
R of τ and (a representation of) a tuple ā, decides whether A |= Rā, and
whose space complexity is logarithmically bounded (with respect to the
cardinality of A).

A convenient encoding is given as follows. Let < be a linear order on A
and let A = (A,R1, . . . , Rt) be a τ -structure of cardinality n. Let ℓ be the
maximal arity of R1, . . . , Rt. With each relation R of arity j we associate

the string χ(R) = w0 · · ·wnj−10
nℓ−nj ∈ {0, 1}nℓ

where wi = 1 if the i-th
tuple of Aj belongs to R, and wi = 0 otherwise. Now, set code(A, <) =

1n0n
ℓ−nχ(R1) · · ·χ(Rt).
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Exercise 2.2.15. Prove that this encoding is good. In fact this encoding
lends itself to a very simple logical description in the following sense: If besides
(or instead of) the linear ordering <, the corresponding successor relation S,
and the constants 0, e for the first and last element with respect to <, are
available, then the encoding is definable by quantifier-free formulae βσ(x̄).

For the rest of this section we fix a good encoding function and understand
structures to be represented by their encodings. So when we say that a Turing
machine decides a property of τ -structures we actually mean that M decides
the set of encodings of the structures with that property. Similarly we identify
a class K of τ -structures with the set

code(K) := {code(A, <) : A ∈ K and < is a linear order on A}.

Note that encoding a structure involves selecting an ordering on the uni-
verse. In general, different orderings will produce different encodings. How-
ever, we want to consider properties of structures, not of their encodings, so
we consider only classes K that are closed under isomorphisms, i.e. A ∼= B
and A ∈ K imply B ∈ K.

It thus makes sense to ask whether such a K belongs to a complexity
class, like P or NP. On the other side, any language L ⊆ Γ ∗ can also be
considered as a class of structures over the vocabulary {<} ∪ {Pa : a ∈ Γ}.
Indeed, a word w = w0 . . . wm−1 ∈ Γ ∗ is described by the structure B(w)
with universe {0, . . . ,m − 1} with the usual interpretation of <, and with
Pa = {i : wi = a}.

Once we have a representation of structures as strings, i.e. as inputs for
Turing machines, we can investigate the computational complexity of proper-
ties of finite structures. In particular, we can ask how difficult it is to decide
the class of models of a logical sentence. For first-order sentences this is very
simple.

Proposition 2.2.16. Let ψ be a first-order sentence. Then

{A : A finite,A |= ψ} ∈ Logspace.

Proof. Let ψ be in prenex normal form, say ψ = Q1x1 · · ·Qrxrφ. To check
whether a given structure A of cardinality n is a model of ψ, a Turing machine
needs r log n bits of workspace to cycle systematically through all (represen-
tations of) r-tuples a1, . . . , ar and to check whether A |= φ[a1, . . . , ar]. ⊓⊔

Exercise 2.2.17. Show that the set of finite models of a first-order sentence
ψ can be decided by Boolean circuits of constant depth and polynomial size,
i.e. {A : A |= ψ} ∈ AC0.

Theorem 2.2.18 (Fagin). Let K be an isomorphism-closed class of finite
structures of some fixed non-empty finite vocabulary. Then K is in NP if and
only if K is a generalized spectrum.
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Proof. First we show how to decide a generalized spectrum. Let ψ :=
∃P1 · · · ∃Prφ be an existential second-order sentence. We describe a non-
deterministic polynomial-time algorithm which, given an encoding code(A, <
) of a structure A, decides whether A |= ψ. First, M guesses relations
P1, . . . , Pr on A. The relation Pi is determined by a binary string of length
nsi where si is the arity of Pi and n = |A|. Then M decides whether
(A, P1, . . . , Pr) |= φ. Since φ is first-order, by the preceding proposition this
can be done with logarithmic space and thus in polynomial time.

So the computation of M consists of guessing a polynomial number of
bits, followed by a deterministic polynomial-time computation. Obviously,
M decides the class of finite models of ψ.

Conversely, let K be an isomorphism-closed class of τ -structures and M
be a non-deterministic one-tape Turing machine which, on input code(A, <),
decides in polynomial time whether A belongs to K. We assume that M has
a initial state 0, a unique rejecting state 2, and that all computations of M
on input code(A, <) accept or reject after at most nk − 1 steps (where n is
the cardinality of A). We describe the computation ofM by an adaptation of
the reduction scheme for the economical description of Turing machines (see
pp. 19–21).

Suppose first that, on every input structure A, we have an ordering <,
the corresponding successor relation S and constants 0, e for the first and
last element of A with respect to <. To represent the nk time and space
parameters of the computation we identify numbers up to nk− 1 with tuples
in Ak. Note that the corresponding successor relation on k-tuples is definable
from S, 0, e by a quantifier-free formula. Indeed

S(x̄, ȳ) ≡
∨
i≤k

(∧
j<i

(xj = e ∧ yj = 0) ∧ S(xi, yi) ∧
∧
j>i

xj = yj

)
.

The predicates H and Tσ are interpreted as 2k-ary relations and Ii as
k-ary relations over A. More precisely,

H := {(t̄, ā) ∈ Ak ×Ak : at time t̄, the head of M is on position ā}
Tσ := {(t̄, ā) ∈ Ak ×Ak : at time t̄, cell ā contains the symbol σ}
Ii := {t̄ ∈ Ak : at time t̄, M is in state i}.

For any fixed input length n, anyM -configuration C and any time t < nk

we obtain Ct by taking the conjunction over the atomic statements H(t̄, ā),
Tσ(t̄, ā) and Ii(t̄) that hold for C at time t̄.

The begin of the computation is described by a formula START which
expresses that the configuration of M at time t = 0 is C0(A, <), the input
configuration with input code(A, <). Recall that a good encoding is repre-
sented by first order formulae βσ(x̄) (condition (iii) of the definition of good
encodings). We set
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START := H(0̄, 0̄) ∧ I0(0̄) ∧
∧
σ

(βσ(x̄)→ Tσ(0̄, x̄)).

Further, let STEPM be the conjunction over the formulae (2.1)–(2.3) of
the reduction scheme (see page 20), with arguments x, t, . . . replaced by k-
tuples x̄ = x1, . . . , xk, t̄ = t1, . . . , tk, . . . of variables. Finally let ACCEPT :=
¬I2(t̄) where 2 is the unique rejecting state of M .

The formula ψM is defined as the universal closure of START∧STEPM ∧
ACCEPT. If M accepts code(A, <) then there clearly exists an expansion
B of A such that B |= ψM . Conversely, let B = (A, <, S, 0, e,H, T̄ , Ī) an
expansion of a τ -structure A by a linear order <, the corresponding S, 0, e,
and appropriate H, T̄ , Ī such that B |= ψM . It follows by induction on t that
there exists a computation C0(A, <) = C0, C1, . . . , Ct, . . . of length n

k such
that B |= Ct for all t. Since ψM |= ¬Ct for every rejecting configuration C
and every t, it follows that M accepts the input code(A,<). Thus

(A, <, S, 0, e) |= (∃H)(∃T̄ )(∃Ī)ψM iff M accepts code(A, <).

On A, an ordering need not be present, but in existential second-order
logic we can introduce one by quantifying over a binary relation < and using
a first-order axiom α saying that < is a linear order. Of course, S, 0, e are
first-order definable from < and thus need not be explicitly quantified over.
We obtain that

A ∈ K iff A |= (∃ <)(∃H)(∃T̄ )(∃Ī)(α ∧ ψM ).

This proves that K is a generalized spectrum. ⊓⊔

Remark. Properties expressible in existential-second order logic are some-
times called Σ1

1 -properties. Hence Fagin’s Theorem is often stated in the more
succinct form: NP = Σ1

1 .

Exercise 2.2.19. Prove that every set in NP can be defined by a Σ1
1 -

sentence whose first-order part has an ∀∗∃∗-prefix. Furthermore, prove that
this cannot be reduced to ∀∗.

Exercise 2.2.20. Derive the Cook-Levin Theorem (the NP-completeness of
SAT) from Fagin’s Theorem.

There are several interesting consequences of Fagin’s Theorem. Asser [26]
has formulated an outstanding open problem, namely whether the comple-
ment of every spectrum is again a spectrum. For generalized spectra this
problem turns out to be equivalent to the problem whether NP = Co-NP.

Corollary 2.2.21. The class of generalized spectra is closed under comple-
mentation if and only if NP = Co-NP.
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Corollary 2.2.22. Let K be an isomorphism-closed class of finite structures
of some fixed non-empty vocabulary τ . Then code(K) is in the polynomial-
time hierarchy PH if and only if there exists a second-order sentence α such
that K is the class of finite models of α.

Fagin’s characterization of generalized spectra implies also a characteri-
zation of spectra of first-order formulae which had been proved in a different
way in [285].

Corollary 2.2.23 (Jones, Selman). A set of natural numbers is a first-
order spectrum if and only if it is element of Nexptime.

Corollary 2.2.24 (Fagin). Every set of natural numbers in Exptime is
a categorical spectrum. (A spectrum is categorical if and only if it is the
spectrum of a sentence that has, up to isomorphism, at most one model in
any finite cardinality.)

Exercise 2.2.25 (Advanced). Prove these two corollaries.

The Spectrum Theorem. The notion of spectra is not restricted to first-
order logic. We present in this paragraph a solution for the spectrum problem
for logics of arbitrary finite order.

We first discuss the notion of n-th order predicate logic. In fact there
exist two such notions, which we refer to as weak and strong n-th order logic.
Note that a first-order formula can contain second-order objects (predicates
and function symbols) but quantification is allowed only over first-order ob-
jects. A formula is weak second order if it is second order (i.e. quantification
over predicates and functions is allowed) but does not contain predicates (or
functions) of predicates. A formula of strong second order can contain pred-
icates of predicates (which cannot be quantified however). This distinction
extends to predicate logic of order n: In weak n-th order logic we have only
predicates and function up to n-th order whereas in strong n-th order logic
we may have predicates and functions of order n + 1 but quantification is
restricted to objects of order n.

In the literature on the spectrum problem, n-th order logic usually meant
strong n-th order logic. However, in most other branches of logic, notably
model theory and finite model theory, the understanding of n-th order logic
is weak n-th order logic (in particular for second-order logic).

The spectrum problem for n-th order logic is the problem of characteriz-
ing SPECTRAn, the class of spectra of formulae of strong n-th order pred-
icate logic. The Spectrum Hierarchy Theorem gives a solution in terms of
computational complexity. It was proved piecemeal in [32, 79, 285, 443]. We
obtain it from an appropriate specification of the schema for economical de-
scription of Turing machine programs. The reader who is not interested in
its general type theoretical form may consider m to be simply 1. We write
expm(n) for the m-fold iterated exponential function, i.e. exp0(n) = n and
expm+1(n) = 2expm(n).
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Theorem 2.2.26 (Spectrum Hierarchy Theorem). For each m ≥ 1,
the class SPECTRAm coincides with the class of sets S of positive integers
which are accepted by non-deterministic Turing machines in m-fold exponen-
tial time, i.e.

SPECTRAm = {S ⊆ N : S ∈ Ntime(expm(O(n))}.

Proof. We first associate with each non-deterministic one-tape Turing ma-
chine M a reduction formula of order m ≥ 1 whose spectrum is the set of
(positive) numbers which is accepted by M in m-fold exponential time. To
simplify the formulae describing the input, we give the construction in terms
of unary input 1n; in doing so we use the fact that the time bound expm(nc),
for some arbitrarily chosen but fixed constant c and unary input 1n, cor-
responds to an m + 1-fold exponential bound in the length of the binary
representation of n. It is therefore sufficient to construct, for each nondeter-
ministic Turing machine M and each c, a reduction formula

STEPM,c ∧ STARTc ∧ STOPM,c ∧ORDERK(Z, S)

of order m+ 1 such that the following holds.

Reduction Property: For each number n ≥ 2, M accepts input 1n in
expm(nc) steps if and only if

STEPM,c ∧ STARTc ∧ STOPM,c ∧ORDERK(Z, S)

is satisfiable over the universe n = {0, . . . , n− 1}.

The problem consists in describing computations of length expm(nc) over
a domain of n elements. The problem is similar to the one in the proof for
Fagin’s Theorem. Here we have to assure that possible models of our program
formulae contain sufficiently many “objects” to encode the time and space
parameters; in addition we need a successor relation among these objects.
A simple solution is offered by the possibility to speak, in formulae of order
m+1, about objects obtained by m iterations of the power set construction.
We start with the c-fold Cartesian product of the set n. Formally, denote by
∗ the type (of the elements) of the domain, and define

τ0 := (∗ . . . ∗)︸ ︷︷ ︸
c-times

, τi+1 := (τi).

τ0 is the type of (the elements of) the c-fold Cartesian product of the domain
of type ∗, τi+1 the type of (the elements of) the power set of a set of (elements
of) type τi. Over finite domain (say n = {0, 1, . . . , n − 1}) of n elements
of type ∗ there are expm(nc) elements of type τm These elements can be
totally ordered by a formula ORDERK(Z, S), of orderm+1, which formalises
an order K with successor relation S and zero-predicate Z (i.e. satisfying
∃zZz ∧ ∀x(Zx↔ ¬∃yKyx)).
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This allows us to specify our program formula schema to a program for-
mula STEPM,c of orderm+1 as follows. In STEPM all parameters t, t′, x, x′, y
are treated as variables (for elements) of type τm and are universally quan-
tified. Consequently the predicate symbols H,Tj ,K, S and Ii, Z are of type
(τmτm) and (τm) respectively and therefore of order m + 1. Their intended
interpretation remains unchanged except for expressing the time and tape
cell parameters by the order number |x| of elements x in the linear ordering
K of objects of type τm.

For the stop formula STOPM,c we can use the same formula as in the
proof of the Cook-Levin Theorem. We express the last configuration of the
(non-deterministic) computation by referencing the last element in the K-
ordering:

STOPM,c := ∀t((¬∃t′ Ktt′)→
∧
i ̸=1

¬Iit)

What remains is to formalize the beginning of the computation on some
a priori unknown input 1n. We use an embedding formula to formalize an
order-preserving embedding of the given domain of individuals into the ini-
tial segment of the K-ordering of elements of type τm. The domain of in-
dividuals is some n = {0, 1, . . . , n − 1} and is ordered using a first-order
formula ORDERK′(Z ′, S′). The graph F of an embedding function can then
be formalized as conjunction of the following formulae:

∀u∃xFux (existence)

∀u∀v∀x∀y(Fux ∧ Fvy → (S′uv ↔ Sxy)) (preservation of order)

∀u∀x(Fux ∧ Z ′u→ Zx) (preservation of minima)

ORDERK′(Z ′, S′)

Note that order-preservation ensures that F is the graph of an injective
function that maps n onto an initial K-segment.

We are now in a position to define the start formula STARTc as conjunc-
tion of the embedding formula and the following formulae:

∀t(Zt→ I0t ∧Htt) (at time 0: state 0, head position 0

∀t(Zt→ ∀x(∃uFux→ T1tx)) (input 1 in domain of embedding)

∀t(Zt→ ∀x((¬∃uFux)→ T0tx)) (blank input 0 outside domain of F )

This concludes the definition of the reduction formula. It remains to prove
that the reduction property is satisfied. If M accepts input n in at most
expm(nc) steps, then the configuration sequence of length expm(nc) becomes
constant at the first occurrence of the accepting state 1. Therefore the above
indicated intended interpretation over n yields a model of

STEPM,c ∧ STARTc ∧ STOPM,c ∧ORDERc.
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Conversely the Simulation Lemma from Sect. 2.1.1 holds for an arbitrary
model of this formula with universe n if in the configuration formulae Ct of
Ct the time and space parameters t, x are replaced by their order numbers
|t|, |x| in the given model. The truth, in that model, of the stop formula then
assures that at the final configuration, M can be only in its accepting state.

⊓⊔

Exercise 2.2.27. Prove that the satisfiability over n of formulae of order
m is decidable by non-deterministic Turing machines in m-fold exponential
time. Hint: Use the fact that for appropriate k, for each variable of any
type τ occuring in the formula, there are at most expm(nk) elements of
type τ over a domain of n elements of type ∗. (See [443] for an explicit
exponential arithmetic description of the finite satisfiability problem of m-th
order formulae.)

Exercise 2.2.28. Deduce Fagin’s Theorem from the Spectrum Theorem.

Note that, by the proof of the Spectrum Hierarchy Theorem, a set S ⊆ N
is a first-order spectrum if and only if {1n : n ∈ S} ∈ NP.

2.2.3 Capturing Complexity Classes

Fagin’s Theorem suggests the question whether there are similar logical de-
scriptions of other important complexity classes, in particular for P. This
question has led to the development of an important branch of finite model
theory, called descriptive complexity theory. While computational complexity
theory investigates the amount of machine resources (e.g. time or space) nec-
essary to solve a given problem, descriptive complexity asks for the ‘logical
resources’: in which logic is the given problem definable.

It has turned out that there are intimate connections between computa-
tional and descriptive complexity as long as one considers structures where
a linear order is explicitly given (or definable in an appropriate way). On
ordered structures, model-theoretic characterizations are known for most of
the major complexity classes, and it is fair to say that logic plays a similar
rôle as any abstract machine model.

However, if no linear order is available, then the relationship between com-
plexity and definability is much more complicated. It is not known whether
any model-theoretic characterization of polynomial-time complexity is possi-
ble on arbitrary finite structures. The reduction method, as used in the proof
of Fagin’s Theorem and Theorems 2.2.36 and 2.2.45 below, is not applicable
without a linear order on the input structure. The problem whether there ex-
ists a ‘logic for polynomial-time’ is explained and discussed in [100, 232, 413].

In this section, we explain model-theoretic characterizations of P and
Nlogspace on ordered structures. We show that variants of the reduction
scheme used in the proof Fagin’s Theorem yield descriptions of these com-
plexity classes in terms of fragments of second-order logic (or, equivalently,
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in terms of generalized Horn and Krom spectra). We also show that the more
common characterizations in terms of fixed-point logic and transitive closure
logic can be easily derived from these results.

Definition 2.2.29. Let L be logic, S be a class of finite structures and C a
complexity class. We say that L captures C on S if, for every isomorphism-
closed class K ⊆ S of fixed finite vocabulary, the following are equivalent.

(i) There exists a sentence ψ ∈ L such that K = {A ∈ S : A |= ψ}.
(ii) The problem whether a given structure A ∈ S belongs to K is in the
complexity class C.

We simply say that L captures C in case that L captures C on the class of all
finite structures.

Thus, Fagin’s Theorem says that existential second order Σ1
1 captures NP.

Further, it is an almost immediate consequence of Fagin’s Theorem that the
polynomial-time hierarchy is captured by second-order logic (see [416, 491]).

Second-Order Horn Logic and Polynomial Time..

Definition 2.2.30. Second-order Horn logic, denoted, SO-HORN, is the set
of second-order formulae of the form

(Q1R1) · · · (QmRm)∀y1 · · · ∀ys
t∧
i=1

Ci

where Qi ∈ {∃,∀}, the Ri are relation symbols and each of the clauses Ci is a
disjunction of atoms and negated atoms with at most one positive occurrence
of a predicate Rj . Occurrences of equalities and inequalities, of predicates not
belonging to R1, . . . , Rm, and negative occurrences of R1, . . . , Rm are not re-
stricted. Thus the quantifier-free part of the formulae in SO-HORN are Horn
formulae with respect to the quantified predicates but not necessarily with
respect to the ‘input predicates’ from the underlying vocabulary. Σ1

1 -HORN
denotes the existential fragment of SO-HORN, i.e. the formulae where all
second order quantifiers are existential.

It is convenient to write the clauses in ‘logic programming notation’

H ← B1 ∧ · · · ∧Bk.

The conjunction B1∧· · ·∧Bk is the body of the clause; H is is either an atom
Rj ū or the symbol � indicating a contradiction and is called the head of the
clause. (In this notation the predicates R1, . . . , Rr always appear unnegated.)

Example. The problem GEN is a well-known P-complete problem [215, 283].
It may be presented as the set of structures (A,S, f, a) in the vocabulary of
one unary predicate S, one binary function f and a constant a, such that a
is contained in the closure of S under f . Clearly, the complement of GEN is
also P-complete. It is defined by the following sentence of Σ1

1 -HORN:
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(∃R)∀y∀z
(
(Ry ← Sy) ∧ (Rfyz ← Ry ∧Rz) ∧ (�← Ra)

)
.

Example. The circuit value problem CVP is also P-complete [215], even
when restricted to circuits with fan-in two over NAND-gates (also called
Sheffer’s stroke gates). Such a circuit can be considered as a structure
(V,E, I+, I−, out) where (V,E) is a directed acyclic graph, I+ and I− are
monadic and a is a constant; Exy means that node x is one of the two in-
put nodes for y, I+ and I− contain the inputs node with value 1 and 0,
respectively, and out stands for the output node.

We will take for granted that E is a connected, acyclic graph with fan-
in two, sources I+ ∪ I− and sink out. Then the formula (∃T )(∃F )∀x∀y∀zφ
where φ is the conjunction of the clauses

Tx ← I+x

Fx ← I−x

Ty ← Fx ∧ Exy
Fz ← Tx ∧ Exz ∧ Ty ∧ Eyz ∧ y ̸= z

� ← Tx ∧ Fx
Tx ← x = out

states that the circuit (V,E, I+, I−, out) evaluates to 1.

Exercise 2.2.31. To justify the definition of SO-HORN, show that the ad-
mission of quantifiers over functions or of first order prefixes of a more general
form, would make the restriction to Horn clauses pointless. Any such exten-
sion of SO-HORN has the full power of second order logic.

Theorem 2.2.32. Every sentence ψ ∈ SO-HORN is equivalent to some sen-
tence ψ′ ∈ Σ1

1 -HORN.

Proof. It suffices to prove the Theorem for formulae of the form

ψ := (∀P )(∃R1) · · · (∃Rm)∀z̄φ

where φ is a conjunction of Horn clauses. Indeed, an arbitrary formula in
SO-HORN may then be brought to existential form by successively removing
the innermost universal second order quantifier. We first prove the following

Claim. A formula (∃R̄)∀z̄φ(P, R̄) ∈ Σ1
1 -HORN is true for all predicates P

(on a given structure A) if it holds for those predicates P that are false at at
most one point.

Let k be the arity of P . For every k-tuple ā, let P ā = Ak − {ā}, i.e. the
predicate that is false at ā and true at all other points. By assumption there
exist predicates R̄ā such that

(A, P ā, R̄ā) |= ∀z̄φ.
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For every predicate P ̸= Ak let

Ri :=
∩
ā̸∈P

Rāi .

We claim that (A, P, R̄) |= ∀z̄φ.
Suppose that this is false; then there exists a relation P ̸= Ak, a clause

C of φ and an assignment π : {z1 . . . , zs} → A such that (A, P, R̄) |= ¬Cπ.
We show that then there exists a tuple ā such that also (A, P ā, R̄ā) |= ¬Cπ.

If the head of Cπ is Pū then take ā = ū ̸∈ P . If the head of Cπ is Riū,
then choose some ā ̸∈ P such that ū ̸∈ Rāi ; such a ā must exist because
ū ̸∈ Ri. Otherwise (if the head is empty or an atom Qū where Q belongs
to the vocabulary of A), take an arbitrary ā ̸∈ P . The head of Cπ is clearly
false in (A, P ā, R̄ā). The atom P ā does not occur in the body of Cπ, because
ā ̸∈ P and all atoms in the body of Cπ are true in (A, P, R̄); all other atoms
of the form P v̄ that might occur in the body of the clause remain true also
for P ā. Moreover every atom Riv̄ in the body remains true if Ri is replaced
by Rāi (because Ri ⊆ Rāi ). This implies that the clause (A, P ā, R̄ā) |= ¬Cπ
and thus

(A, P ā, R̄ā) |= ¬∀z̄φ
which contradicts our assumption.

Thus the claim is established. This implies that the original formula ψ is
equivalent to the conjunction

(∃R̄)∀z̄φ0 ∧ ∀ȳ(∃R̄)∀z̄φ1

where φ1 (resp. φ0) are obtained from φ by replacing every atom Pū by ū ̸= ȳ
(which is true iff ū ∈ P ȳ), resp. by (ū = ū) (which is always true). It is easy
to transform that conjunction into an equivalent formula in Σ1

1 -HORN. ⊓⊔

Theorem 2.2.33. Let ψ ∈ SO-HORN. Then the set of finite models of ψ is
in P.

Proof. By the previous theorem we can restrict attention to sentences ψ =
(∃R1) · · · (∃Rm)∀z̄

∧
i Ci in Σ

1
1 -HORN. Given any finite structure A of appro-

priate vocabulary, we reduce the problem whether A |= ψ to the satisfiability
problem for a propositional Horn formula in the following way.

Replace the universal quantifiers ∀zi by conjunctions over the elements
zi ∈ A and omit the quantifier prefix. Then substitute the relation symbols
that belong to the vocabulary of A, including equalities and inequalities, by
their truth values in A. If there is any clause that is already made false by
this partial interpretation (i.e. the head is false and all atoms in the body
are true) then reject ψ. Otherwise, omit all clauses that are already made
true (i.e. the head is true or an atom in the body is false) and delete the
already interpreted atoms from the remaining clauses. Consider the atoms
Riū as propositional variables. The resulting formula is a propositional Horn
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formula whose length is polynomially bounded in the cardinality of A and
which is satisfiable if and only if A |= ψ. It is known that the satisfiability
problem for propositional Horn formulae can be solved in polynomial time
(see e.g. [416, p. 79]). ⊓⊔

Recall that the class O(τ) of ordered τ -structures is the class of all (A, <)
where A is a finite τ -structure and < a linear order < on A. For describing
polynomial-time complexity by SO-HORN the presence of a linear ordering
does not suffice. We need to have a successor relation given explicitly.

Definition 2.2.34. A successor structure is a finite structure (A, <, S, 0, e)
where< is a linear order on the universe of A, S is the corresponding successor
relation and 0, e are the first resp. last elements of the universe with respect
to <.

Theorem 2.2.35. Every property of successor structures that is decidable in
polynomial time is definable in Σ1

1 -HORN.

Proof. This follows by an analysis of our proof for Fagin’s Theorem. Indeed,
if the Turing machine M happens to be deterministic then the sentence

(∃H)(∃T̄ )(∃Ī)ψM

constructed in that proof can easily be transformed to an equivalent sentence
in Σ1

1 -HORN. To see this, recall that ψM is the universal closure of START∧
STEPM ∧ACCEPT. Here START is a conjunction of atomic statements and
of implications βσ(x̄)→ Tσ(0̄, x̄). We already observed in Exercise 2.2.15 that,
in the presence of S, 0 and e, we can assume that the βσ(x̄) are quantifier-
free. Take the disjunctive normal form

∨
i βσ,i(x̄) of βσ(x̄) and replace the

implication βσ(x̄) → Tσ(0̄, x̄) by the conjunction of the clauses βσ,i(x̄) →
Tσ(0̄, x̄). Since the quantified predicates H, T̄ , Ī do not occur in βσ(x̄) these
are clauses of the required form.

The formula STEPM is the conjunction of the formulae (2.1)–(2.3) of the
reduction scheme (from page 20). If M is deterministic then these are indeed
Horn clauses. (Note that the successor relation on k-tuples is definable from
the basic successor relation via Horn clauses.) Finally ACCEPT = ¬I2(t̄) is
also a Horn clause. ⊓⊔

We thus have established a logical characterization of polynomial time.

Theorem 2.2.36 (Grädel). SO-HORN and Σ1
1 -HORNcapture polynomial

time on successor structures.

Exercise 2.2.37. Prove that contrary to the case of Fagin’s Theorem the
assumption that a successor relation is explicitly given cannot be eliminated,
since linear orderings and successor relations cannot be axiomatized by Horn
formulae. In fact, even an explicitly given order < does not suffice. Hint:
Sentences in SO-HORN are preserved under substructures: If A |= ψ and
B ⊆ A then also B |= ψ.
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Fixed-Point Logics. There are a number of other model-theoretic charac-
terizations of polynomial-time on ordered structures. The most important
and well-known are those in terms of fixed-point logics [276, 517].

It is well-known that the expressive power of first-order logic is limited
by the lack of a mechanism for unbounded iteration or recursion. The most
notable example of a query that is not first-order expressible is the transitive
closure (TC) of a relation. This has motivated the study of more powerful
languages that add recursion in one way or another to first-order logic. Fixed-
point logics are one possibility to achieve this.

Let τ be a vocabulary, P an k-ary predicate not in τ and ψ(x̄) a formula
of vocabulary τ ∪ {P} with only positive occurrences of P , and let x̄ be
a k-tuple of variables. Then ψ defines for every τ -structure A an operator
ψA : P(Ak)→ P(Ak) on the class of k-ary relations on A, namely

ψA : P 7→ {ā : (A, P ) |= ψ[ā]}.

Since P occurs only positively in ψ, this operator is monotone, i.e. Q ⊆
P implies ψA(Q) ⊆ ψA(P ). Therefore this operator has a least fixed point
which may be constructed inductively. Set P 0 := ∅, P j+1 := ψA(P j) and
Pω :=

∪
j<ω P

j . For finite A this process will reach the least fixed point Pω

in a polynomial number of steps.

Definition 2.2.38. The least fixed-point logic (FO + LFP) is defined by
adding to the syntax of first order logic the least fixed point formation rule:
If ψ(x̄) is a formula of vocabulary τ ∪ {P} with the properties stated above
and ū is a k-tuple of terms, then

[LFPP,x̄ ψ](ū)

is a formula of vocabulary τ (to be interpreted as Pω(ū)).

Example. Here is a fixed-point formula that defines the reflexive and tran-
sitive closure of the binary predicate E:

TC(u, v) := [LFPT,x,y (x = y) ∨ (∃z)(Exz ∧ Tzy)](u, v).

Exercise 2.2.39. Prove that the problem GEN and the circuit value prob-
lem (see the examples for SO-HORN) are expressible in (FO + LFP).

Proposition 2.2.40. Let ψ be a sentence in (FO + LFP). It is decidable in
polynomial time whether a given finite structure A is a model of ψ.

This is obvious, given that the least fixed point of ψA is reached af-
ter a polynomial number of iterations and that first-order operations are
polynomial-time computable.

Theorem 2.2.41. Every formula ψ ∈ SO-HORN is equivalent to some for-
mula ψ∗ ∈ (FO + LFP).
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Proof. By Theorem 2.2.32 we can assume that ψ = (∃R1) · · · (∃Rm)φ ∈
Σ1

1 -HORN. By combining the predicates R1, . . . , Rm to a single predicate R
of larger arity and by renaming variables it is easy to transform ψ into an
equivalent formula

ψ′ := (∃R)∀x̄∀ȳ
∧
i

Ci ∧
∧
j

Dj

where Ci are clauses of the form Rx̄← αi(x̄, ȳ) (with exactly the same head
Rx̄ for every i) and Dj are clauses of the form �← βj(x̄, ȳ). Let R

ω be the
least-fixed point (or equivalently, the minimal model) of the clauses Ci on A.
Rω is defined by the fixed-point formula

αω(z̄) := [LFPR,x̄
∨
i

∃ȳαi(x̄, ȳ)](z̄).

Let β := ∃x̄∃ȳ
∨
j βj(x̄, ȳ). Obviously,

A |= ψ ⇐⇒ (A, Rω) |= ∀x̄∀ȳ
∧
i

Ci ∧
∧
j

Dj ⇐⇒ (A, Rω) |= ¬β.

Thus ψ is equivalent to the formula ψ∗ := ¬β[Rz̄/αω(z̄)] obtained from
¬β by substituting all occurrences of atoms Rz̄ by αω(z̄). Clearly this formula
is in (FO + LFP). ⊓⊔

Theorem 2.2.42 (Immerman, Vardi). On ordered structures, the least
fixed point logic (FO + LFP) captures polynomial time.

This is an immediate consequence of Theorem 2.2.36 and Theorem 2.2.41,
together with the obvious fact that in (FO + LFP) the successor relation is
definable from the linear ordering.

There are many other variants of fixed-point logic. We refer to [141] for
more results on this subject.

Second-Order Krom Logic.

Definition 2.2.43. Second order Krom logic, denoted SO-KROM, is the set
of second-order formulae

(Q1R1) · · · (QmRm)∀y1 · · · ∀ys
t∧
i=1

Ci

where every clause Ci is a disjunction of atoms and negated atoms with at
most two occurrences of predicates R1, . . . , Rm. Such formulae are Krom (i.e.
in 2-CNF) with respect to the quantified predicates.Σ1

1 -KROM is the existen-
tial fragment of SO-KROM. The intersection of Σ1

1 -HORN and Σ1
1 -KROM

is denoted by Σ1
1 -KROM-HORN.



64 2. Reductions

Example. The graph accessibility problem (“Is there a path in the graph
(V,E) from a to b?”) is complete for Nlogspace via first order translations.
Its complement is expressible by a formula from Σ1

1 -KROM-HORN:

(∃T )∀x∀y∀z
(
Txx ∧ (Txz ← Txy ∧ Eyz) ∧ (�← Tab)

)
.

As in the case of SO-HORN it is also known that every sentence of
SO-KROM is equivalent to a sentence of Σ1

1 -KROM (see [207]).

Proposition 2.2.44. Let ψ ∈ SO-KROM. Then the set of finite models of
ψ is in Nlogspace.

The proof is analogous to the proof of Theorem 2.2.33. It uses the fact that
the satisfiability problem for propositional Krom formulae is in Nlogspace.

On successor structures, SO-KROM captures Nlogspace. We indicate
the general idea of the proof. Suppose that M is an O(log n)-space bounded
nondeterministic Turing machine with an input tape, carrying a representa-
tion code(A, <) of an input structure, and one or more separate work-tapes.
A reduced configuration of M reflects the control state of M , the content of
the work tapes and the positions of the heads on the input tape and the work
tapes. Thus a configuration is specified by a reduced configuration together
with the input. Given that reduced configurations of M on input code(A, <)
have logarithmic length with respect to |A|, we can represent them by tuples
c̄ = c1, . . . , cr ∈ Ar for fixed r. The initial reduced configuration on any in-
put code(A, <) is represented by the tuple 0̄. Assume that M has a single
accepting state, say state 1, and let the first component of a reduced config-
uration describe the state; then the condition that ȳ represents an accepting
reduces configuration is expressed by ACCEPT(ȳ) := (y1 = 1). Further, is
not difficult (although a bit lengthy) to write down a quantifier-free formula
NEXT(x̄, ȳ) such that, for every successor structure (A, S, 0, e) and every
tuple c̄ representing a reduced configuration,

(A, S, 0, e) |= NEXT[c̄, d̄]

if and only if d̄ represents a reduced successor configuration of c̄ on input
(A, <). Taking the disjunctive normal form NEXT(x̄, ȳ) =

∨
iNEXTi(x̄, ȳ)

we can express that M does not accept the input code(A, <) by the the
sentence

ψM := (∃R)∀x̄∀ȳ
(
R0̄ ∧

∧
i

(Rȳ ← Rx̄ ∧NEXTi(x̄, ȳ))

∧ (�← Rȳ ∧ACCEPT(ȳ)
)
.

This proves that, on successor structures, the complement of every prob-
lem in Nlogspace is definable in SO-KROM. Since Nlogspace is closed
under complement, and since the formula ψM is in fact in Σ1

1 -KROM-HORN
we have proved the following result.
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Theorem 2.2.45 (Grädel). On successor structures, the logics SO-KROM,
Σ1

1 -KROM and Σ1
1 -KROM-HORN capture Nlogspace.

Remark. The characterizations of P and Nlogspace by second-order Horn
and Krom logics can also be reformulated in terms of generalized spectra.
The notion of a generalized spectrum can be appropriately modified to the
notions of a generalized Horn spectrum and a generalized Krom spectrum.
Let a model class be any isomorphism-closed class of structures of some fixed
finite signature. Fagin’s Theorem and Grädel’s Theorems 2.2.36 and 2.2.45
can the be summarized as follows.

– A model class of finite structures is NP iff it is a generalized spectrum.
– A model class of successor structures is in P iff it is a generalized Horn

spectrum.
– A model class of successor structures is in Nlogspace iff it is a generalized

Krom spectrum.

Transitive Closure Logic. A similar technique yields Immerman’s earlier
characterization of Nlogspace in terms of transitive closure logic [277].

Definition 2.2.46. Transitive closure logic, denoted (FO + TC), is obtained
by augmenting the syntax of first order logic by the following rule for building
formulae:

Let φ(x̄, ȳ) be a formula with variables x̄ = x1, . . . , xk and ȳ = y1, . . . , yk,
and let ū and v̄ be two k-tuples of terms. Then

[TCx̄,ȳ φ(x̄, ȳ)](ū, v̄)

is a formula, which says that the pair (ū, v̄) is contained in the reflexive,
transitive closure of the binary relation on k-tuples that is defined by φ.

Of course, it is understood that φ can contain other free variables than
x̄ and ȳ; these will be free also in the new formula. Moreover, transitive
closure logic is closed under the usual first order operations. We thus can
build Boolean combinations of TC-formulae, we can nest TC-operators etc.

Exercise 2.2.47. Show that for every ψ ∈ (FO + TC), the set of finite
models of ψ is decidable in Nlogspace.

The same idea as in the proof of Theorem 2.2.45 shows that, on ordered
structures, (FO + TC) captures Nlogspace. The condition that an O(log n)
space bounded Turing machine M accepts code(A, <) is expressed by the
formula

∃z̄
(
ACCEPT(z̄) ∧ [TCx̄,ȳ NEXT(x̄, ȳ)](0̄, z̄)

)
.

Theorem 2.2.48 (Immerman). On ordered structures, (FO + TC) cap-
tures Nlogspace.
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Exercise 2.2.49. Prove that, on arbitrary finite structures, SO-KROM is
strictly weaker than (FO + TC).

Remark. Another characterization of Nlogspace, in terms of narrow
Henkin quantifiers, is due to Blass and Gurevich [36].

2.2.4 A Decidable Prefix-Vocabulary Class

As the last example in this section we introduce a theme that will be treated in
more detail in subsequent chapters. We derive two results on the complexity
of the decision problem of fragments of the so-called Bernays-Schönfinkel
class. This class is denoted by [∃∗∀∗] and consists of all prenex sentences
of the pure predicate calculus (without function symbols and equality) with
prefix of the form

∃u1 · · · ∃um∀x1 · · · ∀xn.

It was one of the first formula classes for which the satisfiability prob-
lem was shown to be recursive [35]; much later it turned out to be one of
the two maximal decidable prefix classes. This eminent rôle of the Bernays-
Schönfinkel class is confirmed by the fact that the restrictions of the class
to Krom formulae or to Horn formulae yields classes whose decision problem
is complete for outstanding complexity classes. We use here the reduction
method to establish the hardness results; the decision procedures establish-
ing the corresponding upper complexity bounds will be given in Chap. 8.

Theorem 2.2.50. The satisfiability problem for the Bernays-Schönfinkel
class, restricted to Krom sentences, is Pspace-hard. This is even true for
the subclass [∃2∀∗] ∩KROM ∩HORN.

Proof. We paraphrase the proof of Theorem 2.1.15 of Aanderaa and Börger.
Here we reduce the problem C0(w) ⇒M,p(|w|) Cacc of acceptance for deter-
ministic Turing machine programs M with polynomial space bound p(|w|),
for input words w. We reduce it to the problem to logically derive Cacc from
the Krom and Horn formula ∀x1 . . . ∀xmSTEPM,w∧C0(w). Since this formula
will be element of the class in question and of length bounded by p(|w|) (and
since Pspace is closed under complementation), this suffices to establish the
claim.

To simplify notation we imagine M -configurations with tape length m
given in the form C = j1 . . . jl−1(i, j)jl+1 . . . jm, where jλ, j represent letters
of the alphabet of M , i an internal state of M and the occurrence of the
pair (i, j) the reading head position. The logical encoding C is defined as the
atomic formula Cj1 . . . jl−1(i, j)jl+1 . . . jm where jλ, (i, j) are read as individ-
ual constants and C as m-ary predicate symbol. Given input word w1 . . . wn
and m := p(|w|), the intended interpretation of Ct is that C0(w) ⇒M,m t,
where C0(w) denotes the initial configuration (0, w1)w2 . . . wn0 . . . 0.
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The program formula STEPM,w is therefore defined as conjunction of the
implications Cx(i, j)y → Cx(i′, j′)y (for print instructions (i, j, j′, i′) of M)
and Cx(i, j)j′y → Cxj(i′, j′)y (for right movement instructions (i, j, r, i′) of
M) and analogous implications for left move instructions. Here x = x1 . . . xl−1

and y = xl+1 . . . xm or y = xl+2 . . . xm for all l ≤ m (for print instructions)
or l < m (for right movement instructions).

As initial and final formulae we obviously set START := C0(w) and
END := Cacc. Without loss of generality Cacc = (1, 0)0 · · · 0, i.e. M accepts
in state 1 with reading head at the left end of the empty tape.

Exercise 2.2.51. Verify that M accepts w iff the formula

∀x1 · · · ∀xmSTEPM,w ∧ C0(w) ∧ Cacc

is contradictory.

To obtain the reduction with only two existential quantifiers it suffices to
carry out the Turing machine tape encoding over the two element alphabet
{0,1}. ⊓⊔

Remark. Using the determinacy ofM , the preceding construction can easily
be modified to make the reduction formulae determinate in the sense of Prolog
(see [421]).

Theorem 2.2.52. The satisfiability problem for the restriction of the Ber-
nays-Schönfinkel class to Horn formulae is Exptime-hard.

Proof. We reduce the acceptance problem “M accepts input w in < 2c|w|

steps” for deterministic Turing machine programsM . We reduce the problem
to the satisfiability problem of a Bernays-Schönfinkel Horn formula

∀STEPM ∧ STARTw ∧ END ∧ η

Here STARTw,END describe the initial and final accepting configuration
and STEPM the program M , using an auxiliary formula η defined below. ∀
denotes the universal closure.

ConsiderM -computations of length ≤ ℓ := 2c|w|, started with input word
w. To simplify the notation we represent such a computation as an ℓ × ℓ
matrix µ where in the t-th row the entry µ(x, t) is the letter j in non-reading
head positions x at time t or the pair (i, j) of state i of M and letter j in
the reading head position x of M at time t. For a short description of such
computations we divide the part of the tape that has been used into segments
of length n := c|w|. We encode time and tape parameters t, u < 2n in a
segment by binary sequences t, u of length n. The logical representation C of
configurations C is defined as conjunction of atomic formulae T (x, u, t) with
the following intended interpretation (with respect to the given computation):

T (x, u, t) is true iff x is the u-th tape segment at time t.
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In these atomic formulae we treat letters j, state-letter pairs (i, j) and binary
digits as individual constants.

For the acceptance condition, namely that M at time 2n − 1 will be in
state 1, we assume without loss of generality that at time 2n − 1 the reading
head position will in any case be at the left end of the empty tape. Since the
time 2n − 1 moment is encoded in binary by 1, the acceptance condition can
be expressed by :

END :=
∧
i ̸=1

¬T ((i, 0)0 . . . 0, 0, 1)

Initial configurations have the form (0, w0)w1 . . . wm−100 . . . 0 with input
word w = w0 . . . wm−1 followed by a sequence 0 of blanks in the 0-th tape
segment, with initial M -state 0, reading head position 0 and sequences 0
of blanks in all other segments to the right. These configurations can be
represented by the initial formula

STARTw := T ((0, w0)w1 . . . wm−10, 0, 0) ∧ ∀uTr(0, u, 0)

where the auxiliary predicate Tr formalizes a 1-segment shift of T to the right.
This means that the intended interpretation of Tr(x, u, t) is T (x, u+ 1, t).

In the program formula we will use also auxiliary predicates Tl for a 1-
segment shift of T to the left (“left neighbour segment”) and T+ for a shift
to the next moment, i.e. with the intended interpretation:

Tl(x, u, t) iff T (x, u− 1, t)

T+(x, u, t) iff T (x, u, t+ 1)

LetM be the function determined byM that assigns to each triple (x, y, z)
of neighbouring tape segments at time t the successor tape segmentM(x, y, z)
at time t+1 of segment y. Then the program formula STEPM can be defined
as conjunction of all the relevant implications

Tl(x, u, t) ∧ T (y, u, t) ∧ Tr(z, u, t)→ T+(M(x, y, z), u, t).

Special conjuncts correspond to transitions in the first and the last seg-
ment.

Exercise 2.2.53. Spell out this program formula in full.

What remains to define is the auxiliary formula η that provides the in-
tended interpretation of the auxiliary predicates Tr, Tl, T+. They are intended
to describe neighbouring segments or segments at the next time moment.
Consider for instance Tl. We have to ensure that in our models T (x, y, z) im-
plies Tl(x, y + 1, z) and vice versa. Therefore essentially we have to formalize
binary addition and subtraction of 1 on subsequences y (representing num-
bers up to 2n−1) of sequences x, y, z. This is easily achieved as follows. First
we shift the sequence y stepwise from right to left, simultaneously changing 1
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to 0 (reflecting 1+1=0) until the first appearance of 0; then this 0 is changed
to 1 (reflecting 0+1=1); then the remaining digits are shifted unchanged to
the left.

To formalize this idea let A and P be new predicate symbols to repre-
sent the two phases of “adding” and “permuting”; let c be a new individual
constant to mark the beginning of the “counter” y; let x, y, z be sequences of
(universally quantified) variables of length n. The conjunction of the follow-
ing formulae assures the desired transition from T (x, y, z) to Tl(x, y + 1, z)
where y represents a number less than 2n − 1.

Start: Mark the left end of the counter and start the addition:

T (x, y, z)→ A(x, c, y, z).

Addition: Add 1 and shift 0 to the left (formalizing 1+1=0) until 0 is encoun-
tered; shift this 0 to the left as 1 (formalizing 0+1=1) and start then the
permutation to the left:

(A(x, y, 1, z)→ A(x, 0, y, z)) ∧ (A(x, y, 0, z)→ P (x, 1, y, z)).

Permutation: Permute the remaining counter digits unchanged (for i = 1, 2):

P (x, y, i, z)→ P (x, i, y, z).

Stop: Stop the subprocess when the left end of the counter is reached:

P (x, y, c, z)→ Tl(x, y, z).

Similar conjuncts have to be added to η for going from Tl(x, y + 1, z) to
T (x, y, z), and analogously for Tr and T+.

Exercise 2.2.54. Show that these formulae describe the acceptance problem
of M as stated above.

⊓⊔

Remark. It is interesting that Theorems 2.2.50 and 2.2.52 were first proved
in the context of dependency theory for relational databases. In fact Chandra,
Lewis and Makowsky [74] proved that the inference problem for full impli-
cational dependencies is Exptime-complete; in the same paper they showed
that the restriction to dependencies with only one atom in the antecedent is
Pspace-complete.

A full implicational dependency (FID) is in fact just a universal rela-
tional Horn sentence. The inference problem is the question whether a given
finite conjunction of FID’s implies another given FID. Clearly this just the
(un)satisfiability problem for a ∃∗∀∗-Horn sentence (in fact a conjunction of a
universal and an existential Horn sentence). If the body of each FID is atomic
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then the inference problem corresponds to an ∀∗∃∗-sentence in Krom-Horn
form. We refer to [14] for background on database theory.

These results were later reproved, without the connection to dependency
theory in [106, 421].

Exercise 2.2.55. Show that the satisfiability problem for Bernays-Schön-
finkel formulae is hard for nondeterministic exponential time. Hint: Replace
in the preceding proof the conclusions T+(M(x, y, z), u, t) by disjunctions∨
v∈M(x,y,z) T+(v, u, t). For a different proof, see Sect. 6.2 of this book

2.3 The Classifiability Problem

2.3.1 The Problem

We have seen that Hilbert’s Entscheidungsproblem was solved negatively,
whereas many special cases of it, that is restrictions of the Entscheidungsprob-
lem to particular classes of formulae, were solved positively. This leads in a
natural way to the investigation of the exact boundary between decidable
and undecidable classes of formulae. The Entscheidungsproblem turns into a
meta problem to classify classes into decidable and undecidable.

However, there are continuum many classes of formulae. In the context of
algorithmic solutions of decision problems, it is reasonable to restrict atten-
tion to constructively presented classes. Historically most attention has been
given to classes of prenex formulae given by syntactical restrictions on the
vocabulary, the quantifier prefix, the form of the quantifier free part. Notice
that the classification problem arises not only in the connection with recursive
decidability and undecidability. It also arises in the realm of decidable classes,
for example, in terms of decidability within given resource bounds (easy ver-
sus hard). There are many other variations of the classifiability problem. Pure
predicate logic can be extended with function variables, equality and maybe
additional predicate or function constants satisfying some axioms; see other
examples at the end of this section.

The theorem of Gurevich [222] that we present in this section, guaran-
tees a complete and satisfactory solution of various classification problems for
prefix-vocabulary classes of prenex formulas. The idea is that these classes
form a well partially ordered set (we will recall the definition of that im-
portant notion) where the collection of positive classes (that is classes with
a positive solution) is closed downward. It follows that a finite collection of
minimal negative classes characterizes all negative classes: each negative class
dominates at least one of the minimal negative classes. Moreover, the mini-
mal negative classes are standard in a sense which will be made precise below
and thus have succinct names. The number of maximal standard positive
classes is finite as well (but not every standard positive class is dominated by
a maximal standard positive class). Therefore, in the main body of the book,
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the prefix-vocabulary classes of interest will be almost exclusively standard
classes.

Gurevich’s Classifiability Theorem can be further extended; one such ex-
tension is found in Sect. 5.4. It is the main organizing principle of this book.

2.3.2 Well Partially Ordered Sets

In this section we recall the basics of the theory of well partially ordered sets
(wpo sets) including the Finite Sequence Theorem (also known as Higman’s
Lemma [260]). A history of the subject and further references can be found
in [335]. Our proof of the Finite Sequence Theorem is a version of Nash
Williams’ proof [403].

Definition 2.3.1. A quasi order (or a pre-order) is a reflexive and transitive
binary relation. A quasi ordered set (in short a qoset) is a set with a quasi
order. A partial order is an antisymmetric quasi order, in other words a quasi
order where x ≤ y ≤ x implies x = y. A partially ordered set (in short a
poset) is a set with a partial order.

Definition 2.3.2 (Wpo and Wqo Sets). A qoset is a well quasi ordered
set (in short a wqo set) if, for every infinite sequence a1, a2, . . ., there exist
i < j such that ai ≤ aj . A well partially ordered set (in short, a wpo set) is a
poset that is wqo.

Call elements x and y of a qoset (A,≤) equivalent, write x ≡ y, if x ≤ y
and y ≤ x. Order the equivalence classes in the natural way: [x] ≤ [y] if x ≤ y.
(Notice that the choice of representatives is immaterial: if x ≤ y, x′ ∈ [x] and
y′ ∈ [y] then x′ ≤ x ≤ y ≤ y′.) The result is a poset called the quotient poset
of (A,≤).

Exercise 2.3.3. A qoset (A,≤) is wqo if and only if its quotient poset is
wpo. Further suppose that B is a subset of A that contains exactly one
element from every equivalence class. Then (A,≤) is wqo if and only if the
substructure (B,≤) is a wpo set.

Elements x, y of a qoset are incomparable if neither x ≤ y nor y ≤ x. A
set of pairwise incomparable elements is an antichain. x < y will mean that
x ≤ y and x ̸≡ y. Of course, y ≥ x means x ≤ y, and y > x means x < y.
A sequence a1 ≤ a2 ≤ · · · is increasing or weakly increasing, and a sequence
b1 < b2 < · · · is strictly increasing. Similarly, a sequence a1 ≥ a2 ≥ · · ·
is decreasing or weakly decreasing, and a sequence b1 > b2 > · · · is strictly
decreasing. (We speak about sequences which are either finite or of type ω,
like natural numbers.)

Exercise 2.3.4. Let (A,≤) be a qoset. The following statements are equiv-
alent.
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1. The qoset is wqo.
2. Every infinite sequence has an infinite weakly increasing subsequence.
3. All strictly decreasing sequences are finite, and all antichains are finite.
4. Every nonempty subset X has at most one minimal element and there is

only a finite number of inequivalent minimal elements of X.

Hint: Prove 1→ 2→ 3→ 4→ 1.

Even though qosets occur naturally in many applications, it is often more
convenient to deal with posets.

Exercise 2.3.5. Let (A,≤) be a poset. The following statements are equiv-
alent.

1. The poset is wqo.
2. Every nonempty subset contains at least one and at most finitely many

minimal elements.

A subset X of a qoset (A,≤) is upward closed if y ≥ x ∈ X implies
y ∈ X. The upward closure of X is the set {y : (∃x ∈ X)(y ≥ x)}. The
notions downward closed and downward closure are defined similarly.

Exercise 2.3.6. Suppose that (A,≤) is a wpo set, X ⊆ A, M the set of the
minimal elements of X, and M is the upward closure of M . Then X ⊆M . If
X is upward closed then X =M .

Exercise 2.3.7. Suppose that (B,≤) is a substructure of a qoset (A,≤). If
(A,≤) is wqo, then so is (B,≤). If (B,≤) is wqo and A − B is finite, then
(A,≤) is wqo.

Recall that a homomorphism from a qoset (A1,≤1) to a qoset (A2,≤2) is
a mapping f : A1 → A2 such that x ≤1 y implies fx ≤2 fy. If, in addition,
f maps A1 onto A2, then (A2,≤2) is a homomorphic image of (A1,≤1).

Lemma 2.3.8. If a qoset (respectively poset) (A2,≤2) is a homomorphic
image of a wqo set (A1,≤1) then (A2,≤2) is wqo (respectively wpo).

Proof. Let f be a homomorphism from (A1,≤1) onto (A2,≤2) and consider
any infinite sequence fx1, fx2, . . .. Since (A1,≤1) is wqo, there exist i < j
such that xi ≤1 x2. But then fx1 ≤1 fx2. ⊓⊔

Recall that the direct product of posets (A,≤) and (B,≤) is the direct
product A × B of the universes ordered as follows: (a1, b1) ≤ (a2, b2) if and
only if a1 ≤ a2 and b1 ≤ b2. The direct product of several posets is defined
similarly. (It would be more correct to use different names for the two given
orders. It may happen a priori that x ≤ y with respect to one order but not
the other. Alternatively, one can assume without loss of generality that A
and B are disjoint.) The following lemma follows from the Finite Sequence
Theorem (and the fact that the wqo property is preserved by substructures)
but we will prove it anyway, as a warm-up.
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Lemma 2.3.9. Direct products of finitely many wqo sets are wqo.

Proof. It suffices to prove the lemma for the direct product of two qosets
(A,≤), (B,≤) with disjoint universes. Let S be be an arbitrary sequence of
pairs (a1, b1), (a2, b2), . . .. Since (A,≤) is wqo, the sequence a1, a2, . . . has
an infinite weakly increasing subsequence af1 ≤ af2 ≤ · · ·. Since (B,≤) is
wqo, the sequence bf1, bf2, . . . has an infinite weakly increasing subsequence
bg1 ≤ bg2 ≤ · · ·. Thus S has an infinite weakly increasing sequence (ag1, bg1) ≤
(ag2, bg2 ≤ · · ·. ⊓⊔

Any set A can be viewed as an alphabet. Then finite sequences of elements
of A are words over A. Instead of x = (a1, . . . , am), we write x = a1 . . . am;
the length m will be denoted |x|. Let A∗ be the collection of all words over
A. A quasi order ≤ on A can be extended to the following embedding order
on finite sequences: a1 . . . am ≤ b1 . . . bn if there exists a monotone one-to-one
map f from [1 . . .m] into [1 . . . n] such that ai ≤ bfi for all i = 1, . . . ,m.

Exercise 2.3.10. If (A,≤) is a poset then so is (A∗,≤).

Theorem 2.3.11 (Finite Sequence Theorem). If (A,≤) be a wqo set
then so is (A∗,≤).

Proof. Let x, y range over A∗. Call an infinite sequence x1, x2, . . . bad if there
exist no i < j such that xi ≤ xj . By contradiction, suppose that there are
bad sequences in (A∗,≤). Choose

– x1 to be a shortest word such that some infinite bad sequence starts with
x1,

– x2 to be a shortest word such that some infinite bad sequence starts with
x1, x2,

– x3 to be a shortest word such that some infinite bad sequence starts with
x1, x2, x3, and so on.

This gives a particular infinite bad sequence x1, x2, . . .. Let an be the first
letter of xn, and yn be the rest of xn, so that xn = anyn. Since (A,≤) is
wqo, the sequence a1, a2, . . . has an infinite weakly increasing subsequence
af1, af2, . . .. Let m = f1. It is easy to see that the sequence

x1, . . . , xm−1, yf1, yf2, . . .

is bad. But this contradicts the choice of xm. ⊓⊔

An ordinary finite alphabet A can be seen as wpo alphabet where the
letters are pairwise incomparable. The order x ≤ y on words is the relation
x is a (not necessarily contiguous) subword of y.

Corollary 2.3.12. The set of all words over a finite alphabet together with
the subword relation is a wpo set.
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We we will need one additional lemma from [222] about pwo sets.

Lemma 2.3.13. Let (A,≤) be a poset where every finite subset X has a least
upper bound sup(X). Suppose that (A,≤) has a wpo substructure (B,≤) such
that, for every x ∈ A, there is a finite Y ⊆ B such that x = sup(Y ) in (A,≤).
Then (A,≤) is wpo.

Proof. By the Finite Sequence Theorem (Theorem 2.3.11), the set B∗ of
finite sequences of elements of B together with the embedding order ≤∗

is wqo. Since (B,≤) is a poset, (B∗,≤∗) is wpo. For every finite seqence
x = (b1, . . . , bn) let f(x) = sup{b1, . . . , bn} in (A,≤). It is easy to see that
f is a homomorphism from (B∗,≤∗) onto (A,≤). By Lemma 2.3.8, (A,≤) is
wpo. ⊓⊔

2.3.3 The Well Quasi Ordering of Prefix Sets

In this section we prove that a natural quasi ordering of sets of quantifier
prefixes is a well quasi ordering. Further, we define standard prefix sets with
succinct names and prove that every prefix set is equivalent to a finite union
of standard sets.

Strings in the alphabet {∀, ∃} will be called prefixes. According to Corol-
lary 2.3.12, the subword relation on prefixes is a well partial order. This order
will be denoted by ≤.

A prefix set is simply a set of prefixes. Call a prefix set closed if it is
downward closed. In other words, a prefix set Π is closed if and only if
x ≤ y ∈ Π implies x ∈ Π. The closure of a prefix set Π will be denoted Π.

Definition 2.3.14. A prefix set Π1 dominates a prefix set Π2, symbolically
Π1 ≥ Π2, if Π2 ⊆ Π1.

It is this domination ordering that will be proved being well quasi order-
ing. It suffices to prove that the inclusion order of closed prefix classes is a
well partial order. In general, we will be primarily interested in closed prefix
classes.

Some prefix set can be given by regular expressions. Let λ be the regular
expression for the empty set. Since we are interested primarily in closed prefix
sets, we change slightly the semantics of regular expressions over the prefix
alphabet {∀,∃} so that each of them denotes a closed prefix set. Namely, the
regular expression ∀ will denote the set {λ, ∀} (rather than {∀}); similarly,
the regular expression ∃ will denote the set {λ, ∃}. The operations of con-
catenation, union and iteration (the Kleene star operation) have their usual
meaning. If e is a regular expression, let (e) be the prefix class denoted by e.

Example (∀∃∀) = {λ, ∀, ∃, ∀∀, ∀∃,∃∀, ∀∃∀}, and (∀∗∃2) = {Ai∃j : 0 ≤ i, 0 ≤
j ≤ 2}.

The alphabet {∀, ∃,∀∗, ∃∗} will be called the extended prefix alphabet.
Strings over the extended prefix alphabet will be called generalized prefixes.
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Definition 2.3.15. A prefix set is standard if either it is the set of all pre-
fixes, or else it can be given by a generalized prefix.

The standard prefix sets are partially ordered by inclusion.

Lemma 2.3.16. The poset of standard prefix sets is wpo.

Proof. By Corollary 2.3.12, the collection of generalized prefixes with the
subword relation is a wpo set. The poset of proper standard prefix sets is a
homomorphic image of this wpo set (under the homomorphism e 7→ (e)). By
Exercise 2.3.7, the poset of standard prefix sets is wpo. ⊓⊔

We would like to give canonic names to standard prefix sets. The class of
all prefixes will be denoted all.

Definition 2.3.17. A generalized prefix is reduced if (i) the only possible
neighbours of a letter ∀∗ are letters ∃ and ∃∗, and (ii) the only possible
neighbours of a letter ∃∗ are letters ∀ and ∀∗.

Lemma 2.3.18. Every proper standard prefix set Π has a unique presenta-
tion by means of a reduced generalized prefix.

Proof. First we prove the existence of the desired presentation. Since Π is
proper, it is given by some generalized prefix. Let w be a shortest general-
ized prefix such that (w) = Π. If w equals u∀∀∗v or u∀∗∀v or u∀∗∀∗v then
(u∀∗v) = Π which contradicts the choice of w. Similarly ∃ and ∃∗ cannot be
neighbours in w.

Second, we prove the uniqueness of the desired presentation. It suffices to
prove that different reduced generalized prefixes denote different prefix sets.

Every reduced generalized prefix w is a concatenation of strings u1 . . . um
where each ui is a letter ∀∗, a letter ∃∗, a maximal contiguous string of ∀’s,
or a maximal contiguous string of ∃’s. The strings ui will be called blocks.
The number m will be called the block length of w.

Assume that w ̸= λ. Then every prefix in the standard prefix set w has
at most m − 1 quantifier alternations and there exists a prefix with exactly
m − 1 quantifier alternations in (w). For example, if m = 3 and starts with
an ∀ or ∀∗ then (w) contains the string ∀∃∀ and every string in (w) has the
form ∀i∃j∀k.

Now let w1 ̸= w2 be reduced generalized strings of block length m1 and
m2 respectively. Without loss of generality, m1 ≥ m2 > 0. If m1 > m2 then
(w1) contains a string with m1 − 1 quantifier alternations but no such string
belongs to (w2). Thus m1 = m2. Let m = m1. Let u1, . . . , um be the blocks
of w1, and v1, . . . , vm be the blocks of w2.

We illustrate the rest of the proof on the case m = 3. Without loss of
generality, w1 starts with an ∀ or ∀∗. If w2 starts with an ∃ or ∃∗ then the
string ∀∃∀ belongs to (w1)− (w2). Thus w2 also starts with an ∀ or ∀∗. If one
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of the blocks u1, v1 is ∀∗ and the other is ∀n, then one of the sets contains
the prefix ∀n+1∃∀ and the other class doesn’t.

If one of the blocks u1, v1 is ∀∗ and the other is ∀n, then one of the sets
contains the prefix ∀n+1∃∀ and the other class doesn’t. If one of the blocks
u2, v2 is ∀∗ and the other is ∀n, then one of the sets contains the prefix
∀∃n+1∀ and the other doesn’t. If one of the blocks u3, v3 is ∀∗ and the other
is ∀n, then one of the sets contains the prefix ∀∃∀n+1 and the other doesn’t.
These three statement remain true if ∀∗ is replaced with any integer k > n.
It follows that u1 = v1, u2 = v2 and u3 = v3. ⊓⊔

Lemma 2.3.19. The union of an increasing sequence of standard prefix sets
is standard.

Proof. We use the terminology of the previous proof. Consider an increasing
sequence

(w1) ⊆ (w2) ⊆ (w3) ⊆ · · ·

where each wi is a reduced generalized prefix of block length mi. Let Π =∪
i(wi). If the sequence of numbers mi is unbounded then Π is the set of all

prefixes. Thus we may suppose that the sequence of numbers mi is bounded.
Without loss of generality, these numbers are all equal to some number m,
so that each wi splits into m blocks ui1 . . . uim.

For each positive integer j ≤ m, there are only two cases: either each uij
is universal (that is of the form ∀n or ∀∗) or each uij is existential (that is of
the form ∃n or ∃∗). In the first case, let q = ∀ (and q∗ = ∀∗); in the second
case, let q = ∃ (and q∗ = ∃∗). We define a new block uj . If any uij = q∗, set
uj = q∗. Otherwise, let kij be the length of uij . If the sequence of numbers
kij is unbounded, set uj = q∗. Otherwise let kj = supi(kij) and set uj = qkj .
It is easy to see that (u1 . . . um) = Π. ⊓⊔

Definition 2.3.20. Let Π be a closed prefix set. A component of Π is a
maximal standard subset of Π.

Lemma 2.3.21. Let Π be a closed prefix set. The number of components of
Π is finite and Π is the union of its components.

Proof. The components of Π are incomparable and thus form an antichain.
But the poset of standard sets is wpo (Lemma 2.3.16); hence the antichain
is finite (Exercise 2.3.5). Since Π is closed, every prefix in Π belongs to a
standard subset of Π and therefore to a maximal standard subset of Π. ⊓⊔

Theorem 2.3.22. Closed prefix classes with the inclusion relation form a
wpo set. Arbitrary prefix classes with the domination relation form a wqo set.

Proof. To prove the first statements, use Lemma 2.3.13. The desired wpo
substructure is formed by standard classes. To prove the second statement,
use Exercise 2.3.3. ⊓⊔
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2.3.4 The Well Quasi Ordering of Arity Sequences

We study sequences that arise naturally in the study of fragments of first-
order logic given by restrictions of the following sort: use at most pn predicate
symbols of arity n, or use at most fn function symbols of arity n. We prove
that these sequences together with an appropriate quasi ordering form a wqo
set. Further, we introduce standard arity sequences with succinct names and
prove that every arity sequence is equivalent to a unique standard sequence.

Definition 2.3.23. An arity sequence is a function from positive integers to
the set of natural numbers extended with the first infinite ordinal ω.

We think about an arity sequence p as a sequence (p1, p2, . . .) where pi =
p(i). A tail of zeros may be omitted. This allows us to speak about finite
arity sequences; for example, (ω, 1) is a finite arity sequence. Accordingly,
the sequence of zeroes will be called the empty sequence. For readability, the
empty sequence will be denoted (0) rather than ().

Replacing a predicate (respectively function) symbol by a predicate (re-
spectively function) symbol of higher arity can only increase expressibility.
This justifies the following definition where p and q are arity sequences.

Definition 2.3.24. An arity sequence p dominates an arity sequence q, sym-
bolically p ≥ q, if

∑
i≤j pj ≥

∑
i≤j qj for all i.

Clearly the domination order is a quasi order. We will prove that the qoset
of arity sequences if wqo. The sequence

p̂ = (
∑
1≤j

pj ,
∑
2≤j

pj , . . .)

will be called the associate sequence of p. Thus, arity sequences are equivalent
(in the qoset of arity sequences) if and only if they have the same associate
sequence.

Definition 2.3.25. An arity sequence p is standard if it satisfies the follow-
ing condition: for every i, if

∑
i≤j pj is infinite then pi = ω.

The standard sequence (ω, ω, . . .) will be denoted all.

Lemma 2.3.26. In the qoset of arity sequences, every sequence is equivalent
to a unique standard sequence.

Proof. It is easy to see that all arity sequences without tails of zeroes are
equivalent to all which is the only standard sequence without a tail of zeros.

Suppose that p is a finite sequence p1, . . . , pm. If p1+ · · ·+pm is finite then
p is standard and inequivalent to any other arity sequence. Otherwise let i
be the least index such that pi+ · · ·+ pm is infinite. It is easy to see that the
sequence (ω, . . . , ω, pi+1, . . . , pm) is the only standard sequence equivalent to
p. ⊓⊔
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Theorem 2.3.27. The qoset of arity sequences is wqo.

Proof. First we prove that the subqoset of finite sequences is wqo. Ordinals
≤ ω (that is finite ordinals and ω) form a well ordered set. By the Finite
Sequence Theorem (Theorem 2.3.11), finite sequences of such ordinals with
the embedding relation form a wpo set. By Lemma 2.3.8, it suffices to prove
that (p1, . . . , pm) ≤ (q1, . . . , qn) in the qoset of finite arity sequences if there
exists a monotone one-to-one function f : [1..m] → [1..n] such that every
pi ≤ qfi. Since f is monotone and one-to-one, we have that, for every i,∑

i≤j

pj ≤
∑
i≤j

qfj ≤
∑
i≤j

qj .

It follows that the poset of finite standard sequences if wpo. By Exer-
cise 2.3.7, the poset of all standard sequences is wpo. By Exercise 2.3.3, the
qoset of arity sequences if wqp. ⊓⊔

2.3.5 The Classifiability of Prefix-Vocabulary Sets

In this subsection, we prove the Classifiability Theorem. It shows the impor-
tance of so-called standard prefix-vocabulary classes. In the main body of
the book, the prefix-vocabulary classes of interest will be almost exclusively
standard classes.

Definition 2.3.28 (Prefix-Vocabulary Classes). Let Π be a prefix set,
and p, f arity functions. The prefix-vocabulary class [Π, p, f ] (respectively
[Π, p, f ]=) is the collection of prenex sentences φ of first-order logic without
equality (respectively, first-order logic with equality) such that

– the quantifier prefix of φ belongs to Π,
– for all i > 0, φ has at most pi predicate symbols of arity i and at most fi

function symbols.
– φ has no nullary predicate symbols with the exception of logic constants

true and false, and no individual constants.

In case f = (0), we may write [Π, p] (respectively [Π, p]=) instead of
[Π, p, (0)] (respectively [Π, p, (0)]=).

Of course, we could allow nullary predicate variables, individual con-
stants and free variables. The reason for their exclusion has been explained
in Sect. 1.3. The class [λ, (0), (0)] will be called trivial; it contains only true
and false. Any [Π, (0), f ], [λ, p, q] or [λ, p, q]= is trivial.

The class [Π, p, f ]= can be called the class [Π, p, f ] of logic with equal-
ity. In the rest of the book, we use the notation [Π, p, f ] and [Π, p, f ]= but
here it will be convenient to fix a logic L with or without equality and deal
with classes [Π, p, f ] appropriate to L. We say that p (respectively f) is the
predicate arity sequence (respectively function arity sequence) of [Π, p, f ].
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Exercise 2.3.29. For every nontrivial prefix-vocabulary class, the set of pre-
fixes, the predicate arity sequence and the function arity sequence are defined
uniquely.

For future convenience, we will use only the name [λ, (0), (0)] for the trivial
class, so that every prefix-vocabulary class has a unique name. This simplifies
some of the following statements.

Exercise 2.3.30. Prove that for any [Π, p, f ], the following statements are
equivalent

(i) [Π, p, f ] has only finitely many sentences up to logical equivalence,
(ii) Π is finite, p is finite and f is empty.

Definition 2.3.31. [Π, p, f ] dominates [Π ′, p′, f ′], symbolically [Π, p, f ] ≥
[Π ′, p′, f ′], if Π dominates Π ′, p dominates p′ and f dominates f ′.

Exercise 2.3.32. If [Π ′, p′, f ′] ≤ [Π, p, f ] then [Π ′, p′, f ′] conservatively re-
duces to [Π, p, f ].

Lemma 2.3.33. The domination ordering of the prefix-vocabulary classes is
a well quasi order.

Proof. By Theorem 2.3.22, the domination ordering of prefix sets is wqo.
By Theorem 2.3.27, the domination ordering of arity sequences is wqo. It
remains to use the collection of wqo sets is closed under finite direct products
(Lemma 2.3.9) and homomorphisms (Lemma 2.3.8). ⊓⊔

Definition 2.3.34. A class [Π, p, f ] is standard if Π, p and f are standard.
It is closed if Π is closed and p, f are standard.

Notice that the trivial class is standard and closed.

Exercise 2.3.35. – A closed class K1 dominates a class K2 if and only
K2 ⊆ K1.

– Every prefix-vocabulary class [Π, p, f ] is equivalent to (that is, dominates
and is dominated by) the closed prefix-vocabulary class [Π, p, f ].

– Equivalent closed classes are equal.
– The closed classes together with the inclusion relation form a wpo set.

Lemma 2.3.36. Every closed prefix-vocabulary class [Π, p, f ] is a finite
union of standard classes with the same predicate arity sequence and the
same function arity sequence.

Proof. By Lemma 2.3.21, Π is a finite union of standard components Π1, . . . ,
Πm. But then [Π, p, f ] =

∪
i[Πi, p, f ]. ⊓⊔
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Consider a collection D of prefix-vocabulary classes that is downward
closed, so that K1 ≤ K2 ∈ D implies K1 ∈ D. The complement U of D is
upward closed) so that K1 ≥ K2 ∈ U implies K1 ∈ U . Notice that both D
and U are closed under the equivalence relation. LetM be the collection of
minimal closed members of U andM be the upward closure ofM.

Lemma 2.3.37. M is finite and U =M.

Proof. Since closed prefix-vocabulary classes form a wpo, M is finite. It is
obvious that U =M. ⊓⊔

Assume additionally that D is closed under finite unions.

Lemma 2.3.38. Every member ofM is standard.

Proof. Given a member K ofM, use Lemma 2.3.36 and present K is the of
some different standard classes K1, . . . ,Km. By contradiction suppose that
m > 1. Then eachK1 is strictly dominated byK. ButK is a minimal member
of U . It follows that each Ki ∈ D. But then K ∈ D which is impossible. ⊓⊔

Lemma 2.3.39. There exist only a finitely many maximal standard members
of D.

Proof. Use the fact that closed classes form a wpo set. ⊓⊔

Notice, however, that not every standard member of D is dominated by
some maximal standard member. For example, ifD consists of the classes with
finite prefix set (including the trivial class), then it has no maximal members
whatsoever. However, in cases of interest to us (e.g. when D consists of classes
with solvable satisfiability problem), maximal standard members of D exist
and play an important rôle.

We formulate some of our conclusions as the Classifiability Theorem for
prefix-vocabulary classes.

Theorem 2.3.40 (Classifiability Theorem). Let D be a downward closed
collection of prefix-vocabulary classes closed under finite unions. Further, let
U be the complement of D, andM the collection of minimal closed classes in
U . Then M is finite, every member of M is standard, and U is the upward
closure ofM. In addition, the number of maximal standard members of D is
finite.

The predicate symbols of L are in fact predicate variables. It is easy
to see that the classifiability theorem remains true if L is extended with
predicate constants satisfying certain axioms. (The only change is that the
classes [Π, (0), f ] are not necessarily trivial.) Similarly one can extend L with
function constants or with predicate and function constants. For example,
one may suppose that L contains a binary operation satisfying the axioms of
group theory.
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There are many interesting collections D satisfying the conditions of the
Classifiability Theorem applies. We give some examples where L may contain
predicate and/or function constants

1. Classes with decidable satisfiability problem. More generally, classes
where the satisfiability problem is decidable within a given complexity
class like polynomial space, exponential time, etc.

2. The analogue of 1 for finite satisfiability.
3. The analogues of 1 (respectively 2) for Krom and/or Horn formulae.
4. Classes where the following task, depending on a given sentence φ, can

be performed within a given complexity bound: If φ has a finite model,
produce such a model; otherwise output NONE.

5. Classes with the finite model property.
6. Classes with the zero-one law. Roughly speaking, a formula class K satis-

fies the zero-one law if, as n grows to infinity, the fraction µn of n-element
models satisfying φ tends to either zero or one, for every sentence φ ∈ K
(see [88] for a survey on zero-one laws). Instead of the zero-one law, one
can speak about the limit law (µn has a limit), the slow oscillation law
(limn→∞ µn+1 − µn = 0), etc.

7. Classes K such that the class K ′ of second-order sentences {(∃P̄ )φ : φ ∈
K} satisfies the zero-one law (or the limit law, etc.) [235, 314, 315].

The reader can easily find additional examples. The Classifiability Theo-
rem can be extended in various directions. One example of such extension is
found in Sect. 5.4.

In some cases, the collection D is closed not only under finite unions
but also under arbitrary unions. For example, any union of classes with the
finite model property has the finite model property. In such cases, the finite
collection of maximal standard classes of D gives another finite presentation
of D.

Corollary 2.3.41. Let D be a downward closed collection of prefix-vocabulary
classes that is closed under arbitrary unions. Then a standard class K belongs
to D if and only if it is a part of a maximal standard class in D.

2.4 Historical Remarks

Hilbert’s Entscheidungsproblem has been answered negatively via different
methods by Church [80] and Turing [513]. Subsequently many different proofs
for this result were given, usually by reducing an unsolvable combinatorial de-
cision problem to the Entscheidungsproblem. An exception is Kalmárs’ proof
in [301].

Although reductions of the Entscheidungsproblem have been formulated
explicitly already by Löwenheim [365] and Skolem [477] and numerous other
papers cited in [267, I§4], the notion of a reduction class seems to appear in
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print for the first time in [82, §47]. Three years later Surányi’s book [498] gives
a comprehensive treatment of the reduction classes known at that time (see a
detailed list in the annotated bibliography). The best finite prefixes obtained
are ∀3∃, ∃∀∃∀2 and ∀∃∃∀2 (or ∃∀∃3∀ and ∀∃4∀ if equality is present); among
the minimal prefix-vocabulary classes with infinite prefix only [∃∗∀3∃, (0, 1)],
[∀3∃∗, (0, 1)], [∀∗∃, (0, 1)] are established as reduction classes.

Büchi’s paper [64] was a breakthrough: He combined Turing’s proof
method with the use of Skolem’s theorems on Skolem normal form and canon-
ical models. This allowed him to establish the conservative reduction class
property for [∃∧∀∃∀, (ω, 3)] by an elementary proof and prepared the ground
for getting to the minimal reduction class [∀∃∀, (ω, 1)] (see the next chap-
ter of this book). Aanderaa [2] and Börger [39] independently refined the
Turing-Büchi method further, they showed how the explicit reference to the
time component can be avoided if properties of computations are formalized
where the time needed to reach that property is irrelevant. This allowed them
to impose further conditions on the propositional structure of reduction for-
mulae and, in particular, to refine the conservative Büchi prefix class [∃∀∃∀]
to Krom and Horn formulae (for further details on Krom and Horn formulae
see the Chap. 5 in this book).

The Aanderaa-Börger method was developed further in [45, 48] and was
shown to be related to the study of the degree complexity of combinatorial
decision problems in [46, 58, 59, 60]. In [53] the method is interpreted as
defining the semantics of programs by logical formulae and the economical
description of Turing machines appearing in Sect. 2.1.1 is defined and used
to provide uniform simple proofs for standard completeness results of logical
and combinatorial decision problems (see also [53, 55, 61] from where the
proofs in this chapter are taken). This includes also the Cook-Levin Theorem
which appears in [91, 343]. Stockmeyer’s Theorem appears in [493], and also
[490] from where we have adapted the proof. The historical development of
the theorems of Skolem (and Löwenheim) which are used throughout in this
book is well explained in [82, §45 and §49].

Trakhtenbrot’s Theorem appears in [509, 510]. It was found independently
by Craig [92]. Our proof is an adaption of the proof in [40] to the economical
description of Turing machines in [53]. Kalmár [299] proves Trakhtenbrot’s
Theorem by an effective reduction of the validity problem to the finite satisfi-
ability problem. Gurevich’s theorem on semi-conservative reductions appears
in [227] and our proof is taken from there.

Trakhtenbrot’s Theorem triggered the definition of the notion of a spec-
trum and the formulation of the Spectrum Problem in [455]. For the history
of this problem see the first section of [53]; since Fagin’s work (see also [151]–
[155]) this problem and its generalizations have played a crucial rôle in finite
model theory. Our proof of the Spectrum Hierarchy Theorem is from [53].

Descriptive complexity theory, i.e. the design and study of logical lan-
guages that capture complexity classes was motivated by Fagin’s Theorem



2.4 Historical Remarks 83

and explicitly proposed as a research program by Immerman [276, 277]. But
there were earlier relevant results, most notably the characterization of the
regular languages by means of monadic second-order logic [62, 511]. Immer-
man and Vardi [276, 517] proved that, on ordered structures, the problems
solvable in polynomial time are exactly those definable in least fixed-point
logic. Immerman systematically studied the problem of capturing complexity
classes by logical languages and came up with logical characterizations for
most popular complexity classes. For instance, logarithmic space complexity
classes are captured by various forms of transitive closure logics [277]. The
characterizations of polynomial time and nondeterministic logarithmic space
complexity in terms of Horn and Krom fragments of second-order logic are
due to Grädel [207]. We refer to the survey papers [232, 278] and to the
monograph [141] for more information on descriptive complexity theory.

The study of complexity results for decidable prefix classes of first-order
logic originates in [352, 175]. The lower bounds of Sect. 2.2.4 appeared first
(in disguised form) in [74] and later more explicitly in [106, 421]. Our proofs
are adaptions of the proofs appearing there. See also [61] and the results in
Chap. 5–8 of this book.

The classifiability problem was addressed after Church and Turing had
proved the unsolvability of the Entscheidungsproblem. But even before that,
syntactical classifications, especially by the prefix structures and vocabulary,
had been used to put some order into the myriad of individual results re-
lated to the classical decision problems. After completing the solution of the
prefix-vocabulary problem for pure predicate logic and coming up the fi-
nal classification in [219], Gurevich analysed the underlying reasons for the
possibility of a finite solution. That analysis lead him to the Classifiability
Theorem [222]; in the same paper he gave the final classification of the prefix-
vocabulary problem for pure logic with functions. Gurevich did not know the
theory of well partially ordered sets; he rediscovered the notion and developed
a portion of the theory necessary for the Classifiability Theorem.
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3. Undecidable Standard Classes for Pure
Predicate Logic

This chapter is devoted to the classification of prefix-vocabulary classes in
pure predicate logic, i.e. first-order logic without equality or function sym-
bols, with respect to the question whether the satisfiability problem for these
classes is decidable. A posteriori, the same classification is obtained if satis-
fiability is restricted to finite satisfiability.

Gurevich’s Classifiability Theorem (Theorem 2.3.40) tells us that there
is a finite number of minimal undecidable prefix-vocabulary classes of the
form [Π, (p1, p2, . . .)] where Π is an extended prefix (a word over ∀, ∃,∀∗, ∃∗)
and each pi is natural numbers or ω. We prove in this chapter results which
establish what these minimal undecidable classes are; we further show that
all of them are indeed conservative reduction classes.

This is summed up by the following main theorem.

Theorem 3.0.1 (Reduction Classes for Pure Predicate Logic).A pre-
fix-vocabulary class [Π, (p1, p2, . . .)] (without function symbols or equality) is
undecidable (and indeed is a conservative reduction class) if it contains at
least one of the following nine classes:

Classes with finite prefix:
– [∀∃∀, (ω, 1)] (Kahr 1962)
– [∀3∃, (ω, 1)] (Surányi 1959)

Classes with ∀∗ in the prefix:
– [∀∗∃, (0, 1)] (Kalmár-Surányi 1950)
– [∀∃∀∗, (0, 1)] (Denton 1963)

Classes with ∃∗ in the prefix:
– [∀∃∀∃∗, (0, 1)](Gurevich 1966)
– [∀3∃∗, (0, 1)] (Kalmár-Surányi 1947)
– [∀∃∗∀, (0, 1)] (Kostyrko-Genenz 1964)
– [∃∗∀∃∀, (0, 1)] (Surányi 1959)
– [∃∗∀3∃, (0, 1)] (Surányi 1959)

The decidability results for the classes [all, (ω)], [∃∗∀∗, all] and [∃∗∀2∃∗, all]
proved in Chap. 6 will complete the classification by providing the “only
if” part. Indeed it is easy to verify that each standard class [Π, p] is either
essentially finite and thus decidable for trivial reasons, or is contained in
one of the three decidable classes just mentioned, or is a reduction class
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containing at least one of the classes mentioned in Theorem 3.0.1. (A class
[Π, p] is essentially finite if Π defines a finite set of prefixes and p a (up to
renaming) finite vocabulary.)

Further, note that the classification problem for prefix classes (in pure
predicate logic) is completely solved by the undecidable classes [∀∃∀] and
[∀3∃] (containing the classes of Kahr and Surányi), and the decidable classes
[∃∗∀∗] of Bernays-Schönfinkel and [∃∗∀2∃∗] of Gödel-Kalmár-Schütte.

We will show in this chapter that the nine classes listed in Theorem 3.0.1
are indeed conservative reduction classes. This obviously implies the theorem.
The difficult cases are the Kahr class and the Gurevich class for each of
which we reserve a separate section. It is easy to give conservative reductions
of Kahr’s class to the other minimal prefix-vocabulary classes that do not
contain ∃∗ in the prefix (see Sect. 3.1.4). Analogously Gurevich’s class can be
reduced to the other classes which are minimal among the prefix-vocabulary
classes that contain ∃∗ in the prefix (see Sect 3.3.6). We devote Sect. 3.2 to the
Kalmár-Surányi class [∀3∃∗, (0, 1)] in order to present in an explicit manner
the method of existential interpretation. This method provides conservative
reductions between theories under strict control of the prefix structure and
underlies the proof for the Gurevich class. The following figure surveys the
reductions of this chapter.
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Figure 3.1. Reductions for standard classes
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3.1 The Kahr Class

This section deals with the minimal conservative reduction classes among the
prefix-vocabulary classes that contain only a bounded number of existential
quantifiers. The main and difficult case here is the Kahr class [∀∃∀, (ω, 1)].

Theorem 3.1.1 (Kahr). [∀∃∀, (ω, 1)] is a conservative reduction class.

To prove this result we proceed as follows. In Sect. 3.1.1 we introduce
domino problems, an important class of undecidable combinatorial problems
that have played an important rôle for proving undecidability and lower com-
plexity results in various branches of mathematical logic. In Sect. 3.1.2 we
prove the Kahr-Moore-Wang class [∀∃∀, (0, ω)] to be a conservative reduction
class by formalizing an appropriate domino problem. In Sect. 3.1.3 we show
how one can interpret formulae of the Kahr-Moore-Wang class in coloured
graphs; then we bring these graphs into a normal form which lends itself to a
description by a formula in Kahr’s class. This yields a conservative reduction
of the Kahr-Moore-Wang class to Kahr’s class.

Sect. 3.1.4 is devoted to the remaining minimal classes that do not contain
∃∗ in the prefix. First we show that the only other minimal reduction class
with finite prefix, namely Surányi’s reduction class [∀3∃, (ω, 1)], can easily be
obtained by a conservative reduction from Kahr’s class. (By the way, there is a
trivial reduction of the latter class to the minimal Surányi class [∃∗∀3∃, (0, 1)]
that contains ∃∗ in the prefix.) Then we prove also that the classes with ∀∗ in
the prefix, namely the Kalmár-Surányi class [∀∗∃, (0, 1)] and the Denton class
[∀∃∀∗, (0, 1)], are conservative reduction classes by reducing Kahr’s class to
them.

3.1.1 Domino Problems

Domino problems are a very simple and general form of combinatorial prob-
lems. They were introduced by Wang [531, 532] as a tool for proving the
unsolvability of the ∀∃∀-prefix class in the pure predicate calculus. In the
last thirty years they have been used to establish many undecidability re-
sults and lower complexity bounds for various systems of propositional logic,
for subclasses of first order logic and for decision problems in mathematical
theories (see e.g. [78, 201, 203, 196, 206, 227, 245, 246, 288, 351, 355, 448]).

The original, ‘unconstrained’ version of a domino problem is given by a
finite set of dominoes or tiles, each of them an oriented unit square with
coloured edges; the question is whether it is possible to cover the first quad-
rant in the Cartesian plane by copies of these tiles, without holes and overlaps,
such that adjacent dominoes have matching colours on their common edge.
The set of tiles is finite, but there are infinitely many copies of each tile avail-
able; rotation of the tiles is not allowed. Variants of this problem require that
certain places (e.g. the origin, the bottom row or the diagonal) are tiled by
specific tiles.
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All these problems are undecidable; more precisely, they are complete
for the co-r.e sets (Π0

1 -complete). Domino problems with higher degrees of
unsolvability were defined by requiring that some dominoes appear infinitely
often in the tiling; these recurring domino problems are Σ1

1 -complete, i.e. they
sit in the first level of the analytical hierarchy [245, 246]. In most cases, the
undecidability is established by a straightforward encoding of an appropriate
halting problem for Turing machines: successive rows of the tiling represent
successive configurations of the Turing machine. An exception is the uncon-
strained domino problem in its original form; it is more difficult to handle
because the constraints on the tiling of certain places are necessary to encode
the beginning of the computation. The unconstrained domino problem was
proved to be undecidable by Berger [33]; an essential part of his proof was the
construction of a set of tiles that admits only non-periodic tilings. A simpler
proof is due to R. Robinson [440].

If the space to be tiled is not an infinite portion of the plane, but a
finite square or rectangle we obtain bounded domino problems. Variants of
these are complete in various important complexity classes such as NP or
Pspace, and again these results are proved by straightforward encodings of
Turing machine computations. Roughly, the dimensions of the tiled rectangle
correspond to the time and space restrictions of the Turing machine. Recently
domino problems have been generalized to domino games which capture the
behaviour of alternating procedures [78, 198, 203]. Domino games are two
person games; the problem whether the first player has a winning strategy in
m moves corresponds to acceptance of an alternating Turing machine within
m alternations, and again, the size of the board is related to time and space.

Thus, domino problems are very flexible and capture the essential prop-
erties of computations; on the other hand they have a very simple geomet-
rical and combinatorial structure, and their formulation is independent of
the details of a particular machine model. Therefore reductions from domino
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problems tend to be simpler than direct encodings of computations. This
makes them a powerful tool for proving the undecidability of ‘simple’ for-
mula classes in first order logic. The most famous of these results is the un-
solvability of the ∀∃∀-prefix class in the pure predicate calculus, established
by Kahr, Moore and Wang [288]; another example is the class [∀, (0), (2)]=
proved to be unsolvable by Gurevich [228]. Domino problems have turned out
to be very useful also in complexity theory. Lewis and Papadimitriou [355]
and also Savelsbergh and van Emde Boas [448] have argued that BOUNDED
TILING has some advantages over SAT (the satisfiability problem for propo-
sitional formulae) as a ‘master’ NP-complete problem. Harel and Chlebus
have established lower bounds for various propositional logics by reductions
from domino problems [245, 78] and Grädel has shown that domino prob-
lems yield also good lower complexity bounds for simple formula classes in
mathematical theories [200, 206].

Definition 3.1.2. A domino system D is a triple (D,H, V ) where D is a
finite set of dominoes and H, V ⊆ D ×D are two binary relations. Let S be
any of the spaces Z × Z, N × N or Zt × Zt. We say that D tiles S if there
exists a tiling τ : S → D such that for all (x, y) ∈ S:

(i) If τ(x, y) = d and τ(x+ 1, y) = d′ then (d, d′) ∈ H;
(ii) if τ(x, y) = d and τ(x, y + 1) = d′ then (d, d′) ∈ V .

This definition of a domino system is equivalent to the more intuitive
description by unit squares with coloured edges. In fact, H (resp. V ) just
contain those pairs (d, d′) of dominoes for which the right (upper) colour of
d is equal to the left (lower) colour of d′. Conversely, given D = (D,H, V ) as
above, take a unit square tile for each triple (d, d′, d′′) with (d, d′) ∈ H and
(d, d′′) ∈ V and colour its left and lower edge with d, its right edge with d′

and its upper edge with d′′.

Proposition 3.1.3. A domino system D admits a tiling of Z×Z if and only
if it admits a tiling of N× N.

Proof. It is clear that a tiling of Z × Z also gives a tiling of N × N. The
converse is a nice application of König’s Lemma . Suppose that τ is a tiling
of N × N by D. There exists at least one domino d such that for all n there
exist i, j > n with τ(i, j) = d. Fix such a d. Further, for every k ∈ N, let Sk
be the square {−k, . . . ,−1, 0, 1, . . . , k} × {−k, . . . ,−1, 0, 1, . . . , k}.

We define a finitely branching tree whose nodes are the correct tilings τk
of Sk by D such that τk(0, 0) = d. The root is the unique such tiling of S0

and the children of a tiling τk are the possible extensions to tilings τk+1 of
Sk+1. This tree contains paths of any finite length. By König’s Lemma it also
contains an infinite path from the root, which means that D admits a tiling
of Z× Z. ⊓⊔
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Exercise 3.1.4. [531, 532] Show that the origin constrained domino problem
– where a given ‘origin domino’ has to be placed in position (0, 0) – is algorith-
mically undecidable. Hint: Simulate the proof of the Church-Turing Theorem
given in Chap. 2 by reducing Turing machine computations to tilings of N×N.
Note that for this proof, the origin domino is necessary to make sure that
the first row of the tiling encodes the initial configuration of the given Turing
machine (see [351, Chapter I B.2]).

In the context of conservative reductions we are also interested in periodic
solutions of domino problems.

Definition 3.1.5. A domino system D is said to admit a periodic tiling of
the space S if there is a tiling τ of S by D which has a horizontal and a
vertical period h, v > 0 respectively. This means that for all points (x, y) ∈ S
we have that

τ(x, y) = τ(x+ h, y) = τ(x, y + v).

Exercise 3.1.6. Prove that this periodicity condition is equivalent to the
seemingly more general one where the two translations that leave the tiling
invariant are not necessarily parallel to the coordinate axis. More precisely:
Show that tiling τ is periodic in the sense of Definition 3.1.5 if and only if
there exist linearly independent vectors (a, b) and (c, d) ∈ N× N such that

τ(x, y) = τ(x+ a, y + b) = τ(x+ c, y + d)

for all points (x, y) ∈ S.

Berger [33] has shown that the domino problem for Z×Z and N×N is un-
decidable. Gurevich and Koryakov [237] strengthened Berger’s undecidability
result to an inseparability result.

Theorem 3.1.7 (Berger, Gurevich-Koryakov). The set of domino sys-
tems that admit, respectively, no tiling and a periodic tiling of Z×Z or N×N
are recursively inseparable.

A new proof of this theorem (by C. Allauzen and B. Durand) is given
in Appendix A of this book. In fact the proof shows that the recursively
inseparable halting problems Hi (“M on empty input eventually halts in
state i”) and H (“the computation ofM on empty input is infinite and never
cycles”), that we already used in the proof of Trakhtenbrot’s Theorem, can
be reduced to the domino problem as follows.

There exists a recursive function that associates with every Turing ma-
chine M a domino system D satisfying the following

Reduction Property:

(i) If M ∈ H1 then D admits a periodic tiling of the plane.
(ii) If M ∈ H2 then D does not tile the plane
(iii) If M ∈ H then D tiles the plane, but only aperiodically.
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Together with Theorem 2.1.39 on semi-conservative reductions this gives
us a very convenient and powerful method to prove that formula classes are
conservative.

Corollary 3.1.8. (Semi-Conservative Reduction from the Domino
Problem) A formula class X is a conservative reduction class if there exists
a recursive function that associates with every domino system D a formula
ψD ∈ X such that

(i) If D admits a periodic tiling of N× N, then ψD has a finite model.
(ii) If D does not tile N× N, then ψD is not satisfiable.

Proof. First, we recall the following fact from the proof of Trakhtenbrot’s
Theorem. Since Fin-sat and Non-sat are recursively enumerable we can effec-
tively associate with every first order formula φ a Turing machine M (with
two halting states and whose infinite computations never cycle) such that
M ∈ H1 if φ has a finite model and M ∈ H2 if φ is logically invalid. Sec-
ond, the proof of the Theorem of Berger and Gurevich-Koryakov, presented
in Appendix A, gives us a reduction from H1,H2 to domino systems that,
respectively, admit a periodic tiling and no tiling of N×N. Third, we have the
given reduction from these domino problems to Fin-sat(X) and Non-sat(X).

The composition of these three reductions is a semi-conservative reduction
from FO to X. Hence X is conservative. ⊓⊔

3.1.2 Formalization of Domino Problems by [∀∃∀, (0, ω)]-Formulae

In this section we prove the following theorem.

Theorem 3.1.9 (Kahr-Moore-Wang, Gurevich-Koryakov). The class
[∀∃∀, (0, ω)] is a conservative reduction class.

Proof. By Corollary 3.1.8 it suffices to reduce domino problems to formulae
of the Kahr-Moore-Wang class such that domino systems that admit periodic
tilings are represented by finitely satisfiable formulae, and domino systems
without a tiling of N × N by unsatisfiable formulae. Hence, we effectively
construct for each domino system D a formula ψD ∈ [∀∃∀, (0, ω)] such that

(i) If D does not tile N× N, then ψD is not satisfiable,
(ii) If D admits a periodic tiling of N× N, then ψD has a finite model.

We define the reduction formula ψD for a given domino problem D =
(D,H, V ) by giving its Skolem normal form ∀x∀yφ(x, x′, y). The vocabulary
of ψD consists of binary predicate symbols Pd, one for each domino d ∈ D.
The intended models describe tilings. Suppose, for instance, that τ is a tiling
of N× N by D. Then ψD has a model with universe N and relations

Pd = {(i, j) : τ(i, j) = d}.
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The quantifier-free part φ(x, x′, y) is the conjunction of the following two
formulae. The first conjunct expresses that at most one domino is placed at
each point (x, y): ∧

d ̸=d′
¬(Pdxy ∧ Pd′xy).

The second conjunct of φ(x, x′, y) expresses that the horizontal and ver-
tical adjacency conditions are satisfied:∨

(d,d′)∈H

(Pdxy ∧ Pd′x′y) ∧
∨

(d,d′)∈V

(Pdyx ∧ Pd′yx′).

It remains to prove properties (i) and (ii).
For (i) let A be a Skolem model of ψD. Since ψD is an ∀∃∀-formula, its

Skolem models have universe N. We define a tiling τ of N× N by setting

τ(i, j) = d iff A |= Pdij.

This produces a correct tiling. Indeed, ψD ensures that τ is well-defined
and that the horizontal and vertical adjacency conditions are satisfied. To
see (ii) let τ be a periodic tiling of N×N by D with horizontal period h and
vertical period v. Let t be the least common multiple of h and v, so that for
all natural numbers i, j we have that

τ(i, j) = τ(i+ t, j) = τ(i, j + t).

This allows us to restrict the intended interpretation of Pd to Zt (with the
usual successor function modulo t). Obviously (Zt, (Pd)d∈D) is a finite model
of ψD. ⊓⊔

Exercise 3.1.10. Show the conservative reduction class property for the
subclass of formulae ∀x∃u∀yφ in [∀∃∀, (0, ω)] where only atomic subformulae
of form Pxy, Puy, Pyx appear (see [288] and [319]). Hint: Replace occurrences
of Pdyu in ψD by Qduy with new predicate symbols Qd axiomatized by
Qdxy ↔ Pdyx (see [288, 319]).

Exercise 3.1.11. Show that the Gödel reduction class [∀3∃, (0, ω)] is con-
servative [187]. Hint: Reduce the Kahr-Moore-Wang class [∀∃∀, (0, ω)] to the
Gödel reduction class. First replace ψ := ∀x∃u∀yα ∈ [∀∃∀, (0, ω)] by

φ := ∀x∀y∀z∃v(Fxv ∧ (Fxy → y = v)) ∧ (Fxz → α[u/z]),

where the new predicate symbol F represents the graph of the Skolem func-
tion of ψ. Then replace in φ the equality y = v by Gyv – for a new predicate
symbol G – and add axioms that force G to be a congruence relation, i.e., an
equivalence relation satisfying for each predicate symbol R in α the condition
Gxy → ((Rxz ↔ Ryz) ∧ (Rzx↔ Rzy)).
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Formalization of Turing Machines by [∀∃∀, (0, ω)]-Formulae. In or-
der to correct an error which for a long time has passed unobserved in the
literature we sketch here in the form of an extended exercise a proof variant
for the reduction class property of the Kahr-Moore-Wang class. It directly
formalizes Turing machine computations and thereby does not rely on the
inseparability result for domino problems, but the reduction is not conserva-
tive.

Exercise 3.1.12. [441] Show without using domino problems that the Kahr-
Moore-Wang class is a reduction class. Formalize directly the halting problem
for Turing machines M , say over alphabet {0, 1}, through formulae Red(M),
such that M , started in the initial configuration C0 = (0, 0, 0) with state 0
and reading head in cell 0 of the empty tape, eventually halts if and only if
Red(M) is satisfiable.

Sketch of a solution. Since in t steps M can inspect and change at most
the cells {0, 1, . . . , t− 1}, one can denote the configuration Ct, reached by M
after t steps, by Ct = (it, ht, at,0 . . . at,t) with internal state it, reading head
position ht and content at,j of the j-th tape cell. The computation C0, . . . , Ct
can thus be encoded by a sequence of intervals Ri of length 2i in the i-th
diagonal Di = {(i+ x, x) | x ∈ N}, as pictorially represented in Fig. 3.3.

q q q

q q q
�
�
�
�
��

�
�
�
�
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
��

�
�
�

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

6

-�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

c2 c3

c0

c0

c0 c1

t

y

c1

Figure 3.3. TM-encodings in diagonal

Formally such a pan pipe, starting at (x0, x0), is defined using a pattern
of alternating red–black interval colourings (see below) such that Ri contains



94 3. Undecidable Standard Classes for Pure Predicate Logic

only red points and Bi only black points, i.e. formally

(1) Ri = {(i+ x0 + j, x0 + j) | 0 ≤ j < 2i} ⊆ Di,

(2) Bi = {(i+ x0 + j, x0 + j) | 2i ≤ j < 2i+1} ⊆ Di.

For x0 > 0 it is also assumed that the point (i + x0 − 1, x0 − 1) is black.
Denote i+ x0 by basis(i, x) for elements (i+ x, x) ∈ Ri.

Using the economical description of Turing machines (see Chapter 2) the
intended interpretation of the predicate symbols H and Tk (for reading head
position and content k of the tape cells) can therefore be relativized as follows:

– H(t+ x, x) iff the head position at time t is cell x− basis(t, x)
– Tk(t+ x, x) iff the tape at time t contains letter k in cell x− basis(t, x)

The intended interpretation of the instruction predicates Ii is relativized by:

– Ii(t+ x, x) iff at time t the machine is in state i (i.e. it = i).

Define

Red(M) := ∀x∀y( STEPM ∧ START ∧ NON–STOP ∧ SEGM).

The initial M -configuration is described by

START := I0(x, x) ∧ (R(x, x)→ T0(x, x) ∧H(x, x))

expressing that on the main diagonal the initial state 0 holds and each read
point represents the initial reading head position 0 with cell content 0. The
condition that M does never halt in state 1 is formalized by

NON–STOP := ¬S1(x, y).

The formula STEPM describes the effect of each M -instruction for the
transition from Ct, supposed to be encoded in a red Dt–interval of length t,
to Ct+1, which has to be encoded in the neighbouring red Dt+1-interval of
length t+ 1.

The tape cell inscription at moment t + 1 is formalized by three groups
of formulae in STEPM . For the tape cell after the execution of a printing
instruction (i, k, l) (“in state i print letter k and go to state l”) we have two
types of conjuncts. One is for the reading head position (where the new tape
symbol will be k) and one for the non–working cells (where the tape symbol,
say j, does not change, for any symbol j in the alphabet of M):

Iixy ∧Hxy ∧Rx′y → Tkx
′y,∧

j

¬Hxy ∧Rx′y ∧ Tjxy → Tjx
′y.

For non–printing instructions (i, . . .) of M the following conjuncts (for each
letter j of M) assure that also the content of the working cell, say j, is
preserved:
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Iixy ∧Hxy ∧Rx′y ∧ Tjxy → Tjx
′y.

The last conjunct requires that black points are never reading head positions
and carry the black symbol 0:

Bxy → ¬Hxy ∧ T0xy.

Note that this blank symbol will be transferred to a neighbouring read point
in the next diagonal by the preceding tape inscription conjuncts.

The next state, at moment t + 1, is formalized by again three groups of
conjuncts in STEPM . The next state for any instruction (i, op, j) of M with
non–test operation op is formalized by

Iixy → Ijx
′y.

The effect of a test instruction (i, j, k, l) (“in state i, if the reading head scans
letter j then go to instruction k, else go to instruction l”) is formalized by
the following two conjuncts:

Iixy ∧Hxy ∧ Tjxy → Ikx
′y,

Iixy ∧Hxy ∧ ¬Tjxy → Ilx
′y.

The third group of conjuncts expresses that all the points of a diagonal encode
the same state: ∧

i

Iixy ↔ Iix
′y′.

The working cell does not change for print-instructions or test-instructions.
This is formalized by the corresponding conjuncts

Iixy ∧Rx′y → (Hxy ↔ Hx′y).

The new working cell after execution of a left movement instruction (i, left , j)
is illustrated by Fig. 3.4.

This is formalized by the following conjunct:∧
(i,left,j)∈M

Iixy
′ ∧Rx′y′ → (Hxy′ ↔ Hxy).

The effect of right move instructions (i, right , j) is illustrated by Fig. 3.5 and
formalized by the conjunct∧

(i,right,j)∈M

Iixy ∧Rx′y → (Hxy ↔ Hx′′y′).

The segmentation formula SEGM has to guarantee that in models of
Red(M) there is enough red space in Dt to describe t computation steps of
M . What is needed is resumed in the following
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pan pipe property: For each t there is an initial point (t+ p, p) (with 0 < p)
of a red interval of length 2t in Dt to the left of which, up to the main
diagonal, lie initial points (i+p, p) of red Di–intervals of length 2i for all
0 ≤ i < t.

By a red Dt-interval of length q + 1 we mean a sequence

(t+ p, p), . . . (t+ p+ j, p+ j), . . . , (t+ p+ q, p+ q)

of points in R such that (a) (t+ p− 1, p− 1) ∈ B or p = 0 and (b) (t+ p+
q + 1, p+ q + 1) ∈ B.

The fact that the points on or under the main diagonal and no others will
be coloured is formalized by the following conjunct in SEGM for a greater–
than relation G, with the intended interpretation that G(p, q) is true iff p ≥ q:

Gxx ∧ (Gxy → Gx′y) ∧ (Gyx′ → Gyx) ∧ ¬Gxx′.

The following two SEGM-conjuncts ensure that every point below the
main diagonal has exactly one of the colours “red” or “black” and that no
other point is coloured:

Gxy → (Rxy ∨Bxy) ∧ ¬(Rxy ∧Bxy)
¬Gxy → ¬Rxy ∧ ¬Bxy.

The intended segmentation on the main diagonal into intervals of length
one is ensured by the SEGM-conjunct

Rxx↔ Bx′x′.

Note that due to the restriction to an ∀∃∀-prefix one cannot determine
whether the point (0, 0) and therefore the points (p, 0) on the x-axis are
coloured black or red. (For the intended interpretation we assume without
loss of generality that each point on the x-axis is red.)

We have to assure the continuation of the segmentation from one diagonal
to the next diagonal on the right. For this purpose we require that exactly
each second colour change point (p, q) in Dt – i.e. with successor point (p +
1, q+1) of a different colour than(p, q) – passes on that colour change property
to its right neighbour in Dt+1. This implies the doubling of the length of red
and black intervals in Dt+1. The following SEGM–conjunct expresses that
black and only black colour change points are passed to the right; colour
change points are formalized by the predicate C:

Cxy ↔ (Rxy ∧Bx′y′) ∨ (Bxy ∧Rx′y′),
Gxy → ((Cxy ∧Bxy)↔ Cx′y).

This concludes the definition of Red(M) except for the elementary trans-
formations to bring all the conjuncts into the required Skolem normal form.

Exercise 3.1.13. Show by a counterexample that the reduction of the pre-
ceding exercise is not conservative. (This shows that the conservativity claim
for a similar reduction presented in [532] is wrong.)



98 3. Undecidable Standard Classes for Pure Predicate Logic

3.1.3 Graph Interpretation of [∀∃∀, (0, ω)]-Formulae

In this section we show how one can transform every model of a formula
in the Kahr-Moore-Wang class into a coloured graph; we then bring these
graphs into a normal form – namely with orthogonal edges between neigh-
bouring points – that lends itself to a description by a formula in Kahr’s
class. This yields a conservative reduction of the Kahr-Moore-Wang class to
Kahr’s class. Together with the reduction in the preceding subsection this
establishes Kahr’s Theorem.

Theorem 3.1.14. There is a conservative reduction of the Kahr-Moore-
Wang class [∀∃∀, (0, ω)] to Kahr’s class [∀∃∀, (ω, 1)].

Proof. The idea of the proof can be described as follows. Let ψ := ∀x∀yα
be the Skolem normal form of a formula in [∀∃∀, (0, ω)] with binary pred-
icate symbols R1, . . . , Rn. Let R be a new binary predicate symbol and
A = (N, R1, . . . , Rn) be a model of ψ with universe N. Every point (p, q)
with sequence R1pq, . . . , Rnpq of truth values is represented by an elemen-
tary square with global coordinates (p, q) containing n distinguished points
ī with local coordinates (ρi, σi); the local coordinates are required to satisfy
ρi, σi < r where r has to be chosen sufficiently large (see below), in partic-
ular r > n. The truth of Ripq in A is reflected by the truth of R at the
point (pr + ρi, qr + σi), i.e., the point ī with local coordinates (ρi, σi) in the
elementary square with global coordinates (p, q). Such a point where R is
true will be called a coloured point. This encoding is pictorially represented
in Fig. 3.6.
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Figure 3.6. Encoding of Ri(x, y) by R(xr + ρi, yr + σi)

Implications Ri(a, b)→ Rj(c, d) in ψ are thus translated into implications
of the form

R(ar + ρi, br + σi)→ R(cr + ρj , dr + σj).
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These implications form an expression G(ψ) and are interpreted as arrows
in a graph that propagate the property of being coloured. More precisely
such an implication is viewed as expressing that for all elementary squares
with global coordinates (a, b), (c, d) respectively there is an arrow from the
point with local coordinates (ρi, σi) in the elementary square with global
coordinates (a, b) to the point with local coordinates (ρj , σj) in the square
(c, d). Let G(ψ) be the class of graphs that satisfy G(ψ).

The problem consists in formalizing these implications for R by using only
one occurrence of the Skolem function ′, namely in x′.

We use a refinement of the grid to transform the arrows into paths of
arrows between neighbouring or mirror image points. A geometrical argument
will suffice to provide enough space for constructing these paths in such a way
that they do not interfere with each other. The graph of these paths is then
easily formalized by a reduction formula in [∀∃∀, (ω, 1)] which is (finitely)
satisfiable if and only if the graph formula G(ψ) has a (finite) graph model
in G(ψ).

As a preparatory step we will transform ψ into a normal form amenable
to the above outlined geometrical interpretation.

Thus the proof splits into three steps.

Step 1: We transform the given formula ψ ∈ [∀∃∀(0, ω)] with Skolem normal
form ∀x∀yα into a formula φ with Skolem normal form ∀x∀yβ such that
ψ is (finitely) satisfiable if and only if φ is (finitely) satisfiable, each
predicate symbol occurs in φ at most three times and β is a conjunction
of formulae of the following forms:
(1) atom Rixy
(2) internal Rixy → Rjxy
(3) external (3a) Rixy → Rjx

′y (3b) Rix
′y → Rjxy

(4) negation (4a) Rixy → ¬Rjxy (4b) ¬Rixy → Rjxy
(5) mirror Rixy → Rjyx
(6) conjunction Rixy ∧Rjxy → Rkxy.

Step 2. Each formula ψ obtained through Step 1 is transformed into an
expression G(ψ) defining a class G(ψ) of coloured graphs with vertices
from N× N such that ψ is (finitely) satisfiable if and only if G(ψ) has a
(finite) model in G(ψ).

Step 3. The graph description obtained in Step 2 is refined to an expression
G′(ψ) which has a (finite) model if and only if G(ψ) does. In this refine-
ment the arrows connect only neighbouring or mirror image points, i.e.
go only from (a, b) to (a+1, b), (a, b+1) or to (b, a). G′(ψ) is translated
into a formula Red(G′(ψ)) ∈ [∀∃∀, (ω, 1)] such that G′(ψ) has a (finite)
model if and only if Red(G′(ψ)) does.

Steps 1–3 imply that ψ is (finitely) satisfiable if and only if Red(G′(φ))
is.
Step 1. Let ψ be an arbitrary formula in [∀∃∀, (0, ω)] with Skolem normal
form ∀x∀yα. We can assume without loss of generality that α contains only
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atomic subformulae of form Pxy, Px′y, Pyx. (See Exercise 3.1.10 and the
Exercise 3.1.15 below.) Without loss of generality we also assume that α is
built up from these atomic formulae using only negation and conjunction.
We transform ψ in three steps.

Step 1.1. The goal of this step is to make sure that atomic subformulae
Ryx or Rx′y of α appear in the reduced formula only in equivalences of form
Pyx↔ Qxy or Px′y ↔ Qxy, respectively.

It suffices to replace in α each atomic subformula Pix
′y and Pjyx by

Qixy and Rjxy respectively where Qi, Rj are new predicate symbols. Let the
result be α′. Add to α′ the conjunction of all equivalences Pix

′y ↔ Qixy and
Pjyx ↔ Rjxy. The result is a formula ψ1 := ∀x∀yα′ ∧ α′′ which is clearly
(finitely) satisfiable if and only if ∀x∀yα is.

Exercise 3.1.15. Show how one could use the same technique to replace
atomic formulae of form Pxx, Pyy, Pxx′, Px′x in such a way that those di-
agonal expressions appear only in equivalences of form Pxx↔ Qxx.

Step 1.2. The goal of this step is to eliminate the propositional structure of
α′ in ψ1 and to express it using only implications of forms (1)–(6).

It suffices to replace, by induction on the subformulae of α′, each formula
¬Pxy in α′ by Rxy, where R is a new relation symbol, and to add the
conjunct ¬Pxy ↔ Rxy. The same is done for Pxy∧Qxy adding the conjunct
Rxy ↔ (Pxy ∧ Qxy). (Clearly one has also to rename the variables x, y in
implications and to replace implications Rxy → (Pxy ∧ Qxy) by the two
implications Rxy → Pxy and Rxy → Qxy.) This results in a formula ψ2 of
the required form which clearly is (finitely) satisfiable if and only if ψ1 is.

Step 1.3. The goal of this step is to reduce to three the number of occurrences
of predicate symbols in ψ2.

For each P which has m > 3 occurrences in ψ2 choose new predicate
symbols P1, . . . , Pm, replace the i-th occurrence of P by Pi (for 1 ≤ i ≤ m)
and add the following implications:

Pxy → P1xy∧
1≤i<m

Pixy → Pi+1xy

Pmxy → Pxy.

The result is a formula φ := ∀x∀yβ of the required form which is (finitely)
satisfiable if and only if ψ2 and therefore ψ is.
Step 2. We construct for given ψ obtained in Step 1 an expression G(ψ)
that describes a class G(ψ) of coloured graphs with nodes in the Gaussian
quadrant N× N such that ψ is (finitely) satisfiable if and only if G(ψ) has a
(finite) model in G(ψ).

Let R1, . . . , Rn be the predicate symbols occuring in ψ. Let R be a new
binary predicate symbol and choose a sufficiently large number r, in particular
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r > n. (Further conditions on the size of r will be added below.) Choose for
each 1 ≤ i ≤ n a pair (ρi, σi) of numbers ρi, σi < r satisfying conditions (C1)–
(C3) to be explained below. As explained above we will interpret (ρi, σi) as
local coordinates of the point (pr+ρi, qr+σi) ∈ N×N in the elementary square
with global coordinates (p, q) ∈ N×N. For a given model A = (N, R1, . . . , Rn)
of ψ, the intended interpretation of R – which reflects the encoding of the
truth Ripq by colouring the point (pr + ρi, qr + σi) – is

R := {(pr + ρi, qr + σi) : A |= Ripq}.

G(ψ) is now constructed by encoding each of the implications (2)–(6) in ψ
by a corresponding subformula of G(ψ) which describes a pattern of arrows
in the intended graph interpretation of G(ψ).

Each conjunct Rixy → Rjxy of type (2) in ψ is encoded as a pattern
of internal arrows leading from any point (pr + ρi, qr + σi) to the point
(pr + ρj , qr + σj) in the same elementary square (see Fig. 3.7), for all p, q ∈
N × N; let us stress the fact that the pattern of arrows is the same in all
elementary squares (with the possible exception of boundary squares, see
below). The conjunct R(pr+ρi, qr+σi)→ R(pr+ρj , qr+σj) in G(ψ) which
translates (2) is intended to mean that if an instance of the source point is
coloured, then also the corresponding instance of the target point is.
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Figure 3.7. Encoding of Rixy → Rjxy

Conjuncts of type (3) are translated in the same way. Here the arrows
are external, they go from points in an elementary square to points in the
neighbouring square to the right (3a) (see Fig. 3.8) or to the left (3b).

Consider now conjuncts of type (4) containing a negation sign, say
Rixy → ¬Rjxy. We choose for each such conjunct one neighbouring point of
(ρj , σj), say ¬(ρj , σj), which is not (yet) coloured, i.e. which during the con-
struction of G(ψ) and the corresponding graph interpretation has not (yet)
been used as source or target of any outgoing or incoming arrow. There is
such a neighbour because each predicate symbol occurs in ψ at most three
times and thereby can produce at most tree outgoing or incoming arrows.
In addition we also have to make sure that the neighbouring point, chosen
in order to represent negation, is not itself a distinguished point k used for
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Figure 3.8. Encoding
of Rixy → Rjx

′y

encoding another relation symbol Rk. For later use we require even a little
more, namely the following conditions:

(C1) ρi < ρj ∧ σi < σj , for all i < j,

(C2) 11 ≤ ρ1, σ1, ρi+1 − ρi, σi+1 − σi ∧
ρn + 11, σn + 11 < r.

These conditions ensure that a) the encoding points increase with the
index of the encoded relation symbol, and that b) for each encoding point,
starting at any of its four neighbours, we find at least ten points in a row
which are not themselves encoding points.

The conjunct Rixy → ¬Rjxy in ψ is therefore encoded by arrows leading
from each point with local coordinates ρi, σi to the point ¬(ρj , σj) in the
same elementary square. In G(ψ) this is expressed by the conjunct

R(pr + ρi, qr + σi)→ R(pr + ¬(ρj , σj)1, qr + ¬(ρj , σj)2)

where ()1, ()2 denote the first and second projection.
Conjuncts of type (4b) are formalized in a similar way. For each ¬Rixy →

Rjxy in ψ we draw an arrow from the point with local coordinates ¬(ρi, σi)
to the point with local coordinates (ρj , σj) in the same elementary square,
expressed by the implication

R(pr + ¬(ρi, σi)1, qr + ¬(ρi, σi)2)→ R(pr + ρj , qr + σj).

As a consequence of this encoding of implications with negated literals
we require that a graph, in order to be a model of G(ψ), has to satisfy the
following: for each occurrence of a literal ¬Rjxy in ψ, any point with local
coordinates (ρj , σj) is coloured if and only if the neighbouring point ¬(ρj , σj)
is not.

For conjuncts of type (6) in ψ we write the corresponding G(ψ)-conjunct

R(pr + ρi, qr + σi) ∧R(pr + ρj , qr + σj)→ R(pr + ρk, qr + σk).
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This expresses the following condition for graphs in G(ψ) to be models
of G(ψ) (see Fig. 3.9): if in an elementary square the two points with lo-
cal coordinates (ρi, σi), (ρj , σj) are coloured, then so is the point with local
coordinates (ρk, σk) in the same elementary square.
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Figure 3.9. Encoding of Rixy ∧Rjxy → Rkxy

For conjuncts Rixy → Rjyx of type (5) in ψ we write the corresponding
G(ψ)-conjunct

R(pr + ρi, qr + σi)→ R(qr + ρj , pr + σj).

This expresses the following condition for graphs in G(ψ) to be models
of G(ψ): if in an elementary square with global coordinates (p, q) the point
with local coordinates (ρi, σi) is coloured, then so is the point with local
coordinates (ρj , σj) in the reflection of that elementary square in the main
diagonal, i.e. the square with global coordinates (q, p).

This ends the construction of G(ψ) and the explanation of the class G(ψ)
of coloured graphs over N × N which support the intended interpretation of
R. By a finite model in G(ψ) we mean a model where the domain is a subset
Zp × Zp ⊆ N× N with p = mr for some m.

From the construction it is clear that ψ has a (finite) model if and only
if G(ψ) has a (finite) model in G(ψ).
Step 3. The goal of this step is to orthogonalize the arrows in G(ψ) along
the N × N-grid. This means that the arrows are replaced by sequences of
arrows linking points to either one of their neighbours or to their reflection
in the main diagonal. The formula G′(ψ) describing these normalized graphs
is easily recognized to belong to [∀∃∀, (ω, 1)] and to have a (finite) model if
and only if G(ψ) does.

We have to go again through the cases (2)–(6) of conjuncts in G(ψ).
We indicate for each case the arrow transformation and its formalization in
[∀∃∀, (ω, 1)]. This formalization is based upon the following axiomatization
mod(P0, . . . , Pr) of the mod(r)–function to express local coordinates 0 ≤ ρ <
r, where P0, . . . , Pr−1 are monadic predicate symbols:∨

0≤ρ<r

Pρx ∧
∧

0≤ρ ̸=σ<r

¬(Pρx ∧ Pσx) (Partitioning)
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∧
∧

0≤ρ<r

(Pρx↔ Pρ+1x
′) ∧ (Pr−1x↔ P0x

′) (Periodicity).

It is easy to see how to orthogonalize internal arrows coming from G(ψ)-
implications R(xr+ ρi, yr+ σi)→ R(xr+ ρj , yr+ σj) of type (2). It suffices
to construct an equivalent path of arrows which go only from points (p, q) to
neighbouring points (p± 1, q) or (p, q± 1) without crossing any other arrow,
see Fig. 3.10. Given condition (C1) and the fact that each predicate symbol
can occur at most three times, it is possible to choose r sufficiently large in
order to find enough space for such crossing free paths.
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Figure 3.10. Orthogonalization of
i→ j

Such a path can be formalized by a conjunction of [∀∃∀, (ω, 1)] formulae
of the following form:

Pρiy ∧ Pσix ∧Ryx→ Ryx′

Pρiy ∧ Pσi+1x ∧Ryx→ Ryx′

...

Pρj−1x ∧ Pσj
y ∧Rxy → Rx′y

This transformation and formalization clearly preserves models and finite
models.

In the same way we can orthogonalize the arrows from or to negation
points, i.e. coming from implications of type (4a,b); in the same way we
formalize this in [∀∃∀, (ω, 1)]-conjuncts, see Fig. 3.11.

For external arrows coming from G(ψ)-implications R(xr+ρi, yr+σi)→
R(x′r + ρj , yr + σj) of type (3) we do a similar transformation and formal-
ization, as illustrated by Fig. 3.12.
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Figure 3.11. Orthogonalization of Rixy → ¬Rjxy and ¬Rixy → Rjxy
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In order to prevent undesirable conflicts with paths to be constructed
now for arrows coming from implications of type (5) or (6), we require the
following additional property (C3) for the choice of local coordinates:

(C3) 6 ≤ ρi − σi for all i ≤ n.

This condition guarantees that the encoding points lie below the diago-
nal of the elementary squares (because of σi < ρi) and that their distance
from that local diagonal is at least 6. This prevents also auxiliary points like
¬(ρi, σi) to be above the local diagonals — similarly for auxiliary points for
arrows from implications of type (5) and (6).

For each conjunct R(xr + ρi, yr + σi) → R(yr + ρj , xr + σj) of type (5)
in G(ψ) we choose a fresh point jump(ρi, σi) at distance say two from ī in
the same elementary square, draw a new path from ī to jump(ρi, σi), draw
an arrow from there to its mirror image over the main diagonal and continue
with a fresh path from that point to the point j̄ in the mirror image square.
This is illustrated in Fig. 3.13. To avoid crossings we assume in particular
that before this transformation step, for any elementary square the point
jump(ρi, σi) and its mirror image were both still free from incoming and
outgoing arrows. (Note also that only for implications of this type we do
use, for the first time, points above the diagonal.) This transformation can
be formalized by a conjunction of formulae as above where the crucial jump
conjunct is:

Pj1x ∧ Pj2y ∧Rxy → Ryx where (jump(ρi, σi))k = jk.

Clearly this transformation preserves models and finite models.
For each conjunct R(xr + ρi, yr + σi) ∧ R(xr + ρj , yr + σj) → R(xr +

ρk, yr + σk) of type (6) in G(ψ) we construct two fresh paths as illustrated
in Fig. 3.14. The construction is split into 6 parts.

First we choose an appropriate fresh point conj(i, j, k). We choose this
point in such a way that it has distance 5 from k and that neither conj(i, j, k)
nor (going in the direction of k) its neighbour conj(i, j, k)′ nor the next
point conj(i, j, k)∗ nor their mirror images over the main diagonal, have
been coloured yet. Let (ρ, σ), (ρ′, σ′), (ρ∗, σ∗) be the local coordinates of
conj(i, j, k), conj(i, j, k)′, conj(i, j, k)∗ respectively. (In Fig. 3.14 we have
chosen ρ′ = ρ+ 1, ρ∗ = ρ′ + 1, ρ+ 5 = ρk, σ = σ′ = σ∗ = σk.)

Part 1. In every elementary square we draw a new path from the point ī to
the point conj(i, j, k); this is formalized as before by conjuncts of G′(ψ) ∈
[∀∃∀, (ω, 1)] of the following form :

Pρiy ∧ Pσix ∧Ryx→ Ryx′

...

Pρy ∧ Pσ−1x ∧Ryx→ Ryx′
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Part 2. In the same way we construct and formalize for each elementary
square a new path from the point j̄ to the point conj(i, j, k)′.

What we want to describe now is the following formula:

Rxy ∧Rx′y ∧ Pρ′x′ ∧ Pσ′y → Rx′′y.

We can then ensure by paths of the usual type (see Part 6 below) that also
the nearby point k̄ is coloured. We have to avoid however the nesting of the
successor function in Rx′′y. This is done by jumping twice over the main
diagonal as described in Parts 3–5 of the construction.

Part 3. We draw in each elementary square an arrow from conj(i, j, k)′ to its
mirror image over the main diagonal; the conjunctive rôle of this jump over
the diagonal is formalized by the following subformula of G′(ψ) expressing
that if a point (pr+ρ′, qr+σ′) as well as its (in our example, left) neighbouring
point with local coordinates (ρ, σ) are both colored, then also the mirror
image (qr + σ′, pr + ρ′) over the main diagonal is colored:

Pρ′x
′ ∧ Pσ′y ∧Rxy ∧Rx′y → Ryx′.

Part 4. In each elementary square we construct a path from the node with
local coordinates (σ′, ρ′) to the node with local coordinates (σ∗, ρ∗). This can
be formalized as above by appropriate conjuncts in G′(ψ).

Part 5. We draw arrows from points (qr+σ∗, pr+ρ∗) to their mirror images
(pr+ ρ∗, qr+σ∗) over the main diagonal. This is formalized by the following
G′(ψ)-conjunct:

Pρ∗x ∧ Pσ∗y ∧Ryx→ Rxy.

Part 6. In each elementary square we construct a path from the node with
local coordinates (ρ∗, σ∗) to the node k̄. This is formalized by the following
G′(ψ)-conjuncts:

Pρ∗x ∧ Pσ∗y ∧Rxy → Rx′y,

Pρk−1x ∧ Pσk
y ∧Rxy → Rx′y.

By this construction we have normalized the arrows in G(ψ) which come
from conjunctive axioms of type (6) to equivalent paths which are built up
from steps to immediate neighbours and from jumps to the mirror image over
the main diagonal; these normalized paths lend themselves to formalization
in [∀∃∀, (ω, 1)].

⊓⊔
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3.1.4 The Remaining Cases Without ∃∗

In this section we first prove the conservative reduction class property for the
second of the two minimal such classes with finite prefix, namely Surányi’s
reduction class [∀3∃, (ω, 1)]. Our proof provides a conservative reduction of
Kahr’s class to it. As an easy corollary we obtain the conservative reduction
class property also for the Surányi class [∃∗∀3∃, (0, 1)]. We then show that
there is also a simple conservative reduction of Kahr’s class to the Kalmár-
Surányi class [∀∗∃, (0, 1)] and to the Denton class [∀∃∀∗, (0, 1)]. Note that the
last three cases establish undecidability for small classes of formulae of graph
theory.

Surányi’s Reduction Class [∀3∃, (ω, 1)]. In this paragraph we prove the
following theorem.

Theorem 3.1.16 (Surányi). [∀3∃, (ω, 1)] is a conservative reduction class.

Proof. We give a conservative reduction of Kahr’s class to Surányi’s class. Let
∀x∀yα be the Skolem normal form of an arbitrary formula ψ ∈ [∀∃∀, (ω, 1)]
with monadic predicates Q1, . . . , Qn and one binary predicate R. For the first
proof step we assume that the binary atomic formulae which occur in ψ are
all among Rxy,Ryx,Rx′y .

The idea of the proof consists in coding each point a of a model A =
(A,QA

1 , . . . , Q
A
n , R

A) |= ψ by a triple (a0, a1, a2) of points in a new structure
B = (B,PB

0 , P
B
1 , P

B
2 , Q

B
1 , . . . , Q

B
n , R

B) where a0 can be identified with a.
The successor function ′ in A is naturally extended to the new points as
indicated in Fig. 3.15; formally this is encoded into R by requiring the truth
of Ra0a1, Ra1a2 and Ra2a0 in B (see below axiom β0).

t
t
t
t

t t t t t
6 6

6 6
- -

a1

a2

a = a0
a′ Figure 3.15. Tripling points of the

given model

In this way a1 becomes the successor of a = a0. As a consequence, in the
extended model the copy a1 of a has to play the rôle of a′ with respect to the
encoding of the truth values QA

1 a
′, . . . , QA

na
′, RAa′b for any b. In this respect

also the second copy a2 of a must be equivalent to a and therefore to a1.
This means that the predicates QA

j are encoded into predicates QB
j of the

new model such that QA
j a

′, QBa1 and QBa2 are equivalent for all a ∈ A, i.e.
the following holds:
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(∗) a1 ∈ QB
j iff a′ ∈ QA

j

a2 ∈ QB
j iff a′ ∈ QA

j

a0 ∈ QB
j iff a ∈ QA

j .

This intended interpretation is easily axiomatized by (the Skolem form
of) an [∀∃, (ω, 1)]-formula β0 as follows:

β0 := Rxx′ ∧mod(P0, P1, P2) ∧ (P1x ∨ P2x→
∧

1≤j≤n

(Qjx↔ Qjx
′)),

Heremod(P0, P1, P2) describes a modulo-3 structure that encodes the suc-
cessor relation described above among the copies a0, a1, a2 of a (see Fig. 3.15),
i.e. mod(P0, P1, P2) is the formula∨

0≤j≤2

Pjx ∧
∧

0≤i<j≤2

¬(Pix ∧ Pjx) ∧
∧

j=i+1 (mod 3)

(Pix→ Pjx
′).

In order to ensure the equivalence of a1, a2 with a′ for the binary relation
R the intended interpretation of R in B should satisfy the equivalence of
RAa′b with RBa1b0 and RBb0a2. Thus, we require that

(∗∗) (a1, b0) ∈ RB iff (a′, b) ∈ RA

(b0, a2) ∈ RB iff (a′, b) ∈ RA

(a0, b0) ∈ RB iff (a, b) ∈ RA.

In the presence ofmod(P0, P1, P2) this intended interpretation is easily ax-
iomatized by a [∀3, (ω, 1)]-formula β1 defined as conjunction of two formulae
β1,1 (describing the equivalence of the arrows 1 and 2 depicted in Fig. 3.16)
and β1,2 (describing the equivalence of the arrows 2 and 3 in Fig. 3.16):

β1,1 := P1x ∧ P2y ∧Rxy ∧ P0z → (Rxz ↔ Rzy),

β1,2 := P0z ∧ P2y ∧Ryx ∧ P0x→ (Rzy ↔ Rxz).

We therefore encode models of ψ by models of a reduction formula φ
where points a, b are represented by P0-points and a′ is represented as a
P1-point.

φ := ∀xβ0 ∧ ∀x∀y∀z(β1 ∧ (P0x ∧ P0y ∧ P1z ∧Rxz → α[x′/z])).

Claim. ψ is (finitely) satisfiable if and only if φ is (finitely) satisfiable.

Exercise 3.1.17. Show that the claim implies the theorem under the as-
sumption mentioned at the beginning of the proof.
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Proof of the claim. For a model A = (A,QA
1 , . . . , Q

A
n , R

A) |= ψ we define
B = (B,PB

0 , P
B
1 , P

B
2 , Q

B
1 , . . . , Q

B
n , R

B) with universe B = A × {0, 1, 2} by
PB
j := A × {j} and the intended interpretation given above (see ((∗), (∗∗))

for QB
j and RB. It is easy to check that B satisfies ∀xβ0 ∧ ∀x∀y∀zβ1. To

show that B |= ∀x∀y∀zP0x ∧ P0y ∧ P1z ∧ Rxz → α[x′/z] one proceeds by
induction on the subformulae γ(x, x′, y) of α to verify that for all a, b ∈ A,
A |= γ[a, a′, b] if and only if B |= γ[(a, 0), (a, 1), (b, 0)]. By assumption on the
atoms occuring in α, at the basis one has only three cases to consider: a)
Rxy, b) Ryx, c) Rzy.

The first two cases are symmetric and follow by definition of R(a, 0)(b, 0)
in B. For Rzy we use that B |= R(a, 1)(b, 0) iff A |= Ra′b. (Note that the
equivalence would not hold for Ryz because Ryz is true in A for successive
points (b, 0), (b, 1).)

For the converse letB be a model of ψ∗ with successor function ′ satisfying
∀xβ0. Define A as the restriction of B to the elements satisfying P0x. Then
for each a ∈ B satisfying P0a the formula P0a

′′′ holds by mod(P0, P1, P2).
Furthermore sinceB |= ∀xβ0∧∀x∀yβ1, it follows thatB |= Ra′′′b↔ Ra′b and
B |= Qja

′′′ ↔ Qja
′ for all a, b ∈ B satisfying P0a ∧ P1b; therefore α[a, a

′′′, b]
is equivalent in B to α[a, a′, b]; since the latter is true in B, it follows that
A |= ∀x∀yα. ⊓⊔

Exercise 3.1.18. Modify the construction in the proof to make it indepen-
dent of the assumption that only binary subformulae Rxy,Ryx,Rx′y occur.

The proof establishes the following stronger version of the theorem.

Corollary 3.1.19. The class [∀∃∧∀3, (ω, 1)] of all formulae ψ∧φ with only
one binary predicate symbol and ψ ∈ [∀∃, (ω, 1)] and φ ∈ [∀3, (ω, 1)] is a
conservative reduction class.

Corollary 3.1.20 (Surányi). The class [∃∗∀3∃, (0, 1)] is a conservative re-
duction class.

Proof. We give a reduction from Surányi’s reduction class [∀3∃, (ω, 1)] to the
class in question. Let ψ := ∀x∀y∀z∃uα ∈ [∀3∃, (ω, 1)] be an arbitrary formula
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with monadic predicate symbols Pi (1 ≤ i ≤ n) and one binary predicate
symbol R. The reduction idea is to code each Pi into a branch {x : R(wi, x)}
of R, where wi is a witness for Pi, i.e. an element that is different from all
the elements of the domain of a given model for ψ. As witnessing property
we choose the property of being related to some special new element w0 as
illustrated in Fig. 3.17.
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x Figure 3.17. Witnessing monadic predicates

Formally we define therefore the reduction formula φ ∈ [∃∗∀3∃, (0, 1)] by

φ := ∃w0 · · · ∃wn∀x∀y∀z∃u(WITNESSES ∧ CLOSURE ∧ ENCODING[α])

where

WITNESSES :=
∧

1≤i≤n

Rw0wi

CLOSURE := ¬Rw0u

ENCODING[α] := ¬Rw0x ∧ ¬Rw0y ∧ ¬Rw0z → α[Pit/Rwit].

Claim. ψ is (finitely) satisfiable if and only if φ is (finitely) satisfiable.

Exercise 3.1.21. Prove the claim.

⊓⊔

Exercise 3.1.22. Prove that the Surányi class [∃∗∀∃∀, (0, 1)] is a conserva-
tive reduction class. Hint: Reduce the Kahr class. (A different proof which
does not depend on the result of Kahr is given in the next section.)

Classes with ∀∗ in the Prefix. We prove here the following theorem.

Theorem 3.1.23. The class [∀∃ ∧ ∀∗, (0, 1)] of all formulae ψ ∧ φ with only
one binary predicate symbol and ψ ∈ [∀∃, (0, 1)] and φ ∈ [∀∗, (0, 1)] is a
conservative reduction class.

By prenexing one obtains immediately the conservative reduction class
property for the two minimal classes with ∀∗ in the prefix.
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Corollary 3.1.24 (Kalmár, Surányi). [∀∗∃, (0, 1)] is a conservative re-
duction class.

Corollary 3.1.25 (Denton). [∀∃∀∗, (0, 1)] is a conservative reduction class.

Proof. (of 3.1.23) We refine the encoding idea used already for the conserva-
tive reduction of Kahr’s class to Surányi’s reduction class. Let ∀x∀yα be the
Skolem normal form of an arbitrary formula ψ ∈ [∀∃∀, (ω, 1)] with monadic
predicate symbols P2, . . . , Pn and binary predicate symbol R. Without loss
of generality we assume n ≥ 3.

The idea of the proof consists in coding each point a of a model A =
(A,P2, . . . , Pn, R) |= ψ by a tuple (a0, . . . , an) of elements in a new structure
B = (B,Q) with one binary relation Q where a0 can be identified with a. The
successor function ′ in A is naturally extended to the new points as indicated
in Fig. 3.18; formally this is encoded into Q by requiring that B |= Qaiaj for
j = i+ 1 (mod n+ 1).
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Figure 3.18. Encoding of P3a, P5a, P4b,Rab

Fig. 3.18 also shows the intended encoding of Pia and Rab which can be
formally described as follows:
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(∗) A |= Pia ⇐⇒ B |= Qa0ai ∧Qaia0
A |= Rab ⇐⇒ B |= Qa1bn ∧Qbna1.

The given basis points a = a0 can be characterized by reflexivity of Q on
them, i.e. by requiring that

(∗∗) B |= Qa0a0.

We express the successor relation by the formula

S(x, y) := Qxy ∧ ¬Qyx.

Further we express that X = (x0, . . . , xn) is an (n + 1)-tuple of successive
points, starting at basis x0, (called a chain) by the formula

C(X) := Qx0x0 ∧
∧
i<n

S(xi, xi+1).

To make this encoding idea work we use an ∀∃-formula

SUCCESSOR := ∀xS(x, x′)

to guarantee for each element the existence of a successor. To make the suc-
cessor relation sufficiently unique we have to ensure that any successors y, z
of x are equivalent for x with respect to Q (Q-indistinguishable). This is
formalized as follows:

UNIQUE := S(x, y) ∧ S(x, z)→ ((Qyu↔ Qzu) ∧ (Quy ↔ Quz)).

For every sequence of n + 1 successive points we have also to guarantee
that it contains exactly one basis point. This is formalized as follows:

BASIS := (
∧
i<n

S(xi, xi+1))→ (
∨
i≤n

Qxixi ∧
∧

i<j≤n

¬(Qxixi ∧Qxjxj)).

We can now define the reduction formula φ as the conjunction of SUC-
CESSOR and the universal closure of the formula

η → α[Rst/Qs1tn, Pit/Qt0ti]

where

η := UNIQUE ∧ BASIS ∧ C(X) ∧ C(Y ) ∧ C(Z) ∧ S(xn, y0).

Claim. φ is (finitely) satisfiable if and only if ψ is (finitely) satisfiable.

Proof of the claim. If A = (A,P2, . . . , Pn, R) |= ψ, then we define B over
B = A× {0, . . . , n} by the intended interpretation given above (see (∗), (∗∗)
and Fig. 3.18). It is easy to check that B |= φ.
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For the converse suppose that B = (B,Q) |= φ. Let ′ be a function such
that B |= ∀xS(x, x′). Over the restriction of B to the set A of all points a
where Q is reflexive (i.e. A = {a ∈ B : B |= Qaa}) define

Pi := {a ∈ A : B |= Qa0ai ∧Qaia0}
R := {(a, b) ∈ A×A : B |= Qa1bn ∧Qbna1}

where ai denotes the result of i successive applications of the operation ′ to
a. Clearly A = (A,P2, . . . , Pn, R) |= α[a, an+1, b] for all a, b ∈ A and therefore
A |= ψ. ⊓⊔

3.2 Existential Interpretation for [∀3∃∗, (0, 1)]

In this section we prove that the Kalmár-Surányi class [∀3∃∗, (0, 1)] is a con-
servative reduction class. We use the proof of this result to explain Gurevich’s
method of existential interpretation on a simple example before it is applied
in a crucial way to the difficult Gurevich class in the next section.

Theorem 3.2.1 (Kalmár-Surányi). The class [∀3∃∗, (0, 1)] is a conserva-
tive reduction class.

Proof. The proof splits into three steps.

Step 1. Reduction of Büchi’s conservative reduction class [∃ ∧ ∀∃∀, (ω, 3)]
to [∀3∃2, (ω, 4)] by axiomatizing the Skolem successor function through a
new binary predicate representing its graph. (Starting from Kahr’s class
[∀∃∀, (ω, 1)] would produce [∀3∃, (ω, 2)].)

Step 2. Encoding of the finitely many monadic predicates Pi into branches
{x : Q(wi, x)} of a new binary predicate symbol Q. The new elements wi
that “witness” the sets Pi are bound by existential quantifiers producing
[∀3∃∗, (0, 5)]-formulae with equality. Here, equality is used to express the
uniqueness of the witnesses.

Step 3. Encoding of the five predicates and equality resulting from Step 2
into one binary relation. It is here that for future use we make the tech-
nique of existential interpretation explicit in the form of several lemmata
that are used to obtain the desired conservative reduction.

Step 1. In this step we give a conservative reduction of formulae ψ ∈ [∃ ∧
∀∃∀, (ω, 3)] to formulae φ ∈ [∀3∃2, (ω, 4)] in such a way that every model of
any of the reduction formulae satisfies ∃vHvv for one of the occuring binary
predicate symbols.

In Exercise 2.1.31 to Trakhtenbrot’s Theorem it has been shown that
Turing machines can be encoded by Büchi-formulae

ψ := ∃vα ∧ ∀x∃u∀yβ ∈ [∃ ∧ ∀∃∀, (ω, 3)]
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in such a way that α contains the subformula Hvv. Let S be a new binary
predicate symbol and define its rôle as the graph of the successor function by

φ := ∃vα ∧ ∀x∃uSxu ∧ ∀x∀u∀y(Sxu→ β).

Then clearly ψ is (finitely) satisfiable if and only if φ is (finitely) satisfi-
able. Also each model of φ satisfies ∃vHvv. By prenexing the formula φ one
obtains the desired result of Step 1.
Step 2. In this step we give a conservative reduction from formulae ψ ∈
[∀3∃2, (ω, 4)] whose models satisfy ∃vHvv to formulae φ ∈ [∀3∃∗, (0, 5)]= (i.e.
with equality).

Let P1, . . . , Pm be the monadic and Q1, . . . , Q4 the binary predicate sym-
bols occuring in ψ := ∀x∀y∀z∃u∃vα. Let Q be a new binary predicate symbol.
The idea of the proof is to represent Pit in an appropriate branch of Q by
Qwit for a new element wi (see the formula ENCODING[α] below). Thus the
existence and the uniqueness of such “witnesses” wi of Pi have to be ensured.

We generate the witnesses by imposing a directed chain Qwiwi+1 ∧
¬Qwi+1wi of Q-reflexive points, starting from a distinguished point w1 sat-
isfying Hw1w1 (see Fig. 3.19). The uniqueness of the witnesses is formalized
using equality. The domain where the given formula ψ is interpreted – namely
on points that are not Q-reflexive – has to be closed; this is formulated by a
closure axiom in φ.
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Figure 3.19. Encoding of Pia

We define therefore:

φ := ∀x∀y∀z∃u∃v∃w1 . . .∃wm(WITNESSES∧CLOSURE∧ENCODING[α])

where

WITNESSES := EXISTENCE ∧UNIQUENESS

CLOSURE := ¬Quu ∧ ¬Qvv
ENCODING[α] := ¬Qxx ∧ ¬Qyy ∧ ¬Qzz → α[Pit/Qwit]
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EXISTENCE := FIRST(w1) ∧
∧

i<m
NEXT(wi, wi+1)

FIRST(x) := Qxx ∧Hxx
NEXT(x, y) := Qxx ∧Qyy ∧Qxy ∧ ¬Qyx

UNIQUENESS is the conjunction of the two formulae:

FIRST(x) ∧ FIRST(y)→ x = y

NEXT(x, y) ∧NEXT(x, z)→ y = z.

It is now easy to verify that ψ is (finitely) satisfiable if and only if φ is
(finitely) satisfiable.

Indeed if A |= ψ, set B = (B,Q) where B = A ∪ {w1, . . . , wm} for new
elements wi such that Q satisfies the formulae WITNESSES and CLOSURE
(this means that B |= ¬Qaa for each element a of the domain A of A) and
such that B |= Qwia if and only if A |= Pia for each a ∈ A. This results in a
model B that satisfies ENCODING[α] and therefore φ.

Conversely, assume that B |= φ. Restrict the domain of this model to
A := {a ∈ B | B |= ¬Qaa}. Let wi (1 ≤ i ≤ m) be a Q-chain of elements
such that

B |= EXISTENCE[w1, . . . , wn].

Due to the CLOSURE axiom in φ the domain A is sufficiently closed.
From B |= ENCODING[α] we obtain therefore a model for ψ if we restrict
B to A and interpret Pi by {a ∈ A : B |= Qwia}.

For future use we will formulate below some of the characteristic features
of the preceding reduction explicitly as lemmata.

Step 3. In this step we show how the five binary predicates and the equality
which appear in the formulae resulting from step 2 can be encoded by one
binary predicate. We first explain the proof strategy.

Proof strategy. Let A be a model of ψ ∈ [∀3∃∗, (0, 5)]=. Let Q1, . . . , Q5

be the predicate symbols (different from equality) that occur in ψ and let R
be a new binary predicate symbol. We create for each point a0 ∈ A a triple
a1, a2, a3 of new points which serve to encode the relations Q1, . . . , Q5. Indeed
each given relation Qx0y0 can be encoded as one of the six possible relations
Rxixj among the new points (where i ̸= j, see Fig. 3.20). Formally, for
each (i, j) ∈ {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3)} let Qi,j be any of the predicates
Q1, . . . , Q5; let Pi (0 ≤ i ≤ 3) be monadic predicates representing the domain
of all elements of type xi. Then Qi,j will be encoded by the formula

CODE(Qi,j) := P0x ∧ P0y ∧ ∃xi∃yj(Pixi ∧ Pjyj ∧Rxxi ∧Ryyj ∧Rxiyj).

The three new elements a1, a2, a3 for each element a0 of the given domain
are provided by the following WITNESSES-axioms expressing that for i =
1, 2, 3 there exists for each P0-element a (of the given universe A of A) exactly
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Figure 3.20. The 6 possible encodings of binary predicates

one Pi-element b (of the new domain where φ will be interpreted) such that
R[a, b] holds (see Fig. 3.21). Clearly it must also be ensured that there is at
least one P0-element (CLOSURE axiom). Formally:

WITNESSES := EXISTENCE ∧UNIQUENESS ∧ CLOSURE,

EXISTENCE :=
∧

1≤i≤3
(P0x→ ∃w(Piw ∧Rxw)),

UNIQUENESS := P0x ∧ Piy ∧Rxy ∧ Piz ∧Rxz → y = z,

CLOSURE := ∃uP0u.
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We have to define this partitioning into four predicates P0, . . . , P3 using
only the one binary predicate symbol R. The idea is to represent the truth val-
ues of P0, . . . , P3 at a by the four possible patterns for the R-relation between
a and a distinguished point, say u. We fix u as a unique R-reflexive point, i.e.
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satisfying R[u, u]; then the sets P0, . . . , P3 are defined by the formulae (see
Fig. 3.21):

Pi(x) := ¬Rxx ∧ ∃u(±Rxu ∧ ±Rux).

(We use ±ψ as abbreviation for any of ψ or ¬ψ.) To make this encoding
work we have to ensure the existence of a unique R-reflexive point.

What follows is a stepwise introduction of the above outlined encoding
features by [∀3∃∗, (0, 1)]-formulae. For future use we isolate the single reduc-
tion steps in the form of lemmata that are characteristic for the technique of
existential interpretation.
Existential Interpretation. Gurevich’s method of existential interpreta-
tions provides conservative reductions between theories which preserve cer-
tain modest prefix forms. The typical situation has been illustrated already
through the conservative reductions of Kahr’s class to various other prefix-
vocabulary classes in the preceding section where the underlying theories
T ′ and T are just logics (i.e. theories without non logical axioms): each T ′-
formula ψ is translated into a T -formula φ by replacing a certain atomic
T ′-subformula π by an interpreting T -formula π′. If both π′ and ¬π′ are
equivalent in T to existential formulae, then the translation of every ∀p∃∗-
formula of T ′ is equivalent in T to a ∀p∃∗-formula and thus preserves the
∀p∃∗-prefix structure in reducing T ′ to T .

For a succinct formulation of the method of existential interpretation we
introduce some terminology reflecting the fact that in dealing with general
theories we are interested in their restriction to ∀p∃∗-formulae for some small
number p.

By a theory T we understand in this book a first order theory, identified
with the set of its theorems and usually represented by the set of its non
logical axioms. We consider only theories with decidable language which is in
the standard way identified with the vocabulary. (Finite) satisfiability of ψ in
T means truth of ψ in some (finite) model of T , similarly for unsatisfiability
in T . As usual a theory without non logical axioms is called a logic.

Definition 3.2.2. A theory T ′ is called a p-extension of a theory T if T and
T ′ have the same vocabulary and T ′ is obtained from T by adding a finite
number of axioms ψ1, . . . , ψn such that the universal closure of each ψi is
equivalent in T to a ∀p∃∗-sentence.

Example 1. Consider the logic T with vocabularyQ1, . . . , Q4, Q and equality
as used in Step 2. It is 3-extended there to the theory T ′ obtained from T
by adding the axiom ∃w1 . . . ∃wmWITNESSES. The purpose of that axiom
was to provide the witnesses wi which assisted the elimination of monadic
predicates symbols Pi from ∀3∃∗-formulae in T . Note that in Step 2 we have
provided a semi-conservative reduction of the ∀3∃∗-fragment of T ′ to the
∀3∃∗-fragment of T .
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Example 2. Let T0 be the logic of a binary predicate R and T1 be the 3-
extension of T0 by means of the following two axioms expressing the existence
of an R-reflexive element with a “uniqueness” property.

∃uRuu,

Rxx ∧Ryy → (Rxz → Ryz) ∧ (Rzx→ Rzy).

Clearly there is a semi-conservative reduction of the ∀3∃∗-fragment of T1 to
the ∀3∃∗-fragment of T0.

(Semi-)conservative reductions that preserve the number of universal
quantifiers will be used repeatedly and thus motivate a further definition.

Definition 3.2.3. A theory T ′ is called p-reducible to a theory T if there is a
semi-conservative reduction of the ∀p∃∗-fragment of T ′ to the ∀p∃∗-fragment
of T .

Lemma 3.2.4 (p-Extension Lemma.). Show that each p-extension T ′ of
a theory T is p-reducible to T .

Exercise 3.2.5. Prove the p-Extension Lemma.

Example 3. Let T2 be the 3-extension of T1 of Example 2 by means of the
axiom PARTITION which is the conjunction of the following four axioms
explained in the proof strategy above.

¬Rxx ∧ ∃u(±Rxu ∧ ±Rux).

In the proof of Step 3 below we will use each of these axioms as the definition
of a unary predicate Pi(0 ≤ i ≤ 3) which can thus be considered as being
introduced into T2.

Note that each of the four axioms in Example 3, as well as their negation,
is equivalent in T1 to a purely existential formula (remember that ∃uRuu
holds in every T -model). Since formulae with this property are useful for
introducing predicates into ∀p∃∗-theories we give them a name.

Definition 3.2.6. A formula ψ is called a neutral formula of a theory T if
both ψ and its negation are equivalent in T to existential formulae.

Lemma 3.2.7 (Neutral Definitions). Let T be a theory, ψ be a formula
in the vocabulary of T . Assume that the number m of free variables of ψ does
not exceed p. If ψ is a neutral formula of T , then the theory T ′ obtained from
T by introducing a new m-ary predicate P by means of ψ, i.e. by adding the
axiom Px1 · · ·xm ↔ ψ, is p-reducible to T .

Exercise 3.2.8. Prove the Lemma on Neutral Definitions .

In Example 2 above the “uniqueness” property expresses that two R-
reflexive elements are indistinguishable by R. For (semi-)conservative reduc-
tions such an indistinguishability is often enough to encode equality. This
motivates the following definition.



3.2 Existential Interpretation for [∀3∃∗, (0, 1)] 121

Definition 3.2.9. Elements a, b of a structure A are called indistinguishable
if for all first-order formulae ψ(x) (in the vocabulary of A and with exactly
one free variable) it holds that A |= ψ[a] if and only if A |= ψ[b].

A structure A is called economical if indistinguishable elements of A are
identical. The structure obtained from A by identifying indistinguishable el-
ements is called the economical version of A.

A formula ε(x, y) expresses indistinguishability in a theory T if for every
model A |= T and for every pair a, b of elements it holds that a, b are indis-
tinguishable in A if and only if A |= ε[a, b]. (Of course ε is supposed to be in
the vocabulary of T and to contain exactly two free individual variables.)

Lemma 3.2.10 (Equality as Neutral Indistinguishability). Let T be a
theory without equality and let ε be a neutral formula of T expressing indis-
tinguishability in T . Assume that p ≥ 2. Then the theory T ′ obtained from T
by introducing equality by means of ε is p-reducible to T .

Exercise 3.2.11. Prove Lemma 3.2.10.

Lemma 3.2.12 (Equality as Neutral Congruence). Let T be a theory
with finite vocabulary and without equality and let ε be a neutral formula of
T with exactly two free variables. Assume that p ≥ max(3,m) where m is the
maximal arity of the predicate and function symbols in the vocabulary of T .
Then the theory T ′ obtained from T by introducing equality by means of ε is
p-reducible to T .

Exercise 3.2.13. Prove Lemma 3.2.12. Hint: Let EQUIV(ε) be a neutral
formula of T whose universal closure expresses that ε defines an equivalence
relation. For each predicate symbol P of T let CONGRUENCE(P ) be a
neutral formula of T whose universal closure expresses that P does not dis-
tinguish between ε-equivalent elements. For each function symbol f of T let
CONGRUENCE(f) be a neutral formula of T whose universal closure ex-
presses that the values of f depend only upon the ε-equivalence classes of the
arguments. Then use the p-Extension Lemma and Lemma 3.2.10 on equality
as neutral indistinguishability.

Example 4. Let T3 be the theory obtained from T2 by introducing equality
by means of the following formula:

(Rxx ∧Ryy) ∨ (¬Rxy ∧
∨

0≤i≤3

(Pi(x) ∧ Pi(y))).

Therefore models of T3 satisfy the following properties: a) there is exactly
one R-reflexive element (see the T1-axioms), b) R-irreflexive elements are
partitioned by P0(x), . . . , P3(x) into four classes (see the T2-axioms), c) by
the T3-axiom, different elements in the same class are two-way connected by
R. Since the additional T3-axiom is neutral in T2, it follows by Lemma 3.2.12
that T3 is 3-reducible to T2.
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For conservative reductions of one theory to another one usually has to
restrict the domain of elements where the encoding of the original formula
is required to hold. An example is the restriction of the interpretation of
α[Pit/Qwit] in the formula ENCODING[α] of Step 2 above to Q-irreflexive
points. Such a restriction is typically accompanied by closure axioms that
make sure that there are enough elements in the restricted domain; an ex-
ample can again be found in Step 2 above in the axiom CLOSURE. Since
this situation is very frequent we give it a name. Due to the fact that in this
chapter we only consider formulae without function symbols and equality the
following definition is given for relational vocabularies only.

Definition 3.2.14. Let ψ(x) be a first-order formula and A be a structure
with A |= ∃xψ(x). The restriction A|ψ of A by ψ is the substructure of A
with universe {a | A |= ψ[a]}. The restriction of a theory T by ψ is the
theory Th{A|ψ : A |= T ∧ ∃xψ(x)}, i.e. the set of sentences that hold in the
ψ-restrictions of all T -models satisfying ∃xψ(x).

Lemma 3.2.15 (Neutral Model Restriction). The restriction T ′ of a
theory T by a neutral formula δ of T is p-reducible to T .

Exercise 3.2.16. Prove Lemma 3.2.15. Hint: Construct for arbitrary T -
formulae ψ ∈ [∀p∃∗] a suitable formula ∃xδ ∧ (ψ | δ).

When interpreting a theory T ′ with equality in another theory T one can
often show that T ′-models are equivalent to quotient structures of T -models
(with respect to some equivalence relation). In the context of conservative
reductions this is made precise by the following definition of embeddings of
theories.

Definition 3.2.17. Let T ′ be a theory of vocabulary σ whose sentences may
contain equality; let ε be a neutral formula of a theory T (not necessarily with
equality) whose vocabulary contains σ. T ′ is called embedded into T modulo
ε if the following two conditions are satisfied:

– In each T -model A the formula ε defines an equivalence relation on the
domain of A; further ε-equivalent elements are indistinguishable in the
σ-reduct A|σ of A and the quotient structure (A|σ)/ε is a model of T ′.

– For each finite T ′-model B there is a finite T -model A whose quotient
structure (A|σ)/ε is elementary equivalent to B, i.e. satisfies the same σ-
sentences as B.

Lemma 3.2.18 (Neutral Embeddings). If a theory T ′ with equality is
embedded into a theory T modulo a neutral formula ε then T ′ is p-reducible
to T .

Exercise 3.2.19. Prove Lemma 3.2.18. Hint: Replace s = t in given ∀p∃∗-
formulae by ε(s, t).
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Concluding the proof of Step 3. Using the just formulated concepts of
existential interpretation, the execution of the proof strategy for Step 3 takes
the form of constructing successive 3-reductions starting from the logic T0 of
one binary predicate and reaching the result of Step 2, namely the logic T7
of five binary predicates with equality. In order to let each single encoding
idea stand out explicitly we will consider each step separately.
Step 3.1. (Introduction of a unique R-reflexive element.) Consider the logic
T1 of Example 2. By the p-Extension Lemma T1 is 3-reducible to the logic
T0 of one binary predicate. Clearly every economical model of T1 contains
exactly one R-reflexive element.
Step 3.2. (Partitioning the R-irreflexive elements into four sets.) Consider
the 3-extension T2 of T1 defined in Example 3. As already observed, the
axioms of T2 introduce four monadic predicates Pi(0 ≤ i ≤ 3). Since these
axioms are neutral T1-formulae, Lemma 3.2.7 on neutral definitions implies
that T2 is 3-reducible to T1.
Step 3.3. (Introduction of equality.) As shown in Example 4 the 3-extension
T3 of T2 defined by introducing equality is 3-reducible to T2.
Step 3.4. (Introducing witnesses for five binary predicates.) Let T4 be the
3-extension of T3 defined by means of the axioms WITNESSES defined in
the proof strategy above. They state that there are P0-elements and that for
every P0-element x and for i = 1, 2, 3 there is exactly one Pi-element y related
to x by Rxy. By the p-Extension Lemma it follows that T4 is 3-reducible to
T3.
Step 3.5. (Introducing five binary predicates.) Let T5 be the theory obtained
from T4 by introducing binary predicates Qi,j ∈ {Q1, . . . , Q5} by means of
the formulae CODE(Qi,j) defined in the proof strategy above. These formulae
are neutral T4-formulae. It follows from Lemma 3.2.7 on neutral definitions
that T5 is 3-reducible to T4.
Step 3.6. (Restriction to P0-elements.) Let T6 be the restriction of T5 by
P0(x). Since P0(x) is a neutral T5-formula, Lemma 3.2.15 on neutral model
restrictions implies that T6 is 3-reducible to T5.
Step 3.7. (Embedding [∀3∃∗, (0, 5)]-formulae modulo equality.) Let T7 be the
logic with the vocabulary {Q1, . . . , Q5} and equality. We use Lemma 3.2.18
on neutral embeddings to infer that T7 is 3-reducible to T6. Therefore it
remains to show that T7 is embedded into T6 modulo equality.

Let A be a model of T7 with n elements. Using the intended interpretation
explained in Steps 3.1–3.6 one can build a model B of T5 with 4n+1 elements
— adding the unique R-reflexive point and three fresh copies for each element
of the given domain of A — such that B|P0(x) restricted to the vocabulary
of T7 is isomorphic to A.

⊓⊔
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3.3 The Gurevich Class

This section deals with conservative reduction classes that are minimal among
the prefix-vocabulary classes that contain ∃∗ in the prefix. The main and diffi-
cult case is the Gurevich class [∀∃∀∃∗, (0, 1)]. We show it to be a conservative
reduction class by a conservative reduction of the Kahr class [∀∃∀, (ω, 1)] to
it. We indicate in an exercise at the end of the section how the reduction can
be made independent of the Kahr class by starting directly from the halt-
ing problem for Turing machines. Two other cases having ∃∗ in the prefix
and subprefix ∀∃∀ easily follow from that result, namely the Surányi class
[∃∗∀∃∀, (0, 1)] and the Kostyrko-Genenz class [∀∃∗∀, (0, 1)]. Note that all the
results in this section establish undecidability for classes of formulae of graph
theory.

3.3.1 The Proof Strategy

This section is entirely devoted to explaining the proof strategy for the fol-
lowing theorem.

Theorem 3.3.1 (Gurevich). The class [∀∃∀∃∗, (0, 1)] is a conservative re-
duction class.

The proof consists of a conservative reduction of the class [∀∃∀, (ω, 1)]. Having
to deal with formulae whose prefix starts with ∀x∃z∀y, we will use without
further mention the Skolem Normal Form Theorem and interpret (and write)
z as successor x′ of x. In this section K always denotes the unique binary
predicate symbol.

The idea of the proof is to “encode” monadic atomic formulae, Px say, on
secondary diagonals, i.e. parallels to the main diagonal, by formulae of the
form Kxx′.

Let P1, . . . , Pr be monadic predicate symbols and a, a′ elements of some
domain. A sequence P1a, . . . , Pra, P1a

′, . . . , Pra
′ of truth values can thus be

encoded by K as in the example of Fig.3.22; c → d indicates that Kcd is
true; elements a, a′ of the given domain are represented by (r + 2)-blocks
a = a0, a1, . . . , ar+1 and a′ = a′0, a′1, . . . , a′r+1 with new elements ai, a′i

(1 ≤ i ≤ r + 1).
Let us introduce an abbreviation for the four possible truth value combi-

nations for Kxx′ and Kx′x:

¬Kxx′ ∧ ¬Kx′x, Kxx′ ∧ ¬Kx′x, ¬Kxx′ ∧Kx′x, Kxx′ ∧Kx′x.

We denote them by Kxx′ = 0, 1, 2, 3 or Fx = 0, . . . , Fx = 3, respectively.
Formally, for c ∈ {a, a′}, Pic = 1 is represented by Fci = 1 and Pic = 0
by Fci = 0. We extend in a natural way the successor function to the new
elements by (ci)′ : = ci+1, (cr+1)′ : = c′0. The beginning and end of an (r+2)-
block are represented by Fc0 = 0 and Fcr+1 = 2, respectively. The 0-2-
pattern for the beginning and end of an (r + 2)-block will be ensured by
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Figure 3.22. Encoding of P1a, . . . , Pra, P1a
′, . . . , Pra

′.
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corresponding modulo-(r + 2)-axioms (see below). For later use we note the
asymmetry of K in this encoding scheme; formally: Fx ̸= 3 for each x.

To make sure that the extension of K includes K(ci, ci+1) and that
K(c′0, cr+1) really encodes Pic, we will guarantee that the K-relation we
start with does not touch any of the two neighbour parallels of the main
diagonal. That is, it satisfies for all x of the given domain the formula

DIAG-FREE := ¬Kxx′ ∧ ¬Kx′x.

If we want to use this encoding for a reduction to [∀∃∀∃∗, (0, 1)], we have to
formalize Fci = j without applying the successor symbol more than once. The
standard technique to obtain this uses auxiliary monadic predicate symbols
Fi = j (0 ≤ i < 2(r + 2), 0 ≤ j ≤ 3) such that Fi(c

0) = j is equivalent to
F0(c

i) = j; it suffices indeed to impose the following equivalence.

Fi+1-SHIFT := (Fi+1x = Fix
′).

(Fi+1x = Fix
′ is shorthand for

∨3
j=0 Fi+1x = j ↔ Fix

′ = j). F0 = j now
assumes the rôle of the equation Fx = j above and expresses the basic coding
idea, illustrated in Fig. 3.22, by

F0-SHIFT := (F0x = Kxx′).

This yields an encoding for the truth values P1a, . . . , Pra, P1a
′, . . . , Pra

′ of r
monadic predicate symbols through the sequence

(F0a
0, . . . , F0a

2r+3) = (F0a
0, F1a

0, . . . , F2r+3a
0).

This is pictorially represented in Fig. 3.23. In this picture, the 0-2-pattern,
signaling the beginning and end of the (r + 2)-blocks, will be imposed by
the following axioms. In presence of Fi-SHIFT axioms, they simulate the
(r + 2)-module structure F0x, . . . , Fr+1x for each x.

(r + 2)-MOD(F0, . . . , Fr+1) :=

�∨
0≤j≤r+1

(Fjx = 2) ∧ (Fr+1x = 2→ F0x = 0)

Here
�∨
ψj indicates the formula expressing that ψj holds for precisely

one j. In view of the axioms (r + 2)-MOD(F0, . . . , Fr+1) and Fi-SHIFT, the
formula Fr+2x = 2 means F0x

r+2 = 2; therefore instead of Fr+1x = 2 we
will also write 0-POINT(x).

Thus the problem to be solved is to express formulae Fit = j by Ktw = j,
where w is an appropriate “witness” for Fi. Assume that a witness y for Fi
has been found and consider the intended interpretation for Fi given by:

Fi-DEF := (Fi−1x
′ = Kxy) for i > 0

F0-DEF := (Kxx′ = Kxy)
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In view of the shift axioms, this intended interpretation can be imposed
by the following Fi-axioms. In these axioms i-WITNESS is a formula which
expresses the witness property needed for defining Fi through Fi−1:

Fi-CODE := i-WITNESS(w) ∧
(¬i-WITNESS(x) ∧ i-WITNESS(y)→ Fi-DEF)

where w will be existentially and x, y universally quantified. Fi-SHIFT and
Fi-CODE provide the desired scheme for elimination of Fi, namely by encod-
ing Fi through Fi−1 into K – subject to finding an Fi-witness.

If we start from an irreflexive K, we can choose

0-WITNESS(x) := Kxx.

Since, as noted above (see Fig. 3.22), the K-encoding scheme for monadic
predicates does not use F0x = 3, we can choose

1-WITNESS(x) := (F0x = 3).

Since the above encoding of monadic predicates into secondary diagonals of
K uses only blocks of form 0 c1 . . . cr 2 with cj ∈ {0, 1} (see Fig. 3.22), for
i ≥ 2 we can choose sequences 2 1 . . . 1 2 of length i as witnessing property:

i-WITNESS(x) := (F0x = 2) ∧
∧

1≤j≤i−2

(Fjx = 1) ∧ (Fi−1x = 2).

The preceding considerations explain the motivation for the following four
conservative reduction steps to reduce an arbitrary formula ψ0 ∈ [∀∃∀, (ω, 1)]
into a formula ψ4 ∈ [∀∃∀∃∗, (0, 1)] which is equivalent to it and to all inter-
mediate formulae ψ1, ψ2, ψ3,i (with respect to satisfiability and finite satis-
fiability).

Step 1. (Diagonal-freeness) An arbitrary ψ ∈ [∀∃∀, (ω, 1)] is transformed
into an equivalent formula ψ1 ∈ [∀∃∀∃3, (ω, 1)] of the form

∀x∃x′∀y∃u∃v∃w(DIAG-FREE ∧ 0-WITNESS-FREE ∧ β1)

where

DIAG-FREE := ¬Kxx′ ∧ ¬Kx′x
0-WITNESS-FREE := ¬Kxx

Thus any interpretation of ψ1 leaves the diagonal of K and its two
neighbour parallels free. Formulae containing the conjuncts DIAG-FREE
and 0-WITNESS-FREE, with universally quantified variable x, are called
diagonal- and 0-witness-free.

Remark. At the end of this section we indicate how this step — which
presupposes the result for the Kahr class — can be replaced by a direct
reduction of TM halting problems.
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Step 2. (Shift-reduced form) Each diagonal- and 0-witness-free formula ψ ∈
[∀∃∀∃∗, (ω, 1)] is transformed into an equivalent formula ψ2 with same pre-
fix and in the same prefix-vocabulary class in shift-reduced form, i.e. with
quantifier free conjunction

β2 ∧ (r + 2)-MOD(F0, . . . , Fr+1) ∧
∧

i<2(r+2)

Fi-SHIFT ∧

∧-WITNESS-FREE ∧ 1-WITNESS-FREE

where 1-WITNESS-FREE := (F3x ̸= 0). Besides the unique binary predicate
symbol K, the only predicate symbols occurring in ψ2 are the monadic Fi = j
(for 0 ≤ i < 2(r+ 2) where r is the number of monadic predicate symbols in
ψ and 0 ≤ j ≤ 3).

Step 3. (Fi-elimination form) Each shift-reduced formula

ψ := ∀x∃x′∀y∃u∃v∃w(≤ i-SHIFT ∧
∧
j=0,1

j-WITNESS-FREE ∧

∧(r + 2)-MOD(F0, . . . , Fr+1) ∧ β)

obtained through Step 2 is transformed into an equivalent formula ψ3,i ∈
[∀∃∀∃∗, (4(i+ 1), 1)] in Fi-elimination form, i.e. of form

∀x∃x′∀y∃z1 · · · ∃zn∃z(≤ i-SHIFT∧ ≤ i-WITNESS-FREE

∧ i-PRE-WITNESS(z){for i ≥ 2} ∧ β3)

where

≤ i-SHIFT :=
∧
j≤i

Fj-SHIFT

≤ i-WITNESS-FREE :=
∧
j≤i

j-WITNESS-FREE

The bracketed expression {for i ≥ 2} indicates that i-PRE-WITNESS is part
of this formula only if i ≥ 2.

Formulae in Fi-elimination form guarantee the eliminability of Fi from
ψ3,i by introducing the Fi-CODE formula and restricting the domain for
interpretation of β3 to non-i-witnesses. The existence of an i-pre-witness (see
the definition below) is needed to provide an i-witness for the Fi-CODE. Note
that this reduction step introduces one more existential quantifier ∃z.
Step 4. (Fi-elimination) Each formula ψ3,i ∈ [∀∃∀∃∗, (4(i + 1), 1)] in
Fi-elimination form is transformed into an equivalent formula ψ3,i−1 ∈
[∀∃∀∃∗, (4i, 1)] in Fi−1-elimination form. For i = 0 this gives a formula ψ4 ∈
[∀∃∀∃∗, (0, 1)] which constitutes the final result of the whole reduction pro-
cess.

Note that this reduction step introduces one more existential quantifier.

In the next section we carry out these four conservative reduction steps.
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3.3.2 Reduction to Diagonal-Freeness

Here is the idea for the exclusion of diagonal pairs xx from the interpretations
of K. We introduce a new element w which “witnesses” the diagonal, i.e. such
that for each x, Kxx is equivalent to Kxw. We guarantee the existence of
such a witness by adding a corresponding new monadic symbol W which is
true for the witness and on whose successor closed complement the given
formula is going to be interpreted. The same procedure applies to pairs xx′

and x′x.
Fig. 3.24 contains the pictorial representation of this situation, in which

w1 is witness for points • (x with Kxx), w2 for ◦ (x with Kxx′) and w3 for
� (x with Kx′x).
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Figure 3.24. Witnessing main and secondary diagonals

Let ψ := ∀x∃x′∀yβ be an arbitrary formula in [∀∃∀, (ω, 1)] and let
W1,W2,W3 be new monadic predicate symbols. Define

ψ1 := ∀x∃x′∀y∃w1∃w2∃w3∃w(DIAG-FREE ∧ 0-WITNESS-FREE ∧
∧

∧
1≤i≤3

WITNESS(wi) ∧ CLOSURE ∧ Red1(β))

where
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WITNESS(wi) := Wiwi ∧
∧
i ̸=j

¬Wiwj

CLOSURE :=
∧

1≤i≤3

¬Wiw ∧ (¬Wix→ ¬Wix
′)

Red1(β) :=
∧

1≤i≤3

¬Wix∧¬Wiy → β[Kxx/Kxw1,Kxx
′/Kxw2,Kx

′x/Kxw3].

As usual γ[π/σ] denotes the result of replacing each occurrence of π in γ
by σ. Obviously ψ1 ∈ [∀∃∀∃3, (ω, 1)].

We now show that ψ is (finitely) satisfiable if and only if ψ1 is. Indeed it is
easy to check that each (finite) model of A of ψ can be extended to a (finite)
model B of ψ1 as follows. We introduce three new elements w1, w2, w3 and
put WB

i := {wi}. We set w′
i := wi and extend the given interpretation KA

to KB such that:

B |= Kab iff A |= Kab & b ̸∈ {a, a′} & a ̸= b′

or A |= Kaa & b = w1

or A |= Kaa′ & b = w2

or A |= Ka′a & b = w3.

By definitionKB is diagonal- and 0-witness-free. Conversely it is also easy
to check that each (finite) model B |= ψ1 gives rise to a (finite) model A |= ψ.
It suffices to restrict the domain to the non-witnesses (i.e. the elements outside
of W1,W2,W3) and to modify on this restricted (non-empty and successor
closed) domain A the given interpretation of K such that

A |= Kab iff B |= Kab

or a = b & B |= Kau1

or b = a′ & B |= Kau2

or a = b′ & B |= Kbu3

Here ui are witnesses (interpretations of wi) for which Red1(β) is true.
(The definition of KA is consistent because the ui are pairwise distinct and
different from all non-witnesses and because KB is diagonal- and 0-witness-
free.)

3.3.3 Reduction to Shift-Reduced Form

Let ψ := ∀x∃x′∀y∃u∃v∃w(DIAG-FREE ∧ 0-WITNESS-FREE ∧ β) be an
arbitrary diagonal- and 0-witness-free formula as obtained by Step 1.

Let P1, . . . , Pr be the monadic predicate symbols occurring in ψ. Ap-
plying the encoding idea explained above, we encode β on 0-points, replac-
ing Piz by Fiz = 1 (for z ∈ {x, y, u, v, w}) and Pix

′ by Fi+r+2x = 1 for
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1 ≤ i ≤ r. For this we need the module and shift structure – enforced by
(r+ 2)-MOD(F0, . . . , Fr+1) and Fi-SHIFT for all i < 2(r+ 2) – and freeness
from 0-1-witnesses.

For technical reasons to be explained below we need an additional axiom
which expresses the following: with respect to the K-relation to any 0-point
y (i.e. truth of Kxy and/or Kyx), each 0-point is equivalent to its r + 1
immediately preceding non-0-points:

0-POINT(y) ∧ ¬0-POINT(x)→ (Kxy = Kx′y).

This is represented pictorially in Fig. 3.25.
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Figure 3.25. Relation to a 0-point y.

We thus define ψ2 with the same prefix as ψ and the quantifier-free part
constituted by the following conjuncts:

(r + 2)-MOD(F0, . . . , Fr+1) ∧
∧

i<2(r+2)
Fi-SHIFT

0-WITNESS-FREE ∧ 1-WITNESS-FREE

0-POINT(u) ∧ 0-POINT(v) ∧ 0-POINT(w)

0-POINT(y) ∧ ¬0-POINT(x)→ (Kxy = Kx′y)

Red2(β)

where

Red2(β) := 0-POINT(x) ∧ 0-POINT(y)

→ β[Piz/(Fiz = 1), Pix
′/(Fi+r+2x = 1)]
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with z standing for any variable different from x′.
We now show that ψ is (finitely) satisfiable iff ψ2 is.
Let A = (A,P1, . . . , Pr,K) be a model for ψ. We define the following

structure B which constitutes the intended interpretation of the encoding
scheme explained above and which will be shown to be a model for ψ2:

B := A× {0, 1, . . . , r + 1}

(a, i)′ :=

{
(a, i+ 1) if i ≤ r
(a′, 0) otherwise

FB
0 (a, i) :=


0 if i = 0
1 if 1 ≤ i ≤ r & A |= Pia
0 if 1 ≤ i ≤ r & A |= ¬Pia
2 if i = r + 1

KB(a, 0)(b, 0) := KAab

KB(a, 0)(b, i+ 1) := KAab′ for i < r + 1

KB(a, i+ 1)(b, 0) := KAa′b for i < r + 1

KB(a, i)(a, i)′ := FB
0 (a, i) for i ≤ r + 1

KB is irreflexive.

To justify the consistency of this definition we first note that the irreflex-
ivity of KB is consistent with the first clause of the definition because by
assumption KA is irreflexive, due to 0-witness-freeness in ψ. Then we have
to show that the last clause of the definition is consistent with its second and
third clause.

KB(a, 0)(a, 1) = FB
0 (a, 0) by the last clause defining KB

= 0 by definition of FB
0

= KAaa′ by diagonal-freeness of ψ
KB(a, r + 1)(a′, 0) = FB

0 (a, r + 1) by the last clause defining KB

= 2 by definition of FB
0 .

Therefore KB(a, r + 1)(a′, 0) is false, as is KAa′a′ by 0-witness-freeness
of ψ. FB

1 , . . . , F
B
2(r+2)−1 are defined by, and therefore satisfy, the Fi-SHIFT

axioms, as does FB
0 by definition of KB. By definition, the module structure

required by (r+ 2)-MOD(F0, . . . , Fr+1) is satisfied. By definition of FB
0 , the

1-witness freeness F0x ̸= 3 holds in B.
We now verify that the axiom

0-POINT(y) ∧ ¬0-POINT(x)→ (Kxy = Kx′y)

is satisfied in B. Indeed if FB
r+1(b, i) = 2 and FB

r+1(a, j) ̸= 2, then i = 0 ̸= j ̸=
r+1 (by definition of the FB

k ). Therefore from the second and the third clause
of the definition of KB one has B |= K(a, j)(b, 0) iff B |= K(a, j)′(b, 0) and
B |= K(b, 0)(a, j) iff B |= K(b, 0)(a, j)′.
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Since PB
i a = FB

0 (a, i) (by definition of FB
0 ) = FB

i (a, 0) (by the shift ax-
ioms) and similarly PB

i a
′ = FB

i (a′, 0) = FB
i+r+2(a, 0), it follows that Red2(β)

is satisfied in B (where u, v, w in A are replaced by (u, 0), (v, 0), (w, 0) in B).
Thus B |= ψ2.

In the opposite direction, let B be an arbitrary model of ψ2. One obtains
a model A for ψ by restricting B to the (by assumption non-empty) set of
0-points:

A := {a ∈ B : B |= 0-POINT[a]}

on which the successor function is interpreted by defining:

a′ := b iff B |= (ar+2 = b),

where ar+2 denotes the (r + 2)nd successor of a in B. The truth in B of
the subformula (r+ 2)-MOD(F0, . . . , Fr+1) guarantees that this definition is
consistent; indeed a′ yields the next 0-point of a in B.

The monadic predicate symbols Pi of ψ are interpreted by defining

PA
i := {a ∈ A : FB

i a = 1}.

The 0-witness-freeness is carried over from B to A. The diagonal freeness
A |= (Kxx′ = 0) is proved by the following equations that hold for each
a ∈ A:

0 = FB
0 a = KBaa1 = KBaa2 = · · · = KBaar+2.

The first equality is implied by the definition of B and by the fact that
B |= (r + 2)-MOD(F0, . . . , Fr+1). The second equality is a consequence of
B |= F0-SHIFT and the remaining equalities follow from the fact that

B |= 0-POINT[a] ∧ ¬0-POINT[ai]→ (K(ai, a) = K(ai+1, a))

and the symmetry of Kxy = 0.
Note that B |= ¬0-POINT[ai] by the (r+2)-MOD(F0, . . . , Fr+1) axiom of

ψ2. By symmetry of Kxy = 0 with Kaar+2 = 0 we also have B |= Kar+2a =
0. This proves the diagonal-freeness in A.

By definition of PA
i , for each 0-point a the truth of A |= Pia

′ is equiva-
lent to the truth of FB

i a = 1, and the truth of A |= Pia
′ equivalent to the

truth of FB
i a

′ = 1 and (by the shift axioms) therefore of FB
i+r+2a = 1; con-

sequently the truth of Red2(β) and of 0-POINT[u], 0-POINT[v], 0-POINT[w]
in B implies the truth of β in A. This proves A |= ψ.
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3.3.4 Reduction to Fi-Elimination Form

Let

ψ := ∀x∃x′∀y∃u∃v∃w(≤ i-SHIFT ∧
∧
j=0,1

j-WITNESS-FREE ∧

(r + 2)-MOD(F0, . . . , Fr+1) ∧ β)

be an arbitrary formula in shift-reduced form with monadic predicate symbols
Fi′ = j for i′ ≤ i = 2(r+2)−1 and 0 ≤ j ≤ 3, as obtained by Step 2. Through
this reduction step we have to find an interpretation of β on domains that
contain no i′-witness (for i′ ≤ i) but admit an i-pre-witness. The latter will
provide the possibility to extend such witness-free domains by an i-witness,
needed for elimination of Fi by Fi-CODE in Step 4. For i′ ≥ 2 we have defined
above the i′-witnessing property by intervals of F0-values on i′ successive
elements of form 2 1 . . . 1 2, i.e. satisfying, in the presence of ≤ i′-SHIFT, the
following equations:

(2, 1, . . . , 1, 2) = (F0x, F1x, . . . , Fi′−2x, Fi′−1x)

= (F0x, F0x
1, . . . , F0x

i′−2, F0x
i′−1).

Candidates for non-i-witnesses are therefore easily obtained by restricting
attention to i-intervals containing at least one 0, i.e. satisfying the formula

ZEROi(x) :=
∨

0≤i′≤i

(Fi′x = 0)

(or equivalently with F0x
i′ = 0).

We have also to provide the means to construct from a model of ψ3,i

an i-witness that guides the definition of Fi for a corresponding model of
ψ3,i−1; we therefore choose as pre-witnessing property for i ≥ 2 the pattern
1 . . . 1 2 ∗ 1 of F0-values on i+1 successive elements, where, for reasons that
will become clear below, ∗ indicates that any value is allowed. Formally:

i-PRE-WITNESS(z) :=
∧

0≤j≤i−3

(Fjz = 1) ∧ (Fi−2z = 2) ∧ (Fiz = 1).

Note that 2-PRE-WITNESS(z) := (F0z = 2) ∧ (F2x = 1) and that, in pres-
ence of ≤ i-SHIFT, i-PRE-WITNESS(z) implies i′-PRE-WITNESS(z) for
2 ≤ i′ < i.

We thus define ψ3,i as the formula with prefix ∀x∃x′∀y∃u∃v∃w∃z followed
by the conjunction of the following formulae:

≤ i-SHIFT∧ ≤ i-WITNESS-FREE ∧ i-PRE-WITNESS(z)

ZEROi(u) ∧ ZEROi(v) ∧ ZEROi(w)

ZEROi(x) ∧ ZEROi(y)→ ZEROi(x
′) ∧ (r + 2)-MOD(F0, . . . , Fr+1) ∧ β)
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We have to show that ψ is (finitely) satisfiable iff ψ3,i is.
Let A = (A,F0, . . . , Fi,K) be a model of ψ. We extend A by new elements

bj to make b0 into an i-pre-witness, i.e. the bj form a successor cycle of length
i + 1 (i.e. such that b′j : = bj+1 for j < i and b′i : = b0) with associated F0-
values 1 . . . 1 2 1 1 (i.e. F0(bj) := 1 for j ≤ i− 3 or j > i− 2, F0(bi−2) := 2),
This can be seen in Fig. 3.26.

�
�#

? x x x xx -
. . .

-. . . --
b0 bi

1 2 1 11

Figure 3.26. i-prewitnessing b0.

The functions Fj with 0 < j ≤ i and K are extended to these new
elements in order to satisfy the shift axioms ≤ i-SHIFT. To prove that this
extended structure B is a model of ψ3,i, it remains to show the following:

(i) Only the new elements bj do not satisfy the ZEROi-predicate, and
none of the bj is a 0- or 1-witness.
(ii) B |= ∀x¬i′-WITNESS(x), for all i′ with 2 ≤ i′ ≤ i.

Proof of (i). ZEROi is false for the new elements and none of them is a 1-
witness because by definition the functions F0, . . . , Fi assume only the values
1 or 2 on any bj . No bj is a 0-witness because the extension of K is defined
to satisfy F0x = Kxx′ and therefore excludes the diagonal. For each old
element a ∈ A the formula ZEROi[a] holds in both A and B, because due to
(r+2)-MOD(F0, . . . , Fr+1), we find in the successor chain at distance ≤ r+1
(therefore ≤ i) a 0-POINT on which F0 assumes the value 0.

Proof of (ii). Let 2 ≤ i′ ≤ i. By definition of F0, the successor function and
the shift axioms on the new elements, sequences 2 1 . . . 1 2 of F0-values on
successive elements have length i+2 and never length i′ ≤ i. Therefore no new
element bj is an i′-witness. Old elements a ∈ A are not i′-witnesses because
by (r + 2)-MOD(F0, . . . , Fr+1) and the shift axioms, F0 cannot repeat the
value 2 before r + 2 successor steps — and in between the function assumes
at least once the value 0.

The opposite direction holds because by definition of ψ3,i, the restriction
of any model of ψ3,i to the (successor closed domain of all) elements satisfying
ZEROi(x) yields a model for ψ.
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3.3.5 Elimination of Monadic Fi

Let

ψ3,i := ∀x∃x′∀y∃z1 . . . ∃zn∃u(≤ i-SHIFT∧ ≤ i-WITNESS-FREE ∧
∧i-PRE-WITNESS(u) ∧ β)

be in Fi-elimination form. Then ψ3,i−1 is defined to be the formula with prefix
∀x∃x′∀y∃z1 . . .∃zn∃w∃u followed by the conjunction of the formulae

≤ (i− 1)-SHIFT∧ ≤ (i−1)-WITNESS-FREE ∧ i-PRE-WITNESS(u)∧
1≤i≤n

¬i-WITNESS(zi) ∧ ¬i-WITNESS(u) ∧ Fi-CODE ∧ Red3,i(β)

where

Red3,i(β) := ¬i-WITNESS(x) ∧ ¬i-WITNESS(y)

→ ¬i-WITNESS(x′) ∧ β[(Fit = j)/(Ktw = j)]

Here β[Fit = j/Ktw = j] indicates the result of replacing each subformula
Fit = j in β (for any j = 0, 1, 2, 3 and any t) byKtw = j. Note that Fi-CODE
contains the conjunct i-WITNESS(w).

For i = 0 the formula obtained is called ψ4 and does not contain the (i−1)-
conjuncts; ψ3,0 and ψ3,1 do not contain the conjunct 0, 1-PRE-WITNESS(u).

We have to show that ψ3,i is (finitely) satisfiable iff ψ3,i−1 is.
Let A = (A,F0, . . . , Fi,K) be a model for ψ3,i. We distinguish three cases,

following the definition of i-WITNESS for i = 0, 1 and i ≥ 2.

Case i = 0. We extend A to B by adding a new element w to witness F0 in

F0-CODE = Kww ∧ (¬Kxx ∧ Kyy → (Kxx′ = Kxy))

in presence of 0-SHIFT = (F0x = Kxx′).
We set w′ := w, B |= Kww and KBaw = F0a for a ∈ A. Then B |=

F0-CODE[w] because A |= F0x = Kxx′ (by 0-SHIFT) and A |= ¬Kxx
(by 0-WITNESS-FREE). The equivalence of F0a = j and Kaw = j in this
extended structure guarantees that also Red3,0(β) and therefore ψ4 is satisfied
in B.

Case i = 1. We extend A by a new element w to witness F1 in

F1-CODE = (F0w = 3) ∧ ((F0x ̸= 3) ∧ (F0y = 3)→ (F0x
′ = Kxy))

in presence of 1-SHIFT = (F1x = F0x
′). We put F0w = 3 and Kaw = F1a

for all a ∈ A.
To satisfy 0-WITNESS-FREE for w we define that Kww = 0. Then

F1-CODE holds for w because 1-SHIFT ∧ F3x ̸= 0 holds in A.
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To satisfy 0-SHIFT = (F0x = Kxx′) for w we introduce another new
element v as successor/predecessor of w and extend K to (v, w) and (w, v)
according to the definition of F0w so that w′ := v, v′ := w and Kwv := 3.

To satisfy 0-witness-freeness for v, we have to set Kvv := 0; to satisfy
0-SHIFT for v we have to set F0v := 3; as a consequence of F1-CODE and
1-SHIFT we have therefore to set also Kav := F1a for each a ∈ A.

The resulting structure B satisfies 0-SHIFT, 0-WITNESS-FREE and
F1-CODE. B satisfies Red3,1(β) because (by A |= F0x ̸= 3) no a ∈ A is
a 1-witness in B and (by definition of K on w) F1a = j is equivalent to
Kaw = j for j = 0, . . . , 3 and each a ∈ A. Thus B |= ψ3,0.

Case i ≥ 2. Truth in A of the conjunct i-PRE-WITNESS in ψ3,i ensures
that there is an i-pre-witness u in A. Truth of ≤ i-SHIFT implies that u has
an associated sequence 1 . . . 1 2 ∗ 1 of length i + 1 of successive F0-values.
We have to define an i-witness w – i.e. an element which has the associated
F0-value sequence 2 1 . . . 1 2 of length i; we can do this by choosing a new
predecessor w of u with F0-value 2, i.e., w′ := u, F0w = 2. To satisfy the
shift axioms ≤ i− 1-SHIFT for w we extend Fj (for 1 ≤ j ≤ i− 1) to w and
set Kwu := 2.

To satisfy ¬i-WITNESS(x) ∧ i-WITNESS(y) → (Fi−1x
′ = Kxy) in

Fi-CODE in presence of ≤ i-SHIFT = (Fix = Fi−1x
′) we set Kaw := Fia

for each a ∈ A.
This definition is consistent with the previous definition Kuw := 1 (read:

Kwu := 2) since A |= i-PRE-WITNESS[u] ensures that Fiu = 1..
To satisfy ≤ i− 1-WITNESS-FREE we have to ensure ¬j-WITNESS[w]

for each j ≤ i− 1: for j = 0 this is obtained by defining Kww := 0; for j = 1
it follows from the definition F0w = 2 ̸= 3, and for 2 ≤ j ≤ i − 1 it follows
from the i-WITNESS property of w.

Note that the modelB thus obtained satisfies also i−1-PRE-WITNESS[u]
for i > 2 (because A |= i-PRE-WITNESS[u]). (Note that in the case of i = 2,
no 1-pre-witness is required in ψ3,1) Since in B, for each a ∈ A (i.e. non
i-witness) and each j = 0, . . . , 3, Kaw = j is equivalent by definition to
Fia = j, Red3,i(β) will be true in B. Therefore B is a model for ψ3,i−1.

We now show that (finite) satisfiability of ψ3,i−1 implies (finite) satis-
fiability of ψ3,i. Let B = (B,F0, . . . , Fi−1,K) be a model for ψ3,i−1. We
restrict the domain B to the (successor closed) domain A := {a ∈ B : B |=
¬i-WITNESS[a]} of non i-witnesses, thus satisfying ≤ i-WITNESS-FREE.
On A we will define the function Fi satisfying ≤ i-SHIFT to obtain a model
A for ψ3,i. For this purpose let w be an i-witness satisfying Fi-CODE in
B. Following the definition of Fi-WITNESS we again distinguish the cases
i = 0, 1 and i ≥ 2.

Case i = 0, 1. To satisfy F0-SHIFT (for i = 0) or F1-SHIFT (for i = 1) we
have to set F0a := Kaa′ and F1a := F0a

′ respectively for each a ∈ A. (Note
that for i = 1, a ∈ A implies a′ ∈ A (since B |= Red3,0(β)) and, by definition
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of A, F0a
′ ∈ A.) The definition of F0 and F1 and the truth of F0-CODE

and F1-CODE respectively in B imply that F0a = j (for i = 0) or F1a = j
(for i = 1) and Kaw = j are equivalent so that A |= β and therefore A
satisfies ψ3,0 or ψ3,1 respectively. The definition of F1 together with truth of
F1-CODE in B imply that F1a = j and Kaw = j.

Case i ≥ 2. To satisfy Fi-SHIFT we have to set Fia = Fi−1a
′ for each a ∈ A.

As in case i = 1 this definition is consistent (i.e. a ∈ A implies Fi(a) ∈ A)
and implies that A |= β. To prove that A |= ψ3,i it remains to exhibit an
i-pre-witness u in A .

Since w is an i-witness, w′ is not. We show that A |= i-PRE-WITNESS[w′].
For 0 ≤ j ≤ i− 2 we have

Fjw
′ = Fj+1w (byFj+1-SHIFT)

=

{
1 for j ≤ i− 3
2 for j = i− 2 (since B |= i-WITNESS[w])

Fiw
′ = Fi−1w

′′ (by definition of Fi)

= Kw′w (since B |= ¬i-WITNESS[w′] and Fi-CODE)

= 1 because Kww′ = F0w (by ≤ F0-SHIFT)
= 2 (by A |= i-WITNESS[w]).

This completes the proof of Theorem 3.3.1.

The proof we gave starts in Step 1 from the Kahr class which we already
know to be a conservative reduction class. An alternative proof which is in-
dependent from the result for the Kahr class can be given by replacing Step 1
by a direct formalization of the halting problem for Turing machines through
diagonal-free formulae in [∃2∀∃∀, (ω, 1)] or [∀∃3∀, (ω, 1)] or [∀∃∀∃2, (ω, 1)]. We
sketch this reduction in the following two exercises.

Exercise 3.3.1. [225] Formalize computations of deterministic Turing ma-
chine programs M with alphabet {0, 1} by diagonal- and 0-witness-free for-
mulae ψM of form

∀x∀yβM ∧ ∃u∃vγ.

The first conjunct should contain only atomic formulae Kst (for s, t ∈
{x, y, x′, y′}) and Pis (for s ∈ {x, y, x′}) for one binary and finitely many
monadic predicate symbols; the second conjunct should contain only formu-
lae Piu, Piv. Reduce the recursively inseparable halting problems

Hi = {M : (0, 0)00 . . . ⊢M (i, 0)00 . . . ,M a TM program} (i = 1, 2)

as in the proof of Trakhtenbrot’s Theorem. Show the

Reduction Property:

1. If M ∈ H1 then ψM is unsatisfiable
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2. If M ∈ H2 then ψM is finitely satisfiable

Conclude that the class of all ψM is a conservative reduction class.

Sketch of a solution. One can adapt the economical description of Turing
machines (given in the proof of the Church-Turing Theorem) by gluing the
head position predicate H and the tape symbol predicate T1 together into
one binary predicate symbol K. (Note that T0 = ¬T1 due to the assumption
that the underlying alphabet is binary.) Think about interpreting K over
({time, tape} × N)2 with (t, n)′ : = (t, n′); K((time, t), (tape, x)) corresponds
to H(t, x) and K((tape, x), (time, t)) corresponds to T1(t, x). This is pictori-
ally represented in Fig. 3.27 (for the case where H(2, 1), T1(2, i) is true for
i = 0, 3, 4, 5 and false otherwise).
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Figure 3.27. TM-description in ({time, tape} × N)2.

This interpretation satisfies ∀x(¬Kxx ∧ ¬Kxx′ ∧ ¬Kx′x). To distinguish
the two different uses ofK, the cases (time, x) and (tape, x) are represented by
two monadic predicates Time and Tape satisfying ∀x((Time x→ Time x′) ∧
(Tape x→ Tape x′) ∧ ¬(Time x ∧ Tape x)). To economize on applications of
the successor function symbol (whose use will be reduced in the next exercise
to that of a Skolem function x′), the description of printing, change of state
and move of the reading head in STEPM is split into two steps. The first
describes printing and state change, the second step describes the reading
head move. For this purpose new monadic predicates are used: Movei is
intended to represent movement i ∈ {0, 1,−1} at (time, t); auxiliary state
predicates Ii′ are intended to represent the intermediate state reached from
state i at (time, t) by printing and state change. The crucial conjuncts in
STEPM are as follows, for instance for print instructions i01pm of M :

– printing and state change axioms

Time x ∧ Tape y ∧ Ii x ∧ Kxy ∧ ¬Kyx→ Im′ x ∧ Movep x ∧ Kyx′.
Similarly for instructions i10pm replacing ¬Kyx (“reading 0 in tape cell y
at moment x”) in the premise by Kyx (“reading 1 in tape cell y at time
x”) and replacing Kyx′ (“reading 1 in tape cell y at moment x′”) in the
conclusion by ¬Kyx′ (“reading 0 in tape cell y at moment x′”). Analogously
for instructions ijjpm of M .
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– move axioms

Time x ∧ Tape y ∧ Im′ x ∧ Move1 x ∧ Kxy → Kx′y′ ∧ Im x′

There are similar axioms for left move (replacing the premise Kxy — “at
moment x the reading head position is y” — by Kxy′ and the conclusion
Kx′y′ by Kx′y) and for idle move (replacing the conclusion Kx′y′ by Kx′y).

Thus βM can be defined as conjunction of the adapted formula STEPM
and of the corresponding formulae START, NONSTOP. For conservativity of
the reduction we add ≺K,M , see the proof of Trakhtenbrot’s theorem. These
formulae are written using a zero-predicate Zero formalized by:

γ := Zero u ∧ Time u ∧ Zero v ∧ Tape v

Exercise 3.3.2. Eliminate the use of terms y′ in the formulae ψM obtained
in the preceding exercise. This should establish the conservative reduction
class property for diagonal- and 0-witness free formulae

∀x∀yβ(x, x′, y) ∧ γ(c, c′)

in Skolem normal form. Therefore the classes [∃2∀∃∀, (ω, 1)], [∀∃3∀, (ω, 1)] and
[∀∃∀∃2, (ω, 1)] — even if restricted to diagonal- and 0-witness free formulae
— are conservative reduction classes.

Sketch of a solution. It suffices to replace in βM the move axioms

MOVE1 ∧ Kxy → Kx′y′

MOVE−1 ∧ Kxy′ → Kx′y

(where MOVEj := Time x ∧ Tape y ∧ Im′ x ∧ Movej x) by formulae which
contain only terms x, y, x′ and only one binary predicate symbol. Let us
visualize Kab as arrow from a to b. The required shift of a → b to a′ → b′

(and of a → b′ to a′ → b) has to be obtained by a series of 1-successor-step
shifts—of c → d to c′ → d or to c → d′. To obtain such a slowing down
of arrow shifts we double each element c by introducing between c and c′ a
new element c which is defined as new successor of c and whose successor is
defined as c′, pictorially represented in Fig. 3.28.

Then the shift from a→ b to a′ → b′ can be slowed down by going through
the newly created intermediate points as shown in Fig. 3.29, where the arrow
index i shows the i-th step of stepwise arrow connection. Formally this can be
described by introducing a modulo-2 structure through the following axiom:

MOD-2 := ∀x((P0x ∨ P1x) ∧ ¬(P0x ∧ P1x) ∧ (P0x↔ P1x
′))

Here, P0 and P1 are new monadic predicate symbols; points a satisfying
P0a are interpreted as “given” and their successors (satisfying P1) as “new”
elements. We abbreviate Tx∧ Pjx by Tjx (for T := Time,Tape) and Im′x∧
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Move1x by ε; then the formulae which describe the above picture in Skolem
normal form are as follows:

Time0 y ∧ Tape0 x ∧ ε ∧ Kyx→ Kyx′

Time0 x ∧ Tape1 y ∧ ε ∧ Kxy → Kx′y
Time1 x ∧ Tape1 y ∧ ε ∧ Kyx→ Kyx′

Time1 x ∧ Tape0 y ∧ ε ∧ Kxy → Kx′y

Similar axioms formalize Fig.3.30 for the slowed down shift of a → b′ to
a′ → b.
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Figure 3.30. Shift of a→ b′ to a′ → b.

In presence of MOD−2, these formulae can therefore replace the above
MOVE1 and MOVE−1 axioms, adapting correspondingly the other conjuncts
of βM . For the axioms for printing and state change it suffices to replace T t
by T0 t (for T := Time,Tape), for the idle move axioms to replace Tape y
by Tape0 y and to add frame axioms expressing that “zero” is a 0-point
(ZEROx → P0 x) and that move and auxiliary state information is carried
from 0-points to 1-points:

Movej x ∧ P0 x → Movej x
′ for j ∈ {0, 1,−1}

Ii′ x ∧ P0 x → Ii′ x
′ for auxiliary states i′ of M .

3.3.6 The Kostyrko-Genenz and Surányi Classes

Theorem 3.3.2. The Surányi class [∃∗∀∃∀, (0, 1)] is a conservative reduc-
tion class.
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Proof. We give a conservative reduction from the class of formulae of the
form

ψ := ∃u∃v∀x∃x′∀y(¬Kxx ∧ β) ∈ [∃2∀∃∀, (ω, 1)]

In the two exercises of the preceding section this class has been shown to
be a conservative reduction class.

The idea is to replace each monadic formula Pt by a binary formula Ktw
where w is an appropriate new “witness” for P . Since the formula ψ to be
reduced satisfies ∀x¬Kxx, we can choose Kww as witnessing property.

Let P1, . . . , Pn be the monadic predicate symbols occurring in ψ. Then
φ ∈ [∃n+2∀∃∀, (0, 1)] is defined as formula with the prefix

∃w1 . . . ∃wn∃u∃v∀x∃x′∀y

and with quantifier-free part consisting of the conjunction of the following
formulae:∧

1≤i≤n
Kwiwi (witnessing property)

¬Kx′x′ ∧ ¬Kuu ∧ ¬Kvv (closure property for non witnesses)

¬Kxx ∧ ¬Kyy → β[Pit/Ktwi] (encoding of β.)

It remains to show that ψ is (finitely) satisfiable iff φ is.
If A = (A,P1, . . . , Pn,K) is a model for ψ, then one obtains a model

B |= φ by adding new elements w1, . . . , wn to A and extending K by setting

B |= Kawi ⇐⇒ a = wi or A |= Pia.

In the other direction, the restriction of each model B |= φ to the (suc-
cessor closed) set A of all a such that B |= ¬Kaa yields a model for ψ by
defining Pi := {a ∈ A : B |= Kawi}. ⊓⊔

Theorem 3.3.3. The Kostyrko-Genenz class [∀∃∗∀, (0, 1)] is a conservative
reduction class.

Proof. We give a conservative reduction of the class of formulae of the form

ψ := ∀x∃z1∃z2∃z3∀y (¬Kxx ∧ β) ∈ [∀∃3∀, (ω, 1)].

The two exercises of the preceding section show that this class is a conserva-
tive reduction class.

The reduction is by induction on the number of monadic predicate sym-
bols occurring in β. First we eliminate stepwise pairs P , Q of monadic pred-
icate symbols by replacing Ps and Qt by Ksw and Kwt respectively. We
use a new monadic predicate symbol (P,Q) that encodes P and Q via an
appropriate witness w; this means that (P,Q)w is true and the following
“uniqueness” property (indistinguishability with respect to K) holds:
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(P,Q)-CODE := (P,Q)y → ((Kxw ↔ Kxy) ∧ (Kwx↔ Kyx)).

These reductions preserve the irreflexivity of interpretations of K. This
allows us to eliminate in Step 2 the last monadic predicate symbol R by
replacing Rt by Ktw; as witnessing property we can choose Kww and the
following uniqueness property (indistinguishability with respect to K):

R-CODE := Kyy → (Kxw ↔ Kxy).

Step 1. Let ψ := ∀x∃z1 · · · ∃zn∀y (¬Kxx ∧ β) ∈ [∀∃∗∀, (r, 1)] with r ≥ 2
and choose two monadic predicate symbols P , Q occurring in ψ. Denote by
(P,Q) a new monadic predicate symbol. Define φ as formula with prefix

∀x∃z1 · · · ∃zn∃w∀y

followed by the conjunction of the formulae

(P,Q)w ∧ (P,Q)-CODE (witnessing property)∧
1≤i≤n

¬(P,Q)zi (closure property for non witnesses)

¬(P,Q)x ∧ ¬(P,Q)y → β[Ps/Ksw,Qt/Kwt] (encoding of β)

¬Kxx.

As usual, β[Ps/Ksw,Qt/Kwt] indicates the result of replacing each oc-
currence of monadic formulae Ps, Qt in β by Ksw, Kwt respectively.

It remains to show that ψ is (finitely) satisfiable iff φ is.
A model (A,P,Q, . . . ,K) for ψ is easily extended to a model B |= φ by

adding a new element w, putting (P,Q) : = {w} and extending K by

B |= Kaw ⇐⇒ A |= Pa

B |= Kwa ⇐⇒ A |= Qa

In the other direction, from a model B = (B, (P,Q), . . . ,K) for φ we
obtain a model for ψ as follows. Choose a witness w satisfyingB |= (P,Q)[w]∧
(P,Q)-CODE and restrict the domain to the set of non-witnesses A = {a ∈
B : B |= ¬(P,Q)a}. Define Pa and Qa by Kaw and Kwa respectively. The
independence of this definition from the choice of w is guaranteed by the
truth of (P,Q)-CODE.

Step 2. Let ψ := ∀x∃z1 · · · ∃zn∀y(¬Kxx ∧ β) ∈ [∀∃∗∀, (1, 1)] with monadic
predicate symbol R. Define φ as the formula with prefix

∀x∃z1 · · · ∃zn∃w∀y

followed by the conjunction of:
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Kww ∧R-CODE (witnessing property)∧
1≤i≤n

¬Kzizi (closure property for non witnesses)

¬Kxx ∧ ¬Kyy → β[Rt/Ktw] (encoding of β) .

Exercise 3.3.4. Show that ψ is (finitely) satisfiable iff φ is. Hint: Paraphrase
Step 1, with R in place of P .

⊓⊔

3.4 Historical Remarks

The study of logical decision problems dates from the earliest investigations
of the first-order predicate logic. From the very beginning the vocabulary and
the prefix structure of formulae in prenex normal form were used as a guide
through the different ideas, methods and results which were produced in an
attempt to solve Hilbert’s Entscheidungsproblem. Already in the pioneering
paper by Löwenheim [365] we find the two streams that after 50 years of in-
tensive research led to a complete solution of the prefix-vocabulary problem
for predicate logic without functions and equality [219], namely the exhibi-
tion of (a) an algorithm which solves the decision problem of a particular
subclass of formulae – here monadic predicate logic – and (b) an effective
reduction of the Entscheidungsproblem to the decision problem of a small
class of formulae — here formulae with only binary predicates. Shortly later
Skolem [477] extends Löwenheim’s decidability result to the monadic predi-
cate logic of second order [476] and uses his Normal Form Theorem to reduce
the Entscheidungsproblem to the prefix class [∀∗∃∗, all].

Löwenheim’s and Skolem’s reduction classes – the term itself does not
appear in print before 1956 in [82], long after the unsolvability proof for the
Entscheidungsproblem by Church and Turing [80, 513] – are sharpened by
a chain of theorems that show how to reduce the number of predicates and
quantifiers.

Herbrand and Kalmár reduce the number of predicates to just one bi-
nary predicate (see the reduction classes [all, (0, 3)], [all, (0, 0, 1)] in [254]
and [all, (0, 1)] in [295]). Gödel reduces the number of universal quanti-
fiers in Skolem’s reduction class to three (see the reduction class [∀3∃∗, all]
in [187]). The number of existential quantifiers in Skolem’s reduction class
has been bound to one by Pepis, who showed the reduction class property
for the class of [∀∗ ∧ ∀∀∃, (1, 0, 1)]-formulae and therefore for the classes
[∀∗∃, (1, 0, 1)] and [∀∀∃∀∗, (1, 0, 1)] (see [420]; compare this to Ackermann’s
reduction class [∀∃ ∧ ∃∀∗, all] obtained in [17] by reducing Kalmár’s reduc-
tion class [∃∗∀2∃∀∗, (0, 0, 1)] in [292] establishing the reduction classes [∀∃2∀∗],
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[∃∀∃∀∗] and [∃∀∗∃]; see also the improvement to [∀2∃∀∗, (0, 1)] by Kalmár and
Surányi in [303].) In 1943 Surányi was able to strengthen Pepis’ reduction
class to [∀∗∃, (0, 1)] and to bound the total number of quantifiers of either
kind together with the arity of the predicates, showing the reduction class
property of [∀3 ∧∀2∃, (0, ω)] and thereby [∀3∃, (0, ω)] and [∀2∃∀, (0, ω)] [494].

Eventually, in 1959, Surányi could improve those three classes by reducing
the vocabulary to (ω, 1) [498]. Our proof for the conservativity of the Suranyi
reduction class [∀3∃, (ω, 1)] is taken from [225].

As a consequence the only remaining prefix classes to be settled were cases
in which no existential quantifier is governed by more than one universal
quantifier, refining Ackermann’s reduction classes [∀∃∧∃∀∗, all], [∃∀∃∀∗, all],
and [∀∃2∀∗, all] from [17]. In 1951 Surányi could limit the number of uni-
versal quantifiers to three, obtaining the reduction classes [∃∀∃∀2, (ω, 7)] and
[∀∃2∀2, (ω, 7)].

The state of the art in the 50’s is reported in the two books by Ackermann
[18] and Surányi [498] which complement each other by covering the two sides
of the medal, algorithms for solvable cases and reductions for unsolvable cases.
The real breakthrough in the history of the prefix-vocabulary problem has
been obtained only at he beginning of the 60’s when Büchi [64] had the idea
to combine (a) Turing’s reduction of problems about machine computations
to satisfiability/deducibility problems of logical formulae by formalizing the
former through the latter, and (b) Skolem’s method to reduce satisfiability of
formulae to satisfiability of their normal forms over canonical domains. Büchi
has applied his observation to (a dramatical simplification of) Turing’s first-
order formalization of Turing machines, obtained an elementary proof for the
reduction class [∃∧∀∃∀, (ω, 3)] and therefore [∀∃2∀, (ω, 3)], [∀∃∀∃, (ω, 3)], and
[∀∃∀∃, (ω, 3)]; by a judicious choice of the Turing machine halting problems
underlying his reduction he could even obtain, without additional difficul-
ties, the conservativity of these classes, thus simultaneously strengthening
Trakhtenbrot’s Theorem of 1950 and 1953 [509, 510]. This triggered efforts
to refine known reductions to conservative ones; see Gurevich’s method for
semi-conservative reduction [228] which is applied widely in this book.

Büchi’s simple observation provided the key for a quick solution of the
prefix problem and the prefix-vocabulary problem for predicate logic without
functions and equality: In order to obtain reduction classes of syntactically
“poor” formulae, researchers now looked for appropriate “small” computa-
tionally universal combinational problems which are reducible to the former.
The first was Wang who invented the domino problem [531] a version of
which immediately led to a solution of the prefix problem by establishing the
reduction class [∀∃∀, (0, ω)] [288]. See [258] for a simplification of this proof;
our proof for the Kahr-Moore-Wang reduction class in Sect. 3.1.2 is taken
from [441]. In the same year Kahr could improve the Kahr-Moore-Wang re-
duction class to [∀∃∀, (ω, 1)], inventing more sophisticated dominoes for the
asymmetric diagonal constrained domino problem. (Our proof in Sect. 3.1.3
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uses a graph interpretation of [∀∃∀, (0, ω)]-formulae which is inspired by ideas
from [287] and is taken from [441].)

In 1972 Gurevich and Koryakov [237] improved Berger’s undecidability
proof for the unconstrained domino problem [33] by showing that the classes
of domino problems with no and with periodic solution respectively are re-
cursively inseparable. This is what we use for the proof in Sect. 3.1.2 that
[∀∃∀, (ω, 1)] is a conservative reduction class. At this stage in addition to
the prefix problem also the prefix-vocabulary problem for finite prefixes was
solved. Using appropriate direct formalizations of machine problems, also
the two simpler minimal prefix-vocabulary conservative reduction classes
[∀∃∀∗, (0, 1)] and [∀∃∗∀, (0, 1)] could be established by Denton [108] and
Kostyrko and Genenz [180, 317]. The previously known minimal undecid-
able prefix-vocabulary cases with vocabulary (0, 1) and ∀∗ or ∃∗ in the prefix
were the Surányi classes [∃∗∀3∃, (0, 1)] and [∃∗∀∃∀, (0, 1)] [498], the Kalmár-
Surányi classes [∀∗∃, (0, 1)] and [∀3∃∗, (0, 1)] [302] which improved the weaker
results in [291, 420] where in particular one ternary predicate appeared. The
difficult case [∀∃∀∃∗, (0, 1)] which completed the prefix-vocabulary classifica-
tion was settled by Gurevich in 1966 starting from Turing machine halting
problems and using a form of existential interpretation [219]. Our proofs for
all of these cases in conservative form are adapted from [219, 225, 229].



4. Undecidable Standard Classes with
Functions or Equality

This chapter deals with the Entscheidungsproblem for formulae of full pred-
icate logic, i.e. formulae which besides predicate symbols can contain also
equality and function symbols. This problem has received little attention un-
til the solution of the prefix-vocabulary problem for the pure predicate logic
had been completed by Kahr in 1962 and Gurevich in 1966, for two reasons.
On one side early algorithms for classical decidable cases turned out to work
with and without equality; a notable exception is the Gödel-Kalmár-Schütte
class [∃∗∀2∃∗] but awareness about this grew only in the 1960’s and only
in 1984 it has been established that the satisfiability problem of ∃∗∀2∃∗-
formulae with equality is actually undecidable (see Sect. 4.3 below). On the
other side there are simple conservative reductions from full first order logic
to the pure predicate calculus (see Exercise 2.1.7 to the Church-Turing Theo-
rem and Lemma 3.2.12 on equality as neutral congruence). These reductions
became methodologically important once the proof of Church and Turing for
the unsolvability of the Entscheidungsproblem had refined Hilbert’s original
problem to a classification problem. Predicate logic without equality or func-
tions appeared as a natural choice for undecidable classes of syntactically
poor formulae.

After the complete prefix-vocabulary classification of the restricted predi-
cate logic, Gurevich observed in his Classifiability Theorem that such a solu-
tion of the classification problem is characteristic for a broad class of logics.
So it is natural to look again at logic with functions and equality, this time
not from the unsolvability but from the classification standpoint. Gurevich’s
Classifiability Theorem tells us that indeed there is a finite number of minimal
undecidable prefix-vocabulary classes of the form [Π, (p1, p2, . . .), (f1, f2, . . .)]
or [Π, (p1, p2, . . .), (f1, f2, . . .)]= where Π is an extended prefix (word over
∀, ∃, ∀∗, ∃∗) and pi, fi are natural numbers or ω. (The presence or absence of
the equality symbol as suffix indicates that the equality symbol may or may
not occur.)

We prove in this chapter results which establish what these minimal unde-
cidable classes are; we show that all of them are indeed conservative reduction
classes. This is summed up by the following main theorem for the Entschei-
dungsproblem of the full predicate logic.
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Theorem 4.0.1. (Reduction Classes with Functions or Equality)
The following prefix-vocabulary classes of predicate logic with functions and
equality are undecidable (and indeed are conservative reduction classes):

– Classes with functions and equality (Gurevich 1976):
– [∀, (0), (2)]=
– [∀, (0), (0, 1)]=

– Classes with functions but without equality (Gurevich 1969):
– [∀2, (0, 1), (1)]
– [∀2, (1), (0, 1)]

– Classes with equality but without functions (Goldfarb 1984):
– [∀2∃, (ω, 1), (0)]=
– [∃∗∀2∃, (0, 1), (0)]=
– [∀2∃∗, (0, 1), (0)]=.

Together with the list of reduction classes in pure predicate logic as pro-
vided by Theorem 3.0.1 and the decidability results in Chap. 6 and 7 this
gives a complete classification of the prefix vocabulary classes in full first-
order logic with respect to decidability of the satisfiability problem.

The proof of Theorem 4.0.1 is given in Sect. 4.1–4.3 considering separately
the cases of formulae with both functions and equality, with functions but
without equality, and with equality but without functions. The most diffi-
cult case here is the minimal Goldfarb class [∀2∃, (ω, 1), (0)]=, i.e. the mini-
mal Gödel-Kalmár-Schütte class together with equality. The following picture
surveys the conservative reductions of this chapter. Note that the reductions
for the case with functions and equality can be carried out for Herbrand for-
mulae, i.e. formulae in prenex normal form whose quantifier–free part is a
conjunction of atomic formulae or negations of atomic formulae.

2-RM −→ [∀, (0), (ω)]= ∩HERBRAND −→ [∀, (0), (2)]= ∩HERBRAND
−→ [∀, (0), (0, 1)]= ∩HERBRAND

[∀∃∀, (0, ω)] −→ [∀2, (0, 1), (1)] −→ [∀2, (1), (0, 1)]

[∀∃∀, (0, ω)] −→ [∀2∃∗, (ω, ω)]= −→ [∀2∃, (ω, ω)]= −→ [∀2∃, (ω, 1)]=

4.1 Classes with Functions and Equality

In this section we prove the two Gurevich classes [∀, (0), (2)]=, [∀, (0), (0, 1)]=
to be conservative reduction classes even with the restriction to Herbrand
formulae. For expository purposes we first reduce halting problems for 2-
register machines to formulae in [∀, (0), (ω)]= ∩ KROM ∩ HORN and in a
second step refine the reduction to Herbrand formulae. Then we show how
one can encode finitely many monadic functions by two monadic functions
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and two monadic functions by one binary function in such a way that the
propositional structure of the formulae is preserved.

Theorem 4.1.1. The class [∀, (0), (ω)]=∩KROM∩HORN is a conservative
reduction class.

Proof. In Exercise 2.1.20 to Theorem 2.1.15 it has been shown how the claim
can be proved for the class [∀, (0), (ω)]= ∩ HORN by a reduction of halting
problems of 2-register machines. We refine that method here to obtain a
description through formulae which use only binary disjunctions.

The idea of the proof comes from a geometrical interpretation of compu-
tations of 2-register machines in the Gaussian quadrant. Imagine the compu-
tation of a 2-register machine programM as a walk through N×N whereM ,
in state i with register contents (p, q), visits point (p, q) to “colour” it with
i. The colouring of (p, q) with i – i.e. the fact that (p, q) is visited by M in
state i – can be expressed in terms of monadic functions statei by requiring
that (p, q) is a fixed point of statei, i.e.

statei(p, q) = (p, q).

The register contents (n1, n2) can be encoded by terms which are built
up from a single variable x with monadic functions zero1, zero2, succ1, succ2,
by applying the zero function zeroj once and the successor function succj nj
times:

(n1, n2) := succn1
1 zero1succ

n2
2 zero2x.

This yields the following encoding of M -configurations (i,m, n), reached by
M , through equations

(i,m, n) : statei(m,n) = (m,n).

To this encoding one can apply the technique of economical description
of register machines explained in Sect. 2.1.1. Due to Gurevich’s theorem on
semi-conservative reductions (Theorem 2.1.39) it suffices to formalize two re-
cursively inseparable halting problems H ′

1 and H ′
2; we choose them as coun-

terparts for register machines of the halting problems H1 and H2 of Turing
machines used for the proof of Trakhtenbrot’s Theorem:

H ′
i = {M : (0, 0, 0)⇒M (i, 0, 0),M is a RM program }.

For this purpose we define now formulae GRID, STEPM , START and
NONSTOP such that

ψM := ∀x(GRID ∧ STEPM ∧ START ∧NONSTOP)

is in the class [∀, (0), (ω)]= ∩ KROM ∩ HORN and satisfies the following
reduction properties:
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(i) (Simulation Lemma) For all M -configurations C,D the following is
true:

C ⇒M D implies that ∀x(GRID ∧ STEPM ∧ C) |= ∀xD,

(ii) M ∈ H ′
1 =⇒ ψM is contradictory,

(iii) M ∈ H ′
2 =⇒ ψM is finitely satisfiable.

The formula GRID is the conjunction of the following equalities of terms:

zero1zero2x = zero2zero1x

succ1succ2x = succ2succ1x

zero1succ2x = succ2zero1x

zero2succ1x = succ1zero2x

It ensures that the models of ψM contain a two-dimensional grid where
succ1, succ2 are the successor functions along the two coordinates – i.e.
succ1(m,n) = (m + 1, n), succ2(m,n) = (m,n + 1) – and zero1 and
zero2 set the corresponding coordinate to 0 – i.e. zero1(m,n) = (0, n) and
zero2(m,n) = (m, 0).

Further, let START be the equality

state0zero1zero2x = zero1zero2x

and NONSTOP the inequality

state1zero1zero2x ̸= zero1zero2x.

Finally, STEPM is defined as the conjunction of the following instruction
formulae εi each of which expresses the change of (i,m, n) effected by the
corresponding M -instruction Ii = (i, aℓ, j) (in state i add 1 to register l and
go to state j) or Ii = (i, sℓ, j, k) (in state i go to state j if the content of the
l–th register is 0, otherwise subtract 1 from it and go to state k):

For Ii = (i, aℓ, j) ∈M :

(stateix = x→ statejsuccℓx = succℓx).

For Ii = (i, sℓ, j, k) ∈M :

(stateizeroℓx = zeroℓx→ statejzeroℓx = zeroℓx) ∧
∧(stateisuccℓx = succℓx→ statekx = x)

It remains to show the reduction properties. The Simulation Lemma fol-
lows by a straightforward induction on the length of the givenM -computation.
Specialize the Simulation Lemma to C := START and D := ¬NONSTOP;
we obtain that M ∈ H ′

1 implies the truth of ∀x¬NONSTOP in each model
of ∀x(GRID ∧ STEPM ∧ (0, 0, 0)). Therefore M ∈ H ′

1 implies that ψM is
contradictory.
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We now show that ψM has a finite model if (0, 0, 0)⇒M (1, 0, 0). Let N−1
be the maximal content of a register during the given M -computation from
(0, 0, 0) to (1, 0, 0) and define A := {0, . . . , N} × {0, . . . , N}. The following
definition yields an algebra over A which clearly satisfies ψM :

succ1(m,n) :=

{
(m+ 1, n) if m < N
(m,n) if m = N

succ2(m,n) :=

{
(m,n+ 1) if n < N
(m,n) if n = N

zero1(m,n) := (0, n)

zero2(m,n) := (m, 0)

statei(m,n) =

{
(m,n) if (0, 0, 0)⇒M (i,m, n)
(N,N) otherwise.

This completes the proof. ⊓⊔

Exercise 4.1.2. [227] Prove that [∀, (0), (ω)]= is a conservative reduction
class by encoding the unconstrained domino problem. Hint: Associate with
every domino d a function and represent the points tiled by a domino d
by fixed points of that function. You will find a simpler representation of
the Gaussian coordinates than the one introduced for the representation of
two registers, but the disjunctions will probably violate the Horn condition
and their length will increase to the number of colours of the given domino
problem.

Corollary 4.1.3 (Wirsing). The class [∀, (0), (ω)]= ∩ HERBRAND is a
conservative reduction class. This is even true for formulae which contain
only equations and one inequality.

Proof. For the proof of Theorem 4.1.1 we have formalized the computation

C = C0
i1→ C1

i2→ C2 . . .
it→ Ct = D from C to D by a sequence of implications

C → . . .→ D taken from STEPM which transfer local fixed points; any fixed
point of any intermediate statei at any register word (n1, n2) implies a fixed

point of statej at the register word (n′1, n
′
2) obtained by executing instruction

Ii on (n1, n2) and going to the next instruction Ij . We now express this
relation by “globally” equating the encodings C,D of C and D ; in order
not to loose the conservativity of the reduction we encode also the history
com of the computation C

com
=⇒M D telling us which instructions have been

applied. Thus the reachability of D from C through the computation com
will be expressed by the equality

C start x = D com start x

where start is a new monadic function symbol which serves to indicate the
right beginning of the coding area in a term.
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With these refined definitions (including a corresponding refinement of the
NONSTOP axiom, see below) we will build a formula ∀x(STEP∧NONSTOP)
and prove the following reduction properties:

(i) (Simulation Lemma) For all M -configurations C,D the following is

true: If C
com
=⇒M D then

∀xSTEPM |= ∀x(C start x = D com start x).

(ii) M ∈ H ′
1 implies that∀x(STEPM ∧NONSTOP) is contradictory.

(iii) M ∈ H ′
2 implies that∀x(STEPM ∧NONSTOP) is finitely satisfiable.

As a consequence we keep from the previous definition of (i,m, n) only
the left side of the equation, i.e. we define now (i,m, n) to be the terms
statei(m,n).

The trace i1 . . . it of a computation C0
i1...it−→ Ct – standing for C0

i1→
C1

i2→ C2 . . .
it→ Ct – is encoded as a sequence i1 . . . it := (it) . . . (i1) of the

names (numbers) of the instructions which have been applied, i.e. these names
i ≤ r are interpreted as new monadic function symbols (i). The new formula
NONSTOP expressing that M does not reach the halting state 1 is

(0, 0, 0)start x ̸= state1x ∧ FILL.

There is no start axiom but in connection with NONSTOP the following
FILL-axioms are needed which will allow us to fill in an arbitrary encoding
of a computation at the right of the first occurrence of start. FILL is the
conjunction ∧

s∈S

start x = start sx

where S = {zero1, zero2, succ1, succ2} ∪
∪
Ii∈M{(i)}.

STEPM is defined as the universal closure of the conjunction of FILL and
the following instruction and migration axioms.

Addition and subtraction in the first register: These axioms are obtained
from the left hand sides of the corresponding axioms in the previous
proof by adding the information on the applied instruction; the instruc-
tion migration rules below will bring this information inside the encoding
term.

For Ii = (i, a1, j) ∈M : stateix = statejsucc1(i)x.

For (i, s1, j, k) ∈M :

stateizero1x = statejzero1(i)x ∧ stateisucc1x = statek(i)x.
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Addition in the second register. We introduce an auxiliary monadic function
symbol add with new migration rules

add succ1x = succ1 add x ∧ add zero1x = zero1 succ2x

which carry the addition command from the front to the place where the
second register is encoded.

For Ii = (i, a2, j) ∈M : stateix = statejadd(i)x.
Subtraction in the second register. We introduce auxiliary monadic function

symbols succ,zero with new migration rules which carry the information
on the content of the second register to the front of the encoding term
where the change of the state has to be described.

stateizero x = statej(i)x ∧ stateisucc x = statek(i)x

zero1zero2x = zero zero1x ∧ zero1succ2x = succ zero1x

succ1s x = s succ1x for s ∈ {zero, succ}.
Instruction migration rules.∧

Ii∈M

(i)sx = s(i)x for each s ∈ {zero1, zero2, succ1, succ2}.

This ends the definition of STEPM . It remains to prove the reduction
properties.

Exercise 4.1.4. Prove the Simulation Lemma by induction on t.

We prove the second reduction property. Assume M ∈ H ′
1 and that A |=

∀x(STEPM ∧NONSTOP) for some A. Let C0 = (0, 0, 0)
i1...it−→ Ct be the given

M -computation that terminates in state 1. From the Simulation Lemma we
obtain

A |= ∀x(C0 start x = Ct i1 . . . it start x)

Note that the term on the right side is of the form state1wx for some w.
By the FILL axioms the following equality is true:

A |= ∀x(C0 start x = C0 start wx).

Therefore A |= ∀x(C0 start wx = state1wx), contradicting the axiom
NONSTOP.

To prove the third reduction property we assume M ∈ H ′
2 and build a

finite model satisfying ∀xSTEPM ∧ NONSTOP. Let t be the successor of
the length of the given computation and m be the successor of the maximal
length of any register word (n1, n2) occurring during that computation. We
interpret the formula over the domain of pairs of register and instructions
words limited to length m and t resp., i.e.
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A = {zero1, succ1, zero2, succ2}≤m × {(0), . . . , (r)}≤t.

In the following definition of monadic functions over A we make use of
two different elements with register words of length m, say O := (zerom1 , λ)
and I := (zerom2 , λ) where λ denotes the empty string. For the definition
we denote by n := succn1 zero1 the encoding of n as the contents of the first
register, by reg any of the register functions zero1, succ1, zero2, succ2, and
by |v| the length of a word v.

start(v, w) := (λ, λ)

reg(v, w) :=
{
(reg v, w) if |v| < m
O otherwise

statei(v, w) :=

{
I if v := (n1, n2) ,(0, 0, 0)

w
=⇒ (i, n1, n2)

O otherwise

(i)(v, w) :=
{
(v, (i)w) if |w| < t
O otherwise

add(v, w) :=
{
(nsucc2u,w) if v := nu, |v| < m
O otherwise

= succ(v, w)

zero(v, w) :=
{
(v, w) if v := nzero2u
O otherwise

Exercise 4.1.5. Show that this interpretation indeed satisfies the formula
∀x(STEPM ∧NONSTOP).

⊓⊔

Exercise 4.1.6. Show by a counterexample that the preceding reduction
does not remain conservative if the history part in the encoding is deleted.

Exercise 4.1.7. [536] Apply the proof method of the corollary to Turing
instead of register machines.

Theorem 4.1.8. The class [∀, (0), (2)]= ∩ HERBRAND is a conservative
reduction class. Indeed there is a semi-conservative reduction of [∀, (0), (ω)]=
to [∀, (0), (2)]= which preserves the propositional structure.

Proof. The idea of the proof is as follows. Let an arbitrary ψ := ∀xφ ∈
[∀, (0), (ω)]= be given with monadic function symbols f1, . . . , fn. Let g, h be
two fresh monadic function symbols. We choose h(gi(a)) as a “witness” for
fi(a) where g

i denotes i iterations of g (see Fig. 4.1).
More formally we define ψ∗ := ∀xφ∗ ∈ [∀, (0), (2)]= with

φ∗ := φ[x/hx, f1/hg, . . . , fn/hg
n].

Clearly ψ∗ has the same propositional structure as ψ.

Claim. ψ∗ is (finitely) satisfiable if and only if ψ is.
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Figure 4.1. Encoding of fi by hg
i

Clearly if B = (B, g, h) |= ψ∗ then A = (A, f1, . . . , fn) with A = h(B)
and fi(a) := h(gi(a)) satisfies ψ.

Assume inversely that A = (A, f1, . . . , fn) |= ψ. Let B = (B, g, h) be
defined by B = A × {0, . . . , n} with functions g, h whose definition follows
the illustration given in Fig. 4.1:

g(a, i) := (a, i+ 1) for i < n, g(a, n) := (a, 0)

h(a, i) := (fi(a), 0) for i > 0, h(a, 0) := (a, 0).

This definition of hgi in B as behaving like fi in A extends to the inter-
pretation of arbitrary terms and formulae built up from {f1, . . . , fn}. More
formally:
Subclaim 1. LetG be the word obtained from F ∈ {f1, . . . , fn}∗ by replacing
each occurrence of fi by hg

i. For each such F and each a ∈ A the following
is true:

GB(a, 0) = (FA(a), 0).

Subclaim 2. For each subformula β of φ let β′ be the formula obtained from
β by replacing each occurrence of fi by hg

i. For each such β and each a ∈ A
we have

A |= β[a] ⇐⇒ B |= β′[(a, 0)].

Exercise 4.1.9. Prove Subclaim 1 by induction on the length of F .

Subclaim 2 follows by an induction on β. Indeed if β is of the form (F1x =
F2x) then β′ is (G1x = G2x) (where G1, G2 are obtained from F1, F2 as in
Subclaim 1), and it holds that FA

1 (a) = FA
2 (a) if and only if GB

1 (a, 0) =
GB

2 (a, 0). The inductive step is trivial.
From Subclaim 2 it follows that B |= ψ∗. Indeed, since φ∗ = φ′[x/hx] we

only have to show that B |= φ′[h(a, i)] for arbitrary (a, i) ∈ B. By Subclaim
2 we have

B |= φ′[h(a, j)]⇔ B |= φ′[(fj(a), 0)]⇔ A |= φ[fj(a)]

which is true since A |= ∀xφ. ⊓⊔



158 4. Undecidable Standard Classes with Functions or Equality

Exercise 4.1.10. Show that in Theorem 4.1.8 we can restrict attention to
functions that have no fixed points, i.e., the class of all formulae

∀x(gx ̸= x ∧ hx ̸= x ∧ φ) ∈ [∀, (0), (2)]=

is a conservative reduction class.

Theorem 4.1.11. The class [∀, (0), (0, 1)]=∩HERBRAND is a conservative
reduction class. Indeed there is a semi-conservative reduction of [∀, (0), (2)]=
to [∀, (0), (0, 1)]= which preserves the propositional structure.

Proof. The idea of the proof is to encode the given two functions into different
secondary diagonals of one binary function h, say f(x) into h(x, x′) and g(x)
into h(x′, x). Clearly one has to ensure x ̸= x′; this can be done for example
by setting x′ = h(x, x).

Formally let an arbitrary ψ := ∀xφ ∈ [∀, (0), (2)]= be given with monadic
function symbols f, g. Let h be a binary function symbol and define ψ∗ :=
∀xφ∗ ∈ [∀, (0), (2)]= with:

f∗x := hxx′, g∗x := hx′x, x′ := hxx,

φ∗ := φ[x/f∗x, f/f∗, g/g∗] ∧ φ[x/g∗x, f/f∗, g/g∗].

Clearly ψ∗ has the same propositional structure as ψ.

Claim. ψ∗ is (finitely) satisfiable if and only if ψ is.

If B = (B, h) |= ψ∗ we can use the above abbreviations for f∗, g∗ as
defining equations for functions f, g which satisfy ψ over the domain f(A) ∪
g(A).

Assume inversely that A = (A, f, g) |= ψ. Let B = (B, h) be defined by
B = A × {0, 1, 2} and by the following definition for h which realizes the
above indicated encoding of f, g. Let i′ be the successor of i (mod 3); we put:

h((a, i), (a, i)) := (a, i′)

h((a, i), (a, i′)) := (f(a), 0)

h((a, i′), (a, i)) := (g(a), 0).

As a consequence of this definition the function a 7→ (a, 0) represents
an isomorphism from A to the algebra ({(a, 0) : a ∈ A}, f∗, g∗) where, as
indicated above, f∗(b) = h(b, h(b, b)) and g∗(b) = h(h(b, b), b), for all b ∈ B
(Note that for each a ∈ A and each i holds f∗(a, i) ∈ {(c, 0) : c ∈ A}.) Since
by assumption A |= ψ one obtains that ({(a, 0) : a ∈ A}, f∗, g∗) |= ψ∗. ⊓⊔
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4.2 Classes with Functions but Without Equality

In this section we prove the two Gurevich classes [∀2, (0, 1), (1)], [∀2, (1), (0, 1)]
to be conservative reduction classes. We give a conservative reduction of the
Kahr-Moore-Wang class [∀∃∀, (0, ω)] to [∀2, (0, 1), (1)] and of this class to
[∀2, (1), (0, 1)]. In the next chapter we will show that the reduction class
property can be strengthened to Krom and Horn formulae for the latter
class, but not for the former for which with Krom formulae a second monadic
function symbol is needed.

Theorem 4.2.1 (Gurevich). The class [∀2, (0, 1), (1)] is a conservative re-
duction class.

Proof. The encoding idea for the reduction of [∀∃∀, (0, ω)]-formulae ψ with
binary predicate symbols R1, . . . , Rn to [∀2, (0, 1), (1)]-formulae φ with only
one binary predicate symbols Q is as follows. For each element a of a model
A which satisfies ψ, n new copies ai for a model B which satisfies φ are
provided which “witness” the relation A |= Riab through B |= Qabi. The
monadic function symbol ′ allows us to define ai as the i-th successor of a,
say ai = a

′···′ with a0 = a. (See Fig. 4.2):
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Figure 4.2. Encoding of Piab into Qa0bi

Let ∀x∀yβ(x, x′, y) be the Skolem normal form of ψ and define:

φ := ∀x∀y WITNESSES ∧ ENCODING[β]

where

WITNESSES :=
∨

1≤i≤n

Qxixi ∧
∧
i ̸=j

¬(Qxixi ∧Qxjxj)

ENCODING[β] := Qxx ∧Qyy → β∗(x, xn+1, y)

where β∗ := β[Rist/Qst
i].

Claim. φ is (finitely) satisfiable if and only if ψ is.
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Assume that A = (A,R1, . . . , Rn,
′ ) |= ∀x∀yβ. Let B be defined by B =

A×{0, 1, . . . , n} and by the following interpretation for the function and the
predicate symbol in φ:

(a, i)′ := (a, i+ 1) for i < n (a, n)′ := (a′, 0)

B |= Q(a, 0)(a, 0) for all a ∈ A
B |= Q(a, 0)(b, i) iff A |= Riab for 1 ≤ i ≤ n.

It is easy to check that B |= ∀x∀yWITNESSES ∧ ENCODING[β]. As-
sume inversely that B = (B,Q,′ ) |= φ. Since B |= WITNESSES the re-
striction of B to {a ∈ B | B |= Qaa} is closed with respect to the new
successor function defined by a′ := an+1. Defining on this restriction Riab to
be true if and only if B |= Qabi yields a model for ψ. ⊓⊔

Theorem 4.2.2 (Gurevich). The class [∀2, (1), (0, 1)] is a conservative re-
duction class. Indeed there is a semi-conservative reduction of [∀2, (0, 1), (1)]
to [∀2, (1), (0, 1)] which preserves the propositional structure.

Proof. The idea of the proof is to encode the binary relation Qxy of a given
formula ψ ∈ [∀2, (0, 1), (1)] into a monadic predicate P by coding the two
arguments x, y into one pair using the new binary function h; the given
monadic function f can be represented by the diagonal of h. More formally
Qxy will be replaced by Phxy and fx by hxx.

Let ψ := ∀x∀yβ ∈ [∀2, (0, 1), (1)] be given with monadic function symbol
f and binary predicate symbol Q. Let h be a binary function symbol and P
be a monadic predicate symbol and

φ := ψ[fs/hss,Qst/Phst] ∈ [∀2, (1), (0, 1)].

Claim. If ψ is finitely satisfiable (unsatisfiable) then φ is finitely satisfiable
(unsatisfiable).

Assume that A = (A,Q, f) |= ∀x∀yβ with A = {a0, . . . , am}. Since ψ is a
universal formula we can assume without loss of generality that ai+1 = f(ai)
for i < m and that f(am) = a0 (see Fig. 4.3).

It is simple to represent each element of this model as an h-pair satisfying
fx = hxx by interpreting h correspondingly on A:

h(ai, ai) = ai+1 for i < m, h(am, am) = a0.

In order to satisfy Qxy ↔ Phxy we need two elements to which one can
map any pair (a, b) of elements in the case of truth and falsehood respectively
of Qab. Choose a = a0 to represent Pa and choose a new element b equivalent
to a but representing ¬Pa. Consequently (see Fig. 4.3) we extend A by setting
f(b) := f(a0) and

Qbai iff Qa0ai, Qaib iff Qaia0, Qbb iff Qa0a0.
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Figure 4.3. Encoding ¬Pa into a new copy b of a

Clearly this extended model Ab satisfies ψ and allows us to extend the
above definition of h as follows to a model B which satisfies the formula
∀x∀y(fx = hxx ∧ (Qxy ↔ Phxy)):

h(b, b) := a1

B |= Pai+1 iff A |= Qaiai

B |= Pa0 iff A |= Qamam

B |= Pb iff A |= ¬Qa0a0.

Assuming without loss of generality that A |= Qamam is true we define
for arbitrary c, d ∈ A:

h(c, d) =

{
a0 if A |= Qcd
b if A |= ¬Qcd.

Since this model by definition satisfies ∀x∀y(fx = hxx∧ (Qxy ↔ Phxy))
it follows from A |= ψ that B |= φ.

The other direction of the claim is easily established by taking

∀x∀y(fx = hxx ∧ (Qxy ↔ Phxy))

as defining equations for the monadic function and the binary predicate to
be constructed. ⊓⊔

4.3 Classes with Equality but Without Functions: the
Goldfarb Classes

In this section we prove that the Goldfarb class [∀2∃, (ω, 1), (0)]= – i.e. the
Gödel-Kalmár-Schütte class with equality – is a conservative reduction class.

Theorem 4.3.1 (Goldfarb). The class [∀2∃, (ω, 1), (0)]= is a conservative
reduction class.
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Exercise 4.3.2. Show that for prefix classes with equality but without func-
tion symbols the only minimal unsolvable ones are the so-called minimal
Goldfarb class [∀2∃]= and the Kahr class [∀∃∀].

The following two exercises give us the two other Goldfarb classes and
complete the list of minimal undecidable prefix-vocabulary classes with equal-
ity.

Exercise 4.3.3. Show that the class [∃∗∀2∃, (0, 1), (0)]= is a conservative
reduction class. Hint: Translate formulae ∀x∀y∃zφ ∈ [∀2∃, (ω, 1), (0)]= con-
taining monadic predicate symbols Pi(1 ≤ i ≤ m) into

∃w1 . . . ∃wm∀x∀y∃z(¬Wz ∧ (¬Wx ∧ ¬Wy → φ[Pit/Rwit]))

where ¬Wx expresses that x is not a witness (i.e. different from any wi).

Exercise 4.3.4. Show that the class [∀2∃∗, (0, 1), (0)]= is a conservative re-
duction class. Hint: First transform each formula ∀x∀y∃zφ ∈ [∀2∃, (ω, 1), (0)]=
into an equivalent formula with irreflexive relation, e.g. into

φ′ := ∀x∀y∃z(¬Rxx ∧ φ[Rst/(Rst ∨ (s = t ∧Ds))])

where D is a new monadic predicate representing the diagonal. Then trans-
form φ′ containing monadic predicate symbols Pi(1 ≤ i ≤ m) into

∀x∀y∃z∃w1 . . . ∃wm(¬Wz ∧WITNESSES ∧ (¬Wx ∧ ¬Wy → φ′[Pit/Rwit])

where ¬Wx expresses that x is not a witness (i.e. none of the wi) and where
WITNESSES stands for

Rw1w1 ∧
∧

1≤i≤m

Rwiwi+1 ∧ (Rwix ∧Rwiy → x = y).

For expository reasons the proof of Goldfarb’s Theorem is given in four
steps. First we prove that the class [∀2∃∗, (ω, ω), (0)]= contains an infinity
axiom NUM whose models contain infinitely many objects which are related
by a successor relation S and thus can serve as numbers for a reduction of ar-
bitrary Kahr-Moore-Wang formulae to formulae in [∀2∃∗, (ω, ω), (0)]=. Then
we apply standard techniques to improve the reduction in three steps: use of
only one existential quantifier (Sect. 4.3.2), elimination of the binary pred-
icates of the given Kahr-Moore-Wang formulae (by encoding them through
pairing into monadic ones) and strengthening to a conservative reduction
(Sect. 4.3.3), and finally reduction to one binary predicate by encoding the
finitely many auxiliary binary predicates in NUM into just one (Sect. 4.3.4).
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4.3.1 Formalization of Natural Numbers in [∀2∃∗, (ω, ω), (0)]=.

From the proof of the Church-Turing Theorem we know that in the presence
of sufficiently long successor chains 0,1,2, . . . with Sn+ 1n one can describe
given Turing machine computations by formulae with two universal quanti-
fiers ranging over the occurring time and space parameters respectively (see
Sect. 2.1.1). If we can find in the Goldfarb class a description of an injec-
tive successor function S with a corresponding predicate Z representing 0,
then such S-successor chains starting from 0 can serve to represent the nat-
ural numbers for describing Turing machine computations or for translating
arbitrary formulae ∀x∃u∀yα of the Kahr-Moore-Wang class into equivalent
formulae of [∀2∃∗, (ω, ω), (0)]=.

We will define below a satisfiable formula NUM ∈ [∀2∃∗, (ω, ω), (0)]= and
show that it formalizes such a unique zero element 0 and an injective successor
function S generating numbers as stated in the following lemma.

Lemma 4.3.5 (Number Representation Lemma for NUM). Assume
that A |= NUM. Then Z and S are interpreted in A by a unique zero–element
0 and an injective function, respectively, which together generate an infinite
set 0,1,2, . . . of successive elements, i.e. satisfying Si+ 1i, for all i ∈ N.

Corollary 4.3.6. [∀2∃∗, (ω, ω), (0)]= is a reduction class.

Proof. We reduce the Kahr-Moore-Wang class [∀∃∀, (0, ω), (0)] to the class
[∀2∃∗, (ω, ω), (0)]=. Let ψ := ∀x∃u∀yβ(x, u, y) be an arbitrary formula in
[∀∃∀, (0, ω)]. For an encoding of the successor u of x it suffices to express
this relation by using the relation S formalized in NUM; therefore define
φ as an appropriate prenex normal form of the conjunction of NUM with
∀x∀y∃u(Sux ∧ β). Clearly φ ∈ [∀2∃∗, (ω, ω), (0)]=; it remains therefore to
show that φ is satisfiable if and only if ψ is satisfiable.

If ψ is satisfiable, then by Skolem’s Theorem it is satisfiable over the
domain of natural numbers and therefore over the domain of natural numbers
generated by a model of NUM. This implies that φ is satisfiable over such a
domain.

If A |= φ, then B |= β[m,m+ 1,n] for all numbers m,n where B is
the restriction of A to the domain of numbers m generated by NUM in A.
Therefore B |= ∀x∃u∀yβ. ⊓⊔

Before giving the details of the definition of NUM we explain the under-
lying intuition. The problem to be solved is to formalize by a formula with
only two universal quantifiers that one can extend each given S-successor se-
quence c0, . . . , cn (i.e. such that (ci+1, ci) ∈ S) by a new S-successor cn+1 of
cn. It would be easy to guarantee the uniqueness of S-successors had we three
universal quantifiers allowing us to write ∀u∀v∀w(Suw∧Svw → u = v). The
main idea is to use existential quantifiers to express the existence of distin-
guished successors as follows:



164 4. Undecidable Standard Classes with Functions or Equality

a) require each element to have a predecessor which is not a predecessor of
any other element, say by a formula (see below axiom S2):

∀x∀y(x ̸= y → ∃z(Sxz ∧ ¬Syz)),

b) make the successor relation injective.

Condition b) means that for each S-successor n+ 1 of n and each b, Sn+1b
has to imply b = n. This can be guaranteed by the following construction:
each S-successor n+ 1 of n which is also an S-successor of b gives rise to a
chain of “Next” elements

(0, b)
N→ (1, b)

N→ . . .
N→ (n, b)

such that

– the first components are in the successor relation, i.e. Si+ 1i for each i < n,
– the second components are identical, namely b.

Using projection functions Pi to access the components of the elements of such
chains we can guarantee b = n by requiring that the S-successor of b equals
the given S-successor n+ 1 of n. To achieve this goal we will write axioms
which ensure that in such N -chains the S-successor of the second component
is unique1. This will be done using auxiliary predicates Si (i = 0, 1, 2) which
describe the successor of the second component and pairs containing such
successors.

More formally the auxiliary predicates which we are going to use for
the definition of NUM have the following intended interpretation over the
natural numbers; for better readability we only indicate where the predicates
are interpreted to hold, speaking about pairs of natural numbers in terms of
a bijective encoding ⟨ , ⟩:

– Pi⟨m1,m2⟩mi (first and second projection)
– N⟨m,n⟩⟨m+1, n⟩ (Next pair, going to the successor in the first component)
– S0⟨m,n⟩n+ 1 (Successor of the second projection)
– S1⟨m,n⟩⟨n + 1, r⟩ (Successor of the second projection in the first compo-

nent)
– S2⟨m,n⟩⟨r, n + 1⟩ (Successor of the second projection in the second com-

ponent).

We define NUM as the prenex normal form with prefix ∀x∀y∃z0 . . . ∃zr of
the conjunction of the following axioms Z0 – S2.2.

The group of axioms Z0 – S2 formalizes the existence and the uniqueness
of a zero element and of successors for each element; note that the uniqueness
of 0 is formulated also for its rôle as a possible “component of pairs”.

Z0: Zz0 (existence of 0).

1 In Step 3 we will take advantage of this successor relation N between pairs for
an encoding of binary predicates into monadic ones using pairing.
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Z1: Zx ∧ Zy → x = y (uniqueness of 0).
Z2: ¬Sz0x (0 is not a successor, i.e. has no predecessor).
Z3:

∧
i=1,2(Pixz0 ∧ Pixy → y = z0) (uniqueness of 0 as component).

S1: ∃zSzy (existence of a successor z for each element y).
S2: ¬Zx∧x ̸= y → ∃z(Sxz∧¬Syz) (uniqueness of successors: each non–

zero element has a unique predecessor, i.e. a predecessor which is not
a predecessor of any other element).

Note that the uniqueness of successors has to be formulated here using
only two universally quantified variables. This is why it is expressed as the
distinctness of predecessors for distinct non-zero elements.

Exercise 4.3.7. Construct a finite model for

∀x∀y∃z0
∧

0≤i≤3

Zi ∧ S1 ∧ S2.

The next group of axioms N1 – N3 ensures for each pair ⟨m,n⟩ the
existence of a next pair (N -successor), i.e. of a pair ⟨m + 1, n⟩ with an S-
successor in the first component, with the same second component and with
S-successors for the second component determined by the Si-successors of
the given pair.

N1: ∃z(Nxz ∧
∧

0≤i≤2(Sixy → Sizy)) (existence of an N -successor z for
each x; this N -successor has the same S0, S1, S2-successors (read:
the same S-successor of the second component) as the given x, see
Fig. 4.4)

n+ 1, (n+ 1, ⋆), (⋆, n+ 1)

Si Si

∃(m+ 1, n)∀(m,n) -

	

.
.

.
.

.
.

.

N

l
l
l

ll

l
l
l

ll

Figure 4.4. Existence of an N -successor (axiom N1)

N2: Nxy → ∃z(P1xz ∧∃u(P1yu∧Suz)) (going to an N–successor means
going to the S-successor in the first component, i.e. if y is an N -
successor of x, then x has a first component whose successor is the
first component of y, see Fig. 4.5)

N3: Nxy → ∃z(P2xz∧P2yz) (N -successors share a common second com-
ponent with their predecessors, see Fig. 4.5)

Exercise 4.3.8. Construct a finite model for
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P2P2

(m+ 1, n)∀(m,n)
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Figure 4.5. Existence of components of N -successors (axioms N2, N3)

∀x∀y∃z0
∧

0≤i≤3

Zi ∧ S1 ∧ S2 ∧
∧

1≤i≤3

Ni.

The Si-axioms guarantee the uniqueness of the successor of the second
component of pairs by relating the S-successor of the second component
to the S-successor of the first component of the given Si-predecessor. Si.1
guarantees the existence of an Si-predecessor, i.e. of a pair (0, n) for each
successor n+ 1 (S0.1) and for each positive i-th component n+ 1 (Si.1 for
i = 1, 2). These Si-predecessors will be the starting points (0, b) of N -chains
(0, b), . . . , (n, b) in the proof that Sn + 1b implies b = n as explained above.
The uniqueness of the successor of the second component of Si-predecessors
is guaranteed by the axioms Si.2. They ensure for each Si-predecessor the
existence of a first component and formalize the uniqueness of the S-successor
of its second component in terms of the given Si-successor.

S0.1: Sxy → ∃z(S0zx∧P1zz0∧P2zy) (existence of S0-predecessors for each
S-successor: each S-successor n+1 has an S0-predecessor (0, n) having
0 as its first component and the predecessor n of n + 1 as its second
component, see Fig. 4.6)
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P2

P1

lrm S
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∃(0, n)
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Figure 4.6. Existence of S0-predecessors and of their first components

Si.1: (i = 1, 2) Pixy∧¬Zy → ∃z(Sizx∧P1zz0∧∃u(P2zu∧Syu)) (existence
of Si-predecessors for positive i-th projection: each element (m1,m2)
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with non–zero projection mi has an Si-predecessor (0,mi − 1) having
0 as first component and the predecessor of mi as second component,
see Fig. 4.7)

Si

∃(0,mi − 1)

(n+ 1, ⋆),SiPi

∀(m,n)mi ̸= 0∀(m1,m2) (⋆, n+ 1)

∃m+ 1
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∃mmi − 1

S PiP2P1

?
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.

.

.

.
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6

?

...............................................

...............................................

Figure 4.7. Existence of Si-predecessors and of their first components

S0.2: S0xy → ∃z(P1xz ∧ (Syz → P2xz)) (uniqueness of the S0-successor,
i.e. of the successor of the second component of an S0-predecessor:
each S0-predecessor of y has a first component m which is also its
second component if it is an S-predecessor of y, see Fig. 4.6)

Si.2: (i = 1, 2) Sixy → ∃z(P1xz ∧ ∃u(Suz ∧ (Piyu → P2xz))) (uniqueness
of the successor of the second component of Si-predecessors: each Si-
predecessor of y has a first component which comes with an S-successor
and which is also its second component if it is an S-predecessor of the
i-th projection of y, see Fig. 4.7)

This ends the definition of NUM.

Exercise 4.3.9. Check that the above indicated intended interpretation over
the natural numbers satisfies NUM with Z interpreted as {0} and S as the
successor relation. Note that given the bijective pairing function ⟨, ⟩, each n
has a unique representation as a pair ⟨n1, n2⟩.

We complete now and prove the Number Representation Lemma including
the statement that the generated numbers are also “unique as components”.

Lemma 4.3.10 (Number Representation Lemma for NUM (Cont.)).
Assume A |= NUM. Then the domain A of A contains an infinite subset
0,1,2, . . . such that the following properties hold:

(Existence and Uniqueness of 0) For all a ∈ A, A |= Za if and only if
a = 0.

(Existence of successors) A |= Snn− 1 for all n > 0.

(Injectivity of S) For all n and all a ∈ A, A |= Sna implies n > 0 and
a = n− 1.

(Functionality of S) For all n > 0 and all a ∈ A, A |= San− 1 implies
a = n.
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(Uniqueness of numbers as component:) For i = 1, 2, all a, b ∈ A and
all n, if A |= Pian and A |= Piab, then b = n.

Proof. By induction on n we construct a sequence 0,1, . . . ,n satisfying the
conditions of the lemma.

Induction base. Axioms Z0, Z1 imply that there is a unique element
0 ∈ A such that A |= Z0. Since by axiom Z2 this element is not a successor,
the injectivity claim for n = 0 is void. Axiom Z3 guarantees the uniqueness
of 0 as component.

Induction step. Assume the lemma for distinct elements 0, . . . ,n. We will
find now a new element n+ 1 ∈ A which satisfies the statements of the
lemma.

As a preparatory step we prove a sublemma which guarantees that in N -
chains the first components increase – each time one successor step is taken
– whereas the second components remain constant (see Fig. 4.8).
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Figure 4.8. N -Chain Lemma

Sublemma 4.3.11 (N-Chain Lemma). Let a, b ∈ A and suppose A |=
Nab. Then, for all i ≤ n, A |= P1ai− 1 implies that A |= P1bi and A |= P2bi
implies that A |= P2ai.

Proof. Let i ≤ n. Since by assumption A |= Nab, by axiom N2 the first
component c of a changes in b to a successor d, i.e. there exist c, d ∈ A with
A |= P1ac∧P1bd∧Sdc. Now assume A |= P1ai− 1, i.e. that also i− 1 is a first
component of a. Then by the uniqueness of numbers as components (induc-
tion hypothesis for i) c = i− 1, whence A |= Sdc implies by the functionality
of S (induction hypothesis for i− 1) d = i. Hence A |= P1bi.
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Similarly, by axiom N3, a and b have the same second component e, i.e.
for some e ∈ A holds A |= P2ae ∧ P2be. Now assume A |= P2bi, i.e. that
also i is a second component of b. Then by the uniqueness of numbers as
components (induction hypothesis for i) e = i, so that A |= P2ai. ⊓⊔

The next sublemma establishes the injectivity of S for n, ensuring that no
successor of n is a successor of anything else, as explained in the introduction
to the proof.

Sublemma 4.3.12 (Injectivity Lemma for S). Let a, b ∈ A and suppose
A |= San ∧ Sab. Then b = n.

Proof. Since by assumption A |= Sab, by axiom S0.1 there is an S0-
predecessor c0 = (0, b) of a – i.e. for some c0 ∈ A holds

A |= S0c0a ∧ P1c00 ∧ P2c0b.

Applying the N -successor axiom N1 n times starting from c0 yields the
existence of an N -successor chain c0, . . . , cn of elements of A with the same
S0-successor a as c0, i.e. satisfying A |= Ncici+1 for 0 ≤ i < n and A |= S0cia
for 0 ≤ i ≤ n (see Fig. 4.9).
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Figure 4.9. S-Injectivity Lemma for n

Since the first component of c0 is 0 – i.e. A |= P1c00 – the first statement
of the N -Chain Lemma tells us that the first component of cn is n, i.e.
A |= P1cnn. Since cn is an S0-predecessor of a, by the uniqueness of the
successor of the second component of S0-predecessors (axiom S0.2), cn has
a first projection d ∈ A which is also its second projection if it is an S-
predecessor of a, i.e. A |= P1cnd ∧ (Sad → P2cnd). But we know already
that n is a first component of cn, therefore by the uniqueness of numbers
as components (induction hypothesis for n) we can conclude that d = n.
Since by assumption n is a predecessor of a one obtains that n is a second
projection of cn, i.e. A |= P2cnn. Now we can apply the second statement



170 4. Undecidable Standard Classes with Functions or Equality

of the N -Chain Lemma to the N -chain c0, . . . , cn and infer that c0 has the
same second component as cn, namely n. Since from above we know that b
is a second component of c0, by the uniqueness of numbers as components
(induction hypothesis for n) we can conclude that b = n. ⊓⊔

The Injectivity Lemma for S and the S-axioms imply that n has a unique
successor in A, as we are going to show in the next sublemma.

Sublemma 4.3.13 (Functionality Lemma for S). There is a unique S-
successor n+ 1 ∈ A of n; it is distinct from each i with 0 ≤ i ≤ n.

Proof. By axiom S1 there is an S-successor a ∈ A of n. By the uniqueness
property of 0 (induction base) and axiom Z2 it cannot be 0. By the injectivity
of S (induction hypothesis for i ≤ n) it cannot be any of i with 0 ≤ i ≤ n.

To show the uniqueness of the n-successor choose any b ∈ A−{a}. By ax-
iom S2 the non-zero element a has a predecessor c which is not a predecessor
of the different element b, i.e. there is some c ∈ A satisfying A |= Sac∧¬Sbc.
The injectivity lemma for S implies c = n. Thus A |= ¬Sbn. ⊓⊔

Clearly the preceding lemmas imply the statements of the Number Rep-
resentation Lemma about the uniqueness of 0 and about the properties of S
for n+ 1. It remains to show the uniqueness of n+ 1 as component.

Let i ∈ {1, 2}, a, b ∈ A and assume A |= Pian+ 1∧Piab. We have to show
that b = n+ 1.

By the uniqueness of 0 and its uniqueness as component (induction hy-
pothesis) we know that b is not the zero element, i.e. A |= ¬Zb. Hence a
has a positive projection, namely b, and therefore by axiom Si.1 has an Si-
predecessor c0 = (0, d) whose second component d is an S-predecessor of b,
i.e. A |= Sic0a ∧ P1c00 ∧ P2c0, d ∧ Sbd for some c0, d ∈ A. n successive appli-
cations of the N -successor axiom N1 yield the existence of an N -successor
chain c0, . . . , cn of elements of A with the same Si-successor a as c0, i.e. sat-
isfying A |= Ncjcj+1 for 0 ≤ j < n and A |= Sicja for 0 ≤ j ≤ n (see
Fig. 4.10).

Since c0 has first component 0 – i.e. A |= P1c00 – the first statement
of the N -Chain Lemma tells us that cn has first component n. Since cn is
an Si-predecessor of a – i.e. A |= Sicna – axiom Si.2 guarantees that it
has a first component e ∈ A with a successor e′ ∈ A and that it is also
its second component if the S-successor e′ of e is the i-th projection of a,
i.e. A |= P1cne ∧ Se′e ∧ (Piae

′ → P2cne). From the uniqueness of numbers
as components (induction hypothesis for n) and A |= P1cnn we may infer
e = n and thus by the Functionality Lemma for S, e′ = n+ 1. From the
assumption A |= Pian+ 1 it follows that A |= Piae

′. Then the second clause
derived above from axiom Si.2 yields that the second component of cn is n,
i.e. A |= P2cnn. By the N -Chain Lemma c0 has the same second component
n as cn. By the uniqueness of numbers as second components (induction
hypothesis for n) we obtain from A |= P2c0d (see above) that d = n. Since b
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Figure 4.10. Uniqueness of n+ 1 as first component

is a successor of d (see above) the Functionality Lemma for S yields b = n+ 1.
⊓⊔

4.3.2 Using Only One Existential Quantifier.

We refine here the formalization of natural numbers of the preceding section
so as to use only one existential quantifier ∃z. This allows us to refine also
the reduction of the Kahr-Moore-Wang class, thus obtaining the reduction
class property for [∀2∃, (ω, ω), (0)]=.

An inspection of the formula NUM of the preceding section shows that
nested existential quantifiers appear in two ways: a) z0 occurs in some for-
mulae which are in the range of a quantifier ∃z, b) some formulae ∃uβ occur
within the range of a quantifier ∃z. Critical nestings of type a) are used only
to express that 0 is a projection, i.e. in atomic formulae Pitz0; critical nest-
ings of type b) are used only to express that u is a projection and successor
or predecessor of something, i.e. in formulae β of the form Pisu ∧ Sut or
Pisu ∧ Stu or similar. Both kinds of nestings can be eliminated by the tech-
nique of formalizing auxiliary predicates Pi,0 (i = 1, 2) – to encode the fixed
parameter z0 – and Pi,+ (i = 1, 2) to encode one application of the successor
function, i.e. such that Pitz0 is equivalent to Pi,0t and Pisu ∧ Sut is equiva-
lent to Pi,+st. Stated otherwise these predicates have the following intended
interpretation:

– Pi,0a if and only if Pia0 (0-projection),
– Pi,+an if and only if Pian+ 1 (successor projection).

Since the different uses of local existential quantification in NUM have
now all to be handled by just one global existential quantifier which appears
in the prefix ∀x∀y∃z, these uses have to be encoded into disjoint subsets of the
set of pairs a, b of the given domain. For this purpose we will make the pairing
function ⟨ , ⟩ and the related component functions explicit and extend the
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domain of the intended interpretation by adding to the non-negative integers
the set of (number) pairs. (This will also be useful in the next section where
we use pairing to encode binary predicates into monadic ones.) An auxiliary
(monadic) predicate I will distinguish non-negative integers from pairs of
non-negative integers, another auxiliary (monadic) predicate D will represent
the diagonal of the set of all pairs, i.e. these predicates have the following
intended interpretation:

– Ia iff a = n for some non-negative integer (natural number) n,
– Da iff a = (n, n) for some natural number n.

We are now ready to define NUM’ as a formula with prefix ∀x∀y∃z whose
quantifier-free part is the conjunction of the following axioms Z0’ – S2.2’,
Pi.0 – P1. The axioms Ax’ are obtained from the axioms Ax of NUM by
refining the description along the lines explained above; the axioms Pi.0 –
P1 formalize the new auxiliary predicates. For the ease of the reader we
proceed again through all the conjuncts of NUM.

The axioms Z1’ – Z3’ for the unique zero element are obtained by refor-
mulating their counterparts Z1 – Z3 in NUM as follows.

Axiom Z1 is taken unchanged:

Z1’: Zx ∧ Zy → x = y (uniqueness of the zero element).

Axiom Z2 of NUM expresses that the zero element is not a successor. This
can be reformulated – without using the existentially quantified variable for
naming the zero element – by saying that no successor is a zero element. We
include into Z2’ also the condition that S ranges only over numbers.

Z2’: Sxy → ¬Zx ∧ Ix ∧ Iy (no successor is zero, S holds only between
numbers).

Axiom Z3 of NUM expresses the uniqueness of the zero element as com-
ponent. To avoid the use of the existentially quantified variable in Pixz0 we
use the new auxiliary predicate Pi,0:

Z3’:
∧
i=1,2(Pi,0x ∧ Pixy → Zy) (uniqueness of the zero element as com-

ponent).

Axiom Z0 of NUM states the existence of a zero element z0. This exis-
tential requirement can now only be formulated using z instead of z0 and
therefore has to be kept separate from requiring – using the same z – the ex-
istence of a successor z for each x (S1), the existence of a unique predecessor
z for each non-zero element (S2), etc. In other words, we have to distinguish
different cases for the definition of a binary function h – the Skolem function
of NUM’ – which yields for each pair (a, b) some c satisfying a specific re-
quirement. Different requirements will be encoded into different sets of pairs
of the given domain.

For the encoding of the zero element we choose the non-zero part of the
diagonal, i.e. the set of pairs (a, b) satisfying 0 ̸= a = b:
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Z0’: ¬Zx ∧ x = y → Zz (existence of a zero element).

To encode the S1-requirement of a successor b+1 for every given number
b we choose the first column of the Gaussian quadrant, i.e. the set of pairs
(a, b) satisfying a = 0, b = n for some non-negative integer n:

S1’: Zx ∧ Iy → Szy (existence of a successor z for each number y).

The S2-requirement in NUM that each non-zero number x has a prede-
cessor which is not a predecessor of any other element y splits now into two
cases, depending on whether y is a number or a pair. In the first case we can
clearly restrict attention to pairs (a, b) of numbers where a ̸= b+1; the second
case is encoded into the set of pairs (a, b) where a is a positive component of
the pair b. We thus have the following two axioms refining S2:

S2’: ¬Zx ∧ x ̸= y ∧ Ix ∧ Iy ∧ ¬Sxy → Sxz ∧ ¬Syz (existence of unique
predecessors: each non-zero number has a predecessor which is not
the predecessor of any other number),

S3’: (i = 1, 2) ¬Zx ∧ Piyx → Sxz ∧ Pi,+yz (existence of predecessors of
positive components: each non-zero component has a predecessor).

Note that S3’ also formalizes Pi,+ by translating the successor relation
between x and z and the projection relation Piyx into the successor projection
relation Pi,+ between y and z.

Axiom N1 of NUM requires for each element x the existence of an N -
successor which has the same Si-successors y as x (for 0 ≤ i ≤ 2). Clearly
we need this requirement only for pairs x and can even restrict it to pairs
whose components are not identical. In axiom N2 of NUM we have only to
reformulate the projection of a successor in terms of the auxiliary relation
P1,+, in N3 we have only to replace the locally quantified z by the globally
quantified z. Thus we have the following new axioms2 N1’ – N3’:

N1’:
∧

0≤i≤2(Sixy ∧ ¬Dx → Nxz ∧ Sizy) (for each x with an S0, S1, S2-
successor there exists an N -successor z with the same S0, S1, S2-
successor (read: the same S-successor of the second component), see
Fig. 4.4).

N2’: Nyx→ P1yz ∧ P1,+xz (going to an N -successor means going to the
S-successor in the first component, i.e. if x is N -successor of y, then
y has a first component whose successor is the first component of x,
see Fig. 4.5).

N3’: Nxy → P2xz ∧ P2yz (N -successors share a common second compo-
nent with their predecessors, see Fig. 4.5).

2 Comparing N2 with N2’ the reader will notice that we have interchanged the
rôle of x and y in axiom N2’. The reason is that we want to handle this case as
a subcase of a group of similar cases in the definition of a Skolem function for
NUM’ below.
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The Si.j-axioms of NUM can easily be reformulated using Pi,0, Pi,+ to
eliminate the occurrences of z0 and of nested existential quantification over
predecessors3:

S0.1’: Sxy → S0zx∧P1,0z ∧P2zy (existence of S0-predecessors for each S-
successor: each S-successor n+1 has an S0-predecessor (0, n) having
0 as its first component and the predecessor n of n+ 1 as its second
component, see Fig. 4.6).

Si.1’: (i = 1, 2) Pi,+xy → Sizx∧P1,0z ∧P2zy (existence of Si-predecessors
for a positive i-th projection: each element (m1,m2) with non-zero
projection mi has an Si-predecessor (0,mi − 1) having 0 as its first
component and the predecessor of mi as its second component, see
Fig. 4.7).

S0.2’: S0yx → P1yz ∧ (Sxz → P2yz) (uniqueness of the S0-successor, i.e.
of the successor of the second projection of an S0-predecessor: each
S0-predecessor of x has a first component m which is also its second
component if it is S-predecessor of x, see Fig. 4.6).

Si.2’: (i = 1, 2)Siyx→ P1yz ∧ (Pi,+xz → P2yz) (uniqueness of the succes-
sor of the second component of Si-predecessors: each Si-predecessor
of x has a first component which comes with an S-successor and
which is also its second component if it is S-predecessor of the i-th
projection of x, see Fig. 4.7).

In addition to the reformulation of the axioms from NUM we have in
NUM’ the following new axioms which formalize the auxiliary predicates:

Pi.0: Zx→ (Pi,0y ↔ Piyx) ∧ Ix
P1.+ P1,+xy → ¬P1,0x ∧ ¬Ix (if the first component of an element is

positive, then it cannot be zero and this element is not a number).
Diag: Dx→ (P1xy ↔ P2xy) (for diagonal elements the first and the second

projection coincide)
P1: Zx ∧ ¬Iy → P1yz(each pair has a first component).

Note that the condition on the existence of a first component for each pair is
encoded into the domain of pairs (0, b) with pairs b.

This ends the definition of NUM’.
It remains to prove that the intended interpretation satisfies NUM’ and

that the extended version of the Number Representation Lemma holds for
NUM’.

Lemma 4.3.14. The above indicated intended interpretation satisfies NUM’
where the interpretation of Si is restricted to first arguments (m,n) which
satisfy the condition m ≤ n.
3 Comparing Si.2 with Si.2’ the reader will notice that we have interchanged the
rôle of x and y in axioms S0.2’ and Si.2’. The reason is that we want to handle
these cases as subcase of a group of similar cases in the definition of a Skolem
function for NUM’ below.
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Proof. We define a binary function h : (N ∪ (N× N))2 → N ∪ (N× N) which
will serve as the interpretation of a Skolem function for NUM’. We indicate
in brackets to which axioms the different cases belong. For notational conve-
nience we denote by πi the i-th projection function for pairs and write Rab
meaning that the above defined intended interpretation of R holds between
a and b.

h(a, b) :=



0 if 0 ̸= a = b (case Z0’)
b+ 1 if a = 0 and b ∈ N (case S1’)
a− 1 if 0 ̸= a ̸= b, a, b ∈ N and a ̸= b+ 1 (case S2’)
a− 1 if 0 ̸= a and

∨
i=1,2 Piba (case S3’)

π2a if Nab (case N3’)
π1b if Nba ∨

∨
i=0,1,2 Siba ∨ (a = 0 ∧ b ̸∈ N)

(cases (N2’),(Si.2’) (i = 0, 1, 2),(P1)
(0, b) if Sab ∨

∨
i=1,2 Pi,+ab (cases Si.1’, i = 0, 1, 2)

(π1a+ 1, π2a) if ¬Da ∧
∨
i=0,1,2 Siab (case N1’)

arbitrary otherwise.

Exercise 4.3.15. Check that this function h is well-defined (that is, the
cases in the definition do not conflict). Check that all the axioms where z
appears are covered correctly. Check that the Skolem normal form of NUM’
is satisfied by the above defined intended interpretation with h as the inter-
pretation of the Skolem function for the existential variable z of NUM’.

⊓⊔

The Number Representation Lemma for NUM’ asserts all the properties
of the Number Representation Lemma for NUM and an additional property
which verifies the intended interpretation of the predicate P1,+.

Lemma 4.3.16 (Number Representation Lemma for NUM’). If A |=
NUM’, then the domain A of A contains an infinite subset 0,1,2, . . . such
that the following properties hold: existence and uniqueness of 0, existence
of successors, injectivity of S, functionality of S, uniqueness of numbers as
component and the following correctness property for P1,+. For all a ∈ A,
n > 0

A |= P1,+an− 1 implies P1an.

Proof. The proof follows the lines of the proof for the Number Representation
Lemma for NUM in the preceding section. We concentrate our attention on
the points which do change.

Induction base. The axioms Z0’,Z1’ guarantee the existence of a unique
element 0 ∈ A such that A |= Z0. By Z2’ it is not a successor (i.e. A |=
¬S0a for each a ∈ A), therefore the injectivity claim for n = 0 is void. The
uniqueness of 0 as component follows from axiom Z3’ together with the new
axioms Pi.0 which guarantee that Pia0 is equivalent in A to Pi,0a0.
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Induction step (from n to n+ 1). We paraphrase the corresponding steps in
the proof from NUM.

(N-Chain Lemma). Let i ≤ n. Since by assumption A |= Nab, by axiom
N2’ there exists in A a first component c of a whose successor is first com-
ponent of b, i.e. such that A |= P1ac ∧ P1,+bc. Now assume that also i− 1 is
a first component of a. Then by the uniqueness of numbers as components
(induction hypothesis for i), c = i− 1, so that A |= P1,+bi− 1 and there-
fore A |= P1bi by the correctness property for P1,+ (induction hypothesis for
i > 0).

The proof for the second statement of the lemma is literally the same as
with NUM in the preceding section, invoking N3’ instead of N3.

(Injectivity Lemma for S). Since by assumption A |= Sab, by axiom
S0.1’ there is an S0-predecessor c0 = (0, b) of a – i.e. for some c0 ∈ A
holds A |= S0c0a ∧ P1,0c0 ∧ P2c0b. The P1.0-axiom implies A |= P1c00.
Iterated application of the N -successor axiom N1’ starting from c0 yields
the existence of an N -successor chain c1, . . . , cj of elements of A with the
same S0-successor a as c0, i.e. satisfying A |= Ncici+1 for 0 ≤ i < j and
A |= S0cia for 0 ≤ i ≤ j. The complication with N1’ instead of N1 is that
we have to ensure also A |= ¬Dci for each element in this chain and therefore
have to ensure that j = n. We show this indirectly by deriving a contradiction
from the assumption that j < n ∧ A |= Dcj .

From the first statement of the N -Chain Lemma and A |= P1c00 it follows
that A |= P1cjj. Then A |= Dcj and the D-axiom imply A |= P2cjj, so that
by the second statement of the N -Chain Lemma A |= P2c0j. But from above
we know that P2c0b, therefore by the uniqueness of numbers as components
(induction hypothesis for j) b = j. The assumption A |= Sab and the func-
tionality of S (induction hypothesis for j) imply a = j+ 1 in contradiction
to A |= San, the assumption j < n and the induction hypothesis.

Therefore j = n and the N -chain has length n. The rest of the proof
is literally the same as with NUM in the preceding section, invoking S0.2’
instead of S0.2.

(Functionality Lemma for S). By axiom S1’ there is an S-successor a ∈ A
of n. We prove by contradiction that such an a is unique.

Suppose A |= Sbn for some b ∈ A − {a}. In order to be able to apply
axiom S2’ we have to ensure that the premises hold in A. By the Injectivity
Lemma for S and the induction hypothesis (injectivity of S for n) we obtain
A |= ¬Sab. But A |= San implies A |= ¬Za ∧ Ia (axiom Z2’) and A |= Sbn
implies A |= Ib. Therefore the premises of axiom S2’ hold in A and the proof
proceeds as from NUM: S2’ guarantees the existence of a predecessor c of a
which is not a predecessor of b, i.e. of a c ∈ A satisfying A |= Sac ∧ ¬Sbc.
The Injectivity Lemma for S and A |= San imply c = n. Thus A |= ¬Sbn,
contrary to our hypothesis.

(Uniqueness of n as component in Pi,+). Let i ∈ {1, 2} and suppose
A |= Pi,+an ∧ Pi,+ab for some a, b ∈ A. We have to show that b = n.
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Axiom Si.1’ guarantees the existence of an Si-predecessor c0 ∈ A of a with
first component 0 and second component b, i.e. satisfying A |= Sic0a∧P1,0c0∧
P2c0b and therefore (by axiom Pi.0) also A |= P1c00. As in the proof for the
Injectivity Lemma for S we apply axiom N1’ in order to get an N -successor
chain c1, . . . , cj of elements of A with the same Si-successor a as c0, i.e.
satisfying A |= Nckck+1 for 0 ≤ k < j and A |= Sicka for 0 ≤ k ≤ j; as there
we show j = n by deriving a contradiction from the assumption j < n∧A |=
Dcj . Then the first statement of theN -Chain Lemma ensures that cn has first
projection n, i.e. A |= P1cnn. Since cn has the Si-successor a, axiom Si.2’
implies the existence of a c ∈ A satisfying A |= P1cnc ∧ (Pi,+ac → P2cnc).
By the uniqueness of numbers as first components (induction hypothesis for
n) we obtain c = n. Since A |= Pi,+an holds by assumption we can therefore
conclude that A |= P2cnn. The second statement of the N -Chain Lemma
implies that A |= P2c0n. Since A |= P2c0b, the uniqueness of numbers as
second components (induction hypothesis for n) implies b = n.

(Uniqueness of n+ 1 as component). Let i ∈ {1, 2}, a, b ∈ A and assume
A |= Pian+ 1 ∧ Piab. We have to show that b = n+ 1.

Since A |= ¬Zn+ 1 (by axiom Z2’), by the Z3’-axiom on the uniqueness
of 0 as component and the assumption A |= Pian+ 1 we obtain that A |=
¬Pi,0a. Therefore by axiom Pi.0 we obtain from the assumption A |= Piab
that A |= ¬Zb. By axiom S3’, A |= Piab ∧ ¬Zb implies the existence of a
predecessor d of b satisfying A |= Sbd∧Pi,+ad; similarly there is a predecessor
c of n+ 1 satisfying A |= Sn+ 1c ∧ Pi,+ac. By the S-injectivity for n+ 1
follows c = n. By the uniqueness of numbers as components in Pi,+ we then
obtain d = n from A |= Pi,+ac ∧ Pi,+ad. Since A |= Sbd, the functionality of
S for n+ 1 implies b = n+ 1.

(P1,+-Correctness Property for n+ 1). Let A |= P1,+an]. By axiom
P1.+, A |= ¬P1,0a ∧ ¬Ia. By axiom P1 there is a first component b ∈ A
of a. By axiom P1.0 and A |= ¬P1,0a this first component b of a cannot
be the zero element, i.e. A |= ¬Zb. Hence by axiom S3’ the positive first
projection b of a has a predecessor c which satisfies A |= Sbc ∧ P1,+ac. The
assumption A |= P1,+an implies c = n (by uniqueness of n as component in
Pi,+). Hence A |= Sbc implies b = n+ 1 (by the functionality for n+ 1) so
that A |= P1an+ 1. ⊓⊔

Corollary 4.3.17. The class [∀2∃, (ω, ω), (0)]= is a reduction class.

Proof. We refine the reduction of the Kahr-Moore-Wang class of the pre-
ceding section using NUM’ instead of NUM. Let ψ := ∀x∃u∀yβ(x, u, y) be
an arbitrary formula in [∀∃∀, (0, ω)]. For an encoding of the successor u of
x in the reduction formula φ we have to rely upon the effect of the succes-
sor axiom S2’ in NUM’. S2’ ensures for each pair (m,n) with m ̸= 0 the
existence of a predecessor m − 1 in case m ̸= n, n + 1 (see also case S2’ in
the definition of the Skolem function h above); hence for values for x and y
which are restricted by the premises of S2’ β can be encoded by β(z, x, y).
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To this we have to add an encoding of β for the special cases m = n and
m + 1 = n by β(x, y, x) and β(x, y, y). This explains the definition of φ as
a formula with prefix ∀x∀y∃z whose quantifier-free part is the conjunction
of the quantifier-free part of NUM’ and of the following two instantiations
β1, β2 of β:

β1 := ¬Zx ∧ x ̸= y ∧ Ix ∧ Iy ∧ ¬Sxy → β(z, x, y)

β2 := Syx→ β(x, y, y) ∧ β(x, y, x).

Claim. φ is satisfiable if and only if ψ is satisfiable.

If ψ is satisfiable, then, by Skolem’s Theorem, its Skolem normal form
∀x∀yβ(x, x+1, y) is satisfiable over the domain of natural numbers and there-
fore over the domain of natural numbers generated by a model of NUM’. Since
by the Number Representation Lemma Sab becomes true in such a model A
if and only if a and b are numbers satisfying a = b+1, ∀x∀yβ2 is true in A. If
the antecedent of β1 is true for a given pair (a, b) of values for x and y, then
the antecedent of axiom S2’ is satisfied and the conclusion of S2’ establishes
that z is interpreted by the well defined predecessor a − 1 of a. Hence the
consequent of β1 is true in A. Thus φ is satisfied by A.

Assume A |= φ and let A′ be the restriction of A to the domain of numbers
m generated by NUM’ in A. We show that A′ |= β[m,m+ 1,n] for all
numbers m,n ∈ N (so that A′ |= ∀x∃u∀yβ). Note that by axiom Z2’ all
numbers generated by NUM’ satisfy the predicate I. Let m,n be arbitrary
natural numbers. Consider β1 and let n ̸∈ {m,m + 1}. Then A satisfies the
antecedent ¬Zx∧x ̸= y∧ Ix∧ Iy∧¬Sxy of S2’ and β1 for x = m+ 1, y = n
and therefore also the conclusion of both β(z, x, y) and S2’. The latter means
by the injectivity of S that z gets value m so that A′ |= β[m,m+ 1,n].

Now consider β2 and let n = m + 1. Then for x = m and y = m+ 1 A
satisfies the antecedent Syx of β2 so that its conclusion β(x, y, y)∧ β(x, y, x)
is true in A. Therefore A′ |= β[m,m+ 1,n] for n ∈ {m,m+ 1}. ⊓⊔

4.3.3 Encoding the Non-Auxiliary Binary Predicates.

In this section we modify the preceding reduction by encoding the binary
predicates over N which occur in the given Kahr-Moore-Wang formula into
monadic ones; we exploit the fact that the intended model for NUM’ has
the subdomain N × N and thereby allows us to use pairing of numbers. We
incorporate into this refinement also what is needed to make the reduction
conservative and prepare the encoding of the auxiliary binary predicates oc-
curring in NUM’ into one binary predicate which will be carried out in the
next section.

More precisely we encode in this section the non-auxiliary binary predicate
symbols Q occuring in the given formula ψ by monadic predicates defined
on pairs of numbers, namely Qmn will be encoded into Q(m,n) where for
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convenience we use the same letter Q to denote the encoded binary and
the encoding monadic predicate. There are two problems related to the use
of such an encoding by pairing. If we want to encode, for arbitrary m,n, a
formula β[m,n] in which m+1 also occurs, we have to find a way to represent
m + 1 by a related pair; the N -successor relation formalized in NUM’ does
this job providing the N -successor (m+ 1, n) of (m,n). The second problem
stems from the fact that we will have to encode atomic formulae of both
forms Qst and Qts; this can easily be solved by introducing for each Q also
an auxiliary monadic predicate symbol Q̆ to encode the converse relation of
Q, i.e. with the following intended interpretation:

Qmn iff Q(m,n) Qnm iff Q̆(m,n).

For the formalization of the relation between Q and Q̆ we use an auxiliary
binary predicate Link expressing that two pairs are linked by a common first
and second component respectively, i.e. with the intended interpretation

Link = {((m,n), (r,m)) : m,n, r ∈ N}.

This will allow us to formalize the relation between a pair x = (m,n) and its
converse y = (n,m) by Link xy∧Link yx and therefore the relation between
the encoding of a relation and the encoding of its converse by

Link xy ∧ Link yx→ (Qx↔ Q̆y).

We prepare also the encoding of the auxiliary binary predicates S, Pi, Pi,+,
S0 and S1, S2, N, Link occurring in NUM∗ which will be carried out in the
next section. The predicates of the first group can be easily encoded into
distinct parts of one relation R because S involves only numbers whereas the
other predicates describe distinct relations between pairs and their projec-
tions or the successor or predecessor of the latter. In order to keep such an
encoding free from conflicts with the encoding of the relations S1, S2, N, Link
between pairs we will use three copies for each pair (m,n) of the intended
model, denoted by triples (m,n, j) with j = 0, 1, 2. The new component
j = 0, 1, 2 will allow us to formulate distinct conditions serving for the encod-
ing of S1, S2, N, Link in an area of R which differs from the area used for the
encoding of the first group of predicates. We introduce these triples already
here together with two auxiliary predicates for handling them. Pairs (m,n)
are encoded as triples with third component 0, i.e. they are distinguished
among triples by an auxiliary monadic predicate Basic with the following
intended interpretation:

Basic = {(m,n, 0) : m,n ∈ N}.

The intended interpretation of Link is correspondingly modified to Link =
{((m,n, 0)(r,m, 0)) : m,n, r ∈ N}. The intended interpretation of the re-
maining predicates is carried over in a similar way to triples (see the proof
below for the satisfiability of NUM∗).
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In order to obtain the conservativity of the reduction one can use the idea
which has been used already for the proof of Trakhtenbrot’s Theorem, namely
to restrict the successor axiom S1’ of NUM’ (and as a consequence also the
corresponding part of the N -successor axiom N2’) to numbers which are not
the last element of a finite domain, formalized by a new auxiliary monadic
predicate Last whose intended interpretation in {0, 1, . . . , n} is {n}.

Exercise 4.3.18. Show that the reduction of the preceding section can be
made conservative.

Along these lines we will refine NUM’ to a finitely satisfiable formula
NUM∗ which satisfies the following refined version of the Number Represen-
tation Lemma.

Lemma 4.3.19 (Number Representation Lemma for NUM∗). If A |=
NUM∗, then the domain A of A contains a subset 0,1,2, . . . whose elements
satisfy the properties of the Number Representation Lemma for NUM’. Either
this set is infinite and A |= ¬Last n for each n or it is a finite set {0, . . . ,n}
such that A |= ¬Lastm ∧ Last n for each m < n.

NUM∗ allows us to make the reduction of Kahr-Moore-Wang formulae
ψ ∈ [∀∃∀, (0, ω)] to formulae ψ∗ ∈ [∀2∃, (ω, ω), (0)]= semi-conservative (and
thereby conservative by Theorem 2.1.39), i.e. such that the following two
claims hold:

Claim 1. If ψ is finitely satisfiable, then ψ∗ also has a finite model.

Claim 2. If ψ∗ is satisfiable, then ψ also has a model.

Definition of ψ∗. Let ψ := ∀x∃u∀yβ ∈ [∀∃∀, (0, ω)] be an arbitrary for-
mula in which binary predicates Q occur only in atomic formulae of the form
Qxy,Qyx,Quy,Qyu. (From Exercise 3.1.10 we know that the class of such
formulae is a conservative reduction class so that it suffices to consider such
formulae.) As explained above we use the NUM∗-formalization of the suc-
cessor relation N to express β[m,m+ 1, n] in terms of the encoding formula
β∗[(m,n), (m + 1, n)] holding for the corresponding N -successors. This ex-
plains why we define ψ∗ as an appropriate prenex normal form (with prefix
∀x∀y∃z) of the conjunction of NUM∗ and the following formula:

(Nxy → β∗(x, y)) ∧
∧

Q in β

(Link xy ∧ Link yx→ (Qx↔ Q̆y))

where β∗(x, y) is obtained from β by replacing each atomic subformula Qxy
by Qx, Quy by Qy, Qyx by Q̆x and Qyu by Q̆y.

Definition of NUM∗. NUM∗ is obtained from NUM’ by the following
changes. S1’ is replaced by the following formula S1∗. The restriction of
the existence of successors to elements which are not the last one yields
Zx ∧ Iy ∧ ¬Last y → Szy.
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Without loss of generality we assume that the finite models which we
consider in this and the next section have at least two elements. We can
also assume without loss of generality that the finite models which are given
for a closed prenex formula whose prefix is of the form ∀∃∀ has a domain
{0, 1, . . . , n} with successor function i′ = i + 1 for i < n and n′ = 0. The
condition n′ = 0 is reflected in the refinement of S1’ by formulating also the
existence of a basic pair (0, n), i.e. of the triple (0, n, 0) if n is the last element.
Thus S1∗ is defined as the conjunction of the following two formulae:

Zx ∧ Iy ∧ ¬Last y → Szy

Zx ∧ Last y → P1zx ∧ P2zy ∧Basic z.

The first expresses ensures that elements which are not last have a suc-
cessor, the second that last elements n generate a triple (0, n, 0)).

As we did for S1’, we now split also in the N -successor axiomN2’ the
formalization of the existence of a successor component between elements
which are not last and the last element; for the latter, as explained immedi-
ately above, we will use 0 as successor. Thus N2∗ is defined as:

N2∗: Nyx→ P1yz ∧ (¬Last z → P1,+xz) ∧ (Last z → P1,0x).

Axiom P1 expressing that each pair has a first component is changed to
the condition that each pair has an N -successor (whose first component is
then ensured by the new axiom N2∗), i.e. P1 is replaced by the following
axiom P1∗:

P1∗: Zx ∧ ¬Iy → Nyz.

We add the following formalization of the new auxiliary predicates Last,
Basic, and Link:

Last: Last x→ ¬Zx (the last element is different from 0).
Basic: (Nxy → (Basic x ↔ Basic y)) ∧ (S0xy → Basic x) ∧ (Basic x →

¬Ix).
Link: Basic x ∧ Basic y ∧ ¬Nxy ∧ ¬Nyx → P1xz ∧ (P2yz → Link xy)

(basic elements x and y are linked if the first component of x is
also the second component of y; clearly this cannot be required for
triples (m,n, 0), (m+ 1, n, 0)).

This concludes the definition of NUM∗.

Lemma 4.3.20. The above indicated intended interpretation satisfies NUM∗

over the domain N ∪ (N× N× {0, 1, 2}).

Proof. The intended interpretation of the predicates Z, S, Pi, Pi,0, Pi,+, I,D
is independent from the third component and therefore remains as for NUM’,
the intended interpretation of S0am is enriched by the condition that the
third component of a is 0 (in accordance with the axiom for the predicate
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Basic). The intended interpretation of N is enriched by the condition that
the third component of an N -successor equals the third component of its N -
predecessor (as required in the axiom for the predicate Basic); the intended
interpretation of Siab for i = 1, 2 is enriched by the condition that modulo 3
the third component of a is identical to the successor of the third component
of b. (This modification of the interpretations of N,S1, S2 which takes into
account also the third component of triples will allow us in the next section
to encode these predicates into areas of a binary relation which are not in
conflict with the areas where the other relations among triples are encoded.)

Therefore it suffices to refine the binary function h of the preceding sec-
tion which now manipulates triples instead of pairs, i.e. h : N ∪ (N × N ×
{0, 1, 2}))2 → N ∪ (N × N × {0, 1, 2}). We only indicate the changes in the
definition, reflecting the change of axioms in the cases P1, Si.1’, N1’ or
required by the new axiom for the predicate Link.

h(a, b) :=



(b1 + 1, b2, b3) if a = 0 ∧ b = (b1, b2, b3) (case P1∗)
(0, b, 0) if Sab (case S0.1’)
(0, b, π3a+ 1( mod 3)) if

∨
i=1,2 Pi,+ab (cases Si.1’; i = 1, 2)

(π1a+ 1, π2a, π3a) if ¬Da ∧
∨
i=0,1,2 Siab (case N1’)

π1b if Basic a ∧Basic b ∧ ¬Nab∧
∧¬Nba (case Link)

...

Exercise 4.3.21. Check that this modified function h covers the new axioms
in NUM∗ correctly. Check that the Skolem normal form of NUM∗ is satisfied
by the above defined intended interpretation with h as the interpretation of
the Skolem function for the existential variable z of NUM∗ and with Last
interpreted as the empty set.

⊓⊔

Lemma 4.3.22. The above indicated intended interpretation can be modified
so as to satisfy NUM∗ for each n > 0 over the finite domain

{0, 1, . . . , n} ∪ ({0, 1, . . . , n} × {0, 1, . . . , n} × {0, 1, 2}).

Proof. We interpret Last by {n}, restrict the intended interpretation de-
scribed in the preceding lemma to the indicated finite domain and extend
the interpretation of N by the pairs ((n,m, j), (0,m, j)) for 0 ≤ j ≤ 3,m ≤ n
in order to reflect that in this model the successor of n is 0, i.e. n + 1 = 0.
Correspondingly we modify the function h by setting h(0, n) = (0, n, 0) and
h(0, (n,m, j)) = (0,m, j).

Exercise 4.3.23. Check that this modified intended interpretation yields
finite models for NUM∗.

⊓⊔
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Proof. (Claim 1.) Assume A |= ∀x∀yβ(x, x′, y) for ψ := ∀x∃u∀yβ and that
the domain A of A is finite. Without loss of generality we can assume A =
{0, 1, . . . n} for some n > 0 and that the successor function satisfies i′ = i+1
for i < n and n′ = 0. From the preceding lemma we know that NUM∗ is
satisfiable over A by the intended model. We now extend this model to a
model B which also satisfies ψ∗. Define the interpretation of the monadic
predicates Q, Q̆ in A’ as explained above:

B |= Q(m, r, j) iff A |= Qmr,

B |= Q̆(m, r, j) iff A |= Qrm.

This definition clearly satisfies ∀x∀y(Link xy ∧ Link yx→ (Qx↔ Q̆y)).
It remains therefore to show that it satisfies ∀x∀y(Nxy → β∗(x, y)). Suppose
B |= Nab for arbitrary a = (m, r, j), b = (m + 1, r, j). The definition of
Q and Q̆ implies that B |= Q(m, r, j) iff A |= Qmr, B |= Q(m + 1, r, j)
iff A |= Qm + 1r, B |= Q̆(m, r, j) iff A |= Qrm, B |= Q̆(m + 1, r, j) iff
A |= Qrm + 1. Thus from A |= β[m,m + 1, r] and the definition of β∗ we
obtain that B |= β∗[a, b]. ⊓⊔

Proof. (Claim 2.) Assume B |= ψ∗. By the Number Representation Lemma
for NUM∗ the domain B of B contains a set of numbers Num = {0, 1, . . .}
of cardinality n0 ≤ ω. We define a model A for ψ over Num by interpreting
the predicates Q which occur in ψ as follows: A |= Qmn if and only if there
exists a a ∈ B such that

B |= P1am ∧ P2an ∧Basic a ∧Qa.

We have to show that this interpretation is well-defined, namely that

ε(m,n) = {a ∈ B : B |= Basic a ∧ P1am ∧ P2an} ̸= ∅

for each m,n ∈ Num and that the definition of the interpretation of Q in A
is independent of the representatives in ε(m,n).

Lemma 4.3.24 (Well-Definedness of Q). For each m,n ∈ Num, each
a, b ∈ B and each predicate Q in ψ holds:

(i) (Closure Property)

a ∈ ε(m,n) ∧B |= Nab =⇒ b ∈ ε(m+ 1, n),

(ii) ε(m,n) ̸= ∅,
(iii) Let a ∈ ε(m,n). Then

(A |= Qmn iff B |= Qa) and (A |= Qnm iff B |= Q̆a).



184 4. Undecidable Standard Classes with Functions or Equality

Assuming the Well-Definedness Lemma we can show as follows that
A |= β[m,m + 1, n] for all m,n ∈ Num (and therefore A |= ψ). Choose
any representative a ∈ ε(m,n). As a basic element, a is not a number (by the
axiom Basic), i.e. B |= ¬Ia so that by axiom P1∗ there exists an N -successor
b ∈ B of a, i.e. satisfying B |= Nab. Thus B |= β∗[a, b]. This implies that
A |= β[m,m + 1, n] because by the Well-Definedness Lemma the truth in A
of atomic formulae Qmn,Qnm in β is equivalent to the truth in B of the
corresponding subformulae Qa, Q̆a in β∗ and similarly for Qm+1n,Qnm+1
in β and Qb, Q̆b in β∗ (note that b ∈ ε(m+ 1, n) by the closure property).

It remains to prove the Well-Definedness Lemma.
(i): Closure Property. Assume that a ∈ ε(m,n) and B |= Nab. a) Since by
the axiom Basic an element is basic if and only if its N -successor is basic,
a ∈ ε(m,n) and B |= Nab imply that B |= Basic b. b) From B |= Nab and
axiom N3’ we know that a and b have a common second component c, i.e.
there is a c ∈ B satisfying B |= P2ac∧P2bc. Since B |= P2an, the uniqueness
of numbers as components implies c = n, hence B |= P2bn. c) To show that
B |= P1bm+1 we have to distinguish between two cases, namely whether or
not B |= ¬Last m. In the first case the N -Chain Lemma can be applied to
infer that B |= P1bm + 1 from B |= P1am. In the second case axiom P1∗

provides the existence of a first component d ∈ B of a satisfying

(¬Last d→ P1,+bd) ∧ (Last d→ P1,0b).

The uniqueness of numbers as components yields B |= d = m; hence
B |= P1,0b. By axiom P1.0, B |= P1b0 which was to be proved since in this
case (without loss of generality) m+ 1 = 0.

(ii): We proceed by induction on m.
Base m = 0. There are two subcases to consider depending on whether

or not B |= ¬Last n. In the first case we know that n has a successor n+ 1
which by axiom S0.1’ has an S0-predecessor a ∈ B with second component
n and satisfying P1,0a, i.e. such that B |= S0an+1∧P1,0a∧P2an. By axiom
P1.0 B |= P1a0 and as S0-predecessor a is a basic element (by axiom Basic),
i.e. B |= Basic a; hence a ∈ ε(0, n). In the second case we have B |= Last n.
As last element n generates by axiom S1∗ a basic triple a ∈ B with first
component 0 and second component n, i.e. satisfying B |= P1a0 ∧ P2an ∧
Basic a; hence a ∈ ε(0, n).

For the inductive step let a ∈ ε(m,n) ̸= ∅ and assume B |= ¬Last m.
(Note that for m = 0 the latter is guaranteed by the axiom Last.) As a basic
element, a is not a number (by axiom Basic) and therefore by axiom P1∗

has an N -successor b ∈ B. The closure property implies that b ∈ ε(m+ 1, n)
which is therefore not empty.

(iii): We first show the following Auxiliary Claim:

a ∈ ε(m,n) ∧ b ∈ ε(n,m) =⇒ B |= Link ab ∧ Link ba.
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To prove this claim we want to use the Link axiom and therefore have
to ensure that B |= ¬Nab ∧ ¬Nba. We prove this indirectly. Assume that
B |= Nab. The closure property implies that b ∈ ε(m+ 1, n). From this and
b ∈ ε(n,m) we obtain by the uniqueness of numbers as components that
m = n and (depending on whether B |= ¬Last m or not) either m+ 1 = n,
or else n = 0. The case m = n = m + 1 is clearly impossible, but also the
case m = n = 0 is impossible because (by axiom Last) 0 is not the last
element. Similarly one refutes that B |= Nba. Therefore the premises of the
Link-axiom are satisfied in B and we can conclude that B |= P1ac∧(P2bc→
Link ab) for some c ∈ B. Since B |= P1am, by the uniqueness of numbers as
components we conclude c = m; hence B |= P2bm implies that B |= Link ab.
By symmetry we obtain also that B |= Link ba. This proves the claim.

Using the claim it is easy to prove the independence properties (iii). Let
a ∈ ε(m,n). By definition of A, Qnm holds in A if and only if there is some
b ∈ ε(n,m) such that B |= Qb. By the auxiliary claim we know that a and
b are linked, i.e. B |= Link ab ∧ Link ba so that the Link-conjunct of ψ∗

implies that B |= Qb ↔ Q̆a. Therefore A |= Qnm if and only if B |= Q̆a.
This proves the second part of (iii).

The first independence property of (iii) follows easily: If B |= Qa, then by
definition A |= Qmn. For the converse suppose that A |= Qmn and choose an
arbitrary b ∈ ε(n,m). The second independence property proved immediately
above implies that B |= Q̆b. Since, by the auxiliary claim, a and b are linked,
the Link-conjunct of ψ∗ implies that B |= Qa↔ Q̆b. Hence B |= Qa as was
to be shown. ⊓⊔

Proof. (Number Representation Lemma for NUM∗.) As for NUM and NUM’
the construction is by induction on n. The induction base n = 0 is proved in
the same way as for NUM’. In addition the axiom Last guarantees that 0 is
not the last element.

For the induction step it suffices to show that if n is not the last element
(i.e. A |= ¬Last n), then it has an S-successor n + 1 ̸∈ {0, . . . , n} which
satisfies the conditions of the lemma.

The N -Chain Lemma and the Injectivity Lemma for S are proved as for
NUM’ because by assumption A |= ¬Last i for each i ≤ n and therefore the
invocations of N2∗ are equivalent to those of N2’.

The assumption that n is not the last element guarantees also that the
modified axiom S1∗ can be applied and provides a successor n+1 the unique-
ness of which can again be shown in the same way as with NUM’ (Function-
ality Lemma for S). Also the uniqueness of numbers as components with
respect to Pi, Pi,+ and the correctness property of P1,+ can be proved in
the same way as for NUM’ with one modification due to the invocation of
P1∗ instead of P1. One has to show that pairs – i.e. elements a satisfying
A |= ¬Ia – have a first component: axiom P1∗ guarantees the existence of an
N -successor b ∈ A of a so that axiom N2∗ provides a first component c ∈ A
for the N -predecessor a, i.e. satisfying A |= P1ac. ⊓⊔
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4.3.4 Encoding the Auxiliary Binary Predicates of NUM∗.

In this section we refine the previous reduction by encoding the auxiliary
binary predicates occurring in NUM∗ into one binary predicate R. What we
have to do is to map S, Pi, Pi,+, S0 and S1, S2, N, Link into non-conflicting
subrelations of a single relation R. On the basis of the refined interpretations
which have been provided in the preceding section these predicates can easily
be separated as follows: S holds only among numbers (i.e. S ⊆ N × N),
Pi, Pi,+, S0 hold among pairs and numbers (i.e. are subsets of (N × N) × N)
and S1, S2, N, Link hold only among pairs. The embeddings of the predicates
of the groups P1, P2 and P1,+, P2,+ and S0 into the single R are kept non-
conflicting by their defining condition which is in terms of pairs and their
projections or successors or predecessors of the latter; the embeddings of P1

and P2 can be kept separate from each other by encoding P1ab into Rab and
P2ab by Rba; similarly for P1,+ and P2,+. Conflicts for the embeddings of
S1, S2 and N and Link into R are avoided by choosing for them different
copies of the (triples which represent the) involved pairs, i.e. by using the
distinguished conditions on the third component of the triples which have
been introduced through the refined intended interpretation in the preceding
section. The embeddings of S1 and S2 can be kept separate from each other
by encoding S1ab into Rab and S2ab into Rba.

Formally we express the separating conditions in terms of monadic pred-
icates Ci, C

j
i for i ∈ {0, 1, 2}, j ∈ {1, 2, 3} with the following intended inter-

pretation:

Cim iff m ≡ i (mod 3), Cji (m1,m2,m3) iff mj ≡ i (mod 3).

These predicates allow us to express that v and w have the same remain-
der when divided by 3 – abbreviated rem(v) = rem(w) – by the formula∧
i<3(Civ ↔ Ciw); similarly rem(πj(v)) = rem(w) + 1 can be formalized by∧
i<3(C

j
i+1v ↔ Ciw) where +1 is to be interpreted modulo 3, etc.

The encoding scheme explained above is formalized by the following def-
inition.
Definition of ψ′. Let ψ∗ be an arbitrary reduction formula as constructed
in the preceding section. Define ψ′ as resulting from ψ∗ by replacing each
atomic subformula Qvw by Q′vw where the latter is defined as follows:

S′vw := Rvw ∧ Iv ∧ Iw
P ′
1vw := Rvw ∧ rem(w) = rem(π1(v))

P ′
2vw := Rwv ∧ rem(w) = rem(π2(v))

P ′
1,+vw := Rvw ∧ rem(w) + 1 = rem(π1(v))

P ′
2,+vw := Rwv ∧ rem(w) + 1 = rem(π2(v))

S′
0vw := Rvw ∧ rem(w) = rem(π2(v)) + 1

S′
1vw := Rvw ∧ rem(π3(v)) = rem(π3(w)) + 1
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S′
2vw := Rwv ∧ rem(π3(v)) = rem(π3(w)) + 1

N ′vw := Rvw ∧Rwv ∧ rem(π1(v)) + 1 = rem(π1(w) ∧
∧
∧

i=2,3
rem(πi(v)) = rem(πi(w))

Link′vw := Rvw ∧ rem(π3(v)) = rem(π3(w)) = 0 ∧ ¬N ′vw ∧ ¬N ′wv.

Clearly ψ′ ∈[∀2∃, (ω, 1), (0)]= so that it suffices to prove the following
claims.

Claim 1. If ψ is finitely satisfiable, then also ψ′ has a finite model.

Claim 2. If ψ′ is satisfiable, then also ψ has a model.

Proof. Assume that A |= ∀x∀yβ(x, x′, y) for ψ := ∀x∃u∀yβ with finite do-
main A of A. Without loss of generality we can assume that n+1 := 0 (mod
3). Therefore we can assume without loss of generality that A = {0, 1, . . . n}
for some n > 0 and that the successor function satisfies i′ = i + 1 for i < n
and n′ = 0. Let Q denote the intended interpretation of Q as defined in the
previous section where it has been proved that this interpretation satisfies
NUM∗ over A ∪ (A×A× {0, 1, 2}). We now slightly modify and extend this
interpretation to a model A′ (over the same domain) which satisfies ψ′.

The monadic predicates Ci, C
j
i are interpreted as indicated above. The

interpretation of R in A′ is defined as follows:

R′ab := Sab ∨ P1ab ∨ P2ba ∨ P1,+ab ∨ P2,+ba ∨ S0ba

∨Nab ∨Nba ∨ S1ab ∨ S2ba ∨ Link ab.

Exercise 4.3.25. Show that for each binary predicate Q occuring in NUM∗

except Link and for all a, b ∈ A′ holds: A′ |= Q′ab if and only if Qab holds.
Hint: Distinguish the cases a, b ∈ A; a ̸∈ A, b ∈ A; a, b ̸∈ A.

Exercise 4.3.26. Show that for all a, b ∈ A′ holds: A′ |= Link′ab if and only
if Link ab ∧ ¬Nab ∧ ¬Nba is true.

Exercise 4.3.27. Show that the intended interpretation still satisfies NUM∗

if the interpretation of Link ab is changed to Link ab∧¬Nab∧¬Nba. Hint:
Observe that the axiom Link contains ¬Nxy ∧ ¬Nyx in the antecedent.

It follows from these exercises and the definition of ψ′ that modifying the
interpretation of Link ab to Link ab∧¬Nab∧¬Nba yields a finite model for
ψ′.

Claim 2 is obvious, taking the above replacement scheme as the definition
of the auxiliary relations to satisfy ψ∗ and therefore ψ. ⊓⊔
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4.4 Historical Remarks

The decision problem problem for classes [Π, p, f ] with predicates and func-
tions but without equality has been investigated by Gurevich [223]. Our
proofs in Sect 4.2 for the two minimal conservative classes [∀2, (0, 1), (1)] and
[∀2, (1), (0, 1)] are taken from there. Gurevich has also studied the decision
problem for classes [Π, p, f ]= in [227] where the conservative reduction class
[∀, (0), (ω)]= is established and then reduced to [∀, 0, (2)]= and [∀, (0), (0, 1)]=
by an appropriate encoding of finitely many unary functions by two unary
or one binary function. Gurevich’s proof for the class [∀, (0), (ω)] uses an en-
coding of domino problems based on [237]. His reduction formulae are not
Horn and contain disjunctions whose length equal the number of colours in
the given domino problem. Börger [49] obtains a reduction to Horn formulae
with ternary disjunctions. The improvement of this reduction to Krom and
Horn formulae which appears in our proof for Theorem 4.1.1 is due to Löwen;
the strengthening to Herbrand formulae is due to Wirsing [536]. His proof is
adapted to register machines for our proof of Corollary 4.1.3.

The story of the ∀2∃∗ classes is somewhat unusual. In [187], Gödel proves
that the class [∃∗∀2∃∗, all] has the finite model property (see Sect. 6.2.3 for a
proof of this result and Sect. 6.6 for the history of the class [∃∗∀2∃∗, all].) In
the last sentence of that paper, Gödel wrote that the same method suffices
to establish the finite model property for [∃∗∀2∃∗, all]=. For a long while,
nobody doubted this claim. Moreover, it was even used. For example, Scott
used the claim to establish the decidability of Sat(L2); see the historical
remarks to Chapter 8. In the mid-1960s, St̊al Aanderaa demonstrated that
Gödel’s criterion for the satisfiability of ∀2∃∗ formulae without equality is
not sufficient for the satisfiability of ∀2∃∗ formulae with equality. There were
several attempts to query Gödel himself on the subject (see [188, pp. 229–
230]) but they did not clarify the matter. Eventually it became clear that the
status of [∃∗∀2∃∗, all]= is open. Finally, in [192], Goldfarb has proved that
[∀2∃∗, (0, 1)]= is a reduction class.

Two universal quantifiers correspond to quantification over ordered pairs
of elements. What happens if this quantification is replaced by quantifica-
tion over unordered pairs of elements? According to [194], the appropriate
restriction of [∀2∃∗, (0, 1)]= has the finite model property.
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This chapter deals with the Entscheidungsproblem for classes of predicate
logic formulae which are characterized not only by the vocabulary or prefix
structure but also by the fine structure of the quantifier-free part of their
formulae. As pointed out already occasionally in the preceding chapters, the
reductions there indeed use only very special formulae to establish the conser-
vative reduction class property for prefix-vocabulary classes; in this chapter
we make some natural candidates of such refinements explicit and study their
effect upon the Entscheidungsproblem.

Natural candidates for such further classification come from considering
the propositional structure, in particular related to conjunctive and disjunc-
tive normal form. Two outstanding examples, which originated from consid-
erations outside reduction theory, are Horn and Krom structure. Another
example comes from counting the number of conjuncts or disjuncts (for for-
mulae in conjunctive or disjunctive normal form) or the number of atomic
formulae; to find reduction classes formulated in such terms is related to
finding and formalizing appropriate small universal machines. Another self-
suggesting criterion for “small” reduction formulae is to look for conjunctions
of “simple” subformulae which belong to decidable classes, for example to
decidable prefix classes. (It is interesting to figure out in which sense every
statement, of whatever complexity, can be broken into an equivalent conjunc-
tion of simple short statements.) A different syntactical classification concerns
various combinations of occurrences of variables in the atomic formulae.

Gurevich’s Classifiability Theorem tells us that by refining the prefix-
vocabulary classification with natural additional restrictions like Krom or
Horn, we can still count upon the existence of a finite number of minimal
undecidable and maybe a finite number of maximal decidable classes. Nev-
ertheless for most of the additional classification criteria which have been
considered in the literature we are far from knowing what these minimal
undecidable cases and their maximal decidable counterparts are.

We therefore choose for this chapter some characteristic examples which
are particularly interesting from the point of view of the proof method; we
abstain from an attempt to cover the subject in an exhaustive way. We will
deal with additional results in numerous exercises and mention others in the
references so that the reader will get a fuller picture of the state of the art.
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5.1 Krom and Horn Formulae

In this section we study the Entscheidungsproblem for classes of Krom and
Horn formulae. The notion of a Horn formulae originated from particular
model theoretic properties of such formulae which have been studied ex-
tensively in the literature, starting with [272]; the particular computational
properties of (a subclass of) Horn formulae have been recognized through
the definition of Prolog (see e.g. [87]) and have led to numerous investiga-
tions of their proof theory. The notion of Krom formula sprang out of the
Chang-Keisler normal form for predicate logic which restricts the length of
disjunctions in prenex conjunctive normal forms to two or three, depending
on whether the equality is present (see [75]). Herbrand [253] showed that
the class HERBRAND of formulae in prenex conjunctive normal form whose
conjuncts are atomic or negated atomic formulae is decidable if restricted to
formulae without functions or equality; Gladstone [182] sharpened this result
by showing that this class has the finite model property. (Remember that by
Corollary 4.1.3 the class of Herbrand formulae with functions and equality
constitutes a conservative reduction class.) Thus it was natural to start the
investigation of the consequences of restricting the length of alternations, for
formulae without equality, to two (see [91, 329, 331, 332, 334, 409, 437]). It
turned out that both notions, of Krom and of Horn formula, have an effect
upon the Entscheidungsproblem. We will see in this section that both the pre-
fix and the prefix-vocabulary classification are different from the one without
the restriction to Krom or Horn formulae.

We study here some representative prefix classes of Krom formulae which
are known to be undecidable (and turned out to remain so even when re-
stricted to Horn formulae). We first consider Krom formulae without equality
or functions and then Krom formulae with functions or equality. On our way
we deal also with the vocabulary and with the prefix-vocabulary problem for
Krom classes.

5.1.1 Krom Prefix Classes Without Functions or Equality.

We concentrate our attention in this subsection on undecidable Krom pre-
fix classes without functions or equality; along the way we collect also the
information on the used vocabulary.

Remark. The vocabulary problem for Krom classes is solved by Lewis’ result
[348] that relational Krom sentences with a single binary predicate form a re-
duction class. The proof proceeds in three steps: a) the Post correspondence
problem is reduced to Krom (and Horn) formulae with arbitrary nestings
of function symbols (see the following exercise), b) the nestings of function
symbols are eliminated, c) it is shown that the construction can be done with
only one binary predicate and without function symbols. We refer the reader
to the original paper for the proof of b) and c) which adapts the encoding
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idea from Shannon’s construction of a universal Turing machine with only
two internal states [465]. See also the Theorem of Lewis and Goldfarb (The-
orem 5.2.2) which contains as a by-product that the class of function and
quantifier free formulae in ∀∃∀∗ ∩ KROM with only one predicate (whose
arity is of the order of magnitude of the size of a universal 2-register machine
program) is a reduction class.

Exercise 5.1.1. [348] Let C = (vi, wi)1≤i≤n be a Post correspondence sys-
tem. View words w over the alphabet of C as logical terms w(c) where each
letter of the given alphabet is represented by a monadic function symbol and
c is a term, in this case an individual constant or a variable. Using this encod-
ing formalize a binary predicate P with the following intended interpretation:
Pv(c)w(c) is true if and only if for some C-computation (vi1 . . . vis , wi1 . . . wis)
(i.e. a sequence with 1 ≤ i1, . . . , is ≤ n) holds vi1 . . . visv = wi1 . . . wisw.
Define C := ∀x∀y(START ∧ STEP ∧ NONSTOP) where START := Pxx,
STEP :=

∧
i Pvi(x)wi(y) → Pxy, NONSTOP :=

∧
i ¬Pvi(x)wi(x). Show

that C has no solution if and only if C is satisfiable.

Theorem 5.1.2. (Undecidable Krom Prefix Classes without Func-
tions or Equality). The following prefix classes of Krom formulae without
functions or equality are undecidable and indeed are reduction classes even
when restricted to Horn formulae:

– [∀∃∗∀] (Krom 1970)
– [∃∀∃∀], [∀∃2∀] (Aanderaa and Börger 1971, Orevkov 1973)
– [∀2∃∀], [∀∃∀2] (Lewis 1972)

Proof. We begin with the proof for the Lewis class [∀2∃∀, (0, 0, ω)]∩KROM∩
HORN by reducing to it the halting problem of arbitrary 2-register machine
programs M = (Ii)0≤i≤r. Without loss of generality we assume that M is
started in the initial configuration C0 = (0, 0, 0) and has the only halting
state 1.

We represent numbers n by special Fitch words wn where the arbitrary
Fitch word w (term built up from an individual constant using only the binary
Skolem function ()) is used as relative zero. wn is defined by w0 = w and
wn+1 = (wnw). One can then encode eachM -configuration C = (i, p, q) with
state i and register contents (p, q) by atomic formulae C = Kiw

pwqw where
the Fitch word w which serves as relative zero appears as third argument. The
ternary relation symbols Ki thus have the following intended interpretation
with respect to a given M -computation:

Kiuvw is true iff there exist p, q such that u = wp, v = wq, C0 ⇒M (i, p, q).

Based upon this encoding we will construct a formula

ψM ∈ [∀2∃∀, (0, 0, ω)] ∩KROM ∩HORN

with Skolem normal form ∀x∀y∀zφM so that the following holds:
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Reduction Property: M , started in C0 = (0, 0, 0), will not halt in state 1 if
and only if the formula ∀x∀y∀zφM is satisfiable.

This will establish the claim for the first Lewis class.

As usual φM is defined as conjunction of formulae START := K0xxx,
NONSTOP := ¬K1xyz and STEPM :=

∧
Ii∈M εi with the following formulae

εi for each instruction Ii of M :

εi := Kixzy → Kj(xy)zy for addition instructions Ii = (i, a1, j) ∈M

εi := Kizxy → Kjz(xy)y for addition instructions Ii = (i, a2, j) ∈M

For subtraction instructions Ii = (i, s1, j, k) or Ii = (i, s2, j, k) we set
respectively:

εi := (Kixyx→ Kjxyx) ∧ (Ki(xy)zy → Kkxzy)

εi := (Kiyxx→ Kjyxx) ∧ (Kiz(xy)y → Kkzxy)

Exercise 5.1.3. Prove the reduction property. For the only-if direction use
the above intended interpretation as model for ψM . For the if-direction
use the following simulation property for each canonical model A satisfy-
ing ∀x∀y∀zφM : for each t and each M -configuration C which is reached by
M in t steps starting from C0, we have that A |= C for each Fitch word w.

For the Lewis class [∀∃∀2, (0, 0, ω)] ∩ KROM ∩ HORN we give a similar
reduction, changing the encoding of M -configurations C = (i, p, q) to C =
Ki(w,w + 2p3q, w). The idea is to use the first argument w as relative zero
with respect to which we describe the effect of the givenM -instructions Ii on
the prime encoding w+2p3q of the register contents. The third component is
used for temporary storage which allows us to give this description using only
the monadic Skolem function ′. This is nothing more than to formalize the
construction given by Minsky, Shepherdson and Sturgis to simulate arbitrary
register machines by 2-register machines (see [393, 469]).

An instruction Ii = (i, oi, j) ∈ M with an operation oi of adding 1 in
register l is simulated by a multiplication with the prime number pl (p1 =
2, p2 = 3); i.e. one copies the double or triple of (the content of the second
register encoded in) the second argument into the third one and at the end –
i.e. when the second argument has become equal to the first one playing the
role of the relative zero – one copies the result back into the second argument.
This is formalized by the following multiplication formulae εi:

(Kiyx
′z → Kiyxz

′′) ∧ (Kiyyz → Kjyzy) for oi = a1,

(Kiyx
′z → Kiyxz

′′′) ∧ (Kiyyz → Kjyzy) for oi = a2.

Remember that the use of the Skolem function ′ on z can be avoided using
auxiliary predicates K ′

i satisfying K
′
iyzx↔ Kiyzx

′.
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For simplicity of exposition we assume without loss of generality that M
executes subtraction operations only on registers not containing 0 and that
the zero test is done by special operations oi ∈ {test1, test2}. This allows
us to have symmetric division formulae εi for instructions Ii = (i, oi, j) ∈M
with an operation oi of subtracting 1 in register l where instead of multiplying
we divide by two (for l = 1) or three (for l = 2):

(Kiyx
′′z → Kiyxz

′) ∧ (Kiyyz → Kjyzy) for oi = s1,

(Kiyx
′′′z → Kiyxz

′) ∧ (Kiyyz → Kjyzy) for oi = s2.

Instructions Ii = (i, testl, j, k) ∈M to test whether the content of register
l is zero are simulated by divisibility tests; keep copying the second into the
third register by blocks of pl units and at the end, before copying the result
back into the second register, check whether a remainder (of 1 for oi = s1
and of 1 or 2 for oi = s2) is left (with respect to the relative zero in the first
register). This is formalized by the following divisibility test formulae εi:

(Kiyx
′′z → Kiyxz

′′)∧(Kixx
′z → Kjxz

′x)∧(Kiyyz → Kkyzy) for oi = test1.

For oi = test2 we have in addition to the following copying and ̸= 0-
conjuncts

(Kiyx
′′′z → Kiyxz

′′′) ∧ (Kiyyz → Kkyzy)

also the following two conjuncts for the = 0-case (non divisibility):

(Kixx
′z → Kjxz

′x) ∧ (Kixx
′′z → Kjxz

′′x).

This completes the definition of the conjunction STEPM of all the εi for
Ii ∈M . Obviously we set START := Kxx′x and NONSTOP := ¬K1xyz.

It remains to show the reduction property. Assume that M , started in
C0 = (0, 0, 0), does not halt in state 1. Then it is easy to check that the
following interpretation of the ternary relation symbols Ki with respect to
the given M -computation (Ct)t<∞ yields a canonical model for ∀x∀y∀zφM :
Ki(a, b, c) is true if and only if in the given computation M reaches a config-
uration Ct = (i, p, q) such that for some number d one of the following cases
holds:

oi = a1 b = a+ 2p3q − d c = a+ 2d d ≤ a+ 2p3q

or oi = a2 . . . c = a+ 3d . . .
or oi = s1 b = a+ 2p3q − 2d c = a+ d 2d ≤ a+ 2p3q

or oi = test1 . . . c = a+ 2d . . .
or oi = s2 b = a+ 2p3q − 3d c = a+ d 3d ≤ a+ 2p3q

or oi = test2 . . . c = a+ 3d . . .

Exercise 5.1.4. Show the if-direction using the following simulation prop-
erty for each canonical model A satisfying ∀x∀y∀zφM : for all t, each M -
configuration C = (i, p, q) which is reached by M in t steps starting from C0

and each number w, we have that A |= Ki(w,w + 2p3q, w).
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In Chap. 2 the Aanderaa-Börger classes [∃∀∃∀, (ω, k)] ∩KROM ∩HORN
and [∀∃∃∀, (ω, k)] ∩ KROM ∩ HORN have been shown to be conservative
reduction classes for some natural number k of the size of a universal 2-
register machine, see Corollary 2.1.16 and the Exercises 2.1.17 and 2.1.37.

For Krom’s class the claim follows from the stronger result proved in the
next theorem below. ⊓⊔

Exercise 5.1.5. [40] Refine the construction in the preceding proof by show-
ing that ∀2∃∀ ∩KROM ∩ HORN is a conservative reduction class. Hint (see
Section 2.1.2 on Trakhtenbrot’s Theorem): Use the axiomatization indicated
below of a <-relation K, relativized to register contents. K has the following
intended interpretation over {0, . . . , l} with respect to a givenM -computation
halting in state 2, where l is greater than every register content occuring in
this computation: Kuvw is true if and only if for some natural numbers p, q
holds u ≡ w+p (mod l+1), v ≡ w+q (mod l+1), p < q ≤ l where l is greater
than every register content occuring in the given halting M -computation.

¬Kxxy∧(Kzxy → Kz(xy)y)∧
∧
i

(Kixzy → Kx(xy)y)∧(Kizxy → Kx(xy)y).

Similarly the interpretation of Ki over {0, . . . , l} is refined to: Kiuvw is
true iff there exist p, q such that u ≡ w + p (mod l + 1), v = w + q (mod
l + 1), C0 ⇒M (i, p, q).

The interpretation of the binary function ( ) is refined by setting (vw) ≡
v + 1 (mod l + 1) if w ̸≡ v + 1 (mod l + 1) and otherwise (vw) ≡ v (mod
l + 1).

Remark. In [7] it is shown that also ∀∃∀2∩KROM is a conservative reduction
class.

Exercise 5.1.6. [40] Refine the above construction by showing that for some
k – of the size of a universal 2-register machine – the class [∀2∃∀, (0, ω, k)] ∩
KROM∩HORN is a conservative reduction class. Hint: Formalize an arbitrary
initial register content (n, 0) by the conjunction of formulae P0xx, Pjxy →
Pj+1(xy)y for 0 ≤ j < n and Pnxy → K0xyy. Pj are binary relations which
have the following intended interpretation with respect to anM -computation
eventually halting in state 2: Pjvw is true if and only if v ≡ w+ j (mod l+1)
where l is greater than every register content occuring in the given halting
M -computation.

Exercise 5.1.7. Refine the above construction by showing that for some k
– of the size of a universal 2-register machine – the class [∀∃∀2, (0, ω, k)] ∩
KROM ∩ HORN is a reduction class. For the conservativity of this class see
the construction in [7].

Remark. The use of ternary relations in the reduction class ∀∃∀2∩KROM is
unavoidable because the class [∀∃∀∗, (ω, ω)] ∩KROM is decidable (see [41]).
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It is not known whether the number of ternary relations in [∀∃∀2, (0, ω, k)]∩
KROM or [∀2∃∀, (0, ω, k)] ∩ KROM can be reduced to small numbers (in
particular to k = 1) and whether the binary relations can be replaced there
by monadic predicates.

Exercise 5.1.8. [42] Prove that [∃∗∀∃∀, (0, 0, 1)]∩KROM∩HORN is a con-
servative reduction class. (This improves Orevkov’s reduction class

[∃∗∀∃∀, (0, 0, 0, 0, 0, 2, 4, 0, 1)] ∩KROM

in [409].) Hint: Rephrase the proof of Theorem 2.1.15 of Aanderaa and Börger.

Remark. For Krom formulae the prefix classes ∀∃∀ and ∃∗∀∗∃∗ are decidable
(see Chap. 8.3). It is known that also for Horn formulae the class ∀∃∀ is
decidable [190].

Exercise 5.1.9. Show that the undecidable Krom classes of Theorem 5.1.2
and the decidable Krom classes mentioned in the preceding remark constitute
minimal undecidable and maximal decidable Krom prefix classes respectively
and solve the prefix problem for Krom classes without equality or functions
except for the classes ∀∃∀∃k with k > 0 and ∀∃∀∃∗ for which it is unknown
whether they are decidable or not.

Theorem 5.1.10 (Rödding, Börger). [∀∃∗∀, (0, 4)] ∩ KROM ∩ HORN is
a reduction class.

Proof. For the proof it suffices to give an effective reduction of the halting
problem of arbitrary 2-register machine programs M = (Ii)0≤i≤r. We encode
each M -configuration C = (i, p, q) with state i and register contents (p, q)
by the atomic formula C = K(stateip, q) where m = |m ∗ u for monadic
(Skolem) functions statei, |, ∗, a binary predicate K and arbitrary term u;
think of ∗u as denoting the empty word which stands here for the number
0. The interpretation of K is intended to satisfy the following simulation
property, where as usual it suffices to consider M -computations which are
started in the initial configuration C0 = (0, 0, 0):

If C0 ⇒M (i, p, q), then K(stateip, q) is true for each u.

Based upon this encoding we will construct a formula ψM ∈ [∀∃∗∀, (0, 4)]∩
KROM ∩ HORN with Skolem normal form ∀x∀yφM so that the following
holds:

Reduction Property: M , started in C0 = (0, 0, 0), will not halt in state 1 if
and only if the formula ∀x∀yφM is satisfiable.

This will establish the claim of the theorem.
As usual φM is defined as conjunction of formulae START, STEPM , NON-

STOP and an auxiliary formula AUX. For NONSTOP we assume without
loss of generality that 1 is the only halting state of M ; this allows us to set
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NONSTOP := ¬Kstate1xy.

In START we have to formalize that the encoding K(state0 ∗ u, ∗u) of C0 =
(0, 0, 0) is true in every model of ψM for every possible value of u. This has
to be expressed avoiding the nesting of state0 and ∗. To this purpose we
introduce an additional monadic function start – for which Kstart x x is
postulated – and an auxiliary predicate K∗ which formalizes one application
of the function ∗ to second arguments of K. Formally this is defined by the
AUX-conjunct

AUX.1 := K∗yx↔ Ky ∗ x.
Then START can be defined as follows:

START := Kstart x x ∧ (K∗start x y → K∗state0xy).

In a similar way we can define the conjuncts εi of STEPM which formalize
instructions Ii = (i, oi, j, k) with operations oi concerning the second register.
We use another auxiliary predicateK ′ which formalizes one application of the
function | to second arguments in K, i.e. which satisfies the AUX-conjunct

AUX.2 := K ′yx↔ Ky |x.

This allows us to set for oi = a2 (where without loss of generality k = j):

εi := Kstateixy → K ′statejxy.

For oi = s2 we have two conjuncts, corresponding to the cases that the
current value in the second register is zero or positive:

εi := (K∗stateixy → K∗statejxy) ∧ (K ′stateixy → Kstatekxy).

It is more difficult to avoid the nesting of statei and | or ∗ in the first
argument position of K when formalizing the effect of an M -instruction Ii =
(i, oi, j, k) on a configuration C = (i, p, q) where the operation oi ∈ {a1, s1}
concerns the first register. The idea to solve this problem can be described
as follows. The transformation of C := K(stateip, q) into K(statei′p

′, q),
corresponding to the successive configuration C ′ = (i′, p′, q), is described
by copying the state information into the second argument, then executing
the operation oi, followed by re-copying the state information back into the
first argument from where the control is passed to the successive state. More
precisely we have the following simulation phases.

Phase 0: We initialize the copying phase during which statei of C is stored
into the second argument of K in order to bring p to the front, i.e. to
make it accessible without nesting of functions. Formally we use εi-conjuncts
Kstateixy → Koptypeixy with operation type optype ∈ {add, sub} corre-
sponding to oi ∈ {a1, s1} and with new functions addi, subi.

Phase 1: We describe how to store the information on the state i – encoded
in K(optypeip, q) – by copying it (in the form of the sequence ∗i) to the
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front of the second argument q. This can be formalized by store formulae
Kaddl+1xy → K∗addlxy and Ksubl+1xy → K∗sublxy for 0 ≤ l < i. We thus
can inferK(optype0p, ∗i|q∗u). This encoding works if we assume, without loss
of generality, that M never comes into the situation to execute instructions
concerning the first register when the second register has value q = 0.

Phase 2: We formalize the effect of the required operation on the first reg-
ister. The case of a subtraction operation with positive register is encoded
by drawing from K(sub0p, ∗iq) the conclusion K(p, ∗iq) and then switch-

ing to K(pos0p− 1, ∗iq) with a new function pos0; formally this means to
apply test axioms Ksub0xy → Kxy and K|xy → Kpos0xy. For the other
cases we use an auxiliary relation Knext0 to switch to K(next0p

′, |iq) with a
new function next0; formally this means to use for subtraction instructions
the axiom Ksub0xy → Kxy as above, followed by the additional test ax-
iom K ∗ xy → Knext0 ∗ xy, and for addition instructions the addition axiom
Kadd0xy → Knext0 |xy. Knext0 is formalized by the AUX-axiom

AUX.3 := Knext0xy ↔ Knext0xy.

Phase 3: We describe how to load the state information ∗i in the result of
phase 2 back from the second argument into an application of new functions
nexti or posi to the first argument. This will then allow us in the final phase
to callK with the correct next state statej or statek. Formally we can express
this by load axioms K∗nextlxy → Knextl+1xy and K∗poslxy → Kposl+1xy
for 0 ≤ l < i and new functions nextl, posl.

Phase 4: We transfer the control to the correct next state by the εi-conjuncts
K ′posixy → K ′statekxy and K ′nextixy → K ′statejxy respectively.

This description is summarized by the following definition of εi for M -
instructions Ii = (i, oi, j, k) and of AUX. For oi = a1 set

εi := (Kstateixy → Kaddixy) ∧ (K ′nextixy → K ′statejxy).

For oi = s1 set

εi := (Kstateixy → Ksubixy) ∧ (K ′nextixy → K ′statejxy) ∧
(K ′posixy → K ′statekxy).

Further, let

AUX :=
∧

1≤i≤3

AUX.i ∧ STORE ∧ADD ∧ TEST ∧ LOAD

where
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STORE :=
∧

0≤l<r

(Kaddl+1xy → K∗addlxy) ∧ (Ksubl+1xy → K∗sublxy)

ADD := Kadd0xy → Knext0 |xy
TEST := (Ksub0xy → Kxy) ∧ (K ∗ xy → Knext0 ∗ xy) ∧

(K|xy → Kpos0xy)

LOAD :=
∧

0≤l<r

(K∗nextlxy → Knextl+1xy) ∧

(K∗poslxy → Kposl+1xy)

It remains to prove the reduction property. Assume that M , started in
C0 = (0, 0, 0), will not halt in state 1. We then define the following canonical
interpretation A of K which satisfies ∀x∀yφM . A |= Kvw if and only if for
some word u and some M -configuration Ct = (i, p, q) and some j ≤ i one of
the following cases holds:

v = start u w = u
or v = statei p w = q
or v = addi−j p w = ∗jq oi = a1
or v = nexti−j p+ 1 . . . . . .
or v = subi−j p . . . oi = s1
or v = p . . . . . .
or v = nexti−j 0 . . . . . . p = 0
or v = posi−j p− 1 . . . . . . p > 0

Exercise 5.1.11. Verify that A |= ∀x∀yφM .

Exercise 5.1.12. Prove the if-direction of the reduction property, proving
the simulation property indicated above and following the explanations given
for the definition of the εi.

⊓⊔

Exercise 5.1.13. Modify the proof to show that [∀∃∗∀, (0, 4)] ∩ KROM ∩
HORN is a conservative reduction class.

Exercise 5.1.14. Show that the classes [∀∃∗∀2, (0, 0, 2)] ∩KROM ∩ HORN
and [∃2∀∃∗∀2, (0, 2)] ∩KROM ∩HORN are reduction classes.

Remark. It seems to be open whether [∀∃∗∀, (0, k)] ∩KROM is a reduction
class for k = 1, 2, 3.

5.1.2 Krom Prefix Classes with Functions or Equality

In this section we collect what is known about Krom prefix classes with
functions or equality.
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Remark. In Exercise 2.1.18 (to Corollary 2.1.16 to the Aanderaa-Börger
Theorem) it has been shown that [∀∃∀∃, (ω, k)]= ∩ KROM ∩ HORN is a re-
duction class for some k of the size of a universal 2-register machine. The
extension of the decidable Aanderaa class to the class [∀∃∀]= ∩KROM with
equality is still decidable [133, page 204], whereas from the proof of the
Chang-Keisler normal form in [75] it results that the extension of the Maslov
class to the class [∃∗∀∗∃∗]= ∩ KROM is a reduction class. It seems to be
unknown however whether the restriction of the Maslov class to the Gödel
prefix and only one binary predicate [∃∗∀2∃∗, (0, 1)]= ∩KROM is decidable.
For formulae with functions but without equality we know by Theorem 4.0.1
that [∀2, (0, 1), (1)] is a reduction class, whereas its restriction to Krom for-
mulae [∀∗, (ω, ω), (1)] ∩KROM is decidable (see [47]). The following exercise
and theorem show that one additional monadic function suffices to get again
a conservative reduction class.

Exercise 5.1.15. Infer from the construction given in Exercise 5.1.1 that
[∀2, (0, 1), (2)]∩KROM∩HORN is a reduction class. This improves Orevkov’s
reduction classes [∀2, (0, 1, 2), (ω)] ∩ KROM and [∀2, (k, l), (2)] ∩ KROM for
some not furthermore specified natural numbers k, l in [409]. Hint: Use that
the Post correspondence problem over an alphabet with two letters is unde-
cidable.

Theorem 5.1.16 (Börger). [∀2, (0, 1), (2)] ∩ KROM ∩ HORN is a conser-
vative reduction class.

Proof. For the proof it suffices to give an effective reduction of appropriate
halting problems of arbitrary 2-register machine programsM = (Ii)0≤i≤r. We
encode each M -configuration C = (i, p, q) with state 0 ≤ i ≤ r and register
contents (p, q) by the atomic formula C = Kix(p, q)x where i = ∗|i+1∗ and
(p, q) = |p ∗q ∗|∗ for monadic functions |, ∗ and a binary predicate K. The
interpretation of K is intended to satisfy the following Simulation Lemma,
where as usual it suffices to consider M -computations which are started in
the initial configuration C0 = (0, 0, 0):

If C0 ⇒M (i, p, q), then Ki0(p, q)0 is true.

Based upon this encoding we will construct a formula ψM ∈ [∀2, (0, 1), (2)]∩
KROM ∩ HORN with Skolem normal form ∀x∀yφM so that the following
Reduction Property holds:

1. If C0 = (0, 0, 0)⇒M (1, 0, 0), then ∀x∀yφM is not satisfiable,
2. If C0 = (0, 0, 0)⇒M (2, 0, 0), then ∀x∀yφM is finitely satisfiable.

This will establish the claim of the theorem.
As usual φM is defined as conjunction of formulae START, STEPM ,

NONSTOP := ¬K1xy and an auxiliary formula AUX. In START we for-
malize that the encoding K0u(0, 0)u of C0 = (0, 0, 0) is true in every
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model of ψM for every possible value of u. This can be done by defining
START := K0x(0, 0)x.

It is straightforward to define the conjuncts εi of STEPM which formalize
instructions Ii = (i, oi, j, k) with operations oi concerning the first register.
For oi = a1 (where without loss of generality k = j) we set

εi := Kixy → Kjx|y.

For oi = s1 we have two conjuncts, corresponding to the cases that the current
value in the second register is zero or positive:

εi := (Kix ∗ y → Kjx ∗ y) ∧ (Kix|y → Kkxy).

To formalize the effect of an M -instruction Ii on a configuration C =
(i, p, q) where the operation oi concerns the second register we first store the
content p of the first register from the second argument of Kix|p ∗q ∗| ∗x into
the first one, then we execute the operation oi on q, load the content of the
first register back into the second argument and finally pass the control to
the successive state. More precisely we have the following simulation phases.

Phase 0: We initialize the simulation with the copying phase during which
the content p of the first register in C is stored into the first argument of K
in order to bring the content q of the second register in front, i.e. to make it
accessible using only a constant depth of nesting of functions. Formally we
use three new combinations sim, add, sub of function nesting in εi-conjuncts
Kixy → Ksim ix optypeiy with operation type optypei ∈ {add, sub} corre-
sponding to oi ∈ {a2, s2}. We can choose for example sim := ∗, add := ∗||,
sub := ∗ ∗ ||.

Phase 1: We describe how to store the content p of the first register in
Ksim ix optypei(p, q)x by copying it – in the form of the sequence ∗p – to the
front of the first argument sim ix. This can be formalized by store formulae
Kx optype|y → K|x optype y. They allow us to infer K|psim ix optypei ∗q
∗| ∗ x.

Phase 2: We formalize the effect of the required operation on the second
register. The case of a subtraction operation with positive register is encoded
by drawing from K|psim ix sub∗∗q−1∗|∗x the conclusion Kpos|psim ix∗q−1

∗|∗x for a new function nesting combination pos; choose for example pos = ∗7.
Formally we apply test axioms Kx sub ∗ ∗y → Kpos x ∗ y. For the zero case
we switch from K|psim ix sub ∗ | ∗ x to Knext|psim ix ∗ | ∗ x with a new
function nesting combination zero; we choose zero = ∗4. Formally we use the
test axiom Kxsub ∗ |y → Kzero x ∗ |y. For addition instructions we have the
addition axiom Kx add ∗ y → Knext ∗ ∗y and choose next = ∗3.

Phase 3: We describe how to load the register content p in the result of
Phase 2 back from the first argument into the second argument. This will
then allow us in the final phase to call K with the correct next state j or
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k. Formally we can express this by load axioms Ksucc|xy → Ksucc x|y for
succ ∈ {next, zero, pos}.

Phase 4: We transfer the control to the correct next state by the εi-conjuncts
Knext sim ixy → Kjxy, Kzero sim ixy → Kjxy and Kpos sim ixy →
Kkxy respectively.

This description is summarized by the following definition of εi for M -
instruction Ii = (i, oi, j, k) and of AUX. For oi = a2 define

εi := (Kixy → Ksim ix add y) ∧ (Knext sim ixy → Kjxy).

For oi = s2 define

εi := (Kixy → Ksim ixsub y) ∧ (Kzero sim ixy → Kjxy) ∧
(Kpos sim ixy → Kkxy).

Further, define

AUX := STORE ∧ADD ∧ TEST ∧ LOAD

where

STORE := (Kx add|y → K|x add y) ∧ (Kx sub|y → K|xsub y)
ADD := Kx add ∗ y → Knext x ∗ ∗y
TEST := (Kxsub ∗ |y → Kzero x ∗ |y) ∧ (Kx sub ∗ ∗y → Kpos x ∗ y)
LOAD :=

∧
succ∈{next,zero,pos}

Ksucc|xy → Ksucc x|y.

Exercise 5.1.17. Prove the first claim of the reduction property. Hint: Use
the following simulation property: For each canonical model A satisfying
∀x∀yφM and for each t and each M -configuration C which is reached by
M in t steps starting from C0, we have that A |= Kiu(p, q)u for each value
u.

Exercise 5.1.18. Prove the second claim of the reduction property. Hint:
Show that the following canonical model A satisfies ∀x∀yφM and can be
made finite by restricting the functions to a finite domain along the lines
of exercise 5.1.5. A |= Kvw if and only if for some word u, some natural
numbers i, p, q, k, l and some M -configuration C reached by M from C0 one
of the following cases holds:

v = iu w = (p, q)u C = (i, p, q)

or v = |ksim iu w = add(l, q)u C = (i, l + k, q) oi = a2
or v = next|ksim iu w = (l, q + 1)u . . . . . .

or v = |ksim iu w = sub(l, q)u . . . oi = s2
or v = zero|ksim iu w = (l, 0)u C = (i, l + k, 0) . . .

or v = pos|ksim iu w = (l, q)u C = (i, l + k, q + 1) . . .
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Note that these cases are disjoint due to the choice of the pairwise differ-
ent function nesting combinations sim,add,sub,next,zero,pos which serve to
distinguish between the different phases and cases of each simulation.

⊓⊔

Exercise 5.1.19. [47] Prove the reduction class property for [∀2, (1), (0, 1)]∩
KROM∩HORN by encoding Post correspondence problems into it. Hint: For
a given Post correspondence system (vi, wi)1≤i≤n over alphabet {a1, . . . , am}
encode words over this alphabet by the Fitch word

(t)ai := (itt)t) . . . t), (t)a0 := t

where t is an arbitrary Fitch word (term built up from the binary function ( )
and the variables x, y). Use parenthesis association to the left when writing
(t)aj1 . . . ajr for (. . . ((t)aj1)aj2 . . .)ajr . Use as reduction formula the universal
closure of the conjunction of the START formulae P (x)vi(x)wi, the STEP
formulae Pxy → P (x)vi(y)wi and the NO-SOLUTION formula ¬Pxx.

Exercise 5.1.20. Show that the class [∀2, (1), (0, 1)] ∩ KROM ∩ HORN is
a conservative reduction class by reducing to it the class [∀2, (0, 1), (2)] ∩
KROM ∩HORN. Hint: Use the reduction method explained for the proof of
Theorem 4.1.11.

Exercise 5.1.21. [275] Show that [∀2, (1), (0, 1)]∩HORN is a reduction class
when restricted to formulae which are in HERBRAND except for one ternary
disjunct. Hint: Use the undecidability of partial implicational propositional
calculi C with only two variables. Interpret the propositional implication →
as a binary function so that the finitely many axioms ai of C become a HER-
BRAND formula AXC :=

∧
i Pai with monadic “C-derivability” predicate

P . Formalizing the Modus Ponens by

MP := (Px ∧ P (x⇒ y)→ Py)

prove that for each formula ψ of C the reduction formula ∀x∀y(AXC∧MP)→
ψ is of the required form and is satisfiable if and only if ψ is derivable in C.

The following two exercises resume what is known about the prefix-
vocabulary problem for Krom classes of formulae with functions but without
equality.

Exercise 5.1.22. Show that for numbers k, l,m, n satisfying k+l,m+n ̸= 0
and for arbitrary extended prefixes Π ̸= ∀2∃p,∀2∃∗, for any number p, the
following holds: The class [Π, (k, l), (m,n)] ∩ KROM is undecidable (and a
reduction class) if and only if a) Π contains at least two universal quanti-
fiers, b) the vocabulary contains at least one binary predicate or one binary
function, i.e. l ̸= 0 or n ̸= 0, c) if the vocabulary does not contain any binary
function, then it contains at least two monadic functions or Π contains at



5.2 Few Atomic Subformulae 203

least one existential quantifier. Hint: Use the decidability of the purely ex-
istential case, of the Gurevich-Maslov-Orevkov class [∃∗∀∃∗, all, all], of the
full monadic class [all, (ω), (ω)] and of the class [∀∗, (ω, ω), (1)]∩KROM (see
[42]).

Exercise 5.1.23. Show that the classes [∀3, (0, 0, 0, 1), (1)]∩KROM∩HORN
and [∃∀2, (0, 0, 1), (1)]∩KROM∩HORN are reduction classes. The maximal
value of 0 ≤ k < ω such that [∀3, (0, 0, k), (1)] ∩ KROM, [∃∀2, (ω, k), (1)] ∩
KROM, [∀∃∀, (ω, k), (1)] ∩ KROM, [∃∗∀2∃∗, (0, k), (1)] ∩ KROM are decid-
able seems to be unknown. We have the impression (but no proof) that
[∀2, all, (1)] ∩KROM and similar classes are decidable.

Also the prefix-vocabulary problem for Krom classes of formulae with
functions and with equality has not yet been completely solved. Let us recall
that in previous sections the following classes have been shown to be unde-
cidable: the two classes of Herbrand formulae [∀, (0), (2)]= ∩ HERBRAND,
[∀, (0), (0, 1)]=∩HERBRAND, the function free class [∀∃∀∃, (0, k)]=∩KROM∩
HORN, the two equality free classes [∀2, (0, 1), (2)] ∩ KROM ∩ HORN and
[∀2, (1), (0, 1)] ∩ KROM ∩ HORN, the equality and function free Aanderaa-
Börger classes [∃∀∃∀, (ω, k)]∩KROM∩HORN and [∀∃∃∀, (ω, k)]∩KROM∩
HORN and Lewis classes [∀2∃∀, (0, ω, k)] and [∀∃∀2, (0, ω, k)] for some k. From
the decidability side we make use of the following known decidable classes of
formulae with functions and with equality: the Rabin class [all, (ω), (1)]=,
the existential class [∃∗, all, all]= and Shelah’s class [∃∗∀∃∗, all, (1)]= (see
Chap. 7).

Exercise 5.1.24. Using the preceding list of decidable and undecidable
Krom classes with equality and functions, prove that the decision prob-
lem for classes [Π, (pn)n, (fn)n)]=KROM is settled in the following cases:
classes of (besides the equality) monadic formulae, of purely existential for-
mulae, of formulae containing a binary function, of formulae with exactly
one universal quantifier, of formulae with at least two functions, of for-
mulae with at least one existential quantifier, of formulae with at least
three universal quantifiers. (This holds except for determining the exact
value of the number k of binary or ternary predicates for which the classes
[∃∀∀, (0, k), (1)]=KROM, [∀∃∀, (0, k), (1)]=KROM, [∀∀∃, (0, k), (1)]=KROM
are decidable.) The decision problem of the classes [∀∀, (0, k), (1)]=KROM
and [∀∀, (0, 0, k), (1)]= ∩KROM seems to be open.

5.2 Few Atomic Subformulae

In this section we show some undecidable classes of formulae which have only
a small number of atomic subformulae. Little is known about the decision
problem for classes of formulae which are determined by restrictions on the
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number of atomic subformulae occuring in a formula, although recently some
more effort has been put into this classification through investigations in the
theory of logic programming where such formulae are viewed as syntactically
restricted programs. Before showing some relevant proof methods we first
survey what is known in the literature.

Let us start with first-order logic without functions or equality. Dreben
and Goldfarb [133] proved that the class of formulae which contain at most
two distinct atomic subformulae is decidable and has the finite model prop-
erty. Orevkov [409] showed the undecidability of the class of formulae in
prenex disjunctive normal form with two disjuncts. This result has been
strengthened by Lewis and Goldfarb [354] who showed the reduction class
property for the class of formulae containing five atomic subformulae where
those formulae can be chosen to be in the class ∀∃∀∗ with quantifier-free part
of the form (¬π1∧π2∧π3)∨(¬π4∧π5). They also showed that the same holds
with quantifier-free part of Krom form (π1 ∨ π2)∧ (¬π3 ∨¬π4)∧ (¬π3 ∨¬π5)
or (π1 ∧

∧
i=3,4(π2 → πi) ∧ ¬π5) and also for ∀∗∃-formulae containing six

atomic subformulae whose quantifier-free part is in conjunctive normal form
with three conjuncts, namely of form (π1∨π2∨π3)∧

∧
i=5,6(π4 → πi). Note in

this connection that any class of prenex function and equality free formulae
which is determined by restricting both the number of atomic formulae and
the number of universal quantifiers is reducible to a finite class of formulae,
as observed by Lewis [345]. The decision problem for function and equality
free formulae with only three or four atomic subformulae seems still to be
open, in particular for formulae with quantifier free Krom formula of form
(π1 ∧ (π2 → π3) ∧ ¬π4). We will see below that an answer to these prob-
lems can be given if functions are allowed to occur. Also open is the decision
problem for function and equality free formulae with two conjuncts.

If functions are allowed to occur, then one can obtain reduction classes of
formulae where both the number of atomic formulae and the number of quan-
tifiers (and thereby also the arity of the occuring predicates and functions)
can be limited by a fixed finite number. For first-order logic with functions
and equality the following is known. From Gladstone’s proof [182] it can be
easily inferred that the class of Herbrand formulae with only one (atomic
or negated atomic) subformula is decidable and has the finite model prop-
erty. Wirsing [534] showed that the class of Herbrand formulae with only
two subformulae, one equality and one inequality, is a conservative reduction
class. In contrast Exercise 5.2.1 shows that for formulae in prenex disjunctive
normal form the class of formulae with only two subformulae is decidable.
Wirsing needed only the [∀6, (0), (0, 1)]=-fragment for his two-subformulae
class and improved in [535] the prefix to [∀3, (0), (0, 1)]= at the expense of
allowing two equations besides the one inequality, and also to [∀, (0), (0, 1)]=
or [∀, (0), (2)]= allowing however three equations. In [534] Wirsing showed
also that the class [all, all, (1)]=∩HERBRAND is decidable by reducing it to
S2S (see Chap. 7).
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Exercise 5.2.1. [534] Show that in first-order logic with functions and equal-
ity, the class of formulae in prenex disjunctive normal form with only two sub-
formulae is decidable. Hint: Use Gladstone’s decision procedure for inequa-
tions [182] and the following equivalence, for any prefix Π: Π(s ̸= t ∨ u ̸= v)
is satisfiable if and only if Π(f(s, u) ̸= f(t, v)) is satisfiable, where f is a new
binary function.

Although the original question whether in the Lewis-Goldfarbreduction
class of equality and function free formulae with quantifier free part of form
(π1 ∧

∧
i=3,4(π2 → πi) ∧ ¬π5) the number of implications can be reduced to

one is still open, an answer can be given for first-order logic with functions
but without equality. We show that adapting Wirsing’s proof technique to
Post correspondence problems yields the reduction class property for the class
of prenex formulae with quantifier-free part of form π ∧ (ρ → σ) ∧ ¬τ with
atomic formulae π, ρ, σ, τ in which one predicate (of arity 4), one binary and
two monadic functions occur. In the theory of logic programming this class,
called the set of programs consisting of one binary Horn rule, one fact and one
goal, without considering the finer analysis with respect to prefix and term
structure and the arity of occurring predicates, has received some particular
attention (see the discussion below).

In connection with prefix and with prefix vocabulary classes another no-
tion of “small” formulae has been studied whether reduction formulae can be
made into conjunctions of “short” formulae with “simple” prefix.

5.2.1 Few Function and Equality Free Atoms

In this section we prove Orevkov’s Theorem that the class of (equality and
function free) formulae in prenex disjunctive normal form with only two dis-
juncts is a reduction class. We prove the stronger version which has been
established by Lewis and Goldfarb and where the reduction formulae have
a prefix of form ∀∃∀∗ and contain only one predicate symbol (whose arity
depends on the length of a universal 2-register machine program).

Theorem 5.2.2 (Lewis, Goldfarb). The class of (function and equality
free) formulae in ∀∃∀∗ with quantifier free Krom and Horn part of form

START ∧ (NF→ SHIFT) ∧ (NF→ PROGRAM) ∧ ¬STOP

is a reduction class, where START, NF, SHIFT, PROGRAM and STOP are
atomic formulae.

Proof. So far, in the reductions of halting problems of machines M to sat-
isfiability problems of logical formulae ψM , we have described each possible
elementary machine step (1-step transition) from a configuration C with state
i locally, i.e. by one or more corresponding propositional formulae εi occurring
in ψM . Hence the reduction formula ψM grows withM (or with the input n to
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a universal machineM). To avoid this growth we look for a global description
of a relation PC M between (the encodings of) any reachable configuration
C and the whole machine program M such that every 1-step transition of
M can be expressed, in terms of this relation, by comparing (the encoding
of) the current configuration C with the (encoding of the) program M and
by updating C accordingly to C ′. We have therefore to find a logical encod-
ing C of configurations and M of programs such that this simulation can be
formalized by simple propositional combinations of a few atomic formulae.

The basic idea for describing such a global relation, where PC M implies
PC ′ M , is a) to first rotate M until that instruction I comes in front which
can be applied to C, and then b) to put C ′ in place of C (by applying I
to the latter) and to restore M .We formalize the “application of I to C” by
providing in the encoding M , for each configuration C, the sequence of all
possible pairs (C,C ′′) of immediately successive M -configurations, i.e. such
that C ⇒1

M C ′.
To be more specific about the encoding details let now M = (Ii)1≤i≤r be

an arbitrary 2-register machine. For convenience but without loss of generality
we assume thatM has only instructions of form Ii = (i, a2, j) – in state i add
1 to the content of the second register and go to state j – or Ii = (i, sc1, j, k)
– in state i, if the number in the first register is 0, then interchange the two
registers and go to state j, otherwise subtract 1 from the content of the first
register and go to state k. 1

We want to describe M -computations by a short formulae ψM with pre-
fix of form ∀x∃w∀y∀z∀u∀v . . . which by going to the Skolem normal form
provides a successor function but no explicit way to express the number 0.
Therefore we adapt the idea which has been introduced already in the proof
for the two Lewis classes [∀2∃∀], [∀∃∀2] (see Theorem 5.1.2), namely to encode
register contents p as offset from a “relative” 0, say z. For the representation
ofM -states i we choose a form of binary code with respect to some variables,
say u, v (and their instantiations by numbers a, b), namely

i(u, v) := u . . . u︸ ︷︷ ︸
i−1

v u . . . u︸ ︷︷ ︸
r−i

which is intended to be used with different values a, b for u and v. This
yields the following encoding ofM -configurations C = (i, p, q) with respect to
numbers a, b, c into sequences (which will appear in the sequence of arguments
of the relation P to be formalized):

C(a, b, c) := i(a, b) p+ c q + c c.

Since we will deal mainly with the case c = 0, we write also

1 The proof of the Theorem of Minsky [393] and Shepherdson and Sturgis [469]
implies that these restricted 2-register machines are computation universal and
therefore have an unsolvable halting problem. See for example the proof in [57].
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C(a, b) := i(a, b) pq.

For the pairing of immediately successive configurations we have to take
into account that for configurations with subtraction and register interchange
state i there are two cases for immediately successive configurations to con-
sider, depending on whether the first register in C contains 0 or not. We
therefore define the following sequence of all possible pairs stepi of imme-
diately successive M -configurations, for any given pair of register contents.
Let r be the only stop state of M , 1 ≤ i ≤ r − 1, 1 ≤ j, k ≤ r. Remem-
ber that x′ stands for the Skolem function applied to x and that z serves
as relative 0. The reader will notice that the following definition of stepi
rephrases the formalization of instructions of 2-register machine programs by
implications εi which appears in the proof for the Aanderaa-Börger Theorem
(Theorem 2.1.15).

For Ii = (i, a2, j) ∈M we set

step2i−1 = step2i = i(u, v)yx j(u, v)yx′.

For Ii = (i, sc1, j, k) ∈M we set

step2i−1 = i(u, v)zy j(u, v)yz, step2i = i(u, v)x′y k(u, v)xy.

Note that in this definition i < r because no successive configuration of a
configuration with stop state r needs to be considered.

Let SUCC(x, y, z, u, v) := step1 . . . step2r−2. This sequence represents the
encoding M of the given program, i.e. the sequence of the logical form of all
pairs of immediately successive configurations which we may have to inspect
to determine the immediate successive configuration of a given configuration
C, where x, y will be instantiated according to the register contents appearing
in C.

We are now almost ready for defining the reduction formula ψM . Let l
denote the length of the encoding of C and M , i.e. l = r + 3 + r′m with the
number r′ of configuration pairs (r′ = 2r − 2) and their length m = 2r + 4.
It is easy to formalize the shift of M = step1 . . . stepr′ in PC(a, b, 0)M until
that stepk (for some 1 ≤ k ≤ r′) stays in front which can be instantiated to
stepk[p, q, 0, a, b] = C(a, b)C ′(a, b); then theM -transition which is encoded in
stepk can be applied to C by copying C ′(a, b, 0) into the current configuration
area. The shift can be obtained by shifting first step1, then step2, etc., i.e.
by iterated shifts of m-blocks from the middle of PC M to the end. This can
easily be described by a formula of the following form:

P −−− w1 . . . wm . . .→ P −−− . . . w1 . . . wm.

A slightly more sophisticated trick will be used to “apply” stepk to C and
to restore the original program M (for use in the next simulation step). We
have to formalize the condition that the state and register part x1 . . . xr+2 of
the C-section in the argument sequence x̄ = x1 . . . xr+2 . . . xl of PCstepk . . .
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is identical to the first half xr+4 . . . x2r+5 of stepk = xr+4 . . . x3r+7; under
that condition PCstepk . . . can be replaced by Px2r+6 . . . x3r+7zM , where
z represents the relative zero. To do this with a small number of atoms we
introduce in addition to the sequence x̄, of length l, of universally quantified
variables which appear as arguments of P , two more such sequences ȳ, z̄ which
are intended to be identical when they appear as second and third l-section of
the argument sequence of P ; this allows us to describe the required transition
from PCstepk . . .to PC

′ M by an implication of the following form:

Px̄z̄z̄ → Py2r+6 . . . y3r+7zM y1 . . . yr+2zy1 . . . yr+2y2r+6 . . . yl x̄.

This explains the definition of the reduction formula ψM as formula with
the following Skolem normal form, where we use x̄, ȳ, z̄ for vectors of length
l and P for a 3l-ary relation:

∀x∀y∀z∀u∀v∀x̄∀ȳ∀z̄φM

where φM is the conjunction of the following formulae:

START := P1(u, v)zzz SUCC(x, y, z, u, v) ȳȳ

STOP := Pr(x, x′)zzz xr+4 . . . xl ȳȳ

SHIFT := Px̄z̄z̄ → Py1 . . . yr+3yr+m+4 . . . ylyr+4 . . . yr+m+3ȳx̄

PROGRAM := Px̄z̄z̄ → β where

β := Py2r+6 . . . y3r+7zM y1 . . . yr+2z y1 . . . yr+2y2r+6 . . . yl x̄.

We will show now that the following Reduction Property holds:

1. If ψM is satisfiable, then C0 = (1, 0, 0) ̸⇒M (r, 0, 0).
2. If C0 = (1, 0, 0) ̸⇒M (1, 0, 0), then ψM is satisfiable.

This will establish the claim of the theorem.
For the proof of the first part of the reduction property it suffices to prove

the following Simulation Lemma.

Lemma 5.2.3 (Simulation Lemma). Let A be a model satisfying ∀φM .
Let t be an arbitrary natural number and C an M -configuration such that
(1, 0, 0)⇒t

M C. Then there is for all a, b ∈ A and all numbers p, q a sequence
c̄ such that

A |= PC(a, b, 0)SUCC(p, q, 0, a, b)c̄ c̄.

The lemma and the conjunct ¬STOP imply that if ψM is satisfiable, then
C0 = (1, 0, 0) ̸⇒M (r, 0, 0).

The simulation can be proved by induction on t. For t = 0 the claim
is guaranteed by the conjunct START in φM . For the inductive step let
(1, 0, 0)⇒t

M C →1
M C ′ and

A |= PC(a, b, 0)SUCC(p, q, 0, a, b)c̄ c̄
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for some c̄ given by the inductive hypothesis. We can apply to this for-
mula the SHIFT-conjunct of φM a finite number of times, starting to in-
stantiate y1 . . . yr+3 by C(a, b, 0), yr+4 . . . yr+m+3 by step1 and yr+m+4 . . . yl
by step2 . . . stepr′ . Iterating such SHIFT applications we obtain for each
1 ≤ k ≤ r′:

A |= PC(a, b, 0)stepk . . . stepr′step1 . . . stepk−1[p, q, 0, a, b]c̄′ c̄′

for c̄′ = C(a, b, 0)SUCC(p, q, 0, a, b). We now choose k and register con-
tents p′, q′ such that

stepk[p
′, q′, 0, a, b] = C(a, b)C ′(a, b).

Then we apply the φM -conjunct PROGRAM by instantiating y2r+6 . . . y3r+7

to C ′(a, b), y1 . . . yr+2 to C(a, b), x, y to arbitrary p, qand z to 0 and y3r+8 . . . yl
to stepk+1 . . . stepr′step1 . . . stepk−1[p, q, 0, a, b]. We obtain for each p, q and
some c̄′′, as was to be shown, that:

A |= PC ′(a, b, 0)SUCC(p, q, 0, a, b)c̄′′c̄′′.

For the other direction of the reduction property assume C0 = (1, 0, 0) ̸⇒M

(1, 0, 0). We define a model A over the natural numbers which satisfies ψM .
For the definition of A we will consider the natural extension⇒∗

M of⇒M

to integers 0, 1,−1, 2,−2, . . .. Observe that this does not alter the halting
problem (1, 0, 0)⇒M (r, 0, 0) of M because if starting in (1, 0, 0), M at some
point subtracts from 0, then the following computation will never come back
to non-negative content in the first register; formally (1, 0, 0) ⇒∗

M (r, 0, 0) if
and only if (1, 0, 0)⇒M (r, 0, 0).

Let state be the following function on r-tuples of natural numbers:
state(p1, . . . , pr) = i if and only if (p1, . . . , pr) is an instance of i(u, v),
for 1 ≤ i ≤ r, in which the substituents for u and v are distinct; other-
wise state(p1, . . . , pr) = 0. We define now for arbitrary numbers pi, qi, ri:
A |= Pp1 . . . plq1 . . . qlr1 . . . rl if and only if

1. either (q1, . . . , ql) ̸= (r1, . . . , rl) or
2. the following two properties hold:

– if state(p1, . . . , pr) ̸= 0 , then (1, 0, 0) ⇒∗
M (state(p1, . . . , pr), pr+1 −

pr+3, pr+2 − pr+3), and
– for some 0 ≤ j ≤ 2r − 3, pr+4+mj . . . plpr+4 . . . pr+3+mj is an instanti-

ation of SUCC(x, y, z, u, v) with pr+3 instantiated to 0.

A |= ∀¬STOP because by definition state(p, . . . , p, p + 1) ̸= 0 and by
assumption (1, 0, 0) ̸⇒∗

M (r, 0, 0).
A |= ∀START because for every instance Pp1 . . . plq1 . . . qlr1 . . . rl of

START either state(p1, . . . , pr) = 0 or state(p1, . . . , pr) = 1 and pr+1 −
pr+3 = 0 = pr+2 − pr+3. Furthermore pr+4 . . . pl is an instantiation of
SUCC(x, y, z, u, v) with pr+3 instantiated to 0.

A |= ∀SHIFT because if A |= Pp1 . . . plq̄q̄, then the sequence
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p1 . . . pr+3pr+m+4 . . . plpr+4 . . . pr+m+3

is obtained from p1 . . . pl by a shift of the arguments at the positions r +
4, . . . , r + m + 3 to the right end. A |= ∀PROGRAM follows immediately
from the definition of PROGRAM and of A (remembering hat M is just
another notation for SUCC(x, y, z, u, v)). ⊓⊔

As a corollary of (the proof of) the Theorem of Lewis and Goldfarb one
obtains Orevkov’s Theorem.

Theorem 5.2.4 (Orevkov). The class of (function and equality free) for-
mulae in prenex disjunctive normal form with only two disjuncts is a reduc-
tion class. The quantifier free part can be chosen to be in form

(START ∧ ¬NF) ∨ (SHIFT ∧ PROGRAM ∧ ¬STOP)

and the prefix of form ∀∃∀∗, where START, NF, SHIFT, PROGRAM and
STOP are atomic formulae.

Exercise 5.2.5. Infer Orevkov’s Theorem from the proof of Theorem 5.2.2.

Exercise 5.2.6. [354] Show that the class of (function and equality free)
formulae in ∀∃∀∗ with quantifier free Krom and Horn part of form (π1∨π2)∧
(¬π3 ∨ ¬π4) ∧ (¬π3 ∨ π5) is a reduction class. Hint: Reduce formulae

∀x∃w∀z̄(¬Pū1 ∧ Pū2 ∧ Pū3) ∨ (¬Pū4 ∧ Pū5)

obtained in Theorem 5.2.2 to formulae with prefix ∀x∃w∀z̄∀z̄′, where z̄′ is of
length 5k for the length k of each ūi, and with quantifier free part

(Qū1ū2ū3 ∨Qū4ū5ū5) ∧ (¬Qv̄0v̄1v̄2 ∨ ¬Qv̄1v̄3v̄4) ∧ (¬Qv̄0v̄1v̄2 ∨ ¬Qv̄2v̄3v̄4)

where v̄i = z′ik+1 . . . z
′
(i+1)k. Qp̄q̄r̄ interpreted by ¬P p̄ ∧ P q̄ ∧ P r̄, vice versa

P p̄ interpreted by ¬Qp̄q̄r̄ for all q̄r̄.

Exercise 5.2.7. [354] Show that the class of (function and equality free)
formulae in ∀∗∃ with quantifier free part of form (π1 ∨ π2 ∨ p3) ∧ (¬π4 ∨
¬π5) ∧ (¬π4 ∨ π6) is a reduction class.

5.2.2 Few Equalities and Inequalities

In this section we prove Wirsing’s Theorem which shows that the class of
universal formulae with one equality and one inequality is a conservative
reduction class.

Theorem 5.2.8 (Wirsing). The class of universal formulae containing only
one equality and one inequality is a conservative reduction class. Moreover
this result holds for the class of formulae of form ∀(s = t ∧ u ̸= v) ∈
[∀6, (0), (0, 1)]=.
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Proof. We prove the result first for the class [∀6, (0), (ω, ω)]= and then apply
some standard encoding of finitely many monadic and binary functions into
one binary function.

For the proof of the first part it suffices to give an effective reduction
of appropriate halting problems of arbitrary 2-register machine programs
M = (Ii)1≤i≤r to the satisfiability problem of reduction formulae ψM in the
class considered. The general idea of the formalization of 2-register machine
halting problems by (in)equalities is similar to the one used already in Chap. 4
(for the proof of Corollary 4.1.3), namely a) to equate all configurations
through which M passes when started in the given initial configuration, and
b) to require that the (formalization of the) start configuration is different
from the (formalization of the) stop configuration. For this purpose we encode
M -configurations C = (i, p, q) with state 1 ≤ i ≤ r and register contents
(p, q) by terms C(t) = fi(f

pf0(t), f
qf0(t)) where t is any term, fi (1 ≤ i ≤ r)

are binary and f, f0 unary functions standing for the machine states i, the
successor function and the number 0 respectively. The problem is to find a
way to encode all 1-step transitions of M by one single equation.

This problem can be solved by adapting the idea underlying the proof of
the Theorem of Lewis and Goldfarb (Theorem 5.2.2) as follows. In Chap. 4
(Corollary 4.1.3) we have described each single M -instruction locally, by one
or more equations. We now encode, for given arbitrary register contents p, q,
every possible 1-step transition from C = (i, p, q) to C ′ = (i′, p′, q′) into a
pair [C,C ′] of immediately successive configurations and collect all the pairs,
for each possible M -state i of C, in one sequence determined by p, q; the one
equation and the one inequality which are available for the formalization of
M -computation steps are then formulated globally in terms of such sequences.
[ ] is a binary function.

As in the proof of the Lewis-Goldfarb Theorem, for the pairing of succes-
sive configurations we have to take into account that for some states i of M
there are two possible immediately successive configurations of C to consider,
namely if a subtraction and test instruction is going to be executed whose re-
sult depends on whether the given register content p, q respectively is 0 or not.
We therefore define the following sequence of all possible pairs of immediately
successiveM -configurations, for any given pair (p, q) of register contents. Let
r− 1 and r be the only two stop states of M , 1 ≤ i ≤ r− 2, 1 ≤ j, k ≤ r and
let p, q be individual variables (standing for arbitrary register contents).

For Ii = (i, a1, j) ∈M we set

step2i−1(p, q) = step2i(p, q) = [fi(p, q), fj(f(p), q)].

For Ii = (i, a2, j) ∈M we set

step2i−1(p, q) = step2i(p, q) = [fi(p, q), fj(p, f(q))].

For Ii = (i, s1, j, k) ∈M we set
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step2i−1(p, q) = [fi(f0(p), q), fj(f0(p), q)],

step2i(p, q) = [fi(f(p), q), fk(p, q)].

For Ii = (i, s2, j, k) ∈M we set

step2i−1(p, q) = [fi(p, f0(q)), fj(p, f0(q))],

step2i(p, q) = [fi(p, f(q)), fk(p, q)].

Let r′ = 2r−4. The sequence (stepi(p, q))1≤i≤r′ represents all pairs of pos-
sibly immediately successive configurations of any given configuration with
register contents p, q. For reasons which will become clear below we include
also the “0-step transitions” of M which reflect the reflexivity of the reach-
ability relation. We now use these sequences for equating any configuration
C = (i, p, q), if it is reachable inM from the initial configuration, with its im-
mediately successive configuration C ′. We start with the initial configuration,
say x, and with [x, x]. Assume a sequence x, y, [y, z], u has been generated
where y stands for the M -configuration Ct reached in t steps and z for its
immediately successive configuration Ct+1; we expand this sequence by the
sequence SUCC(z) := z, [z, z], z, step1(p, q), . . . , z, stepr′(p, q) of all possible
≤ 1-step transitions of M on z, i.e. to

z, [z, z], z, step1(p, q), . . . , z, stepr′(p, q), x, y, [y, z], u.

This explains the following equation in the reduction formula ψM :=
∀x∀y∀z∀u∀p∀qφM :

⟨x, y, [y, z], u⟩ = ⟨SUCC(z), x, y, [y, z], u⟩

where ⟨x1, . . . , xn⟩ is an abbreviation for ⟨x1, ⟨x2, . . . ⟨xn−1, xn⟩ . . .⟩⟩ with a
binary function ⟨ ⟩. Iterated applications of this equation will allow us, at
each simulation step and for each term ⟨. . . SUCC(z), rest⟩, to bring the en-
coding SUCC(z) for the simulation of the next M -computation step on the
configuration z to the front by equating ⟨. . . SUCC(z), rest⟩ with a term of
form ⟨SUCC(z), rest′⟩, for some term rest′.

Every intermediate configuration z which is reached from the initial con-
figuration x does appear during this process at least once at the left end
of the generated sequence, so that the condition on no halt in state r with
empty registers is easily expressed by the inequality of φM as follows. It suf-
fices to specialize the variables x, y, z, u in the above equation to Start(p)
with Start(p) := (1, 0, 0)(p) describing the start configuration C0 = (1, 0, 0).
Let Begin(p) := ⟨Start(p), Start(p), [Start(p), Start(p)], Start(p)⟩ and de-
fine the inequality of φM to be as follows:

Begin(p) ̸= ⟨(r, 0, 0)(p), u⟩.

This completes the definition of φM and therefore of ψM . It remains to
prove the following Reduction Property:
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1. If C0 = (1, 0, 0)⇒M (r, 0, 0), then ψM is not satisfiable,
2. If C0 = (1, 0, 0)⇒M (r − 1, 0, 0), then ψM is finitely satisfiable.

By the Gurevich’s Theorem on semi-conservative reductions this will es-
tablish the claim of the theorem with finitely many binary and monadic
functions.

For the proof of the first part of the reduction property it suffices to show
that each model of ψM reflects all the computations of M in the following
sense.

Lemma 5.2.9 (Simulation Lemma). Let A be a model satisfying ∀φM .
For an arbitrary natural number t let Ct be the configuration reached by M
in t steps, starting from C0 = (1, 0, 0). Then there is for each element a ∈ A
a sequence rest(t) such that for arbitrary natural numbers p, q the following
equality holds in A:

Begin(a) = ⟨SUCC(Ct(a)), rest(t)⟩.

By the Simulation Lemma and the inequality Begin(a) ̸= ⟨(r, 0, 0)(a), u⟩
in ψM , the satisfiability of ψM implies C0 = (1, 0, 0) ̸ ⇒M (r, 0, 0).

The proof of the simulation lemma uses only the equality axiom in ψM
and is by induction on t. For t = 0 the claim is established by specializing the
equation as follows: instantiate x, y, z, u to C0(a) and set rest(0) to Begin(a).
In the inductive step we have by the inductive hypothesis that the following
equality holds for some rest(t) and arbitrary elements p, q in A.

Begin(a) = ⟨SUCC(Ct(a)), rest(t)⟩.

By the assumption Ct ⇒M Ct+1 there is some 1 ≤ k ≤ r′ and some p′, q′

such that stepk(p
′, q′) = [Ct(a), Ct+1(a)], depending on the state of M at

time t and on the corresponding register contents (and on the given a ∈ A).
Therefore for some u, v the right hand side of the equation can be specialized
in A as follows:

⟨SUCC(Ct(a)), rest(t)⟩ = ⟨. . . , v, Ct(a), stepk(p′, q′), u⟩.

Instantiating x to v, y to Ct(a) and z to Ct+1(a) allows us to apply the
equality in φM to the inner term ⟨v, Ct(a), stepk(p′, q′), u⟩, obtaining in A for
some rest and arbitrary p, q the equality

⟨. . . , v, Ct(a), stepk(p′, q′), u⟩ = ⟨. . . ,SUCC(Ct+1(a)), rest⟩.

Remember that SUCC(Ct+1(a) starts with the representation Ct+1(a),
[Ct+1(a), Ct+1(a)] of the 0-step transition ; this allows us to iterate applica-
tions of the equality in φM by instantiating x successively to all the terms
appearing in . . . and y, z to Ct+1(a) and each time u to the appropriate rest
term, eliminating one after the other all the terms in . . . . In this way we
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eventually obtain in A for some rest(t + 1) and arbitrary p, q the desired
equality

⟨. . . , v, Ct(a), stepk(p′, q′), u⟩ = ⟨SUCC(Ct+1(a)), rest(t+ 1)⟩.

We now prove the second part of the reduction property. Assume that
C0 = (1, 0, 0)⇒M (r− 1, 0, 0). We have to show that ψM has a finite model.
The idea for the proof is to construct a model which reflects the given M -
computation in the sense of the above simulation lemma; since the compu-
tation terminates, only a finite amount of information needs to be encoded.
We will define an appropriate interpretation of the relativization f0(p) of the
representation of 0 to make the intended model finite.

Basically what we do is to cut off the successor function, and correspond-
ingly the intended interpretation of all the other functions, at some large
enough number which majorizes all the objects needed for the encoding of
the given computation. We use the following notation for this. For fixed num-
ber m, the section f̂ of an arbitrary function f with respect to m is defined
by

f̂(x1, . . . , xn) := f(min(x1,m), . . . ,min(xn,m)).

Which objects do we need for the encoding of the given M -computation
so as to respect the Simulation Lemma above? First of all each number which
occurs as register content during that computation and all the M -states (in-
struction numbers) 1 ≤ i ≤ r. Let reg be 1 + the maximum of all these
numbers (including r). We need the closure under each state representing
function fi to encode each reachable configuration fi(a, b) for i, a, b < reg.
Furthermore we need the closure under the pairing function for reachable
configurations and their immediate successors.

We can provide enough objects which encode such triples and pairs of
triples by choosing a ternary function H : N3 → N − {0, 1} which is strictly
increasing in each argument. The configurations fi(a, b) for i, a, b < reg can be
encoded into H-values Ĥ(i, a, b) with respect to reg, the pairs of immediately
successive configurations c, c′ can be encoded into H-values Ĥ(r + 1, c, c′)
with respect to H(r, reg, reg). Therefore we need not more than m := H(r+
1, H(r, reg, reg), H(r, reg, reg)) elements and define as domain for our model
A := {0, . . . ,m}.

On this domain we define the interpretation of our functions and also
the subdomains for the encoding of configurations and configuration pairs as
follows, for a, b ∈ A and 1 ≤ i ≤ r.

f0(a) := 0,

f(a) := a+̂1,

fi(a, b) := Ĥ(i, a, b) with respect to reg,

[a, b] := Ĥ(r + 1, a, b) with respect to H(r, reg, reg),
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A1 := {fi(p, q) : (1, 0, 0)⇒M (i, p, q)},
A2 := {[fi(p, q), fj(p′, q′)] : (i, p, q)⇒≤1

M (j, p′, q′), p, q, p′, q′ ≤ reg},
A0 := {1} ∪A1 ∪A2,

⟨a, b⟩ :=
{
1 if a, b ∈ A0

0 otherwise.

From the definitions and the monotonicity of H we obtain immediately
the following simple facts which hold in the model A.

Lemma 5.2.10. (i) A0 ⊂ A, i.e. encodings of register contents, instruc-
tion numbers and pairs [fi(p, q), fj(p

′, q′)] of immediately successive con-
figurations which occur in the given computation are elements of A.
(ii) A2 and A1 are disjoint and do not contain 1.
(iii) A2 contains all the encodings of immediately successive configura-
tions, i.e. for each 1 ≤ i ≤ r′ and all p, q ∈ A holds stepi(p, q) ∈ A2.
(iv) The function ⟨ ⟩ maps sequences of A0-elements to 1, i.e. if a1, . . . , an,
b ∈ A0, then ⟨a1, . . . , an, b⟩ = 1.
(v) If a sequence is mapped by ⟨ ⟩ to 1, then its last two elements are
mapped by ⟨ ⟩ to 1, i.e. if ⟨a1, . . . , an, b⟩ = 1, then ⟨an, b⟩ = 1.

Exercise 5.2.11. Prove this lemma.

It remains to show that the above defined model A satisfies ψM . We first
show that A satisfies the equality in ψM . Let a, b, c, d, p, q ∈ A be arbitrary.
We show that the left side of the equation takes value 1 if and only if the
right side does. We distinguish two cases.

Case 1. Assume ⟨SUCC(c), a, b, [b, c], d⟩ = 1. Since by our bracketing conven-
tion ⟨SUCC(c), a, b, [b, c], d⟩ = ⟨SUCC(c), a, ⟨b, [b, c], d⟩⟩, the last statement of
the lemma implies that ⟨a, b, [b, c], d⟩ = 1, as was to be shown.

Case 2. Assume ⟨a, b, [b, c], d⟩ = 1. We want to use the fourth statement of
the lemma to conclude that also ⟨SUCC(c), a, b, [b, c], d⟩ = 1. It suffices to
show that the components of SUCC(c) as well as a, b, [b, c], d are elements of
A0. By our definition of (the interpretation of) ⟨ ⟩ the assumption implies
that a, b, [b, c], d ∈ A0. Therefore it remains to show that the components of
SUCC(c) are elements of A0. By the monotonicity ofH from [b, c] ∈ A0 we can
conclude [b, c] ∈ A2 so that b, c have the form b = fi′(p

′, q′), c = fi′′(p
′′, q′′ for

some numbers i′, p′, q′, i′′, p′′, q′′ ≤ reg satisfying (i′, p′, q′) ⇒≤1
M (i′′, p′′, q′′).

Since b ∈ A0 it follows that b ∈ A1. This implies (1, 0, 0) ⇒M (i′, p′, q′)
and thereby (1, 0, 0) ⇒M (i′′, p′′, q′′) so that c ∈ A1 and [c, c] ∈ A2. By the
third statement of the lemma for each 1 ≤ i ≤ r′ and all p, q ∈ A also the
components stepi(p, q) of SUCC(c) are elements of A2.

It remains to show that A satisfies the inequality in ψM . By the interpre-
tation of f0, f in A and the reflexivity f ⇒M , we have for arbitrary p ∈ A0

that Start(p) ∈ A1 so that Begin(p) = 1 is true in A by definition of ⟨⟩.
Since by assumption M does not reach the halting configuration (r, 0, 0), we
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have fr(0, 0) ̸∈ A1 and therefore by the monotonicity of H also fr(0, 0) ̸∈ A0

so that by definition of ⟨ ⟩ A satisfies ⟨fr(f0(p), f0(p)), u⟩ = 0 ̸= 1 for every
p, u ∈ A0.

We conclude the proof by reducing the class [∀6, (0), (ω, ω)]= to the class
[∀6, (0), (0, 1)]= in a way which preserves also the number of equalities and
inequalities in the formulae. It suffices to reuse the encoding ideas which have
been used already in Chap. 4 (see in particular the proofs of Theorem 4.1.8
and Theorem 4.1.11).

Let ψ := ∀x1 · · · ∀xnφ(x1, . . . , xn) ∈ [∀∗, (0), (ω, ω)]=. Without loss of gen-
erality we can assume that φ contains only binary functions f1, . . . , fm. The
idea is to encode the i-th binary function using the i-th secondary diagonal of
one binary function. Let h be a new binary function and define the formula
χ := ∀x1 · · · ∀xnφ(dx1, . . . , dxn) ∧ ∀x∀yAUX with the conjunction AUX of
the following formulae:∧

1≤i≤m

fi(x, y) = dh(h(gi+1x, gx), gy),

gx = h(x, x0) ∧ dx = h(gm+2x, gx).

Exercise 5.2.12. Show that ψ has a (finite) model if and only if χ does.

χ is equivalent to a formula in which only the binary function h appears
and where the defining equations in AUX do not appear any more so that
the formula is in the required class. ⊓⊔

Exercise 5.2.13. [533] Let HERBRAND(k) be the class of Herbrand formu-
lae which contain at most k conjuncts. Show that [Π, (0), q]∩HERBRAND(4)
is undecidable (and a reduction class) if and only if Π contains a univer-
sal quantifier and q contains either at least two monadic functions or at
least one binary function. Hint: Use Wirsing’s reduction classes [∀, (0), (2)]∩
HERBRAND(4), [∀, (0), (0, 1)] ∩HERBRAND(4) and the decidability of the
classes [∃∗, all, all]= ([227]) and [all, all, (1)]= ∩HERBRAND (see [533]).

The decision problems of the following classes seem still to be open:
HERBRAND(3)∩ [∀3, (0), (2)], HERBRAND(3)∩ [∀k, (0), q] for k = 1, 2 and
q = (2), (0, 1), HERBRAND(2) ∩ [∀6, (0), (2)], HERBRAND(2) ∩ [∀k, (0), q]
for 1 ≤ k < 6 and q = (2), (0, 1).

5.2.3 Horn Clause Programs With One Krom Rule

The Krom and Horn formulae which appear in the reduction classes of pre-
vious chapters all have a Skolem normal form ∀(pos ∧

∧
i≤n(πi → σi) ∧ neg)

with atomic formulae πi, σi and (often singleton) conjunctions pos of atomic
and neg of negated (often variable-free) atomic formulae. In the logic pro-
gramming interpretation, such a formula represents a “program” of binary
so-called “definite clauses” σi ← πi together with the set pos of “facts” and
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the computation “goal” neg (a negated literal); the program computes the
goal successfully if and only if the formula ∀(pos ∧

∧
i≤n(πi → σi) ∧ neg) is

contradictory. The decidability of the class HERBRAND implies that in or-
der to be computation universal such programs have to contain, besides facts
and goals, also some clause – representing real computation steps. By adapt-
ing the encoding idea for Wirsing’s Theorem to the formalization of Post
correspondence problems given in Exercises 5.1.1 and 5.1.19 we show in this
section that the problem whether a program computes the goal successfully
is undecidable for Krom programs with only one definite clause, one fact and
a singleton goal because the class of such formulae constitutes a reduction
class.

Theorem 5.2.14 (Universality of One Binary Horn Rule). The class
of prenex Krom and Horn formulae with functions containing in the quantifier
free part only one implication ρ → σ, one atomic formula and one negated
atomic formula is a reduction class. The reduction class can be restricted to
formulae in [∀6, (0, 0, 0, 1), (2, 1)] ∩KROM ∩HORN.

Proof. The proof consists in a reduction of Post correspondence problems
C = (vi, wi)1≤i≤n over a binary alphabet to formulae ψC in the class. We use
the logical interpretation of words w as terms w(c) where the letters of the
alphabet are interpreted as monadic function symbols and c is an individual
constant (see Exercise 5.1.1). In the Exercises 5.1.1 and 5.1.19 we formal-
ized the application of each single correspondence pair (vi, wi) by a separate
conjunct. The idea which leads to a description using only one implication
is a simple adaptation of the idea which appeared in the proof for Wirsing’s
theorem, namely to encode the sequence of all possible 1-step transitions into
one single term. In the context of Post correspondence problems it suffices to
encode the sequence of simultaneous applications of all the n pairs into one
implication; similarly for the start and non-stop literals.

The concatenation of words u1, . . . , um to a sequence u1 . . . um is ex-
pressed using a binary function symbol ( ); notationally we suppress the
brackets and assume their right association, writing s1 . . . sm instead of
(s1(. . . (sm1sm) . . .)) for arbitrary terms si.

The generation of all possible C-computations (vi1 . . . vis , wi1 . . . wis)
(where 1 ≤ i1, . . . , is ≤ n) can be formalized by blocks of such computa-
tions of length 1, 2, 3, . . .. In going from one to the next level we pass (in the
same way for u ∈ {v, w}) from ui1 . . . uis to

u1ui1 . . . unui1 . . . u1uis . . . unuis .

This can be expressed with finite nesting of function symbols by using
the following pattern for the stepwise generation of the elements of level
s + 1 from the sequence of all elements of level s, starting from s = 1; here
x, x′, x′′, y, y′, t′ denote variables standing for arbitrary terms and u stands
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for both elements of {v, w} representing left and right side of the computation
respectively.

1 : u1 u2 u3 . . . un x
2 : u2 u3 . . . un u1u1 . . . unu1 x′

3 : u3 . . . un . . . u1u2 . . . unu2 x′′

...

The test whether the C-computations generated so far have led to a success
reduces to the question, to be asked at each step t, whether an initial part
of the first argument generated in step t coincides with an initial part of the
third argument generated in that step.

The formula ψC := ∀x∀x′∀y∀y′∀v∀wφC which describes this process using
a predicate P of arity four can be defined by the conjunction φC of the
following formulae (compare with the formulae in Exercise 5.1.19):

START := P (v1(c) . . . vn(c)x, x, w1(c) . . . wn(c)x, x)

NO-SOLUTION := ¬P (xv,w, xy, y′)
STEP := β → P (x, x′, y, y′) where

β := P (vx, v1(v) . . . vn(v)x
′, wy, w1(w) . . . wn(w)y

′).

Exercise 5.2.15. Prove that ψC is satisfiable if and only if C has no solution.

⊓⊔

Remark. The quantifier-free part π∧(ρ→ σ)∧¬τ in the reduction formulae
of the preceding theorem is sharp in various respects. The so called “units”
π and ¬τ cannot be both variable free because otherwise starting from π the
sequence of applications of the implication ρ→ σ either becomes periodic or
produces terms of greater depth than the depth of the terms appearing in τ ;
therefore the class of Krom and Horn formulae with only one definite clause
and with closed units (i.e. with quantifier free part

∧
i πi ∧ (ρ→ σ) ∧

∧
j ¬τj

and closed πi, τj) is decidable (see [454]). Similarly, at least one of the units
has to be non-linear (i.e. to contain more than one occurrence of at least one
variable) because otherwise the resulting class is decidable (see [125]). If two
implications or one ternary disjunction are allowed, the resulting classes are
undecidable even with the restriction to closed units (see exercise 5.2.16 and
[377], sharpened in [375, 373]). Furthermore it is crucial that the premise and
the conclusion of the implication are not unifiable because otherwise the class
of formulae under consideration is decidable (see [539]).

Exercise 5.2.16. [454] Show that the class of Krom and Horn formulae with
exactly two definite clauses and with closed units, i.e. with quantifier free part
of form

∧
i πi∧(ρ→ σ)∧(ρ′ → σ′)∧

∧
j ¬τj is a reduction class. Hint: Reduce

the Turing machine halting problem to this class.
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Exercise 5.2.17. Show that there is a logic program (σ ← ρ), τ with atomic
formulae ρ, σ, τ such that it is undecidable to determine for a given goal
(negated atomic formula) ¬π whether the program yields an infinite number
of answer substitutions for that goal. (In [127] the corresponding question for
a finite number of answer substitutions is shown to be undecidable.) Hint:
Use the fact that a correspondence system is solvable if and only if it has an
infinite number of solutions.

From the logic programming theory viewpoint Theorem 5.2.14 has been
interpreted by its authors as a form of the Böhm-Jacopini Theorem [38],
namely as expressing that a single recursion scheme

PROC P (s1, . . . , sn) : EXECUTE P (t1. . . . .tn),

– in logic programming notation Ps1 . . . sn ← Pt1 . . . tn – suffices to do
every computation. In the same way Wirsing’s reduction class of formulae
s = t ∧ s′ ̸= t′ can be interpreted as expressing that purely equational com-
putations using one equation and one inequality can mimic every computa-
tion. Compare also Dauchet’s theorem [95] that each Turing machine can be
simulated by just one, a left linear, rewrite rule (whereby the termination
problem of rewrite rule systems with only one, a left linear, rule is proved
to be undecidable). The analysis of the proofs shows the price which is paid
for this kind of computational universality, namely an infeasible complex en-
coding. For a more realistic analysis of the termination behaviour of logic
programs with recursive predicates, such as the above P , one would expect
that it is more appropriate to study the behaviour of Horn formulae with-
out functions. But even there one has to face complexity problems. Shmueli
shows in [470] a Böhm-Jacopini Theorem for pure Datalog programs (read:
sets of Horn clauses in the Bernays-Schönfinkel class), namely that a single
recursive predicate is sufficient. The following question, whether it is possible
to eliminate recursion from a given Datalog program, is undecidable even
for programs which contain only one clause [374]. This question becomes de-
cidable (although in some cases NP-complete) only when further syntactical
restrictions are considered like the one to a single linear recursive clause with
a binary predicate; for more detailed references to the recent literature on
the question, see the introduction to [374].

5.3 Undecidable Logics with Two Variables

Let Lk be the class of relational first-order formulae that contain only the
variables x1, . . . , xk. Logics with only a bounded number of variables are im-
portant in several branches of mathematical logic and its applications such as
modal logic, finite model theory, logic of programs, model checking, database
query languages and knowledge representation. Since L3 contains the prefix
class ∀∃∀, the satisfiability problem for Lk is undecidable (even for formulae
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without equality) for all k ≥ 3. On the other side, we will prove in Sect. 8.1
that L2 has the finite model property, a result that was first proved by Mor-
timer [396] (for L2-sentences without equality this follows from an earlier
result by Scott [459]).

Of course, interesting sentences in L2 are not in prenex normal form;
rather one uses the possibility to quantify over the same variable again and
again (see Sect. 8.1 for an example). Nevertheless, the expressive power of L2

is rather limited. Therefore one is interested in extensions of L2 where expres-
siveness is enhanced by additional means like counting quantifiers, cardinality
comparison or constructs like transitive closure of fixed point operators that
add recursion to L2 (see [211]).

In this section we consider two kinds of extensions of L2, obtained a) by
adding Hilbert’s choice operator and b) by adding cardinality comparison
quantifiers. We prove that the satisfiability problem for these logics is un-
decidable. Further undecidability results for two-variable logics were proved
by Grädel, Otto and Rosen [211] We refer to Sect. 8.1 for decidability and
complexity results on logics with two variables.

5.3.1 First-Order Logic with the Choice Operator

Definition 5.3.1. First-order logic with Hilbert’s choice operator (the so
called ε-operator) extends first-order logic with equality by an additional
term building rule: If ψ is a formula and x a variable, then εxψ is a term,
read: one x such that ψ. The interpretation of ε over a given domain A is
defined by a choice function F : P(A) → A. (Recall that a choice function
satisfies the condition that F (X) ∈ X for all non-empty X.) Thus, εxψ is
interpreted by F ({x : ψ(x)}).

This logic is also known as ε-logic [339] and is closely related to Hermes’
term logic [257]. Note that the syntax of ε-logic is rather unusual since it
allows to build terms from formulae (whereas in most of the usual logics,
terms are built by composition of functions symbols only; they may be used
to build formulae, but not the other way round).

The ε-operators plays a similar rôle as quantifiers do. In fact, existential
and universal quantifiers can be easily expressed in terms of the ε-operator:

∃xψ(x) ≡ ψ(εxψ)

∀xψ(x) ≡ ψ(εx¬ψ)

A sentence ψ of ε-logic is satisfiable if there exists a first-order structure
A and a choice function F on the domain of A such that (A, F ) |= ψ. Heidler
[251] proved that the satisfiability problem for ε-logic is undecidable even
without any function or predicate symbol besides equality. We prove here a
stronger result due to Grädel, Otto and Rosen [211], imposing the additional
restriction that the formulae contain only two variables.
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Definition 5.3.2. Let ε-L2 be the fragment of ε-logic consisting of the for-
mula that contain only the two variables x, y.

It is easy to define an infinity axiom in ε-L2. The idea is to formalize an
injective but not surjective function which for every given x chooses a new
element y. Let fx := εy(x ̸= y) and fy = εx(y ̸= x) and define

INF := ∀x∀y(fx = fy → x = y) ∧ ∃x∀y(x ̸= fy).

Exercise 5.3.3. Show that INF is satisfiable over A if and only if A is infi-
nite. Hint: For given infinite domain A consider a well order < without last
element and interpret f(a) as min{b ∈ A : a < b}.

The following theorem shows that the choice operator and the equality
alone, without any other function, predicate or quantifier, suffice for yielding
an unsolvable decision problem for two-variable logic.

Theorem 5.3.4 (Grädel, Otto, Rosen). The class of sentences in ε-L2

built from the variables x, y using only equality, Boolean connectives and the
ε-operator is a conservative reduction class.

Proof. In ε-L2 we can build the following terms:

c := εy(y = y)

ft := εy(y ̸= t)

gt := εy(y ̸= t ∧ y ̸= c)

where t is any previously defined term without free occurrences of y.
Note that the functions f, g defined in this way can be composed arbi-

trarily, e.g. fgx is an abbreviation for the term

εy(y ̸= εy(y ̸= x ∧ y ̸= εy(y = y))).

Over any domain A with choice function F , these terms define an element
c = F (A) ∈ A and functions f, g : A→ A such that

f(a) = F (A− {a}), g(a) = F (A− {a, c})

for all a ∈ A. If A has at least three elements, then c, f, g always satisfy the
following condition, for all a ∈ A:

(∗) f(a) ̸= a, g(a) ̸= a, g(a) ̸= c, f(c) = g(c).

Conversely, for every domain A of cardinality greater than two, with an
element c and functions f, g : A → A satisfying (*) there exists a choice
function F defining c, f, g as described.

The rest is routine. One could define more functions in a similar way as
f and g and then directly encode, say the domino problem along the lines of
Exercise 4.1.2. A simpler way to complete the proof is by reduction from the
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conservative class [∀, (0), (2)]= (see Theorem 4.1.8). As pointed out in 4.1.10
this class remains conservative when restricted to structures A = (A, h, h′)
where the two functions h, h′ have no fixed points.

Now translate any sentence ψ = ∀xφ ∈ [∀, (0), (2)]= with unary function
symbols h, h′ to the sentence

ψ∗ := ∀x(x ̸= c→ (fx ̸= c ∧ gx ̸= c ∧ φ[h/f, h′/g]))

of ε-L2 where φ[h/f, h′/g] is obtained from φ by replacing the functions h
and h′ by f and g, respectively.

The universal quantifier can be defined in terms of the ε-operator as
described above. To complete the proof it remains to show that the reduction
from ψ to ψ∗ preserves satisfiability and finite satisfiability.

Suppose that A = (A, h, h′) |= ψ where h and h′ have no fixed points
(and therefore |A| ≥ 2). Let B := A ∪ {c} where c is a new element. Then
there exists a choice function F : P(B)→ B such that the functions defined
by f, g on (B,F ) coincide on A with h, h′. Thus (B,F ) |= ψ∗.

Conversely, suppose that (B,F ) |= ψ∗. Let A = B − {c} and let h, h′ be
the restrictions of the functions f, g to A (note that A is closed under f, g
since f(a) ̸= c and g(a) ̸= c for all a ∈ A. Obviously, (A, h, h′) |= ψ. ⊓⊔

Corollary 5.3.5 (Heidler). The class of sentences of ε-logic without func-
tions and predicates (besides equality) is a conservative reduction class.

Exercise 5.3.6. Prove Heidler’s Theorem by a conservative reduction from
pure predicate logic with a single binary predicate – i.e. from the class
[all, (0, 1), (0)] – which is conservative by the results of Chap. 3. Hint: Use
witnesses (new elements) w1, w2 to which pairs (a, b) satisfying Pab are pro-
jected. Such a projection can be formulated using the choice operator, as
follows:

proj(x1, . . . , xn) := εy(
∨

1≤i≤n

y = xi)

π(x, y, w1, w2) := (proj(x, y) = x ∧ x ̸= y ∧ proj(x, y, w1) = w1) ∨
(proj(x, y) = y ∧ proj(x, y, w1) = w2).

Note that the formula proj(x, y) = x defines a local order on pairs.
A formula ψ in the pure predicate calculus with a single, binary, predicate

P is mapped to an appropriate formula φ of ε-logic by translating atoms Pxy
to π and by relativizing the quantifiers to non-witnesses. Let WITNESS(x)
stand for (x = w1 ∨ x = w2).

φ := ∃w1∃w2(w1 ̸= w2 ∧ ψ∗ ∧ ∃x¬WITNESS(x))

where β∗ is defined for subformulae β of ψ inductively as follows:
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(Pxy)∗ := π

(∀xβ)∗ := ∀x(¬WITNESS(x)→ β∗)

(∃xβ)∗ := ∃x(¬WITNESS(x) ∧ β∗).

Exercise 5.3.7. [251] Let Ω ⊆ {=, ε, ∀,∃} and define the classes [Ω, p, f ] for
ε-logic in the obvious way. Show that [Ω, p, (0)] is a conservative reduction
class if and only if {=, ε} ⊆ Ω or if {ε,∀,∃} ∩ Ω ̸= ∅ and p contains at
least one predicate of arity at least 2. Hint: Use Corollary 5.3.5, the con-
servative reduction class property for [all, (0, 1), (0)] and the decidability for
the cases Ω = {=} (purely equational logic), Ω = {=, ∀, ∃} and p = (ω, 0)
(Löwenheim’s class) and for the case Ω = {ε,∀, ∃} and p = (ω, 0) (see Exer-
cise 6.2.6).

5.3.2 Two-Variable Logic with Cardinality Comparison

It is well-known that one of the major limitations of first-order logic (with
respect to expressiveness) is the inability to count. For instance, there is no
first-order sentence that defines parity, in the sense that its finite models are
precisely the structures of even cardinality. In fact even much stronger lan-
guages like fixed point logic or the infinitary logic with bounded number of
variables Lω∞ω cannot express evenness; this can be shown by a simple argu-
ment using Ehrenfeucht-Fräıssé games (see [141]). This issue is particularly
relevant in finite model theory and in databases where one of the major goals
is the design of logics or query languages that capture complexity classes,
such as polynomial time or logarithmic space. Since counting is a computa-
tionally simple task it is natural to investigate logics with counting constructs
(such as counting quantifiers, counting terms or generalized quantifiers). We
refer to [209, 413] for a detailed discussion of logics with counting.

Let C2 be the extension of L2 by counting quantifiers of the form ∃≥n and
∃≤n, for arbitrary n ∈ ω. The semantics of these quantifiers is the obvious
one. It is not difficult to see that C2 contains infinity axioms. Grädel, Otto
and Rosen [210] have recently proved that Sat(C2) is decidable.

But there are other forms of adding counting to a logic, for instance via
counting terms or via the cardinality comparison quantifier, also called Härtig
quantifier.

Counting Terms. In logics with counting terms we have the possibility to
build for every formula φ and every variable x a term #x[φ], taking cardinals
as values. The free variables of φ different from x remain free in #x[φ].

The semantic of #x[φ] is defined as follows. As usual, the notation φ(x, z̄)
indicates that the free variables of φ are among x, z̄. Given a formula φ(x, z̄),
a structure A and a valuation c̄ for z̄, then the meaning of #x[φ] for A and
c̄ is

#x[φ]
A,c̄ := |{a : A |= φ[a, c̄]}|.
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Fixing a logic L and any collection of basic relations Q on cardinals we
can build a counting extension of L containing formulae of the form Qt1 · · · tm
where t1, . . . , tm are counting terms. The simplest case is obtained by just
allowing equality of counting terms.

The Härtig Quantifier. A slightly different presentation of first-order logic
(or other logics) with equality of counting terms involves a particular gener-
alized quantifier, namely the cardinality comparison quantifier I, introduced
by Härtig [247]. For a survey on this quantifier, we refer to [259]; more back-
ground on generalized quantifiers can be found in [140].

The extension L[I] of a logic L by the Härtig quantifier is defined by
adding to L the following rule for building formulae: Given two formulae φ,ψ
and two (not necessarily distinct) variables x, y, the expression

(Ix, y φ, ψ)

is a formula, saying that the set of elements x satisfying φ has the same
cardinality as the set of elements y satisfying ψ.

The set of free variables of this formula is

free((Ix, y φ, ψ)) = (free(φ)− {x}) ∪ (free(ψ)− {y}).

Formally, the semantics of such formulae can be defined by the equivalence

(Ix, y φ, ψ) ≡ (#x[φ] = #y[ψ]).

Thus, given a formula (Ix, y φ(x, y, z̄), ψ(x, y, z̄))(x, y, z̄), a structure A
(of appropriate vocabulary) and valuations a, b, c̄ for x, y, z̄, respectively, then

A |= (Ix, y φ, ψ)[a, b, c̄] iff #x[φ]
A,b,c̄ = #y[ψ]

A,a,c̄.

We prove that the satisfiability problem for L2[I] is undecidable. Note
that this does not imply the undecidability of Sat(C2) since the two counting
logics L2[I] and C2 are incomparable with respect to expressive power.

The power of the Härtig quantifier in the context of L2 results from the
fact that – unlike the counting quantifiers ∃≥n or ∃≤n – application of H does
not necessarily reduce the number of free variables. Indeed if x, y are free in
φ(x, y) and ψ(x, y), then both x and y are free also in (Ix, y φ, ψ)(x, y).

For instance, we can axiomatize in L2[I] the class of regular graphs G =
(V,E) by the formula

ψreg := ∀x∀y(¬Exx ∧ (Exy → Eyx) ∧ (Ix, y Eyx,Exy)(x, y)).

Indeed G |= ψreg if and only if E is irreflexive and symmetric and for
all pairs of nodes u, v the number #x[Evx] of neighbours of v is the same
as the number #y[Euy] of neighbours of u. (In fact, due to symmetry of
E, we could just as well use the subformula (Ix, y Exy,Exy) rather than
(Ix, y Eyx,Exy).)
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Theorem 5.3.8 (Grädel, Otto, Rosen). Sat(L2[I]) is undecidable.

Proof. The first step is an axiomatizing of the N × N-grid. Let E be a bi-
nary relation symbol. We write NE(x) for #y[Exy] and similarly NE(y) for
#x[Eyx] to specify the number of outgoing E-edges at points x, y. Clearly
the statement NE(x) = NE(y) is expressible by a formula in L2[I]. We ob-
serve that the Härtig quantifier allows to express not just equality of counting
terms, but also a kind of successor relation when applied to irreflexive rela-
tions.

Lemma 5.3.9. Let C be a class of structures such that A |= ∀x¬Exx for
all A ∈ C. Then there exists a formula ψ(x, y) ∈ L2[I] expressing on C that
NE(y) = NE(x) + 1.

Proof. Just take ψ(x, y) := [Ix, y Eyx,Exy ∨ (x = y)](x, y). ⊓⊔

We axiomatize the N × N-grid by a sentence φ ∈ L2[I] containing the
binary predicates H,V,E, F . The models of φ contain a copy of N× N with
the horizontal and vertical adjacency relations H and V so that from each
point (m,n) ∈ N× N we have precisely m outgoing E-edges and n outgoing
F -edges.

The desired L2[I]-sentence φ is the conjunction of the formulae

∀x∃yHxy ∧ ∀x∃yV xy
∀x(¬Exx ∧ ¬Fxx) ∧ ∃x∀y(¬Exy ∧ ¬Fxy)
∀x∀y(Hxy → (NE(y) = NE(x) + 1 ∧NF (y) = NF (x))

∀x∀y(V xy → (NE(y) = NE(x) ∧NF (y) = NF (x) + 1)

∀x∀y((NE(x) = NE(y) ∧NF (x) = NF (y))→ x = y)

Obviously φ is satisfiable and all its models indeed have the properties
described above. Note that φ enforces irreflexivity of E and F , so the state-
ments NE(y) = NE(x) + 1 and NF (y) = NF (x) + 1 are expressible in L2[I].

Reducing the domino problem. Having axiomatized the grid, we can prove
undecidability by the usual techniques, for instance by encoding the domino
problem (see Sect. 3.1.1).

Given a domino system D = (D,H, V ) let ψD be the conjunction of the
grid-axiom φ with the formulae

∀x(
∨
d∈D

Pdx ∧
∧
d ̸=d′
¬(Pdx ∧ Pd′y))

∀x∀y(Hxy →
∨

(d,d′)∈H

(Pdx ∧ Pd′y))

∀x∀y(V xy →
∨

(d,d′)∈V

(Pdx ∧ Pd′y)).
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Suppose that τ : N×N→ D is a legal tiling. We obtain a model B |= ψD
by taking any model A |= φ with universe N× N and expanding it with the
relations

Pd := {(n,m) ∈ N× N : τ(n,m) = d}

for d ∈ D. Conversely, suppose that B |= ψD. since B |= φ there exists for
every (m,n) ∈ N × N a unique point bn,m in B with precisely m outgoing
E-edges and precisely n outgoing F -edges. We tile the point (n,m) with the
unique domino d ∈ D such that B |= Pd[bn,m]. By the last two clauses of ψD
this defines a legal tiling of N× N by D.

This proves Theorem 5.3.8. ⊓⊔

Exercise 5.3.10. [211] Modify of these arguments to prove that L2[I] is in
fact conservative. Hint: Instead of the infinite grid, axiomatize tori Zs × Zt
(where s, t can be arbitrary natural numbers) and use the inseparability result
for dominoes by Berger and Gurevich-Koryakov (Theorem 3.1.7).

Further, we can also eliminate equality. Let L2[I]
− be the set of formulae

in L2[I] that do not contain the equality sign.

Theorem 5.3.11. L2[I]
− is conservative.

Proof. In the proof of Theorem 5.3.8, equality was used at two places. To
express that NE(y) = NE(x) + 1 and to ensure that points with the same
number of E- and F -neighbours coincide (see the last clause in the definition
of φ)

We modify the construction as follows.
Let A,B be a unary predicate. In L2[I]

− we can express that A and B
are nonempty, disjoint sets of the same cardinality such that |A| ̸= |A ∪ B|.
This forces A and B to be finite.

We then add the clause ∀x∀y(Exy → ¬Ay) and replace the condition
NE(y) = NE(x) + 1 by NE(y) = NE(x) + |A| which, given that no E-arcs
has its endpoint in A, is expressible by

(Ix, y Eyx,Exy ∨Ay).

Now the grid can be axiomatized in a similar way as above. In any model
of φ, the points (m,n) ∈ N × N are represented by elements with m|A| E-
neighbours and n|A| F -neighbours.

The clause saying that points with the same number of E- and F -
neighbours coincide is not really needed. It can be replaced by the weaker
condition that such points are tiled with same domino (i.e. satisfy the same
relation Pd). ⊓⊔

Another variant of a cardinality comparison quantifier is the Rescher
quantifier J . With the Rescher quantifier we build formulae

(Jx, y φ, ψ)
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expressing that #x[φ] < #y[ψ]. Clearly the Härtig quantifier is expressible
with the Rescher quantifier since

(Ix, y φ, ψ) ≡ ¬(Jx, y φ, ψ) ∧ ¬(Jy, x ψ, φ).

Corollary 5.3.12. L2[J ] is a conservative reduction class.

Given that Sat(L2[I]) is undecidable, we may ask about L1[I], first-order
logic with just one variable, extended with cardinality comparison. Of course
we can restrict attention to monadic predicates, and in fact, also cardinality
comparison can be reduced to statements |F | = |G| for atomic predicates
F,G. Indeed, every subformula (Ix, x φ, ψ) has no free variable and may be
replaced by

∀x(Fφx↔ φ) ∧ ∀x(Fψx↔ ψ) ∧ |Fφ| = |Fψ|

where Fφ and Fψ are new predicates. In this way any formula L1[I] is trans-
formed into a formula with cardinality comparison restricted to atomic pred-
icates which is satisfiable if and only if the original formula is.

However, note that L1[I] does not have the finite model property. Indeed
the sentence

∀x(Fx→ Gx) ∧ ∃x(Gx ∧ ¬Fx) ∧ |F | = |G|

is an infinity axiom. And since we can say that two sets F,G are infinite
and of different cardinality, we neither have the Löwenheim-Skolem property.
Nevertheless, it is not difficult to prove that Sat(L1[I]) is decidable.

5.4 Conjunctions of Prefix-Vocabulary Classes

The Boolean operations can be extended from formulae to classes of formulae
in the following pointwise way:

¬(K) = {¬(φ) : φ ∈ K}
K1 ∧K2 = {φ1 ∧ φ2 : φ1 ∈ K1 and φ2 ∈ K2}
K1 ∨K2 = {φ1 ∨ φ2 : φ1 ∈ K1 and φ2 ∈ K2}.

This section is devoted to the satisfiability and finite satisfiability prob-
lems for pointwise Boolean combinations of prefix-vocabulary classes. In Sub-
sect. 5.4.1, we explain a quite obvious reduction of the classification prob-
lem for such Boolean combinations to the similar problem for the conjunc-
tions of prefix vocabulary classes. In Subsect. 5.4.2, Gurevich’s Classifiability
Theorem (see Sect. 2.3) is generalized to cover the conjunctions of prefix-
vocabulary classes. In the final subsection 5.4.3, we mention some of the
known results and pose a few questions.
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5.4.1 Reduction to the Case of Conjunctions

The underlying logic may be with or without equality. For any class K of
formulae, let P(K) be one of the following three statements:

– K is decidable for satisfiability,
– K is decidable for finite satisfiability,
– K has the finite model property.

Recall that, by our conventions, every prefix-vocabulary class contains
the logic constants true and false. It follows that every conjunction of prefix
vocabulary classes contains a logically false sentence.

Lemma 5.4.1. Let K1 and K2 be conjunctions of prefix-vocabulary classes
(or any classes of formulae which contain logically false formulae). Then the
following statements are equivalent:

(i) The classes K1,K2 have the property P.
(ii) The disjunction K1 ∨K2 has the property P.

Proof. It is obvious that (i) implies (ii). To prove that (ii) implies (i) it
suffices to show that every formula in K1 (respectively K2) is equivalent to a
formula inK1∨K2. But this is obvious becauseK2 (respectivelyK1) contains
a logically false sentence. ⊓⊔

The P-classification problem for pointwise Boolean combinations of prefix-
vocabulary classes reduces to the P-classification problem for conjunctions of
prefix-vocabulary classes as follows: rewrite a given pointwise Boolean com-
bination as a disjunction of conjunctions, and then use Lemma 5.4.1.

5.4.2 Another Classifiability Theorem

Again, the underlying logic may be with or without equality. For brevity, the
term “class” will be restricted to mean a conjunction of prefix-vocabulary
classes. We will use the terminology of Sect. 2.3. Recall the domination notion
for prefix-vocabulary classes and the fact that K1 conservatively reduces to
K2 if K1 ≤ K2; see Subsect. 2.3.5 in this connection.

Definition 5.4.2. Let X1, . . . , Xm, Y1, . . . , Yn be prefix-vocabulary classes.
The class Y = Y1∧· · ·∧Yn dominates the classX = X1∧· · ·∧Xm, symbolically
Y ≥ X, if there exists a one-to-one function f from [1..m] into [1..n] such
that, for each i = 1, . . . ,m, Yfi dominates Xi.

Exercise 5.4.3. If X ≤ Y , then X conservatively reduces to Y .

Lemma 5.4.4. The classes with the domination relation form a well quasi
ordered set.

Proof. Use the following facts:
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1. The prefix-vocabulary classes with the domination relation form a well
quasi ordered set (the Classifiability Theorem of Sect. 2.3).

2. The Finite Sequence Theorem (Subsect. 2.3.1).
3. A quasi ordered set that is the homomorphic image of a well quasi ordered

set is a well quasi ordered set (Subsect. 2.3.1).

⊓⊔

Definition 5.4.5. A class K is standard (respectively closed) if it is a con-
junction of standard (respectively closed) prefix-vocabulary classes.

Recall that every prefix-vocabulary class is equivalent to (that is, dom-
inates and is dominated by) a closed prefix-vocabulary class (see Sub-
sect. 2.3.5).

Exercise 5.4.6. Every class is equivalent to a closed class.

Lemma 5.4.7. Every closed class is a finite union of standard classes.

Proof. We illustrate the proof on the case of the conjunction X ∧ Y of two
closed prefix-vocabulary classes. According to Subsect. 2.3.5, each closed
prefix-vocabulary class is a finite union of standard prefix-vocabulary classes.
Present X (respectively Y ) as a finite union of standard prefix-vocabulary
classes Xi (respectively Yj). Then X ∧ Y is the union of standard conjunc-
tions Xi ∧ Yj . ⊓⊔

Theorem 5.4.8 (The Classifiability Theorem for Conjunctions). Let
D be a collection of conjunctions of prefix-vocabulary classes and suppose that
D is downward closed and closed under finite unions. Further, let U be the
complement of D. There exists a finite collection M of standard minimal
members of U such that U is the upward closure ofM.

Proof. Let M by a maximal antichain of minimal members of U . Since the
domination ordering is a well quasi ordering,M is finite and U is the upward
closure ofM. According to Exercise 5.4.6,M can be chosen to contain only
closed conjunctions. But then every member K of M is standard. Indeed,
suppose that K is not standard. By Lemma 5.4.7, K is a finite union of stan-
dard conjunctions Ki. Since K is not standard, each Ki < K and therefore
belongs to D. But then D contains K which is impossible. ⊓⊔

For example, D may be the collection of classes decidable for satisfiability,
decidable for finite satisfiability, or having the finite model property.

5.4.3 Some Results and Open Problems

Some results on conjunctions of prefix-vocabulary classes of predicate logic
have been obtained as a by-product of investigations of prefix-vocabulary
classes of pure predicate formulae. We restrict attention to classes

[Π1 ∧ · · · ∧Πn, p] = [Π1, p] ∧ · · · ∧ [Πn, p].
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Restrictions on the Quantifier-Free Parts. One may require that the
quantifier-free parts of some conjuncts have a particular form. Aanderaa
proved that the class [∃∀∧∀∃∀, (ω, ℓ)]∩KROM∩HORN is a conservative re-
duction class for some ℓ of the size of a universal 2-register machine (see [2]).
In the rest of this paragraph, we restrict attention to conjunctions of prenex
formulas such that the first conjunct is of the form ∀x1 · · · ∀xj∃yPx1 · · ·xjy
where P is a (j + 1)-ary predicate symbol. One may call conjuncts of that
form purely Skolem.

Accordingly, restrict attention to classes K of the form [Π1 ∧ · · · ∧Πm, p]
or [Π1 ∧ · · · ∧ Πm, p]= where Π1 is a standard prefix set ∀j∃ and pj ≥ 1.
The Skolem subclass S(K) of such a class K is the collection of K sentences
φ1 ∧ φ2 ∧ · · · ∧ φm where each φi ∈ [Πi, p] and φ1 is purely Skolem.

Pepis has proved that the Skolem subclass of [∀2∃∧∀∗, (1, 0, 3)] is a reduc-
tion class for satisfiability [418, 419, 420]. Surányi has proved that the Skolem
subclass of [∀2∃ ∧ ∀3, (0, ω)] is a reduction class for satisfiability [494, 496].

On the other hand, in [318], Kostyrko gave a decision procedure for the
finite satisfiability problem for the Skolem subclass of [∀∃∧∃∗∀∗, (ω, 1)]=. An
obvious open question is whether the satisfiability problem for that subclass
is decidable.

More general problems are to classify Skolem subclasses into decidable
and undecidable with respect to satisfiability, finite satisfiability or the finite
model property. Notice that an analogue of the Classifiability Theorem 5.4.8
holds for the Skolem subclasses. Indeed givenK1 = [∀j∃∧Π2∧· · ·∧Πm, p] and
K2 = [∀k∃∧Π ′

2∧· · ·∧Π ′
n, p

′], say that S(K1) dominates S(K2), symbolically
S(K1) ≥ S(K2), if i ≥ j and [Π2 ∧ · · · ∧Πm, p] ≥ [Π ′

2 ∧ · · · ∧Π ′
n, p

′]. Clearly,
S(K2) conservatively reduces to S(K1) if S(K2) ≤ S(K1).

Lemma 5.4.9. The Skolem subclasses with the domination ordering form a
well quasi ordered set.

Proof. Use the facts that the collection of wqo sets is closed under finite
direct products and substructures. ⊓⊔

Exercise 5.4.10. Formulate an analogue of Theorem 5.4.8 for Skolem sub-
classes.

Pure Predicate Logic. It will be convenient to strengthen the domination
ordering. LetK = [Π1∧Π2∧· · ·∧Πm, p] andK

′ = [Π ′
1∧Π ′

2∧· · ·∧Π ′
n, p

′]. Say
that K ′ dominates K1 if p′ dominates p and there exists a (not necessarily
one-to-one) function f from [1..m] into [1..n] such that every k in the range
of f satisfies a condition C(k) which, for notational simplicity, we illustrate
on an example where f−1 = 1, 2. In this case, the condition C(k) is that
the conjunction of an arbitrary Π1 sentence and an arbitrary Π2 sentence is
equivalent to a Π ′

k sentence.
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Exercise 5.4.11. According to the new domination ordering, [∃∗∀∗ ∧ · · · ∧
∃∗∀∗, all] ≤ [∃∗∀∗, all], [∃∗∀2∃∗ ∧ · · · ∧ ∃∗∀2∃∗, all] ≤ [∃∗∀2∃∗, all], [∀∃ ∧ ∀3] ≤
[∀3∃].

One can reformulate the condition C(k) in syntactical terms, but we will
not bother with that. Since a quasi ordered set that is the homomorphic
image of a well quasi ordered set is a well quasi ordered set (Subsect. 2.3.1),
classes [Π1∧Π2∧· · ·∧Πm, p] with the new domination ordering form a quasi
ordered set.

Exercise 5.4.12. Formulate an analogue of Theorem 5.4.8 for classes [Π1 ∧
Π2 ∧ · · · ∧Πm, p] with the new domination ordering.

In the rest of this subsection, the domination ordering is new. Since every
conjunction of prefix-vocabulary classes is equivalent to a closed one, and
every closed conjunction is a finite union of standard ones, one may as well
restrict attention to standard conjunctions [w1 ∧ · · ·wm, p] where each wi is
a generalized prefix.

Completing the classification of prefix-vocabulary classes in [219], Gure-
vich also addressed the satisfiability and the finite satisfiability problems for
classes [Π1∧· · ·∧Πm, p] of pure predicate formulae. He considered separately
the case of infinite vocabulary, that is the case when

∑
i pi in infinite. In that

case, the following facts are relevant.

1. The Kahr class [∀∃∀, (ω, 1)] is a conservative reduction class; see Sect. 3.1.
(By the way, Kahr’s result was the end of chain of improvements on
Büchi’s theorem that the conjunction [∃ ∧ ∀∃∀, (ω, 3)] is a conservative
reduction class [64].)

2. The conjunction [∀∃ ∧ ∀3, (ω, 1) is a conservative reduction class; see
Corollary 3.1.19.

This gives rise to the following theorem.

Theorem 5.4.13. Any standard conjunction K = [w1 ∧ · · ·wm, p] with infi-
nite

∑
i pi satisfies one of the following two conditions:

A. K dominates at least one of the two conservative reduction classes

[∀∃∀, (ω, 1)], [∀∃ ∧ ∀3, (ω, 1)],

and therefore K is a conservative reduction class,
B. K is dominated by one of the classes with the finite model property

[all, (ω)], [∃∗∀∗, all], [∃∗∀2∃∗, all],

and therefore K has the finite model property.
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Proof. Assume that K does not satisfy B. Since K is not dominated by
[all, (ω)], p2 + p3 + · · · ≥ 1. Since

∑
i pi is infinite, we have p ≥ (ω, 1). Since

K is not dominated by [∃∗∀2∃∗, all], some wi dominates ∀∃∀ or ∀3. In the
first case, K ≥ [∀∃∀, (ω, 1)] and we have finished. Assume that wi does not
dominate ∀∃∀. We have ∀3 ≤ wi ≤ ∃∗∀2∃∗. Since K is not dominated by
[∃∗∀∗, all], some wj ≥ ∀∃. But then K ≥ [∀∃ ∧ ∀3, (ω, 1)]. This is obvious if
j ̸= i. Assume that j = i. Then

K ≥ [wi, (ω, 1)] ≥ [∀3∃, (ω, 1)] ≥ [∀∃ ∧ ∀3, (ω, 1)].

⊓⊔

Next Gurevich considered classes [w1 ∧ · · · ∧ wm, p] where
∑
i pi is finite

but the prefix set (w1) ∪ · · · ∪ (wm) is infinite. (If both
∑
i pi is finite and

(w1) ∪ · · · ∪ (wm) is finite, then [w1 ∧ · · · ∧ wm, p] has only finitely many
sentences up to logical equivalence and thus is decidable for any decision
problem which does not distinguish between logically equivalent sentences
e.g. the satisfiability problem.) The following facts are relevant.

1. According to Denton [108], the class [∀∃ ∧ ∀∗, (0, 1)] is a conservative
reduction class; a proof can be found in [320]).

2. For some integer ℓ, roughly of the size of a universal Turing machine, the
classes [∀∃∀∧∃∗, (ℓ, 1)] and [∀∃∧∀3∧∃∗, (ℓ, 1)] are conservative reduction
classes; see [219, 225].

Theorem 5.4.14. Let ℓ be as above. Any standard conjunction K = [w1 ∧
· · ·wm, p], where ℓ <

∑
i pi < ∞ and (w1) ∪ · · · ∪ (wm) is infinite, satisfies

one of the following two conditions.

A. K dominates at least one of the three conservative reduction classes

[∀∃ ∧ ∀∗, (0, 1)], [∀∃∀ ∧ ∃∗, (ℓ, 1)], [∀∃ ∧ ∀3 ∧ ∃∗, (k, 1)],

and therefore K is a conservative reduction class.
B. K is dominated by one of the three classes with the finite model property

[all, (ω)], [∃∗∀∗, all], [∃∗∀2∃∗, all],

and therefore K has the finite model property.

Proof. The proof is similar to that of the previous theorem. Assume that K
does not satisfy B. Check that p ≥ (ℓ, 1). Again some wi dominates ∀∃∀ or
∀3, and some wj ≥ ∀∃. Since (w1)∪· · ·∪(wm) is infinite, some (wk) is infinite
and therefore dominates ∀∗ or ∃∗. If wi ≥ ∀∗, then K ≥ [∀∃∧∀∗, (0, 1)]. This
is obvious if k ̸= j. If k = j, then wj dominates ∀∗∃ or ∀∃∀∗. In either case,
in the new domination order, K ≥ [wj , (ℓ, 1)] ≥ [∀∃∧∀∗, (0, 1)]. Thus we may
assume that wk ≥ ∃∗.
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If wi ≥ ∀∃∀ then K ≥ [∀∃∀ ∧ ∃∗, (ℓ, 1)]. This is obvious if k ̸= i. If k = i,
then wi dominates ∃∗∀∃∀ or ∀∃∗∀ or ∀∃∀∃∗. In all three cases, in the new
domination order, K ≥ [wi, (ℓ, 1)] ≥ [∀∃∀ ∧ ∃∗, (ℓ, 1)].

Thus we may assume that wi does not dominate ∀∃∀ and therefore ∀3 ≤
wi ≤ ∃∗∀∗∃∗. It is easy to see that in this case, in the new domination order,
K ≥ [∀∃ ∧ ∀3 ∧ ∃∗, (ℓ, 1)]. ⊓⊔

An obvious problem is whether the conclusion of Theorem 5.4.14 remains
true in the case ℓ = 0. If not, what is the minimal appropriate ℓ?

Other Related Open Problems. Investigate the satisfiability problem,
the finite satisfiability problem and the finite model property problem for
conjunction of prefix-vocabulary classes in the cases when the underlying
logic contains function symbols and/or equality. As far as we know, no sys-
tematic investigation of that kind has been performed (even though some
conclusions can be drawn already from the formulations and proofs of the
known classifications of prefix-vocabulary classes).

A related series of problems concerns zero-one laws. Recall also that every
prefix-vocabulary class gives a fragment of second-order logic and gives rise
to the question of the zero-one law for that fragment; see [315]. Similarly ev-
ery conjunctions of prefix-vocabulary classes gives a fragment of second order
logic and gives rise to the question of the zero-one law (or the limit law, the
slow oscillation law, etc.) for that fragment. An appropriate version of Gure-
vich’s Classifiability Theorem guarantees a finite solution for the resulting
classification problems.

5.5 Historical Remarks

As explained in the introduction to Sect. 5.1, the notion of Krom formula
sprang out from Herbrand’s decidability result [253] for the class of Her-
brand formulae and from the Chang-Keisler Normal Form Theorem estab-
lished in [75]. Krom started the investigation of the specific logical proper-
ties of formulae with binary disjunctions [329, 330, 331, 333]. Maslov [378]
showed the decidability of ∃∗∀∗∃∗ ∩ KROM, Krom [331] the decidability of
∀∗ ∧ ∃∗∀2∃∗ ∩ KROM. Aanderaa and Goldfarb [10] proved the finite model
property for Maslov’s class. Orevkov [409], Reynolds [437] and Krom [334]
proved independently and with different methods that the decision problem
for first-order Krom formulae is undecidable; for some years only Krom’s
proof was known. At the same time Cook [91] observed that the decision
problem for propositional Krom formulae is not NP-complete, but decid-
able by a polynomial time algorithm. In [284] Cook’s result is extended by
showing that the unsatisfiability of Boolean Krom formulae is complete for
non-deterministic logarithmic space, see [150] for a linear time algorithm.
Aspvall, Plass and Tarjan [25] present a linear time algorithm for evaluating



234 5. Other Undecidable Cases

Krom sentences of quantified propositional logic and Grädel [207] proved that
this problem is also complete for nondeterministic logarithmic space.

Krom’s undecidability proof proceeds by a reduction of Post’s Tag sys-
tems and establishes the reduction class property for the class [∀∃∗∀, (0, ω)]∩
KROM. A simpler undecidability proof has been discovered independently
by Aanderaa [2] and Börger [39] (from where the register machine formal-
izations in Chap. 2.1 have been taken) and has been used in [2, 39, 411]
to establish the conservative reduction class property for the Krom classes
[∃∀∃∀, (ω, k)], [∀∃2∀, (ω, k)], [∃∗∀∃∀, (0, k)] ∩ KROM for some k of the size
of a universal 2-register machine. Orevkov [411] contains an independent
discovery of the Aanderaa-B”orger method and sharpens also Krom’s unde-
cidability result to [∀∃∗∀, (0, k)] ∩ KROM for some k of the size of a uni-
versal 2-register machine, further improved by Rödding and Börger [442] to
[∀∃∗∀, (0, 4)] ∩ KROM ∩ HORN, see Theorem 5.1.10. In 1971, Aanderaa [2]
shows the decidability of ∀∃∀ ∩ KROM (see [12] for an elaboration of the
proof) which has been extended in [6] to [∀∃∀]= ∩ KROM. Lewis shows in
1972 the reduction class property for [∀2∃∀] ∩ KROM and [∀∃∀2] ∩ KROM
(see [12]). He introduces special counter machines which he proves to be
computation universal; the proofs reported in this chapter (taken from [40])
simulate standard 2-register machines and establish for the first of the two
Lewis classes also the conservativity of the reduction. For a method to prove
the conservativity of the second Lewis class see [7]. Börger [41] establishes
that the use of ternary predicates in the Lewis classes is necessary by proving
the decidability of [∀∗, (ω, ω)]∩KROM, extended in [42] to the decidability of
[∀∗, (ω, ω), (1)]∩KROM. Note that without the restriction to Krom formulae,
undecidable classes can be reduced always to such classes with only binary
predicates (see Chap. 3 and 4).

In [348] the class of Krom formulae with a single predicate, a binary one,
is shown to be a reduction class. It is also proved that the class of prenex
formulae having disjunctive normal form with only two disjuncts and hav-
ing just two predicate letters, both pentadic, is a reduction class for validity,
see [409, 411]. Aanderaa and Jensen [11] and Ershov [147] show that ev-
ery satisfiable Krom formula without functions or equality has a recursive
model. Börger [45] simplifies Aanderaa’s [2] proofs about the non recursive
complexity of models of simple extensions of Krom formulae and extends
them to subrecursive complexity; see Sect. 2.1.3 on inseparability and model
complexity.

For Krom formulae without functions but with equality, it has been shown
in [6] that [∀∃∀∃, (ω, k)]=∩KROM∩HORN is a reduction class for some k of
the size of a universal 2-register machine, see the Exercise 2.1.19. For Krom
formulae with functions and without equality we report in this chapter the
proof from [42] for the conservative reduction class [∀2, (0, 1), (2)]∩KROM∩
HORN which extends the corresponding reduction class result in [348] and
for [∃∗∀∃∀, (0, 0, 0, 0, 0, 2, 4, 0, 1)] ∩KROM in [409].
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Theorem 5.2.2 is taken from [354], Theorem 5.2.8 from [534] (see also
[535]). The idea to apply the proof technique of the Theorems of Lewis-
Goldfarb and Wirsing to Post correspondence problems, for proving the the-
orem on the universality of binary Horn rules, appears in [244]. Another
proof method, by which the same result has been established independently
in [127], has found interesting applications in [374, 376].

Heidler’s undecidability result (Corollary 5.3.5) appeared in [251] and is
proved there also for Hermes’ term logic [257]. The stronger result for two-
variable logic by Grädel, Otto and Rosen and the results on logics with
cardinality comparison are taken from [211]. This paper contains a number
of other undecidability results for two-variable logics, including fixed-point
logics and transitive closure logics.

The analysis of how much the different combinations of occurrences of
variables in the reduction formulae can be restricted to only a few simple ones
is discussed at length in the two books [133, 351]. A particularly interesting
case where the classification along these lines has been completed satisfacto-
rily is Kahr’s reduction class of formulae of form ∀x∃x′∀yα ∈ [∀∃∀, (ω, 1)].
The problem to classify subclasses of Kahr’s class with respect to which com-
binations st of terms appear in atomic formulae Pst in α, has been suggested
and investigated in [64, 288, 134]. Note that by Scott’s Theorem [459] at
least three variables are needed. Kostyrko [319] presents an interesting new
proof, starting directly from Turing machines, for the result in [288] (see Ex-
ercise 3.1.10 in Chap. 3) that each such subclass is a reduction class where
any three out of xy, yx, x′y, yx′ are allowed to occur. Aanderaa proves in
his thesis [1], using the linear sampling problem, that this holds also for the
combination xy, yx′, xx. (For an elaboration of this proof see [13, 351].)

For interesting decidable classes obtained by restricting the form of sub-
formulae if formulae in Skolem normal form see [478, 173, 286, 379, 380, 381,
133]. This classification line leads naturally to the study of term structure in
resolution calculi based decision procedures, see [163].
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6. Standard Classes with the Finite Model
Property

In this chapter and the next we present a complete description of the standard
classes for which the satisfiability problem and the finite satisfiability problem
are decidable. Together with the results in Chap. 3 and 4 this will give us
a complete solution of the classification problem for standard classes. We
will also investigate the complexity of decidable classes and, in most cases,
present matching upper and lower complexity bounds. In addition we present
a classification of the classes with the finite model property.

We first observe that there are classes whose satisfiability and finite satis-
fiability problems are decidable for trivial reasons and which we will exclude
from further consideration. These are the (relational) classes [Π, s] or [Π, s]=
where Π and s = (s1, s2, . . .) are finite in the following sense:

– Π ∈ {∃, ∀}∗, i.e., Π does not contain any occurrences of ∃∗ or ∀∗ and thus
defines a finite set of prefixes;

– si ̸= ω for all i and si = 0 for all but finitely many i; thus s defines (up to
renaming) a finite vocabulary of relation symbols.

We call such classes essentially finite since their formulae are built from
a (up to renaming of variables and relation symbols) finite collection K of
atomic formulae. We can fix names of the variables and relation symbols
and impose a linear order on K. This induces a linear order on formulae in
conjunctive normal form built from the atoms of K. Every formula in an
essentially finite class can be efficiently reduced to the equivalent formula
whose quantifier-free part is in minimal (with respect to the chosen order)
conjunctive normal form. Hence, satisfiability (and finite satisfiability) of es-
sentially finite classes can be decided by transforming the given formulae into
such a normal form, thus reducing the problem to finitely many instances,
and then looking up the answer in a table. It is clear that this procedure can
be implemented using only logarithmic work-space. We thus have proved:

Proposition 6.0.1. For every essentially finite class X, the problems Sat(X)
and Fin-sat(X) are decidable with logarithmic space.

In the sequel we therefore restrict attention to standard classes [Π, s, t]
and [Π, s, t]= that satisfy at least one of the following conditions:

– Π contains an occurrence of ∃∗ or ∀∗;
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– t ̸= 0;
– s is not finite.

We will prove that all standard classes [Π, s, t] or [Π, s, t]= that do not
contain any of the sixteen conservative classes exhibited in Theorem 3.0.1
and Theorem 4.0.1 are decidable. In fact we exhibit seven maximal standard
classes for which satisfiability (and finite satisfiability) are decidable.

Theorem 6.0.2 (Maximal Decidable Classes). For each of the follow-
ing seven classes, the satisfiability and the finite satisfiability problems are
decidable:

(1) [∃∗∀∗, all]= (Ramsey 1930)

(2) [∃∗∀2∃∗, all] (Gödel 1932, Kalmár 1933, Schütte 1934)

(3) [all, (ω), (ω)] (Löb 1967, Gurevich 1969)

(4) [∃∗∀∃∗, all, all] (Gurevich 1973, Maslov-Orevkov 1972)

(5) [∃∗, all, all]= (Gurevich 1976)

(6) [all, (ω), (1)]= (Rabin 1969)

(7) [∃∗∀∃∗, all, (1)]= (Shelah 1977)

The following exercise shows that this indeed gives a complete solution
to the classification problem for standard classes.

Exercise 6.0.3. Prove that every standard class does either contain one of
the sixteen conservative classes listed in Theorem 3.0.1 and Theorem 4.0.1,
or is essentially finite, or is a subclass of one of the seven decidable classes
listed in Theorem 6.0.2.

Recall that a class X ⊆ FO has the finite model property if Sat(X) =
Fin-sat(X), i.e. if every satisfiable formula in X has a finite model. If X is
recursive and has the finite model property, then Sat(X) is decidable. Indeed,
by the Completeness Theorem for first-order logic and by the duality of va-
lidity and satisfiability, Sat(X) is co-r.e. for every recursive set X ⊆ FO. On
the other hand, the finite model property implies that Sat(X) is recursively
enumerable (since Fin-sat(X) is). It follows that Sat(X) is recursive.

In this chapter we prove decidability for the classes (1) to (5) which in fact
have the finite model property. In Chap. 7 we will then treat the remaining
two classes; both of them contain infinity axioms, and we will have to use
different techniques there.

While the finite model property of a recursive class X implies that Sat(X)
is decidable, it need not give any insight into its complexity. However, in most
cases a proof of the finite model property actually determines a bound s(n)



6. Standard Classes with the Finite Model Property 241

such that every satisfiable formula ψ ∈ X has a model of cardinality at most
s(|ψ|). In this case, we will say that X has a small model property. This
will imply a nondeterministic upper complexity bound for Sat(X) via the
following proposition.

Proposition 6.0.4. The problem whether a given prenex first-order sentence
of length n with k universal quantifiers has a model of cardinality m can be
decided nondeterministically in time p(mkn), for some polynomial p.

Proof. Recall that every first-order sentence is satisfiable over the same do-
mains as its functional form, and that transformation into functional form is
easy. We can thus assume that the given sentence is of the form ∀x1 · · · ∀xkφ
where φ is quantifier-free.

To check whether such a formula has a model A with universe A =
{0, . . . ,m−1} the decision algorithm cycles through all k-tuples a1, . . . , ak ∈
Ak and, for each such tuple, guesses sufficient information about A to check
whether A |= φ[a1, . . . , ak].

The truth value of φ[a1, . . . , ak] depends on the values of at most n terms
and atomic statements. Thus, for the verification that A |= ∀x1 · · · ∀xkφ, at
most mkn function values and truth values need to be guessed.

The verification algorithm generates and maintains a consistent list of
function values and truth values of atomic statements. At every point where
a function value f(b1, . . . , br) or a truth value Pb1 · · · bs is needed, it is checked
whether it occurs already in the list, otherwise an appropriate value is guessed
and appended to the list. Elements of the structure can be represented with
O(logm) bits; therefore every entry of the list requires no more than n logm
bits. Thus the list is generated with O(n2mk logm) steps. The time required
for the verification is a small polynomial in the length of the list, hence a
polynomial in mkn. ⊓⊔

With respect to complexity considerations it is important to keep in mind
the usual convention in the theory of computation that algorithms work with
strings that are composed of only finitely many distinct symbols. In partic-
ular, formulae are understood to be encoded over a finite alphabet. Hence,
if X is a class of formulae that may have arbitrary many predicates, func-
tions or variables, then these are coded (e.g. with indices in binary notation)
such that a formula in X with n distinct predicates, functions or variables
has length at least cn logn, for some constant c that depends only on the
alphabet used. To put it differently, a formula of length n has no more then
O(n/ log n) different predicates, functions and variables.

Here is a brief summary of this chapter. In Sect. 6.1 we discuss some
techniques for proving complexity bounds for satisfiability problems. In par-
ticular we introduce a bounded variant of the domino problem that will be
the main tool for most of our lower bound proofs.

In Sect. 6.2 we prove decidability and complexity results for the classical
solvable cases of the decision problems. These include the class of monadic
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formulae, proved decidable already in 1915 by Löwenheim and the following
prefix classes in pure predicate logic (without functions and equality): the
Bernays-Schönfinkel class [∃∗∀∗], the Ackermann class [∃∗∀∃∗] and the Gödel-
Kalmár-Schütte class [∃∗∀2∃∗]. We will in fact prove more general decidability
results, including the maximal decidable classes (1) – (3) of Theorem 6.0.2.

In Sect. 6.3 we consider sentences with only one universal quantifier. In
particular we exhibit a decision procedure for the Gurevich-Maslov-Orevkov
class, i.e., the ∃∗∀∃∗ prefix class in first-order logic without equality (but with
arbitrary relation and function symbols), i.e. class (4) in Theorem 6.0.2.

We classify in Sect. 6.4 the standard classes of modest complexity. Here
this means that the satisfiability problem is in P, NP or Co-NP. One of
these classes is the existential fragment of first-order logic, i.e. class (5) of
Theorem 6.0.2 (see Proposition 6.4.27 in Section 6.4.3.)

In Sect. 6.5 we present a classification of the prefix-vocabulary classes
that have the finite model property and of those admitting infinity axioms.

In Sect. 6.6 we make some historical remarks concerning the results of
this chapter.

6.1 Techniques for Proving Complexity Results

6.1.1 Domino Problems Revisited

We introduce a bounded domino problem that will be used in most of our
lower bound proofs. It differs from the domino problems used for undecid-
ability proofs (see Sect. 3.1.1 and Appendix A) and most of its finite variants
used in the literature in two essential features:

(1) The space to be tiled is a torus Zs×Zt (where Zs means the integers mod-
ulo s). This has the advantage that we don’t have to verify cumbersome
special conditions for borderline points.

(2) We use a more complicated initial constraint than usual. We specify
the dominoes that have to be placed on the first n points in the bottom
row. This makes perhaps the domino problem less elegant, but it allows a
direct encoding of the input of a computation by the initial constraint for
the domino problem. In fact, with any (nondeterministic) Turing machine
M we can associate a fixed domino system D such that the language
accepted by M is represented by the set of initial constraints for D that
admit a tiling.

Definition 6.1.1. Let D = (D,H, V ) be a domino system where D is a
finite set of tiles and H, V ⊆ D × D. Let U(s, t) be the torus Zs × Zt and
w = w0, . . . , wn−1 be a n-tuple of tiles (with n ≤ s). We say that D tiles
U(s, t) with initial condition w if there exists a mapping τ : U(s, t)→ D such
that for all (x, y) ∈ U(s, t):



6.1 Techniques for Proving Complexity Results 243

(i) If τ(x, y) = d and τ(x+ 1, y) = d′ then (d, d′) ∈ H;
(ii) if τ(x, y) = d and τ(x, y + 1) = d′ then (d, d′) ∈ V ;
(iii) τ(i, 0) = wi for 0 ≤ i < n.

Theorem 6.1.2 below, which may be of independent interest, establishes
the correspondence between (nondeterministic) computations and domino
problems on tori in rather general form, with simultaneous time and space
bounds. Later we will only consider time bounds and can therefore restrict
attention to tori Z(t) := U(t, t).

It is convenient to consider Turing machines of some special form. We
call a nondeterministic one-tape Turing machine M over alphabet Σ simple
if it satisfies the following conditions. The alphabet of M contains Σ and
at least one other symbol � (blank). M works on a semi-infinite tape and
never tries to move left from the left-most tape cell. At every stage of the
computation there is some s such that the tape cells 0, . . . , s contain only
non-blank symbols, all other tape cells contain �; in particular, to the right
of a blank only other blanks may appear. Furthermore, we assume that M
has a unique accepting configuration: the machine is in the unique accepting
state qa, the tape contains only blanks and the head is in position 0.

These conditions do not restrict computational power. Every language
accepted in time T (n) and space S(n) by some one-tape nondeterministic
Turing machine is accepted within the same time and space bounds by a
simple Turing machine, as long as S(n), T (n) ≥ 2n.

Theorem 6.1.2. Let M be a simple nondeterministic one-tape Turing ma-
chine with input alphabet Σ. Then there exist a domino system D = (D,H, V )
and a linear-time reduction which takes any input x ∈ Σ∗ to a word w ∈ D∗

with |x| = |w| such that

– If M accepts x in time t0 with space s0 then D tiles U(s, t) with initial
condition w for all s ≥ s0 + 2, t ≥ t0 + 2;

– If M does not accept x, then D does not tile U(s, t) with initial condition
w for any s, t ≥ 2.

Proof. Let Σ′ be the alphabet of M and Q its set of states; set

Γ := Σ′ .
∪ (Q×Σ′)

.
∪ {#, e}.

The symbols # and e are used as end markers. Let x = x0 · · ·xn−1 ∈ Σ∗

be some input, and let s ≥ s0 + 2, t ≥ t0 + 2 (if M does not accept x, let
s0, t0 := 0). A configuration of M on input x can be described by a word in
C ∈ Γ s: C = a0a1 · · · ai−1(qai)ai+1 · · · as−2# encodes the situation that the
tape stores a0, . . . , as−2, the machine is in state q and scanning the ith tape
cell. Thus, the accepting configuration and the initial configuration on x are
encoded by

Acc := (qa�)�s−2 #

Inp(x) := (q0x0)x1 · · ·xn−1 �s−n−1 #.
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In addition we define

End := es−1#

Conf := {C ∈ Γ t : C encodes a configuration } ∪ {End}

and let Next(C) contain the encodings of those configurations that M can
reach in one step from C. Next(C) is empty if C ∈ {Acc, End}.

The idea of the encoding is the following. Suppose that the sequence
(C0, . . . , Ct0) represents an accepting computation of M on x. Then C0 =
Inp(x), Cj+1 ∈ Next(Cj) and Ct0 = Acc. We extend this to a sequence
(C0, . . . , Ct−1) with Cj = Acc for t0 ≤ j < t − 1 and Ct−1 = End. Let
Cji be the i-th letter of Cj . This gives a description of the computation by
a t × t-table with entries from Γ . However, this table can not directly be
represented by a domino tiling because the symbol Cj+1

i depends on the

triple Cji−1, C
j
i , C

j
i+1. To overcome this problem let every domino consist of

a triple of elements from Γ . The tiling τ : U(s, t) → D that corresponds to
the computation will then be defined by

τ(i, j) = (Cji−1, C
j
i , C

j
i+1)

where addition is meant in Zs, i.e. we have identified the left and right borders
of the configuration (or of the tape).

The definition of the domino system D = (D,H, V ) is as follows:

D := {(α, β, γ) ∈ Γ 3 : β ∈ {�, e} =⇒ (γ = β ∨ γ = #)}

The horizontal adjacency relation is just a simple overlap condition:

H = {(α, β, γ)(α′, β′, γ′) ∈ D ×D : α′ = β, β′ = γ}

The vertical adjacency relation V ∈ D×D must be defined in such a way
that the following condition is satisfied. Words C ∈ Conf and C ′ ∈ Γ t can
represent subsequent rows of the tiling, i.e.

[(Ci−1, Ci, Ci+1)(C
′
i−1, C

′
i, C

′
i+1)] ∈ V

for all i, if and only if, one of the following holds:

(i) C ′ ∈ Next(C);
(ii) C = Acc and C ′ ∈ {Acc, End};
(iii) C = End and the first letter of C ′ is (q0a) for some a ∈ Σ′.

The explicit definition of V follows well-known techniques (see e.g. [201,
203]). We only make some remarks on the nonstandard part of our construc-
tion that is necessary because we tile a torus and not a square or rectangle.
The identification of the left and right borders of the tape creates no prob-
lems since we have marked the end of the configurations by #. We just have
to require that above (and below) the symbol # only # may appear and that
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V contains no element (α, qa,#)(α′, β′, γ) with qa ∈ Q×Σ′. This precludes
that the end marker # appears too far left; we can impose this condition
because s ≥ s0 + 2. To ensure that the rows corresponding to the beginning
and the end of the computation fit together, we impose special conditions on
those elements of V that contain the symbol e. If (d, d′) ∈ V and at least one
of the coordinates of d or d′ is e then (d, d′) are one of the vertically adjacent
pairs in Fig. 6.1 (describing the tiling of the rows t− 2, t− 1 and 0) where qa
is the accepting state, q0 the initial state and α, β, γ, δ are arbitrary symbols
from Σ′. Note that the domino system D depends only on M but not on w.

· · · (�,�,#) (�,#, q0α) (#, q0α, β) (q0α, β, γ) (β, γ, δ) · · ·

· · · (e, e,#) (e,#, e) (#, e, e) (e, e, e) (e, e, e) · · ·

· · · (�,�,#) (�,#, qa�) (#, qa�,�) (qa�,�,�) (�,�,�) · · ·

Figure 6.1. Tiling of the rows t− 2, t− 1 and 0

Exercise 6.1.3. Define the vertical adjacency condition V explicitly.

The initial condition w is the following n-tuple of dominoes:

w0 = (#, q0x0, x1)

w1 = (q0x0, x1, x2)

...

wn−1 = (xn−2, xn−1,�)

If M accepts the input x then the mapping τ : U(s, t)→ D defined above
is a correct tiling of U(s, t) by D with initial condition w.

Conversely, suppose that we have a correct tiling of U(s, t) with initial
condition w for some s, t ≥ 2. Then, column s − 1 contains only dominoes
of type (α,#, β) and the dominoes at the points (0, t− 1) and (0, t− 2) are
uniquely determined to be (#, e, e) and (#, (qa�),�). Let r and q be the
minimal numbers such that τ(0, r) = (#, (qa�),�) and τ(q, 0) = (α,#, β)
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for arbitrary α, β. For 0 ≤ j ≤ r and 0 ≤ i ≤ q and τ(i, j) = (α, β, γ),
set Cji = β and let Cj = Cj0 · · ·Cjq . Then C0, . . . , Cr encodes an accepting
computation of M on input x. ⊓⊔

Exercise 6.1.4. Extend this result to nondeterministic Turing machines
with an arbitrary number of tapes.

Definition 6.1.5. Denote the torus U(t, t) by Z(t). Let T (n) be a function
from natural numbers to natural numbers and let D be a domino system.
Then DOMINO(D, T (n)) is the set of those words w ∈ D∗ for which D tiles
Z(T (|w|)) with initial condition w.

We call a function T : N → N is time constructible if there exists a
deterministic Turing machine making precisely T (n) steps on inputs of length
n (see [271, 416]).

Theorem 6.1.6. Let T (n) be a time constructible function from N to N with
T 2(dn) = o(T (n)) for some constant d > 0. Then there exists a domino
system D and a constant c > 0 such that

DOMINO(D, T (n)) ̸∈ Ntime(T (cn)).

Proof. It is known that Ntime(T1(n))−Ntime(T2(n)) ̸= ∅ whenever T1 is
time constructible and T2(n+ 1) = o(T1(n)) (see [461]). Further it is known
that k-tape nondeterministic Turing machines (for any k) can be simulated
by one-tape nondeterministic machines with only quadratic increase of the
running time [271, p. 292].

We apply these two facts as follows: Let T1(n) := T (dn). Then every
problem in Ntime(T1(n)) is accepted by some one-tape nondeterministic
Turing machine in time T1(n)

2, hence also in time T (n). Further, we take a
constant e > 0, sufficiently small such that T (e(n + 1)) = o(T (dn)) and set
T2(n) := T (en). It follows that there exists a problem B ̸∈ Ntime(T (en))
which is accepted by a one-tape nondeterministic Turing machine in time
T (n).

By Theorem 6.1.2 there exists a domino system D and a linear-time re-
duction taking every input x of length n to an initial condition w also of
length n such that x ∈ B iff w ∈ DOMINO(D, T (n)).

Assume that DOMINO(D, T (n)) ∈ Ntime(T (cn)) for every positive con-
stant c. Then B could be decided in nondeterministic time kn + T (cn) for
some k ∈ N. However, there exists a c > 0 such that kn + T (cn) < T (en)
which contradicts the assumption that B ̸∈ Ntime(T (en)). ⊓⊔

Definition 6.1.7. Let Σ and Γ be two alphabets, A ⊆ Σ∗ and B ⊆ Γ ∗ two
problems, and let g be a function from N to N. We say that A is polynomially
reducible to B via length order g(n), in symbols A ≤g(n) B, if there exists a
function f : Σ∗ → Γ ∗ which is computable in polynomial time such that for
all x ∈ Σ∗, |f(x)| = O(g(|x|)) and such that f(A) ⊆ B and f(Σ∗ − A) ⊆
(Γ ∗ −B).
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Theorem 6.1.8. Let T (n) be time constructible with T 2(dn) = o(T (n)) for
some constant d > 0 and let A be a problem such that for all domino systems
D

DOMINO(D, T (n)) ≤g(n) A.
Further, let h : N → N be such that h(dg(n)) = O(n) for all d. Then there
exists a constant c > 0 such that A ̸∈ Ntime(T (ch(n))).

Exercise 6.1.9. Prove Theorem 6.1.8 from Theorem 6.1.6.

6.1.2 Succinct Descriptions of Inputs

Consider the following situation. We have a structure with successor relation
S, a distinguished element 0 and a finite set of properties, e.g. unary relations
Pi (i ∈ Σ). Suppose that, given any word w = w0 · · ·wn−1 ∈ Σ∗, we want to
express by a formula ψw that the condition

C(w) ≡ Pw0(0) ∧ Pw1(1) ∧ · · · ∧ Pwn−1(n− 1)

is satisfied. A typical example is the encoding of the initial configuration of a
Turing machine on input w or, equivalently, the initial condition of a domino
problem as described in Sect. 6.1.1. The obvious way to describe it uses n
variables representing the elements 0, . . . , n− 1:

∃x0 · · · ∃xn−1

(
x0 = 0 ∧

n−2∧
i=0

Sxixi+1 ∧
n−1∧
i=0

Pwixi

)
.

This formula has, however, length O(n log n) which is sometimes not good
enough.

Therefore we introduce a technique to encode the same condition by for-
mulae which have length O(n) (but a more complicated quantifier structure):

Lemma 6.1.10. Let Π be one of the prefix classes [∀∃∗] or [∀∗]. If the re-
lations y = 2x and y = 2x + 1 are available then, given w ∈ Σ∗, one can
construct in linear time a formula ψw ∈ Π which expresses that the condition
C(w) is satisfied.

Proof. We first assume that Π = [∀∃∗]. The idea is to use natural numbers
as labels of a binary tree such that the root is labeled by 0 and the children
of a node with label x are labeled 2x and 2x+1, respectively. Thus the nodes
of level i have labels 0, . . . , 2i − 1.

Set h := ⌈log n⌉. We define inductively for 0 ≤ i ≤ h and 0 ≤ j < 2h−i

quantifier-free formulae TREEi,j(x, y0, . . . , yi).
For all j, set

TREE0,j(x, y0) :=

{
y0 = 0→ Pwjx if j < n
x = x if j ≥ n
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TREEi+1,j(x, y0, . . . , yi+1) :=
(
(yi+1 = 2yi) ∧ TREEi,2j(x, y0, . . . , yi)

)
∨(

(yi+1 = 2yi + 1) ∧ TREEi,2j+1(x, y0, . . . , yi)
)
.

Claim. The condition C(w) is satisfied if and only if the formula

ψw := ∀x∃y0 · · · ∃yh(yh = x ∧ TREEh,0(x, y0, . . . , yh))

is true in the structure under consideration.

Indeed, for any a ∈ N, the unique tuple b0, . . . , bh that possibly satisfies
the formula TREEh,0(a, b0, . . . , bh) is defined by bh := a, bi−1 := ⌊bi/2⌋. If
b0 ̸= 0 then a ≥ 2h and therefore the condition C(w) has nothing to do with
a; clearly TREEh,0[a, b0, . . . , bh] is true in this case. If b0 = 0 then it follows
by induction that TREEh,0[a, b0, . . . , bh] is equivalent to TREE0,a[a, b0]. This
means that either a ≥ n or that a < n and the condition Pwa(a) is satisfied.

Claim. The length of ψw is O(2h) = O(n), even if the subscripts of yi are
in unary (i.e. if |yi| = i+ 1).

The variable yi occurs at most 1 + 2h−i + 2h−i+1 ≤ 2h−i+2 times in ψw.
The length of the formula is a constant multiple of the sum over the length
of the variables times the number of its occurrences. This number is

h∑
i=0

(i+ 1)2h−i+2 = 4
h∑
i=0

h−i∑
j=0

2j = 4(2h+2 − h− 3) = O(2h) = O(n).

This proves Lemma 6.1.10 for Π = [∀∃∗]. Only minor modifications in
the definitions of TREEi,j and ψw are necessary for Π = [∀∗]:

TREEi+1,j(x, y0, . . . , yi+1) :=
(
(yi+1 = 2yi)→ TREEi,2j(x, y0, . . . , yi)

)
∧(

(yi+1 = 2yi + 1)→ TREEi,2j+1(x, y0, . . . , yi)
)

ψw := ∀x∀y0 · · · ∀yh(yh = x→ TREEh,0(x, y0, . . . , yh)).

The proof that ψw has the required properties is almost verbally the same
as above. ⊓⊔

Exercise 6.1.11. At first sight it might seem that the presence of the two
binary relations y = 2x and y = 2x+ 1 is a rather strong assumption. How-
ever, they are often easily axiomatizable. Prove the following: On (N, 0, S)
where S is the successor relation, the relations L = {(n, 2n) : n ∈ N} and
R = {(n, 2n + 1) : n ∈ N} are axiomatizable by a formula of vocabulary
{0, S,R, L} with prefix ∀5 or ∀2∃3.
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6.2 The Classical Solvable Cases

Before Church and Turing had proved the unsolvability of the Entschei-
dungsproblem, a number of mathematicians had come up with positive solu-
tions for particular subcases. The most celebrated are the decidability results
for the following classes:

[all, (ω)] (Löwenheim 1915)

[∃∗∀∗, all] (Bernays, Schönfinkel 1928)

[∃∗∀∃∗, all] (Ackermann 1928)

[∃∗∀2∃∗, all] (Gödel 1932, Kalmár 1933, Schütte 1934)

These are often called the classical solvable cases of the decision problem.
In this section, we prove that these classes are decidable and discuss their

complexity.
In Sect. 6.2.1 we treat formulae of monadic vocabulary. Besides the

Löwenheim class we will consider its expansions by equality – which gives
the class [all, (ω)]= – and by unary function symbols – which gives the Löb-
Gurevich class [all, (ω), (ω)], one of the maximal solvable cases.

In Sect. 6.2.2 we investigate the the class of relational ∃∗∀∗-formulae.
In Sect. 6.2.3 we consider the Gödel-Kalmár-Schütte class [∃∗∀2∃∗, all].

We prove the finite model property of this class using a probabilistic approach
due to Gurevich and Shelah [239] which dramatically simplifies the most
difficult part of Gödel’s original proof.

All these classes have nondeterministic exponential time complexity. More
precisely, we will prove complexity upper and lower bounds of the form
Ntime(2cn) or Ntime(2cn/ logn) and, in most cases, the bounds are sharp,
i.e. upper and lower bounds differ only by the constant c.

Of course, the results on decidability and the finite model property for the
Gödel-Kalmár-Schütte class are inherited by the Ackermann class. A more
detailed treatment of the Ackermann class will be given in Sect. 6.3.

6.2.1 Monadic Formulae

We first fix terminology. The classes [all, (ω)] and [all, (ω)]= are called
the Löwenheim class and the Löwenheim class with equality. Formulae in
these classes are called relational monadic formulae. By expanding the
Löwenheim class with unary function symbols we obtain the full monadic
class [all, (ω), (ω)], which is also called the Löb-Gurevich class; its elements
are monadic formulae.

We will prove that the full monadic class and the Löwenheim class with
equality have the finite model property; in fact we will establish bounds on
the size of minimal models of monadic formulae and thus prove a small model



250 6. Standard Classes with the Finite Model Property

property that will give us good upper complexity bounds for the satisfiability
problems of these classes. The Löwenheim class (with equality) has a satisfi-
ability test of complexity Ntime(2O(n/ logn). For the full monadic class the
complexity is slightly higher: satisfiability is decidable in Ntime(2O(n)).

We will also prove lower complexity bounds; in fact the lower bounds
apply to small subfragments of these classes and, in particular, give us a
good lower bound also for the Gödel-Kalmár-Schütte class.

Decidability and Upper Complexity Bounds for the Monadic Class.
We first establish a small model property for the Löwenheim class with equal-
ity.

Proposition 6.2.1. Let ψ be a relational monadic formula, possibly with
equality, of quantifier-rank q with m predicates. If ψ is satisfiable, then it has
a model of cardinality at most q2m.

Proof. Let A = (A,P1, . . . , Pm) |= ψ. With every element a ∈ A we associate
a ‘colour’ c(a) = c1 · · · cm ∈ {0, 1}m where ci = 1 iff A |= Pia. Let Ac ⊆ A
be the set of elements with colour c. For every c ∈ {0, 1}m we choose a set
Bc ⊆ Ac such that Bc = Ac if |Ac| ≤ q and |Bc| = q if |Ac| > q. Let B be
the induced substructure of A with universe B :=

∪
c∈{0,1}m Bc. Obviously,

|B| ≤ q2m.
It is easy to see that no formula with q variables distinguishes between A

and B. (For instance, it is clear that Duplicator wins the Ehrenfeucht-Fräıssé
game with q moves on A and B.) Since A |= ψ and ψ has quantifier-rank q,
this implies that B |= ψ. ⊓⊔

Corollary 6.2.2 (Löwenheim). The satisfiability problem for relational
monadic formulae is decidable.

For the Löwenheim class without equality a somewhat stricter bound ap-
plies.

Exercise 6.2.3. Prove that every satisfiable formula in [all, (m)] has a model
with at most 2m elements.

A formula of length n can have only O(n/ log n) different variables and
predicates. Thus we obtain the following bound on the size of a minimal
model.

Corollary 6.2.4. Every satisfiable formula of length n in [all, (ω)]= has a
model of cardinality at most 2O(n/ logn)).

Exercise 6.2.5. [31, 477] Extend Löwenheim’s decidability result to the
fragment of second-order logic where all predicates, free and bound, are
monadic.
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Exercise 6.2.6. [251] Prove the decidability of ε-logic without equality and
only monadic predicates. Here ε-logic means the extension of first-order logic
with Hilbert’s choice operator (see Definition 5.3.1). Hint: Extend the decid-
ability proof for the Löwenheim class to this case.

Note that by the results in Sect. 5.3.1, ε-logic with equality is undecidable,
even for formulae that have no relation and function symbols besides equality.

For the full monadic class we obtain a slightly higher upper bound on the
size of structures that are to be checked:

Proposition 6.2.7 (Grädel). Every satisfiable monadic formula of length
n has a model of cardinality 2O(n).

Proof. We show that every monadic formula ψ of length n can be transformed
into a formula φ ∈ [all, (n), (0)] which is satisfiable over the same domains as
ψ. By Exercise 6.2.3 the result follows.

Let ψ be a monadic formula containing the atom Pft (where P is a
monadic predicate, f a function symbol and t a term) and let Q be a new
predicate, not occuring in ψ. Then ψ is satisfiable over the same domains as

ψ[Pft/Qt] ∧ ∀x(Pfx↔ Qx)

where ψ[Pft/Qt] is obtained from ψ by replacing all atoms Pft by Qt (for
arbitrary terms t). Repeated application of this transformation produces a
formula

ψ′ := α ∧ ∀xβ

where α does not contain any function symbols and β is a conjunction of
equivalences of the form Pfx ↔ Qx. Let f1, . . . fm be the function symbols
in β. Observe that ∀xβ is the Skolem normal form of ∀x∃y1 · · · ∃ymβ[fix/yi]
which is purely relational. By the Skolem Normal Form Theorem it follows
that

φ := α ∧ ∀x∃y1 . . . ∃ymβ[fix/yi]

is satisfiable over the same domains as ψ′ and hence ψ. Obviously φ contains
at most n predicates. ⊓⊔

In particular, monadic formulae have the finite model property.

Corollary 6.2.8 (Löb, Gurevich). Sat[all, (ω), (ω)] is decidable.

A closer analysis gives an upper complexity bound.

Proposition 6.2.9 (Lewis). The problem whether a given monadic formula
of length n has a model of size s can be decided nondeterministically in
2O(n/ logn+log s) steps.
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Proof. We present a nondeterministic procedure which, when given a monadic
formula ψ and a model size s, first guesses a structure of size s of appropriate
vocabulary and then verifies by quantifier elimination that this structure is
a model for ψ. Guessing a structure means writing down a word of length s
for every relation and a word of length s log s for every function in ψ. This
requires O((n/ log n)s log s) bits.

Then quantifiers are eliminated as follows. Begin with an innermost quan-
tifier; assume that it is existential and that we have to eliminate it from a
subformula ∃xφ with φ quantifier-free. Transform φ into disjunctive normal
form, commute the existential quantifier with the disjunctions and separate
the atoms containing x from those that depend on different variables. The
result is a formula

r∨
j=1

(
φ̃j ∧ ∃xφj(x)

)
where each φj(x) is a conjunction of literals ±Pfx (where f is a composition
of at most n function symbols). Note that r = 2O(n/ logn) and that every
subformula φ̃j ∧ ∃xφj(x) contains some of the at most O(n/ log n) different
atoms of the original formula ψ. Therefore we can evaluate every subformula
∃xφj(x) and replace it by true or false in time O(n2 log n ·s log s); elimination
of one quantifier requires therefore time 2O(n/ logn+log s). Universal quantifiers
are eliminated by a dual procedure using conjunctive instead of disjunctive
normal form. This procedure is repeated for every quantifier. All intermediate
formulae are conjunctive or disjunctive normal forms of atoms that were
originally in ψ so the same bounds as above hold for the elimination of every
quantifier in ψ. Therefore the whole decision procedure takes 2O(n/ logn+log s)

steps. ⊓⊔

Corollary 6.2.10 (Lewis, Grädel). There exist constants c, d such that

(i) Sat[all, (ω)]= ∈ Ntime(2cn/ logn);
(ii) Sat[all, (ω), (ω)] ∈ Ntime(2dn).

For classes of relational monadic formulae where the number of predi-
cates is bounded by a constant, complexity is even lower. Satisfiability of a
formula with m monadic predicates and q quantifiers can be decided by cy-
cling through all structures A of cardinality at most q2m. The representation
of such a structure takes qm2m bits, which is O(q) for bounded m; on every
structure the formula is evaluated by the obvious recursive procedure using
additional work space O(mq logm log q) for the representation of q elements
of the model. A formula of length n has q = O(n/ log n) quantifiers. Therefore
deciding satisfiability takes linear space; with the Space Compression Theo-
rem from complexity theory (see e.g. [271, pp. 288–289]) we get the following
result.

Corollary 6.2.11. Sat[all, (m)]= ∈ Dspace(n) for all m ∈ N.
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Exercise 6.2.12. [491] Prove that Sat[all, (m)]= is Pspace-complete for ev-
ery fixed m. Hint: Reduce QBF (the set of quantified Boolean formulae that
evaluate to true) to Sat[all, (0)]=, i.e. the first-order theory of equality. Con-
clude that the decision problem for every first-order theory that has a non-
trivial model (in which some atomic statements are true and others false) is
Pspace-hard.

Lower Bounds for the Monadic and the Gödel-Kalmár-Schütte
Class. We now prove a lower complexity bound for the Löwenheim class
that matches the upper bound proved above. In fact this lower bound applies
to a small subclass of monadic formulae, namely [∀2∃, (ω)]. In particular this
class is also contained in the Gödel-Kalmár-Schütte class [∃∗∀2∃∗, all], so we
obtain at the same time a lower bound for the latter. We will see in Sect. 6.2.3
that this lower bound is optimal, up to the value of the constant c.

Theorem 6.2.13 (Lewis, Fürer). There exists a constant c > 0 such that

Sat[∀2∃, (ω)] ̸∈ Ntime(2cn/ logn).

Proof. In view of Theorem 6.1.8 it suffices to show that for every domino
system D = (D,H, V )

DOMINO(D, 2n) ≤n logn Sat[∀2∃, (ω)].

Recall that DOMINO(D, 2n) is the set of all w ∈ D∗ such that D tiles the
torus Z(2n) = Z2n × Z2n with initial condition w (where n = |w|). We have
to construct for every w ∈ Dn a formula ψ of length O(n log n) in the prefix-
vocabulary class [∀2∃∗, (ω)] which is satisfiable iff w ∈ DOMINO(D, 2n). The
intended models of ψ have universe Z(2n) and encode tilings τ : Z(2n)→ D
in the following way. With any point z = (x, y) of Z(2n) we associate the word
(x0 · · ·xn−1y0 · · · yn−1) ∈ {0, 1}2n such that x =

∑
i xi2

i and y =
∑
i yi2

i.
The vocabulary of ψ consists of the monadic predicates Xi, X

∗
i , Yi, Y

∗
i (for

0 ≤ i < n), Ni (for 0 ≤ i ≤ n) and Pd (for d ∈ D), with the following
intended interpretation:

Xiz : xi = 1
X∗
i z : xj = 1 for all j < i
Yiz : yi = 1
Y ∗
i z : yj = 1 for all j < i
Niz : z = (i, 0)
Pdz : τ(z) = d

The formula ψ has the form ∀z∃vα∧∀z∀z′β with α and β quantifier-free.
∀z∃vα ensures the correct interpretations of Xi, X

∗
i , Yi and Y ∗

i and Ni; it
relates these predicates in the desired way among each other and states that
every z = (x, y) has a ‘successor’ v: if x ̸= 2n−1 then v is its right neighbour
(x + 1, y), otherwise, if z = (2n − 1, y) then v = (0, y + 1). To construct α
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we use the following basic fact. For arbitrary elements a =
∑
i<n ai2

i and
b =

∑
i<n bi2

i of Z2n , we have that b = a+ 1 if and only if there exists some
j ≤ n such that

a0 = · · · = aj−1 = 1, aj = 0

b0 = · · · = bj−1 = 0, bj = 1, and

bj+1 = aj+1, . . . , bn−1 = an−1.

Thus, for every k < n we can write bk as the exclusive or of ak and∧
i<k ai.
Let α be the conjunction of the following clauses (where ⊕ stands for the

exclusive or):
X∗

0z ∧ Y ∗
0 z

n−1∧
i=1

X∗
i z ↔ (X∗

i−1z ∧Xi−1z)

n−1∧
i=1

Y ∗
i z ↔ (Y ∗

i−1z ∧ Yi−1z)

n−1∧
i=0

Xiv ↔ (Xiz ⊕X∗
i z)

n−1∧
i=0

Yiv ↔
[
Yiz ⊕

(
Y ∗
i z ∧Xn−1z ∧X∗

n−1z
)]

N0z ↔
(n−1∧
i=0

¬Xiz ∧ ¬Yiz
)

n−1∧
i=0

Niz ↔ Ni+1v.

It is easily verified that ∀z∃vα axiomatizes the relations in a correct way.

The other subformula ∀z∀z′β asserts that the tiling is correct. The first
step is the definition of two quantifier-free formulae H(z, z′) and V (z, z′)
which express – given the correct axiomatization of Xi, X

∗
i , Yi, Y

∗
i – that z′

is the right (resp. upper) neighbour of z:

H(z, z′) :=

n−1∧
i=0

(Yiz
′ ↔ Yiz) ∧

n−1∧
i=0

(Xiz
′ ↔ (Xiz ⊕X∗

i z))

V (z, z′) :=
n−1∧
i=0

(Xiz
′ ↔ Xiz) ∧

n−1∧
i=0

(Yiz
′ ↔ (Yiz ⊕ Y ∗

i z))

With H(z, z′) and V (z, z′) at hand the tiling conditions can be expressed
by the formula ∀z∀z′β where β is the conjunction of the following four clauses:
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Every point is tiled by precisely one domino

�∨
d∈D

Pdz

(where
�∨
is an extended exclusive or)

The adjacency conditions

H(z, z′)→
∨

(d,d′)∈H

Pdz ∧ Pd′z′

V (z, z′)→
∨

(d,d′)∈V

Pdz ∧ Pd′z′

The initial condition
n−1∧
i=0

(Niz → Pwiz).

This completes the construction of ψ. The length of ψ is O(n log n) as
required. It remains to show that ψ is satisfiable if and only if D tiles Z(2n)
with initial condition w. If a correct tiling exists, then Z(2n) with the in-
tended interpretation of the predicates is obviously a model for ψ. Con-
versely, let A be a model for ψ with universe A. We define the mapping
f : A→ Z(2n) that associates with every a ∈ A the point f(a) = (x(a), y(a))
whose binary representation coincides with the sequence of truth values
XA

0 a, . . . ,X
A
n−1a, Y

A
0 a, . . . , Y

A
n−1a. The formula ∀z∃vα ensures that this map-

ping is surjective. Now choose, for every point z ∈ Z(2n) some element
a ∈ f−1(z) and define the tiling τ(z) = d, where d is the unique element
of D such that A |= Pda. This defines a correct tiling of Z(2n) by D with
initial condition w. ⊓⊔

Note that, due to the special form of ψ this proof actually gives a stronger
result.

Corollary 6.2.14 (Fürer). The satisfiability problem for sentences of the
form ∀x∀yα ∧ ∀x∃yβ where α, β are quantifier-free monadic formulae has a
lower complexity bound Ntime(2cn/ logn), for some constant c > 0.

Remark. This lower complexity bound also applies to L2, i.e. the class of
relational first-order sentences with only two variables (see Sect. 8.1).

The first lower bound result on the monadic class was proved by Lewis
[352]. It was slightly weaker than the present result since it applied to the
prefix class [∃ ∧ ∀∀ ∧ ∀∃] rather than [∀∀ ∧ ∀∃]. Fürer [177] removed the
leading existential quantifier using an unconstrained finite domino problem
rather than a direct encoding of Turing machines. The proof presented here
is due to Grädel and taken from [196].
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It is not known whether the 2O(n)-upper bound for the Löb-Gurevich
class is optimal in terms of nondeterministic time-complexity. But we can at
least prove that the bound of Proposition 6.2.7 on the cardinality of minimal
models cannot be improved in an essential way.

Proposition 6.2.15. For every natural number n, there exists a satisfiable
monadic sentence of length O(n) all whose models have at least (n + 1)2n

elements.

Proof. We construct sentences ψn whose vocabulary consists of a unary func-
tion f and monadic predicates S,C,E, Y and Y ∗. The intended model con-
sists of an f -chain a0, . . . , an−1 that leads into an f -cycle of cardinality n2n.
This cycle is divided into 2n segments of length n. The predicate Y defines
on each segment s a natural number m(s) < 2n. The formula ψn ensures that
m(s′) = m(s) + 1 (mod 2n) for successive segments s, s′.

More precisely, the universe of the intended model An |= ψn is

A := {a0, . . . , an−1} ∪ {0, . . . , n2n − 1}.

The interpretation of f on A is given by

f(ai) := ai+1 for i < n− 1

f(an−1) := 0

f(i) := i+ 1 (mod n2n).

The interpretations of the predicates on A are

S := {a0}
C := {0, , . . . , n2n − 1}
E := {c ∈ C : c ≡ 0 (mod n)}
Y := {nj + k ∈ C : k < n, j < 2n, the k-th bit of j is 1}
Y ∗ := {nj + k ∈ C : Y (nj) ∧ Y (nj + 1) ∧ · · · ∧ Y (nj + k − 1)}

The desired sentence is ψn := ∃xSx ∧ ∀xα where α is the conjunction of

Sx→ ¬Cfn−1x

Cfnx

Cx→ Cfx

Ex→ Cx

Sx→ Efnx

Efnx↔ (Sx ∨ Ex)
Y ∗x↔ (Ex ∨ (Y x ∧ Y ∗fx))

Y fnx↔ (Y x⊕ Y ∗x).

It is easily verified that An |= ψn. For the converse, use the following
exercise.
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Exercise 6.2.16. Let B be a model of ψn. The interpretation of E in B is
closed under fn. Prove that (E, fn) is isomorphic to Z2n , succ).

⊓⊔

Problem. Close the gap between the lower bound Ntime(2Ω(n/ logn)) and
the upper bound Ntime(2O(n)) for the Löb-Gurevich class. The apparent
difficulty for using the technique of Proposition 6.2.15 for pushing up the
lower bound to Ntime(2Ω(n)) (along the lines of Theorem 6.2.13) lies in the
problem of axiomatizing the grid. We can axiomatize 22n successive elements
and thus have a 2n × 2n-square with horizontal adjacency condition. But
how can we axiomatize vertical adjacency by a subformula of length O(n)?
Alternatively, how can we determine in Ntime(2cn/ logn)) whether a sentence
is satisfiable if its minimal models (if one exists) have cardinality 2cn?

6.2.2 The Bernays-Schönfinkel-Ramsey Class

Bernays and Schönfinkel [35] proved that the satisfiability problem for rela-
tional ∃∗∀∗-sentences without equality is decidable. Ramsey [435] extended
this results to ∃∗∀∗-sentences with equality and showed that the spectrum of
every such sentence is either finite or co-finite. We prove in this section that
the satisfiability problem for ∃∗∀∗-sentences without functions is complete for
nondeterministic exponential time, no matter whether or not the formulae
contain equality.

Decidability and Upper Complexity Bounds. We first show that every
relational sentence ψ := ∃x1 · · · ∃xp∀y1 · · · ∀ymφ is either unsatisfiable or has
a model of cardinality at most p. There are several ways to prove this. We use
a simple model-theoretic argument based on the closure of universal sentences
under substructures: If A is a substructure of B and B is a model of a prenex
sentence η with only universal quantifiers, then also A |= η.

Proposition 6.2.17. Let ψ := ∃x1 · · · ∃xp∀y1 · · · ∀ymφ be a satisfiable sen-
tence in [∃∗∀∗, all]=. Then ψ has a model with at most max(1, p) elements.

Proof. Let σ be the vocabulary of ψ. Since ψ is satisfiable, there exists a
σ-structure A and elements a1, . . . , ap such that

A |= ∀y1 · · · ∀ymφ[a1, . . . , ap].

We consider η := ∀y1 · · · ∀ynφ as a sentence of the expanded vocabulary
τ = σ ∪ {a1, . . . , ap} and (A, a1, . . . ap) as a τ -expansion of A. Since η is
universal, it is satisfied by every substructure of (A, a, . . . , ap), i.e. by every
τ -structure (B, a1, . . . , ap) where B ⊆ A is a substructure of A containing
a1, . . . , ap. In particular this holds for the induced substructure with universe
{a1, . . . , ap} (in the case that p = 0, we take any substructure of cardinality
one). ⊓⊔
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Exercise 6.2.18. Give a different proof of Proposition 6.2.17 using Her-
brand models. Hint: This is obvious for ∃∗∀∗-sentences without equality, since
the Herbrand universe H has cardinality max(1, p). To handle equality prove
that a sentence in functional form with equality is satisfiable if and only if
there exists an equivalence relation E on H such that ψ has a model with
universe H/E.

With Proposition 6.0.4 we conclude that there exists a constant c, such
that the satisfiability of a prenex sentence of length n with prefix ∃p∀m can be
decided nondeterministically in time t = (npm)c. Note that m = O(n/ logn).
If we restrict attention to sentences where the number of existential quan-
tifiers is bounded by a constant, then the time t is bounded by 2O(n/ logn);
otherwise p = O(n/ log n) and t = 2O(n). We infer

Theorem 6.2.19 (Lewis). There exist constants c, d such that

(i) Sat[∃∗∀∗, all]= ∈ Ntime
(
2cn

)
.

(ii) For all p ∈ N, Sat[∃p∀∗, all]= ∈ Ntime
(
2dn/ logn)

)
.

The same argument shows that the satisfiability problems for certain sub-
classes of the Bernays-Schönfinkel-Ramsey class are in P or NP.

Theorem 6.2.20. (i) If s is finite, then Sat[∃∀∗, s]= is in P.
(ii) Sat[∃∀∗, all]= is in NP.
(iii) For all q ∈ N, Sat[∃∗∀q, all]= is in NP.

Proof. If the given formula has only one existential quantifier, then it is either
logically false or it has a model with only one element. If the vocabulary
is fixed then there is a fixed list of possible structures for all formulae of
the class, so the satisfiability can clearly be checked in polynomial time (in
fact with logarithmic space). If the vocabulary is arbitrary the problem is
equivalent to the satisfiability problem for propositional formulae (the values
of the predicates on the single element of the structures are propositional
variables).

If the number of universal quantifiers is bounded by a fixed q ∈ N, then
the claim follows immediately from Proposition 6.0.4. ⊓⊔

Lower Bounds.

Theorem 6.2.21 (Lewis). There exists a constant c > 0 such that

Sat[∃∗∀∗, all] ̸∈ Ntime(2cn).

Proof. We use the same basic ideas as in the proof of Theorem 6.2.13; the
details of the construction are however more complicated, mainly because
we want to to obtain the time bound 2cn rather than 2cn/ logn. Let m be
the smallest natural number with m logm ≥ n. We will use m-ary notation
to represent a domino problem on a square of size mm ≥ 2n by a formula



6.2 The Classical Solvable Cases 259

of length O(m logm) = O(n). More precisely we show that for any domino
system D

DOMINO(D,mm) ≤m logm Sat[∃∗∀∗, all].

Given a word w ∈ D∗ of length n a formula ψ is constructed which
is satisfiable if and only if D tiles Z(mm) with initial condition w. The
intended model has universe {0, . . . ,m − 1}; the formula ψ contains ex-
istentially quantified constants u0, . . . , um−1 which stand for the ciphers
0, . . . ,m − 1. These are used for the m-ary representation of numbers up
to mm − 1. Thus a point (x, y) ∈ Z(mm) is encoded by a 2m-tuple (x̄, ȳ) =

(xm−1, . . . , x0, ym−1, . . . , y0) where x =
∑m−1
i=0 xim

i and y =
∑m−1
i=0 yim

i.
The predicates in ψ together with their intended interpretations are described
in the following table:

Nuv: Successor of ciphers: u = i and v = i+ 1 for some i < m− 1;
N∗uv: Order of ciphers: u = i and v = j for some i < j;
Euv: Equality of ciphers: u = v = i for some i ≤ m− 1;
Sx̄ȳ: Successor relation on Zmm : y = x+ 1;
Pdx̄ȳ: Tiling by the domino d: τ(x, y) = d.

To describe the initial condition we will need in addition:

Lx̄ȳ: y = 2x;
Rx̄ȳ: y = 2x+ 1.

The formula ψ has the form ∃u0 · · · ∃um−1 (α ∧ β ∧ φw) where α axioma-
tizes the predicates, β describes the tiling condition of D and φw the initial
condition imposed by w.

The axiom α. The main problem in the construction of α is the axiomatiza-
tion of the successor relation. This is done by defining the successor relation
on numbers < mm in terms of the successor relation on numbers < mm−1.
Define α to be the formula ∀x̄∀ȳα′ where α′ is the conjunction of the following
formulae:

m−2∧
i=0

Nuiui+1

Nx0x1 → N∗x0x1

(N∗x0x1 ∧Nx1x2)→ (N∗x0x2 ∧ ¬Nx0x2)

¬Nx0x0 ∧ (N∗x0x1 → ¬Nx1x0)
m−1∧
i=0

Euiui

(N∗x0x1 ∨N∗x1x0)→ ¬Ex0x1
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Nx0y0 →
(
Sx̄ȳ ↔

∧
i>0

Exiyi

)
Sx̄ȳ → (Nx0y0 ∨ (Ex0um−1 ∧ Ey0u0))

Sx̄′um−1 ȳ
′u0 ↔

(
Su0x̄

′ u0ȳ
′ ∨

m−1∧
i=1

(Exium−1 ∧ Eyiu0)
)
.

In the last clause, x̄′ and ȳ′ stand for the (m− 1)-tuple xm−1, . . . , x1 and
ym−1, . . . , y1, respectively. These formulae determine the interpretations of
the relation symbols N , N∗, E and S on the universe {0, . . . ,m − 1}. Note
that the combined length of all formulae is O(m logm).

The tiling formula β. With the successor relation available it is now very
easy to state that there is a tiling of Z(mm) by the domino system d =
(D,H, V ) (if the initial condition is left aside for a moment):

β := ∀x̄∀ȳ∀z̄
( �∨
d∈D

Pdx̄ȳ ∧
(
Sx̄z̄ →[ ∨

(d,d′)∈H

(Pdx̄ȳ ∧ Pd′ z̄ȳ) ∧
∨

(d,d′)∈V

(Pdȳx̄ ∧ Pd′ ȳz̄)
]))

.

The description of the initial condition. The main difficulty concerning
the initial condition is to ensure that the length of its description remains
bounded by O(n) = O(m logm); the straightforward encoding of its n in-
stances by n variables or relations would increase the length of the formula
to Ω(n log n). For this purpose we use the technique described in Sect. 6.1.2:

Having the successor relation available and using the facts that

y = 2x ↔ (x = 0 ∧ y = 0) ∨ (y − 2) = 2(x− 1)

y = 2x+ 1 ↔ (x = 0 ∧ y = 1) ∨ (y − 2) = 2(x− 1) + 1

it is straightforward to axiomatize the relations Lx̄ȳ and Rx̄ȳ by an ∀∗-
formula of length O(m logm). Now Lemma 6.1.10 says that given an input
w a universal formula φw of length O(n) can be built in linear time which
is true on the structure {0, . . . ,m − 1} if and only if the initial condition
imposed by w is satisfied.

Thus we conclude that the formula

ψ := ∃u0 · · · ∃um−1(α ∧ β ∧ φw)

has length O(m logm) and is satisfiable if and only if D tiles Z(mm) with
initial condition w. This completes the proof of Theorem 6.2.21. ⊓⊔

Theorem 6.2.22. There exists a constant c > 0 such that

Sat[∃2∀∗, all] ̸∈ Ntime(2cn/ logn).
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The proof is completely analogous to the previous one; there we intro-
duced m = O(n/ log n) existentially quantified constants which represented
the m ciphers used for m-ary notation of numbers up to mm. Here we have
only two constants which we use to represent the numbers up to 2m in binary
notation.

6.2.3 The Gödel-Kalmár-Schütte Class: a Probabilistic Proof

We prove in this section that the satisfiability problem for the Gödel-Kalmár-
Schütte class [∃∗∀∗∃∗, all] is decidable, and in fact is contained in the com-
plexity class Ntime(2O(n/ logn)). For expository reasons we first consider the
case of formulae without leading existential quantifiers, i.e. the [∀2∃∗] prefix
class.

Theorem 6.2.23 (Gödel, Schütte). The class [∀2∃∗, all] has the finite
model property.

We prove Theorem 6.2.23 following Gödel’s general strategy [187]: first
we formulate a necessary criterion for satisfiability of ∀2∃∗-sentences; in a
second step, we prove that this criterion is sufficient for finite satisfiability.
In Gödel’s paper the second part is a difficult and very sophisticated model
construction; we will use instead a much simpler probabilistic argument due
to Gurevich and Shelah [239].

In fact we will prove a more general result concerning ∀2∃∗-sentences that
may contain equality, but have to satisfy a certain semantic condition: ev-
ery satisfiable sentence must have a model in which no element is uniquely
determined by its atomic type. As we will show below, this condition is satis-
fied by all sentences without equality, but there are other interesting cases as
well. For instance we will conclude that the ∀2∃∗-fragment of graph theory
is decidable. Also the decidability of the Ackermann class with equality is a
consequence of this result (see Sect. 6.3.3).

Gödel’s Criterion. Let ψ = ∀x∀y∃z1 · · · ∃zmφ(x, y, z1, . . . , zm) be a rela-
tional first-order sentence (possibly containing equality) where φ is quantifier-
free. On structures with at least two elements ψ is equivalent to

∀x∀y∃z1 · · · ∃zm∃z′1 · · · ∃z′m(x ̸= y → φ(x, x, z1, . . . , zm)∧φ(x, y, z′1, . . . , z′m)).

Further, on sufficiently large structures we can impose inequalities of vari-
ables by using repeatedly the equivalence

∃x∃yα(x, y) ≡ ∃x∃y((α(x, x) ∨ α(x, y)) ∧ x ̸= y).

Thus we can restrict attention to sentences of the form

ψ := ∀x1∀x2∃x3 · · · ∃xm(x1 ̸= x2 → φ(x1, x2, . . . , xm))

where φ(x1, . . . , xm) |=
∧

1≤i<j≤m xi ̸= xj , and to structures with at least m
elements. We call such sentences Gödel sentences of special form.
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Definition 6.2.24. A k-table of vocabulary σ is a σ-structure with universe
{1, . . . , k}. Further, given a structure A with a k-tuple a1, . . . , ak of distinct
elements, TA[a1, . . . , ak] is the unique k-table which is isomorphic, via the
mapping i 7→ ai (for i = 1, . . . , k), to the substructure of A induced by
a1, . . . , ak.

Definition 6.2.25. An element a of a structure A is a king if there is no
other element b of A with the same 1-table, i.e. with TA[b] = TA[a].

Lemma 6.2.26. Let ψ be any relational first-order sentence without equality.
If ψ is satisfiable then it has a model without kings.

Proof. Suppose that A is a model for ψ with universe A. Let 2A be the
structure with universe A× {0, 1} and relations defined in such a way that

2A |= R(a1, i1) · · · (ak, ik)⇐⇒ A |= Ra1 · · · ak

for all k-ary predicates R and all a1, . . . , ak ∈ A and i1, . . . , ik ∈ {0, 1}.
Obviously A and 2A are indistinguishable by sentences without equality and
2A does not contain kings. ⊓⊔

Definition 6.2.27 (Gödel’s Criterion). Let φ(x1, . . . , xm) be quantifier-
free and P,Q be non-empty sets of, respectively, 1-tables and 2-tables over
σ. We say that P,Q satisfy Gödel’s criterion for φ if

(1) For all B,B′ ∈ P , there exists a 2-table C ∈ Q such that TC[1] = B and
TC[2] = B′.

(2) Every 2-table B ∈ Q can be extended to an m-table C such that
– TC[1, 2] = B;
– TC[i] ∈ P for all i ∈ {1, . . . ,m};
– TC[i, j] ∈ Q for all distinct i, j ∈ {1, . . . ,m};
– C |= φ[1, . . . ,m].

Lemma 6.2.28. Let ψ = ∀x1∀x2∃x3 · · · ∃xm(x1 ̸= x2 → φ(x1, x2, . . . , xm))
be a Gödel sentence in special form. If ψ has a model without kings, then
there exist non-empty sets P,Q satisfying Gödel’s criterion for φ.

Proof. Pick a model A |= ψ without kings and set

P := {TA[a] : a ∈ A}
Q := {TA[a, b] : a, b ∈ A, a ̸= b}.

⊓⊔

Exercise 6.2.29. Prove that in Lemma 6.2.28 the assumption that ψ has a
model without kings cannot be dropped.

Sufficiency of Gödel’s Criterion for Finite Satisfiability.
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Theorem 6.2.30. Let ψ = ∀x1∀x2∃x3 · · · ∃xm(x1 ̸= x2 → φ(x1, . . . , xm))
be a Gödel sentence in special form and suppose that P,Q satisfy the Gödel
criterion for φ. Then ψ has a finite model.

Proof. Let P = {B1, . . . ,Bp}. For n ≥ m we present a probabilistic con-
struction of an np-table A:

Stage 1: Every element of the universe {1, . . . , np} can be written in the form
ip+ j where 0 ≤ i < n, 1 ≤ j ≤ p. Set TA[ip+ j] := Bj .

Stage 2: Let 1 ≤ a < b ≤ np. By condition (1) of Gödel’s criterion the set

{C ∈ Q : TC[1] = TA[a], TC[2] = TA[b]}

is non-empty. Select randomly a 2-table C from this set and put TA[a, b] := C.

Stage j (3 ≤ j ≤ m): Define the truth value of every atomic statement
Ra1 · · · ak, for which a1, . . . , ak has precisely j distinct components, at ran-
dom with probability 1/2.

Stages m+ 1,m+ 2, . . . : Set A |= ¬Ra1 · · · ak for every relation symbol and
every tuple a1, . . . , ak with more than m distinct components.

Note that at stage j, the truth values of all atomic statements on j dis-
tinct elements are determined. Let Sn be the set of all np-tables that may
appear with positive probability as the result of this probabilistic process. We
consider Sn as a probability space with the uniform probability distribution.

Definition 6.2.31. Let A ∈ Sn, a1, . . . , am ∈ {1, . . . , np} and let C be an
m-table. We say that a3, . . . , am witness C for a1, a2 if

A |= Rai1 · · · aik ⇐⇒ C |= Ri1 · · · ik

for all k-ary relation symbols R ∈ σ and all i1, . . . , ik ∈ {1, . . . ,m} such that
ij > 2 for at least one j. Note that for the case where σ contains only unary
and binary predicates this means that

TA[a1, aj ] = TC[i, j]

for all i ̸= j with i > 2 or j > 2.

Let s be the number of atoms Rxi1 · · ·xik such that R is a k-ary predicate
in σ, with 3 ≤ k ≤ m, and i1, . . . , ik is a tuple of numbers in {1, . . . ,m} with
at least three distinct components. Further, let

r :=

(
m− 2

2

)
+ 2(m− 2)

q := |Q|

ε :=
1

qr · 2s
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By condition (2) of Gödel’s criterion there exists a function f assigning
to every 2-table B ∈ Q an appropriate m-table f(B). As usual, for arbitrary
events E,F we write Pr[E | F ] for the conditional probability of the event E
given that the event F occurs.

Lemma 6.2.32. Let B ∈ Q,C = f(B) and let a1, . . . , am be m distinct
elements of {1, . . . , np}. Then the conditional probability

Pr[a3, . . . , am witness C for a1, a2 | TA[ai] = TC[i] for i = 1, . . . ,m]

is at least ε.

Proof. There are s atoms Rxi1 · · ·xik with at least three distinct variables.
For each of these

Pr[A |= Rai1 · · · aik ] = 1/2.

The probability that A |= Rai1 · · · aik iff C |= Ri1 · · · ik for all such atoms is
therefore 2−s.

The corresponding equivalence for all atoms with two distinct variables
holds if

TA[ai, aj ] = TC[i, j]

for all i ̸= j, {i, j} ̸= {1, 2}. There exist r such sets {i, j}. Accordingly, the
probability that this is satisfied for all such i, j is ≥ q−r. For atoms with just
one variable the equivalence holds by assumption. ⊓⊔

Let ℓ := ⌊(n− 2)/(m− 2)⌋; as a consequence n ≥ ℓ(m− 2) + 2.

Lemma 6.2.33. Let a1, a2 be distinct elements of {1, . . . , np}. Then

Pr[A |= ¬∃x3 · · · ∃xmφ[a1, a2]] ≤ (1− ε)ℓ.

Proof. Let B be any possible value for TA[a1, a2] and C = f(B). It suffices
to show that

Pr[no tuple a3, . . . , am witnesses C for a1, a2] ≤ (1− ε)ℓ.

By construction, A contains at least n−2 ≥ ℓ(m−2) pairwise distinct elements
ai,j ∈ {1, . . . , np} − {a1, a2} such that TA[ai,j ] = TC[j] for i = 1, . . . , l and
j = 3, . . . ,m. The ℓ events

“ai,3, . . . , ai,m witness C for a1, a2”

are independent and have probability ≥ ε. Thus the event that no tuple
a3, . . . , am witnesses C for a1, a2 has probability at most (1− ε)ℓ. ⊓⊔
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If follows that on Sn

Pr[A |= ¬ψ] ≤
∑
a1 ̸=a2

Pr[A |= ¬∃x3 . . . ∃xmφ[a1, a2]]

≤ pn(pn− 1)(1− ε)ℓ ≤ pn(pn− 1)(1− ε)(n−2)/(m−2)−1

which tends to 0 exponentially fast as n grows. Thus, for sufficiently large n,
the probability that a randomly chosen A ∈ Sn is a model for ψ is positive.
Thus ψ has a finite model. ⊓⊔

As a consequence we obtain

Theorem 6.2.34. Let ψ be any relational ∀2∃∗-sentence that has a model
without kings. Then ψ has a finite model.

Proof. Let A be a model for ψ without kings. If A is finite, nothing needs
to be proved. Otherwise we transform ψ into a Gödel sentence of special
form which is equivalent to ψ on all structures whose cardinality exceeds
the number of variables of ψ. By Lemma 6.2.28, there exist P,Q satisfying
Gödel’s criterion, which by Theorem 6.2.30 implies that ψ has a finite model.

⊓⊔

Since every satisfiable formula without equality has a model without
kings, this implies the finite model property of [∀2∃∗, all]. Theorem 6.2.23
is proved.

The theory of directed graphs can be seen as the theory of one irreflexive
binary relation. Since for an irreflexive relation, all 1-tables are identical,
directed graphs are structures without kings.

Corollary 6.2.35. The ∀2∃∗-fragment of the theory of directed graphs is de-
cidable.

Remark. With the method of existential interpretations (see Sect. 3.2),
Gurevich [229] has shown that the ∀3∃∗-fragment of this theory is unde-
cidable.

The Full Gödel-Kalmár-Schütte Class. We now present two methods
for extending Theorem 6.2.23 to [∃∗∀2∃∗, all].

The first approach generalizes Gödel’s criterion to sentences with leading
existential quantifiers. The same argument as above shows that we can re-
strict attention to the case where all variables must be interpreted by distinct
elements, i.e., to sentences of the form

ψ := ∃x1 · · · ∃xp∀y1∀y2∃z1 · · · ∃zt(α(x̄, y1, y2)→ φ(x̄, y1, y2, z̄))

where α(x̄, y1, y2) asserts that y1, y2 are distinct from each other and from
x1, . . . , xp, and φ entails all remaining inequalities among distinct variables.
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Definition 6.2.36 (Extended Gödel Criterion). Let A be a p-table over
σ and P,Q be non-empty sets of, respectively, (p+1)-tables and (p+2)-tables
over σ. We say that A, P,Q satisfy the extended Gödel criterion for ψ if

(0) For all B ∈ P ∪Q we have that TB[1, . . . , p] = A.
(1) For all B,B′ ∈ P , there exists a (p + 2)-table C ∈ Q such that

TC[1, . . . , p, p+ 1] = B and TC[1, . . . , p, p+ 2] = B′.
(2) Every (p+ 2)-table B ∈ Q can be extended to an m-table C such that

– TC[1, . . . , p+ 2] = B;
– TC[1, . . . , p, i] ∈ P for all i ∈ {p+ 1, . . . ,m};
– TC[1, . . . , p, i, j] ∈ Q for all distinct i, j ∈ {p+ 1, . . . ,m};
– C |= φ[1, . . . ,m].

Exercise 6.2.37. Prove that Lemma 6.2.28 and Theorem 6.2.30 generalize
to the case just described, i.e., (i) the extended Gödel criterion holds when-
ever ψ has a model without kings, and (ii) the extended Gödel criterion
implies the existence of a finite model for ψ.

Corollary 6.2.38. [∃∗∀2∃∗, all] has the finite model property.

The same result can be established by eliminating leading existential
quantifiers, and thus reducing the [∃∗∀2∃∗] prefix class to the [∀2∃∗] class.

Exercise 6.2.39. [293, 457] Let

ψ := ∃x1 · · · ∃xp∀y1∀y2∃z1 · · · ∃zmφ

be a formula of length n in the Gödel-Kalmár-Schütte class which contains r
predicates of maximal arity h. Prove that ψ can be transformed in polynomial
time to a formula ψ′ of the form

∀y1∀y2∃z1 · · · ∃ztφ′

such that

– t = m(p+ 1)2;
– ψ′ contains at most min(r(p+ 1)h, (p+ 1)2n/ logn) predicates of maximal

arity h;
– If ψ has a model with universe A, then so has ψ′;
– If ψ′ has a model of cardinality s, then ψ has a model of cardinality at

most s+ p.

Hint: Let S be the set of substitutions π that replace both, one or none of
y1, y2 by x-variables (i.e. any variable from x1, . . . , xp). Clearly, |S| = (p+1)2.
Note that for every formula α, we have the equivalence

∃x1 · · · ∃xp∀y1∀y2α ≡ ∃x1 · · · ∃xp∀y1∀y2
∧
π∈S

απ

where απ is the result of applying the substitution π to α.
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Let two atoms Pu1 · · ·uk and Pv1 · · · vk be equivalent if they have the
same predicate letter and the same x-variables at the same places. Formally
Pu1 · · ·uk ∼ Pv1 · · · vk if for all i ≤ k, j ≤ p: ui = xj iff vi = xj . The
contraction c(ū) of ū is obtained by deleting the x-variables from u. The
length of c(ū) is called the rank of ū. For every equivalence class [Pū] add a
predicate Q[Pū] whose arity is the rank of ū and let

ψ′ := ∀y1∀y2
∧
π∈S
∃z1 · · · ∃zmφπ[Pū/Q[Pū]c(ū)]

where φπ[Pū/Q[Pū]c(ū)] is the result of replacing every occurrence of Pū in
φπ by Q[Pū]c(ū).

Prove that (the prenex normal form of) ψ′ has the required properties
(see also [133, pp. 164–168].) Finally, observe that a contraction c(ū) may
be empty, so ψ′ may contain propositional variables. Show that these can be
eliminated.

Exercise 6.2.40. [293, 133] Show that the method of the previous exer-
cise can be generalized as follows: Every relational sentence ψ in the prefix
class [∃p∀m∃∗] can be translated in polynomial time into a relational [∀m∃∗]-
sentence ψ′ such that every model for ψ yields a model for ψ′ over the same
domain and, conversely, for every model for ψ′ of cardinality s there exists a
model for ψ of cardinality at most s+p. Further, ψ′ has length O((p+1)m|ψ|).

Complexity Results. We now prove that the Gödel-Kalmár-Schütte class
can actually be decided in Ntime(2O(n/ logn)). This matches the lower bound
established by Theorem 6.2.13.

We first restrict attention to Gödel sentences in special form. Instead of
proving the upper complexity bound via a small model property, we directly
investigate the complexity of verifying Gödel’s criterion. It should be noted
that the obvious nondeterministic procedure — to guess suitable sets P,Q
of 1- and 2-tables and then to verify deterministically that P,Q satisfy con-
ditions (1),(2) of Gödel’s criterion — may require double exponential time,
at least if the arities of the predicates are unbounded. Indeed, even if the
vocabulary contains just one n-ary predicate, then there exist 22

n

different
2-tables.

However, a refined analysis reveals that much of the data specifying a par-
ticular 2-table may be irrelevant for φ. By eliminating obsolete information
we can greatly reduce the complexity and establish the desired bound.

Theorem 6.2.41. There exists a nondeterministic algorithm which, given a
quantifier-free relational formula φ of length n, decides in time 2O(n/ logn)

whether there exists a pair P,Q that satisfies Gödel’s criterion for φ.

Proof. Suppose that φ(x1, . . . , xm) has vocabulary σ = {R1, . . . , Rt}. There
exist 2t = 2O(n/ logn) 1-tables of vocabulary σ. Thus, a set P of 1-tables can
be represented by a binary word of length 2O(n/ logn). As pointed out above,
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the number of 2-tables over σ may be double exponential. However, not all
atomic statements are actually relevant for Gödel’s criterion, and we will see
that 2O(n/ logn) bits suffice to specify enough information on Q to check that
P,Q have the required properties.

Let Xφ be the set of σ-atoms β(x1, x2) that contains

– all atoms Rx1 · · ·x1 and Rx2 · · ·x2 (for R ∈ σ), i.e., the atoms in which
only one of the variables x1, x2 occur.

– all atoms β(x1, x2) which are obtained from an atom β(xi, xj) occurring
in φ by substituting x1, x2 for xi, xj .

Note that |Xφ| = O(n/ log n).
Let Tφ be the set of 2-tables over σ in which all atomic statements outside

Xφ are false. Every 2-table B over σ has a unique representative πB ∈ Tφ
defined by

πB |= β[1, 2] ⇐⇒ B |= β[1, 2] for β ∈ Xφ

πB |= ¬β[1, 2] for β ̸∈ Xφ.

For every set Q of 2-tables, let Q := {πB : B ∈ Q} ⊆ Tφ.

Lemma 6.2.42. Let P be an arbitrary set of 1-tables over σ. If (P,Q) sat-
isfies Gödel’s criterion for φ, then so does (P,Q).

Proof. Condition (1) of the criterion depends only on the atomic statements
on a single element. On these B and πB coincide.

Let Yφ be the set of atoms β(xi1 , . . . , xik) that occur in φ, together with
all atoms β(xi) or β(xi, xj) obtained from some β ∈ Xφ by substituting xi, xj
for x1, x2. Note that by a rough estimate |Yφ| ≤ O(n/ log n)+|Xφ|m(m−1) =
O(n3).

Now suppose that for every 2-table B ∈ Q there exists an m-table C
witnessing the four conditions of (2). To prove that condition (2) can be
satisfied for πB ∈ Q, take any m-table D such that

D |= β[i1, . . . , ik] ⇐⇒ C |= β[i1, . . . , ik]

for all β(xi1 , . . . , xik) ∈ Yφ. Then, for all i, j ∈ {1, . . . ,m} the following hold:

– TD[i] = TC[i] ∈ P .
– TD[i, j] = πTC[i, j]. In particular TD[1, 2] = πTC[1, 2] = πB and TD[i, j] ∈
Q for all i ̸= j.

– D |= φ[1, . . . ,m] since C and D coincide of all atomic statements of
φ[1, . . . ,m] and C |= φ[1, . . . ,m].

This proves that D witnesses condition (2) of Gödel’s criterion for πB.
⊓⊔
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Note that we have actually proved more: it suffices to guess for eachB ∈ Q
truth values for O(n3) atomic statements of an m-table to verify condition
(2).

We now describe the desired algorithm:
Guess (appropriate representations of) a set P of 1-tables and a set Q ⊆

Tφ of 2-tables. This requires 2O(n/ logn) bits.
To verify condition (1) of the criterion, guess for every pair B,B′ ∈ P a 2-

table C ∈ Q and check that TC[1] = B and TC[2] = B′. This takes 2O(n/ logn)

steps.
To verify (2) guess, for each B ∈ Q, O(n3) truth values for all atoms in Yφ

and verify the four conditions. This takes time 2O(n/ logn)nO(1) = 2O(n/ logn).
⊓⊔

This proves that Sat[∀2∃∗, all] ∈ Ntime(2O(n/ logn)). In fact, the same
result holds for the full Gödel-Kalmár-Schütte class.

Theorem 6.2.43. Sat[∃∗∀2∃∗, all] ∈ Ntime(2O(n/ logn)).

Exercise 6.2.44. Prove Theorem 6.2.43. Hint: It is easy to see that also the
extended Gödel criterion can be verified inNtime(2O(n/ logn)). However, a lit-
tle care is necessary for handling the case where constants and/or universally
quantified variables assume the same values, since a straightforward transla-
tion of an arbitrary ∃∗∀2∃∗-formula into a sentence of special form (imposing
inequalities among all variables) may increase the length too much.

Remark. Theorem 6.2.43 also follows by Proposition 6.0.4, once we can
establish that every satisfiable formula in the Gödel-Kalmár-Schütte class
has a model of cardinality 2O(n/ logn). Lewis [352] writes that such a bound
on the model size follows from the decidability proof given in [133].

The bounds on the model size that were obtained based on Gödel’s crite-
rion are weaker. In his original paper [187], Gödel proved that every satisfi-
able formula ∀x1∀x2∃x1 · · · ∃xmφ of relational vocabulary σ has a model of
cardinality N , if N satisfies the inequality

2(m− 2)q(1 + logN) ≤ 7N

where q is the number of different 2-tables over σ. Schütte [457, 456] proves
that every formula with prefix ∃p∀2∀m containing t predicates of maximal
arity h is either logically invalid or has model with

410tm
22h(p+1)h+4

+ p

elements.
Gurevich and Shelah [239] point out that their probabilistic argument

yields a bound pn on the size of a minimal model for an ∀2∃m-formula, where
n satisfies 2(m− 2) log(np) ≤ ε(n−m) log e (where e is the basis of natural
logarithms and ε is as in the proof of Theorem 6.2.30). Indeed, let N = pn
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and suppose that this inequality holds. With ℓ > (n − 2)/(m − 2) − 1 =
(n−m)/(m− 2) it follows that logN2 < εℓ log e. Since x log e < − log(1−x)
for 0 < x < 1 it follows that logN2+ℓ log(1−ε) < 0 and thus N2(1−ε)ℓ < 1
which (at the end of the proof of Theorem 6.2.30) suffices to show that the
given formula has a model of size N .

A closer analysis of these results reveals fragments of the Gödel-Kalmár-
Schütte class whose satisfiability problem is in NP. For any fixed vocabulary,
q is a constant; thus, there exists a constant c such that N = cn satisfies
Gödel’s inequality. By Proposition 6.0.4 we infer

Theorem 6.2.45 (Grädel). Let p ∈ N and s be finite. Then Sat[∃p∀2∃∗, s]
is in NP.

6.3 Formulae with One ∀

In this section we investigate the satisfiability problem for formula classes
with one universal quantifier. We will first consider the Gurevich-Maslov-
Orevkov class [∃∗∀∃∗, all, all] i.e. the ∃∗∀∃∗ prefix class in first-order logic
without equality, but with arbitrary vocabularies of relation and function
symbols. The finite model property of this class was proved by Gurevich
[226]. The decidability of its satisfiability problem (but not the finite model
property) has also been proved by Maslov and Orevkov [386].

The Gurevich-Maslov-Orevkov class is the unique maximal decidable pre-
fix class without equality since the ∀2-class is conservative (see Chapter 4).

We prove decidability via an alternating satisfiability test due to Grädel
[204] which shows that this class is actually in Dtime(2p(n)) for some
polynomial p. We will also consider complexity results for subclasses of
[∃∗∀∃∗, all, all] such as the Ackermann class and the monadic Ackermann
class. It will turn out that most of these classes have deterministic expo-
nential time complexity. The best lower bound known for these classes is
Dtime(2cn/ logn). It holds even for the class [∀∃2, (ω)], a fragment of the
monadic Ackermann class. For this class a matching upper bound will be
established.

For formulae with prefix ∃∗∀∃∗ with equality the satisfiability problem is
decidable only for relational vocabularies and for vocabularies with at most
one function symbol. The relational ∃∗∀∃∗-formulae with equality form what
is called the Ackermann class with equality. We prove decidability and com-
plexity bounds for this class in Sect. 6.3.3. The latter class, [∃∗∀∃∗, all, (1)]= is
called the Shelah class. It has the most complicated decidability proof among
all decidable standard classes and will be treated in Chap. 7.3.

To prove both upper and lower bound we use the fact – Corollary 3.5 in
[73] – that for every time function T (n) ≥ log n
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Aspace(T (n)) =
∪
c>0

Dtime(2cT (n))

where Aspace(T (n)) is the complexity class defined by T (n) space bounded
alternating Turing machines. For background on alternating Turing machines
we refer to [30, 73].

6.3.1 A Satisfiability Test for [∃∗∀∃∗, all, all]

Theorem 6.3.1 (Grädel). The satisfiability problem for [∃∗∀∃∗, all, all] is
in Dtime(2p(n)) for some polynomial p.

First we translate the formulae to Skolem normal form and reduce the
relation symbols to a single unary predicate:

Lemma 6.3.2. There is a polynomial time reduction taking every formula
ψ ∈ [∃∗∀∃∗, all, all] to a formula ∀xφ such that

(i) φ contains constants, function symbols and one monadic predicate;
(ii) the length of φ is linear in the length of ψ;
(iii) ψ is satisfiable if and only if ∀xφ is satisfiable.

Proof. We first bring the formula ψ := ∃y1 · · · ∃yr∀x∃z1 · · · ∃ztα into Skolem
normal form ∀xβ where β is obtained from α by replacing every yi by a
constant ci and every zi by Fix where F1, . . . , Ft are unary functions not
occurring in α. We know that every formula is satisfiable if and only if its
Skolem form is satisfiable.

Now choose a new monadic predicate Q and for every predicate P in β a
new function FP which has the same arity as P . Replace every atom Pt1 · · · tr
in β by QFP t1 · · · tr. Let φ be the resulting formula.

If ∀xφ has a model A, then ∀xβ has a modelB with the same universe and
the same interpretation of constants and function symbols; the interpretation
of a relation symbol P is defined by

B |= Pa1 · · · ar ⇔ A |= QFP (a1, . . . , ar).

Conversely, suppose that B is a model for ∀xβ. It is straightforward to con-
struct a model with two elements from a model with only one element. There-
fore we may assume that B has at least two distinct elements a, b. A model
A for ∀xφ over the same universe (and with the same interpretation of con-
stants) is defined in the following way:

A |= Qa ∧ ¬Qb

FA
P (a1, . . . , ar) :=

{
a if B |= Pa1 · · · ar
b if B |= ¬Pa1 · · · ar.

Since the reduction consists only of some simple substitutions it is clear
that it can be computed in polynomial time and that the length of ∀xφ is
linearly bounded in the length of ψ. ⊓⊔
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For the rest of this section ψ is a sentence of the form ∀xφ where φ is
quantifier-free, contains constants c1, . . . , cr, function symbols F1, . . . , Fq and
a single monadic predicate Q. The length of ψ is always denoted by n.

Algebra of Terms.

Definition 6.3.3. Let τ = {F1, . . . , Fq} be the set of function symbols oc-
curring in ψ. We define T to be the set of terms that can be formed by
repeated application of these functions on the variable x and the constants
(if the formula contains no constant at all we add an auxiliary constant c1
to start the process): T is the smallest set that includes c1, . . . , cr and x, and
contains with the terms t1, . . . , tr also the term Ft1 · · · tr (if F is a function
symbol from τ with arity r). Let H ⊆ T be the set of terms not involving x. H
is the Herbrand universe of ψ; it is well known that every satisfiable universal
formula has a model over its Herbrand universe (see Theorem 2.1.12).

Note that every term in T can be considered as a tree whose leaves are
labeled by x or a constant, the other nodes are labeled by function symbols.
The children of each node are ordered: if the node a is the root of a term
Ft1 · · · tr and a1, . . . , ar are the roots of t1, . . . , tr (and hence the children of
a), then a1 is the first child of a and ar the last. This can be extended to a
total ordering of all nodes in a term: The root is the first element, and a node
a, different from the root, precedes b if the parent of a precedes the parent
of b or a is the elder child than b of the same parent. The length |f | of f is
the number of nodes in f .

Definition 6.3.4. Let f and g be two distinct terms in T . We say that (a, b)
is the minimal different pair of nodes in f and g if, for some i ∈ N,

(i) a and b are the ith nodes in f and g, respectively, with respect to the
ordering defined above;
(ii) a and b have different labels;
(iii) for all j < i the jth nodes in f and g have the same label.

Definition 6.3.5. For f, g ∈ T let the product fg be the term that is ob-
tained by replacing every occurrence of x in f by g. If h = fg then f and g
are, respectively, left and right divisors of h.

This product makes T a semigroup with neutral element x. T − H is a
sub-semigroup of T ; moreover the product has the following properties:

(i) If g ∈ T −H and fg = f ′g, then f = f ′.

(ii) If f ∈ T −H and fg = fg′, then g = g′.

Definition 6.3.6. A term f ̸= x in T −H is prime if its only divisors are f
and x.

Lemma 6.3.7. Every f ̸= x in T −H can be uniquely written as a product
of prime terms.



6.3 Formulae with One ∀ 273

In other words, the semigroup T −H is free.

Proof. It is clear that every f has at least one decomposition into prime
factors. Suppose that we have two such representations and that g1, g2 are
the rightmost factors in the two decompositions that are non-equal, i.e. f =
f1g1g

′ = f2g2g
′ and g1, g2 are non-equal primes. Then f1g1 = f2g2 and

therefore f1 ̸= f2. Let (a, b) be the minimal different pair of nodes in f1 and
f2. One of these two nodes, say a, must be labeled by x. Let g be the subtree
of f2 whose root is b. Obviously g ̸= x and g1 = gg2 which contradicts the
primality of g1. ⊓⊔

Definition 6.3.8. We say that f ≤ g if f is a subterm of g (i.e. if either
f = g or g = Fg1 · · · gr and f ≤ gi).

Lemma 6.3.9. If f ̸= g then there exists at most one term t ∈ H such that
ft = gt. Moreover t ≤ f or t ≤ g.

Proof. Let f ̸= g and t ∈ H with ft = gt. Moreover, let (a, b) be the minimal
pair of different nodes in f and g; one of the two nodes, say a, is labeled by x.
If the subtree g′ ≤ g whose root is b were in T −H then t ̸= g′t and therefore
ft ̸= gt. Therefore g′ = t ∈ H. Thus t is uniquely determined by f and g and
a subterm of g. ⊓⊔

Lemma 6.3.10. Let f, f ′ ∈ T − H such that neither f = f ′g nor f ′ = fg
for any g ∈ T −H. Then there exists at most one pair of terms t, t′ ∈ H such
that ft = f ′t′. Moreover this pair has the property that at least one of t, t′ is
a subterm of f or f ′.

Proof. Suppose that there exists a pair t, t′ such that ft = f ′t′. As in the
two previous proofs we take the minimal pair (a, b) of different nodes in f
and f ′. Again we may suppose that a is labeled by x and that g ≤ f ′ is the
subterm whose root is b. If g ∈ H then t = g is uniquely determined and a
subtree of f ′.

So suppose that g ∈ T − H; then ft = f ′t′ implies that t = gt′. The
equality ft = f ′t′ defines an embedding of f into f ′t′. Since t′ is a proper
subterm of t, the image of f is in fact contained in f ′. Consider the subtrees
g′ of f ′ whose root is the image of an x-labeled node of f ; it follows that
g′t′ = t. If all these g′ are equal to g, then there exists an x-node c in f ′ not
contained in any of the g′ (otherwise f ′ = fg which violates the assumptions
of the Lemma). Since t′ ≤ t, the origin of c in f must be the root of a
constant subterm which is equal to t′, hence t′ ≤ f . But if there is a g′ ̸= g
with g′t′ = t = gt′ then, by Lemma 6.3.9, t′ is uniquely determined and is a
subtree of either g′ or g, hence a subtree of f ′. If t′ is uniquely determined
then t is also unique. ⊓⊔

Lemma 6.3.11. If f, f ′ ∈ T −H and f ′ = fg then for all t, t′ ∈ H

ft = f ′t′ ⇐⇒ t = gt′.
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Proof. Obvious. ⊓⊔

The Chaos and the Forest. Let ψ = ∀xφ be an arbitrary, but fixed
formula of the form specified above, and let T and H be the set of terms,
respectively constant terms, defined from ψ by Definition 6.3.3.

Every term f ∈ T −H operates on H by mapping t to ft. For F ⊆ T −H,
M ⊆ H we say that M is closed under F if ft ∈ M for all f ∈ F , t ∈ M .
Obviously M has to be infinite if F contains any element different from x.
The pair (M,F) can be considered as a directed graph with coloured edges.
The nodes are the terms in M and for every node e ∈ M and every f ∈ F
there is an edge coloured f that points from e to fe.

Definition 6.3.12. Suppose that F includes with every element also all its
prime factors and let P be the set of primes in F . Then (M,F) contains
(M,P) as a subgraph (which is obtained from (M,F) by deleting all edges
that are coloured by a non-prime). We call (M,P) the prime graph of (M,F).

In this section we will define two such sets F andM , such that F contains
the terms that are relevant for ψ and M is a candidate for the universe of
a model for ψ. In fact we will present a satisfiability test which defines – if
it accepts ψ – a model with universe M . It will be essential that the prime
graph of (M,F) can be decomposed into two subsets C and M − C, where
C is a finite set called the chaos and M − C is a forest consisting of finitely
many trees. Actually the cardinality of the chaos and the number of trees
will be polynomially bounded in the length of ψ.

Definition 6.3.13. Let G be the set of terms g ∈ T −H which occur in ψ
(i.e. ψ contains an atom Q(g)). Let

F :=
{
f ∈ T −H : (∃g′ ∈ T −H)(∃g ∈ G)(fg′ ≤ g)

}
.

Thus f ∈ F iff f is a left divisor of a subterm of some element of G. By P
we denote the set of primes in F .

Lemma 6.3.14. F has the following properties:

(i) If f ∈ F and f ′ is a left divisor of f , then f ′ ∈ F ;
(ii) If f ∈ F and f ′ ≤ f , then f ′ ∈ F ;
(iii) If f ∈ F then all prime divisors of f are also in F .

Proof. Let f ∈ F , g ∈ G, f ′ ∈ T −H and fg′ ≤ g.

(i) If f ′ is a left divisor of f then f ′ is also a left divisor of fg′.

(ii) If f ′ ≤ f then f ′g′ ≤ fg′ ≤ g, hence f ′ ∈ F .

(iii) If f ′ is a prime factor of f then there exist f1, f2 such that f = f1f
′f2.

Now f ′f2 is a subterm of f , so, by (ii), f ′f2 ∈ F ; finally since f ′ is a left
divisor of f ′f2 it follows that f ′ ∈ F . ⊓⊔
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Definition 6.3.15. Let E′ ⊆ H be the smallest set of constant terms such
that

(i) If ψ contains an atom Q(e) then e ∈ E′.
(ii) If e is a constant subterm of some f ∈ F then e ∈ E′.
(iii) If f, f ′ are nonequal primes in F and if there exist e, e′, e′′ ∈ H such
that e′′ = fe = f ′e′, then e′′ is in E′.
(iv) If f ∈ F and fe ∈ E′, then e ∈ E′.

Definition 6.3.16. The universeM is the closure of E′ under F . The chaos
C ⊆ M is the set of e ∈ M for which there exist primes f0, f1, . . . , fr ∈ P
such that f0 ̸= f1 and f1 · · · fre = f0e

′ for some e′ ∈ M . More intuitively,
e ∈ C if there is a path in the prime graph (M,P) which starts at e and
eventually meets some other path. Note that the meeting point of the two
paths need not be in C. Clearly C ⊆ E′. Finally let

E = E′ ∪ {fe : f ∈ F , e ∈ C}.

E will turn out to be the part of the universe M on which the value of the
relation Q will initially be guessed.

Lemma 6.3.17. E and F have polynomial size. In fact there exists a k ∈ N
such that ∑

e∈E

|e|+
∑
f∈F

|f | = O(nk)

where n is the length of the given formula ψ.

Proof. For F this follows immediately from the definition. To estimate the
size of |E|, note that for every pair f, f ′ ∈ F , there exists by Lemma 6.3.10
at most one triple e, e′, e′′ such that e′′ = fe = f ′e′. Moreover |e′′| ≤ |f ||f ′|.
Every element of E is a product fe where f is in F and e is either a subterm
of one of these e′′, or a subterm of a f ∈ F or a subterm of a e′ that occurs
in ψ. The Lemma follows. ⊓⊔

When C is removed from M no path will ever meet any other path, so
(M − C,P) is a forest. The root of every tree in the forest is in E′, so the
number of trees is polynomially bounded; let R be the set of all roots in
(M −C,P), or to say the same thing in different words, R is the smallest set
such that M is the disjoint union of C with the closure of R under F . The
tree structure of the latter component makes it comparatively easy to handle.
Every element b ∈ M − C has a unique representation b = f1 · · · frw such
that w ∈ R and the fi are prime elements of F . We call r theM -height of b; if
b ∈ C we define its M -height to be 0. On the structure of C we know almost
nothing, that’s why we call it the chaos. Fortunately its size is polynomially
bounded.
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The Satisfiability Test. Using the analysis above we now present a satisfi-
ability test for ψ. It is an alternating procedure, taking as inputs the formula
ψ := ∀xφ and the sets E, F together with:

(i) the decomposition of E into C, R and E − (C ∪R);
(ii) the decomposition of F into P and F − P;
(iii) all true equations fe = e′ for e, e′ ∈ E, f ∈ F ;
(iv) the prime factorization of every f ∈ F . Furthermore the elements of
F are ordered with nondecreasing height.

Note that all this data is polynomially bounded and can be computed in
deterministic polynomial time from ψ because the prime factorizations of
terms in T −H and the solutions of equations of the form fe = f ′e′ can be
computed in polynomial time.

Informal Description: The Satisfiability Test as a Game. Informally
the satisfiability test can be considered as a game for two players, the con-
structor and the saboteur, on the graph (M,P). The constructor wants to
build a model for ψ with universe M ; he thus has to define the predicate Q
on M . At every node b ∈ M he tries to extend the definition of Q in such a
way that φ[b] is made true. The saboteur tries to find a point at which this
is not possible. Note that to verify φ[b] it suffices to know the values of Q on
the set E ∪ {fb : f ∈ F}.

The game is played as follows:

Step 1: The constructor defines Q on E.
Step 2: φ[b] is evaluated for every b ∈ C. If it is false for some b the saboteur

wins. Note that φ[b] for b ∈ C is well-defined because {fb : f ∈ F , b ∈
C} ⊆ E.

Step 3: The saboteur chooses a root b ∈ R.
Step 4, 5,. . .: At the currently played node b the constructor defines the

values Qfb (for f ∈ F) which are not yet defined. Then φ[b] is evaluated.
If it is false the saboteur wins. Otherwise he chooses a successor node of
b in (M,P), i.e. he chooses a prime g ∈ P and the game proceeds to gb.

In this form the game is infinite. However it turns out that if the saboteur
has a winning strategy then he also has a strategy to win the game after at
most 3 + 2|F| steps. Moreover the only data that must be remembered by
the players are: the formula ψ; the structure of E and F as specified above;
the values of Q on E and the current values of Qfb for f ∈ F . In particular
it is not necessary to know (the address of) the node b which is currently
played. All relevant information is encoded by the pattern of the truth values
for Qfb. Therefore the game needs only polynomial memory. To make the
game finite we can incorporate a counter to control the number of steps: after
3+2|F| steps the game is stopped and the constructor is declared the winner.

The constructor has a winning strategy for this game if and only if ψ has
a model.



6.3 Formulae with One ∀ 277

Formal Description: The Satisfiability Test as an Alternating Pro-
cedure. Let {Ue : e ∈ E} and {Vf : f ∈ F} be families of Boolean variables.
During the execution of the satisfiability test truth values for Qe and Qf
will be assigned to Ue and Vf ; φ(U, V ) is the formula that is obtained by
replacing in φ the atoms Qe by Ue and Qf by Vf . The formal description of
the satisfiability test as an alternating procedure is exhibited in Fig. 6.2.

Figure 6.2. Satisfiability Test

Input: ψ := ∀xφ, E, F together with their structure
begin

for all e ∈ E
guess Ue

for all e ∈ C
begin
[b := e]
for all f ∈ F

set Vf := Ufe

evaluate φ(U, V ); if it is false, reject.
end

for all e ∈ R
begin
[b := e]
for all f ∈ F

if fe = e′ for some e′ ∈ E, set: Vf := Ue′

else guess Vf

repeat 2|F| times
begin
evaluate φ(U, V ); if it is false, reject.
choose universally a prime element g ∈ P and do

begin
[b := gb]
for all f ∈ F

if fg = f ′ for some f ′ ∈ F , set Vf := Vf ′

else guess Vf

end
end

end
accept

end

Remark. The assignments to b (written in square brackets) are not part of the
procedure; they are comments which facilitate the following proof.

Lemma 6.3.18. The satisfiability test can be executed by an alternating Tur-
ing machine using work space |E|+ 2|F|.
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Proof. |E|+|F| bits are needed to store the truth values Ue and Vf , additional
|F| bits are used for a counter which counts the 2|F| repetitions of the loop.

⊓⊔

Thus, since alternating polynomial space coincides with deterministic ex-
ponential time and since the input data of the satisfiability test are com-
putable from ψ in deterministic polynomial time, Theorem 6.3.1 is implied
by

Theorem 6.3.19. The formula ∀xφ has a model if and only if it is accepted
by the satisfiability test.

Proof. Suppose that ∀xφ is satisfiable. Then it has a model A over the Her-
brand universe H. The satisfiability test accepts ∀xφ making the following
existential guesses:

Ue := QAe

Vf := QAfb for the current value of b.

The other direction is more difficult. Assume that the satisfiability test
accepts the formula. We choose a minimal accepting computation tree (i.e.
every existential configuration has a unique successor) and use it to define a
model for ψ with universe M . We have to define the interpretations of the
monadic predicate Q and the functions from τ .

Let F be a function symbol in ψ with arity r. On H we have the natural
interpretation

FH : (t1, . . . , tr) 7−→ Ft1 · · · tr.

On M we define:

FM : (t1, . . . , tr) 7−→
{
Ft1 · · · tr if Ft1 · · · tr ∈M
t1 otherwise.

This reinterpretation of the function symbols changes also the operation
of terms f ∈ T on M . For arbitrary f ∈ T (not necessarily in F) let fH

denote the operation of f under the old ‘natural’ interpretation of the function
symbols, and let fM be the new operation (if it is defined!): If f ∈ M then
fM operates as the constant function f ; if f = x then fM operates as the
identity; finally if f = F (f1, . . . , fr) for some F ∈ τ and if the operations
fM1 , . . . , fMr are defined then for all t ∈M :

fM t = FM (fM1 t, . . . , fMr t).

We want to show that the operation of F on M remains unchanged:

Lemma 6.3.20. If f ∈ F then the operation fM on M is defined and coin-
cides with the operation fH on M .
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Proof. If f = x this is trivial. If f = Ff1 · · · fr then, by construction of F
and E, each fi is either a constant term in E ⊆ M or an element of F . By
induction hypothesis we may assume that the operations fMi are defined and
coincide with fHi . Thus for each t ∈M

fM t = FM (fH1 t, . . . , f
H
r t).

Since F (fH1 t, . . . , f
H
r t) = fHt ∈M it follows that

fM t = F (fH1 t, . . . , f
H
r t) = fHt.

⊓⊔

Thus, we may give up the clumsy notation fM t and write again ft.

Recall that every t ∈ M − C has a unique representation t = g1 · · · grw
where g1, . . . , gr ∈ P, w ∈ R and r is the M -height of t. For every i ≥ 1 the
term gi+1 · · · grw is called a predecessor of t.

To define Q on M observe that every term t of M -height at most 2|F| is
assigned to b exactly once in the minimal accepting computation tree. Let
V (t) = (Vf (t))f∈F be the vector of current values of Vf at that node of the
computation tree at which ψ(U, V ) is evaluated with t being assigned to b. In
particular Vx(t) is the current value of Vx, i.e. of the atom Qx at this node.

Suppose that QA is already defined on all elements of M with M -height
smaller than r and that t has M -height r. We distinguish two cases:

(i) If t ∈ C or if t ∈M − C, r ≤ 2|F| and V (t′) ̸= V (t′′) for every pair of
nonequal predecessors t′, t′′ of t, then we define

QAft := Vx(t).

(ii) Otherwise there exists a first predecessor t′ of t and a minimal term
g such that gt′ is also a predecessor of t and V (t′) = V (gt′). In this case
there exists a term g′ such that t = g′gt′; we define:

QAt := QAg′t′.

This implies that for any two terms t, t′ ∈ M − C such that V (t) = V (t′),
the two trees whose roots are t and t′ are isomorphic.

We have to show that this definition of QA makes A a model for Ψ .

Lemma 6.3.21. For all t, t′ ∈ M with M -height at most 2|F| and for all
f, f ′ ∈ F

ft = f ′t′ =⇒ Vf (t) = Vf ′(t′).
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Proof. We distinguish three cases:

(i): t, t′ ∈ C. Then ft ∈ E and therefore

Vf (t) = Vf ′(t′) = Uft.

(ii): t, t′ ̸∈ C. Then ft = f ′t′ implies that there exist primes g1, . . . , gr ∈ F
such that

f = f ′gr · · · g1, t′ = gr · · · g1t

or vice versa. For every i the term fi := f ′gr · · · gi+1 is in F because it is a
left divisor of f . We claim that

Vfi(gi · · · g1t) = Vf (t).

For i = 0 this is trivial. Assume that the equation is established for i − 1.
If gi · · · g1t is assigned to b on some path of the computation tree then the
previous assignment was gi−1 · · · g1t and the universal choice was gi. Since
figi = fi−1, it follows that

Vfi(gi · · · g1t) = Vfi−1(gi−1 · · · g1t) = Vf (t).

Setting i = r the claim follows.

(iii): t ∈ C, t′ ̸∈ C. Then ft ∈ E and therefore Vf (t) = Uft. Furthermore
there exists a root w ∈ R and g, g′ ∈ F∗ such that t′ = g′w and w = gt. It
follows that f = f ′g′g, hence f ′g′ ∈ F . Since f ′g′w = ft ∈ E, we conclude
that Vf ′g′(w) = Uft. But by (ii) we know that Vf ′(t′) = Vf ′g′(w) and the
Lemma is proved. ⊓⊔

For every t ∈M letW (t) be the sequence of truth values {QAft : f ∈ F}.

Lemma 6.3.22. For every t ∈ M there exists a t′ ∈ M with M -height at
most 2|F| such that W (t) = V (t′).

Proof. At every t the truth value QAt is defined by repeated reductions to
the value of QA at points with smaller M -heights until we finish at some
point t′ such that

QAt = QAt′ = Vx(t
′).

We claim that W (t) = V (t′), i.e. that QAft = Vf (t
′) for every f ∈ F . The

proof goes by induction on the M -height of ft′.
Since t is a predecessor of ft the reduction of QAft to points with smaller

M -height is analogous to the one for QAt and thus leads to the point ft′.
Thus, QAft = QAft′. There are two possibilities. Either the process stops
there and QAft is set to Vx(ft

′). In this case it follows by Lemma 6.3.21 that
QAft = Vf (t

′).
Otherwise there exist a first predecessor t′′ of ft′ and terms g, g′ such that

V (t′′) = V (gt′′) and ft′ = g′gt′′. By definition, QAft′ = QAg′t′′. From the
minimality of t′′ it follows that QAt′′ = Vx(t

′′). Furthermore gt′′ cannot be
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a predecessor of t′ – otherwise the reduction of QAt would not finish at the
point t′. Therefore gt′′ lies between t′ and ft′ = g′gt′′; thus g′ is a left divisor
of f and therefore g′ ∈ F . By induction hypothesis, QAg′t′′ = Vg′(t

′′) and
with help of Lemma 6.3.21 it follows that

QAft = QAft′ = QAg′t′′ = Vg′(t
′′) = Vg′(gt

′′) = Vx(g
′gt′′) =

= Vx(ft
′) = Vf (t

′).

⊓⊔

The satisfiability test accepts the formula ψ ≡ ∀xφ if and only if
φ(U, V (b)) is true for all b in the chaos and all b with M -height at most 2|F|.
Therefore Lemma 6.3.22 immediately implies that the relation QA makes A
a model for ψ. ⊓⊔

This completes the proof of Theorem 6.3.1.

Exercise 6.3.23 (Advanced). [226] Prove that [∃∗∀∃∗, all, all] has the fi-
nite model property.

6.3.2 The Ackermann Class

Upper Complexity Bounds. The satisfiability test exhibited in the pre-
vious section gives also good upper bounds for the Ackermann class, i.e. the
class ∃∗∀∃∗-formulae without function symbols.

Let ∃y1 · · · ∃yr∀x∃z1 · · · ∃ztα be a formula in [∃∗∀∃∗, all]. When we trans-
late it into functional form and eliminate all but one of the predicates with
the procedure of Lemma 6.3.2 we obtain a formula ∀xφ whose vocabulary
consists of the monadic predicate Q, the constants c1, . . . , cr, unary functions
g1, . . . , gt (the Skolem functions for zi) and the functions FP where P is a
predicate of α.

In the following, let C0 := {c1, . . . , cr} and G = {g1, . . . gt}. We first
consider the case where all predicates P of α (and hence all functions FP )
are monadic.

Theorem 6.3.24 (Fürer, Lewis). There exists a constant c such that

Sat[∃∗∀∃∗, (ω)] ∈ Dtime(2cn/ logn).

Proof. The formula ∀xφ, obtained from a monadic Ackermann formula in
the way just described, contains only unary functions and every atom in φ
has one of the following three forms: Q(FP ci), Q(FPx) or Q(FP gix).

In view of Lemma 6.3.18 it suffices to show that the sets E and F needed
for the satisfiability test have cardinality O(n/ log n). From the definition of
F and E′, it follows immediately that
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F = {gx : g ∈ G} ∪ {x} ∪ {FPx : P is a predicate of α} ∪
∪{FP gx : g ∈ G and QFP gx occurs in φ}

E′ = C0 ∪ {FP c : c ∈ C0 and QFP ci occurs in φ}.

Since all functions are unary, the chaos C is empty and therefore E =
E′. Obviously r, t and the number of different atoms in ψ are bounded by
O(n/ log n). ⊓⊔

In the general case the functions FP can have higher arity. Let

T0 := C0 ∪ {x} ∪ {gx : g ∈ G} and

T1 := {FP t1 · · · tk : P is a predicate of α and t1, . . . , tk ∈ T0}.

The atoms in φ have the form Qf where f ∈ T1. Let H1 be the set of
constant terms (i.e. terms without occurrences of x) in T1. It follows that

F = {gx : g ∈ G} ∪ {x} ∪
∪{f ∈ (T1 −H1) : φ has an atom Qfx or Qfgx (for g ∈ G)}

and thus |F| = O(n/ log n) also in this case. However, it is easy to give
an example where the chaos C has size Ω((n/ log n)2). Let P be a binary
predicate and suppose that the atoms Pcix and Pxzj for i = 1, . . . , r and
j = 1, . . . , t occur in α. Then F contains the terms fi = FP cix and f ′j =
FPxgjx; since figjci = f ′jci the chaos C contains all constants ci and all
terms gjci. Thus, a direct application of the satisfiability test for general
Ackermann formulae would give an alternating space bound O((n/ log n)3),
because E ⊇ FC.

However, by simplifying the satisfiability test, we can improve this to a
quadratic bound.

Lemma 6.3.25. Let f and f ′ be distinct primes in F and e, e′ be constant
terms; if fe = f ′e′, then either e ∈ C0, or e = ge′ for some g ∈ G and
e′ ∈ C0.

Proof. If fe = f ′e′, then, by Lemma 6.3.10 either e or e′ is a subterm of f
or f ′. Since f and f ′ are in T1, there are terms t1, . . . , tk and t′1, . . . , t

′
k ∈ T0

such that f = FP t1 · · · tk and f ′ = FP t
′
1 · · · t′k. The only constant subterms

of f and f ′ are those in C0. Suppose that e /∈ C0; then e
′ ∈ C0 and for all

i, t′ie
′ ∈ C0 ∪ {ge′ : g ∈ G}. There is at least one ti which is not a constant

term; thus tie = t′ie
′ implies that ti = x and e = ge′ for some g ∈ G. ⊓⊔

Thus, whenever two edges in the graph (M,P) finish at the same vertex,
at least one of them starts at a point from C0. Therefore truth values must
initially be guessed only for the points in the set

E0 = {fc : f ∈ F , c ∈ C0}
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which has cardinality O((n/ log n)2).
In fact by replacing in the satisfiability test (see Fig. 6.2) the sets E,

C and R by E0, C0 and R0 := E0 − C0 we get a test that works for the
Ackermann class and has alternating space complexity O((n/ log n)2). Thus
we infer

Theorem 6.3.26 (Fürer). There exists a constant c such that

Sat[∃∗∀∃∗, all] ∈ Dtime(2c(n/ logn)
2

).

Lower Complexity Bounds.

Theorem 6.3.27 (Fürer, Lewis). There is a constant c > 0 such that

Sat[∀∃2, (ω)] ̸∈ Dtime(2cn/ logn).

Proof. It suffices to prove that every problem A ∈ Aspace(n) is reducible
to Sat[∀∃2, (ω)] via length order n log n. Without loss of generality we make
the following assumptions. A is accepted by an alternating one tape Turing
machineM in space n and time 2m−1 for some m = O(n). All computations
have exactly 2m − 1 steps and every configuration of M has at most two
successor configurations.

If Σ is the alphabet and Q the set of states ofM then every configuration
of M on an input of length n is represented by a word #c1 · · · cn# where
ci ∈ Σ∪ (Q×Σ) and # is an end marker. Let Γ := Σ∪ (Q×Σ)∪{#}. Thus
a computation is described by a table with 2m rows and n+ 2 columns with
entries from Γ . The transition relation ofM corresponds to two functions F1,
F2 : Γ 3 → Γ such that for every entry Ci,j of the computation table which
does not belong to the first row or to the leftmost or rightmost column

Ci,j+1 = F1(Ci−1,j , Ci,j , Ci+1,j) or Ci,j+1 = F2(Ci−1,j , Ci,j , Ci+1,j).

The states of M are partitioned into existential, universal, accepting and
rejecting states; we thus identify four subsets Ex, Un, Acc and Rej of Γ
each consisting of those pairs (q, a) ∈ Q × Σ for which q is a state of the
corresponding type.

For every input w a formula ψ will be constructed whose intended model
has universe {0, . . . , 2m − 1} × Γn+2. An element x = (t, c) stands for the
configuration c ∈ Γn+2 at time t; as usual we will represent t by its binary
representation t0 · · · tm−1 where t =

∑
i ti2

i. For every x = (c, t) we will
consider the computation tree Tx of depth 2m − 1 − t whose root is the
configuration c. If the configuration c occurs in a computation at time t then
Tx is a subtree of the computation tree. The formula ψ that we are going to
construct expresses that if x = (c, 0) and c is the input configuration of M
on w then Tx is an accepting computation tree.

The monadic predicates occurring in ψ together with their intended in-
terpretations on elements x = (t, c) are the following.
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Pi,ax : ci = a (for 0 ≤ i ≤ n+ 1, a ∈ Γ )
Ujx : tj = 1 (for 0 ≤ j < m)

U∗
j x : t0 = · · · = tj−1 = 1 (for 0 ≤ j < m)

Ax : The subtree Tx of the computation tree accepts.

The first step in the construction of ψ is the definition of an axiom ∀xα
which relates the U∗

j and Uj in the desired way and asserts that the relations

Pi,a indeed encode a word #c# ∈ Γn+2; α is the formula

U∗
0x ∧

m−2∧
j=0

(
U∗
j+1x↔ (U∗

j x ∧ Ujx)
)
∧
∧
i

�∨
a

Pi,ax ∧ P0,#x ∧ Pn+1,#x.

Next we specify some formulae which are needed to describe the compu-
tations of M . Exist(x) expresses that c encodes an existential configuration
(if it has the correct form, i.e. if it encodes indeed a configuration):

Exist(x) :=
∨
i

∨
a∈Ex

Pi,ax.

In an analogous way we define the formulae Univ(x), Accept(x) and
Reject(x) which describe universal, accepting and rejecting configurations.
Let x = (t, c) and y = (t′c′); we construct a formula S(x, y) which says that
t′ ≡ t+1 (mod 2m), and formulae C1(x, y), C2(x, y) which express that c′ is a
successor configuration of c via the transition function F1 or F2, respectively.
They are defined as follows:

S(x, y) :=

m−1∧
j=0

Ujy ↔
(
Ujx⊕ U∗

j x
)

Cj(x, y) :=
n∧
i=1

∧
a

(
Pi,ay ↔

∨
(b,c,d) with
Fj(b,c,d)=a

(
Pi−1,bx ∧ Pi,cx ∧ Pi+1,dx

))

Now we construct ψ. It has the form ∀x(α ∧ ∃y∃zβ) where α is the ax-
iom specified above and β describes the computation tree of M ; β has the
following conjuncts:

Input configuration on w = w1 · · ·wn(∧
j

¬Ujx
)
→

(
P1,q0w1

x ∧
n∧
i=2

Pi,wi
x
)

Every number t has a successor (mod 2m) and every non-final configuration
has two successor configurations

S(x, y) ∧
[(∨

j

¬Ujx
)
→ (C1(x, y) ∧ S(x, z) ∧ C2(x, z)

)]
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Acceptance

Accept(x)→ Ax;

Reject(x)→ ¬Ax;
Exist(x)→

(
Ax↔ (Ay ∨Az)

)
;

Univ(x)→
(
Ax↔ (Ay ∧Az)

)
;(∧

j

¬Ujx
)
→ Ax.

It is clear that ψ has length O(n log n). The predicate A encodes the
acceptance condition of M ; the very last clause asserts that the computation
tree is accepting. Thus ψ is satisfiable (in the structure {0, . . . , 2m−1}×Γn+2)
if and only if M accepts w. ⊓⊔

If we consider in the previous proof nondeterministic instead of alternating
Turing machines then the accepting computation tree degenerates into a path;
in this case every configuration needs to have only one successor. So we get
by with only one existential quantifier and the proof of Theorem 6.3.27 gives
us for free a lower bound for monadic ∀∃-formulae.

Corollary 6.3.28. There exists a constant c > 0 such that

Sat[∀∃, (ω)] ̸∈ Nspace(cn/ log n).

In particular, Sat[∀∃, (ω)] is Pspace-hard.

6.3.3 The Ackermann Class with Equality

We first show, via the domino problem, that the Ackermann class with equal-
ity has the same lower bound as the Gödel-Kalmár-Schütte class without
equality. After that we prove a corresponding result for upper complexity
bounds by reducing the former class to latter.

Theorem 6.3.29 (Kolaitis, Vardi). There exists a constant c > 0 such
that

Sat[∃2∀∃∗, all]= ̸∈ Ntime(2cn/ logn).

Proof. The spirit of the proof is very similar to the proof of Theorem 6.2.13.
We show that for every domino system D

DOMINO(D, 2n) ≤n logn Sat[∃2∀∃∗, all]=;

i.e. for every w ∈ Dn we construct a formula

ψ := ∃u0∃u1∀z∃x0 · · · ∃xn−1∃y0 · · · ∃yn−1∃z′∃z′′φ
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of length O(n logn) which is satisfiable if and only if D tiles Z(2n) with
initial condition w. The variables u0, u1 represent the ciphers 0 and 1. While
z ranges over all points (x, y) ∈ Z(2n), (x0, . . . , xn−1, y0, . . . , yn−1) will be
the binary representation of (x, y) (every xi and every yi is equal to either
u0 or u1), and z′ and z′′ represent the points (x + 1, y) and (x, y + 1) – as
always modulo 2n. The vocabulary of ψ consists of unary relations Xi, Yi,
X∗
i , Y

∗
i , Ni (for i = 0, . . . , n − 1) and for every domino d ∈ D two relation

symbols Pd and P ∗
d of arities 1 and 2n, respectively. The intended model

has universe {0, 1}
.
∪ Z(2n) and encodes a tiling τ : Z(2n) → D with the

following interpretation of the relation symbols.

Xiz : xi = 1
X∗
i z : xj = 1 for all j < i
Yiz : yi = 1

Y ∗
i (z) : yj = 1 for all j < i
Niz : z = (i, 0)
Pdz : τ(z) = d

The relation P ∗
d ‘doubles’ Pd in the following sense: if z ∈ Z(2n) has the

binary representation (x0, . . . , xn−1, y0, . . . , yn−1) ∈ {0, 1}2n, then the value
of P ∗

d x0 · · ·xn−1y0 · · · yn−1 coincides with Pdz.
The quantifier-free part φ of ψ is a conjunction of the following subfor-

mulae:

(1) Axioms for Xi, X
∗
i , Yi and Y

∗
i :

X∗
0z

n−2∧
i=0

(X∗
i+1z ↔ (X∗

i z ∧Xiz))

n−1∧
i=0

((Xiz
′ ↔ (Xiz ⊕X∗

i z))

n−1∧
i=0

(Xiz
′′ ↔ Xiz)

and similarly for Yi, Y
∗
i instead of Xi, X

∗
i and with z′ and z′′ interchanged.

(2) Axioms for N0, . . . , Nn−1:(n−1∧
i=0

¬Xiz ∧ ¬Yiz
)
↔ N0z

n−2∧
i=0

(Ni+1z
′ ↔ Niz)
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(3) Axioms which establish that (x0, . . . , xn−1, y0, . . . , yn−1) is the binary
representation of z:

u0 ̸= u1
n−1∧
i=0

(Xiz → (xi = u1)) ∧ (¬Xiz → (xi = u0))

n−1∧
i=0

(Yiz → (yi = u1)) ∧ (¬Yiz → (yi = u0))

(4) Formulae which assert that the relations Pd (d ∈ D) encode a correct
tiling:

P ∗
d x0 · · ·xn−1y1 · · · yn−1 ↔ Pdz for every d ∈ D

�∨
d∈D

Pdz

∨
(d,d′)∈H

(Pdz ∧ Pd′z′)

∨
(d,d′)∈V

(Pdz ∧ Pd′z′′)

n−2∧
i=0

(Niz → Pwiz).

It is clear that this formula has length O(n log n). It is also clear that
the model, which is defined by a correct tiling τ in the intended way, does
indeed satisfy ψ. Conversely, assume that ψ has a model A with universe A
and define the mapping f : A → Z(2n) that sends every a ∈ A to the point
(x, y) ∈ Z(2n) whose binary representation coincides with the vector of truth
values X0a, . . . ,Xn−1a, Y0a, . . . , Yn−1a. The axioms in part (1) assert that
for every a ∈ A with f(a) = (x, y) there exist elements b, c of A such that
f(b) = (x+ 1, y) and f(c) = (x, y + 1). By repeating this argument we infer
that for every i, j < 2n there is a point mapped to (x + i, y + j). Hence the
image of f is the whole space Z(2n). To define the tiling, choose, for every
point z ∈ Z(2n), an arbitrary a ∈ f−1(z) and set τ(z) = d for the unique d
such that A |= Pda.

We have to show that this definition does not depend on the choice of a.
Let 0, 1 ∈ A be the values that interpret the variables u0 and u1. Then ψ
asserts that for every a there exists a 2n-tuple (x̄(a), ȳ(a)) ∈ {0, 1}2n that
coincides with the vector of truth values of XA

i and Y A
i at a, and which

is therefore uniquely determined by f(a). Finally in (4) it is assured that
A |= Pda if and only if A |= P ∗

d x̄(a)ȳ(a). Thus τ : Z(2n)→ D is a well-defined
mapping. Now the formulae in (4) readily imply that τ defines a correct tiling
with initial condition w; thus the Theorem follows from Theorem 6.1.8. ⊓⊔
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We now prove that the lower bound of Theorem 6.3.29 is optimal for
the Ackermann class with equality. First, we note that with the method of
Exercises 6.2.39 and 6.2.40 we can reduce this class to [∀∃∗, all]=. Since there
is only one universal quantifier, the reduction increases the length only by a
linear factor. But for ∀∃∗-sentences we can apply the Gödel criterion since
every satisfiable relational ∀∃∗-sentence (even with equality!) has a model
without kings. Indeed, if A is a model for ψ := ∀x∃y1 · · · ∃ymφ, then so is
2A (defined as in the proof of Lemma 6.2.26). To see this, let f1, . . . , fm be
the Skolem functions for y1, . . . , ym in A, so that A |= φ[a, f1(a), . . . , fm(a)]
for every a in A. On 2A, put fi((a, j)) := (fi(a), j) for all i = 1, . . . ,m
and j = 0, 1. Obviously 2A |= φ[(a, j), f1(a, j)), . . . , fm(a, j))] for all (a, j);
therefore 2A |= ψ.

Thus the Gödel criterion is a necessary and sufficient condition for
satisfiability, and by Theorem 6.2.41 we know that it can be verified in
Ntime(2O(n/ logn)).

Corollary 6.3.30. Sat[∃∗∀∃∗, all]= ∈ Ntime(2cn/ logn) for some constant c.

Here is a different method to establish the same result. One can show
that the equality sign has no influence on the cardinality of a minimal
model. Since Ackermann formulae without equality are also contained in
the Gödel-Kalmár-Schütte class, this implies a nondeterministic exponential
upper bound.

Proposition 6.3.31. For every ∃p∀∃∗-formula ψ with equality which has a
model of cardinality > p there exists a formula φ with the same quantifier
prefix and the same vocabulary as ψ, except that equality is replaced by a new
binary predicate, such that φ is satisfiable and, moreover, every model of φ
contains a submodel satisfying ψ.

Proof. Let ψ be a formula with equality in prenex normal form

∃x1 · · · ∃xp∀y∃z1 · · · ∃ztα

and let A be a model of ψ with universe A of cardinality at least p+ 1. This
means that there exist elements c1, . . . , cp of A and functions f1, . . . , ft : A→
A such that for all a ∈ A:

A |= α[c1, . . . , cp, a, f1(a), . . . , ft(a)].

Let V be the the set of variables {x1, . . . , xp, y, z1, . . . , zt}; it is convenient to
introduce an ordering

x1 ≺ · · · ≺ xp ≺ y ≺ z1 · · · ≺ zt

on V . Without loss of generality we may assume that every equality v = w
that occurs in φ is ordered, i.e. v ≼ w.

Every a ∈ A defines an interpretation Ia : V → A of the variables by



6.3 Formulae with One ∀ 289

Ia(v) =

{
ci if v = xi
a if v = y
fia if v = zi

We use this to define a renaming of the variables, i.e. a function ra : V → V
that maps v to the first v′ (with respect to ≺) such that Ia(v) = Ia(v

′).
Note that ra(xi) is independent of a. Furthermore, for every a ∈ A and every
v ∈ V :

ra(v) ≼ v and ra(ra(v)) = ra(v)

Independent of any model for ψ we can define the set F of all mappings
r : V → V that satisfy this condition. Denote by αr the formula obtained
from α by replacing every variable v by r(v) and equality by a new binary
relation symbol E. We claim that the formula

φ := ∃x1 · · · ∃xp∀y∃z1 · · · ∃ztβ with

β := Eyy ∧
∧
i ̸=j

¬Exixj ∧
∧
i≤p
j≤t

¬Exizj ∧

∨
r∈F

( ∧
zi,zj∈Im(r)

i ̸=j

(¬Ezizj ∧ ¬Eyzi) ∧ αr
)

has the desired properties. (Im(r) denotes the image of r.)
If A is a model for ψ of cardinality at least p+1 then it is also a model for φ

with E interpreted as equality. Indeed, let c1, . . . , cp ∈ A be the constants and
f1, . . . , ft be functions A→ A such that A |= α[c1, . . . , cp, a, f1(a), . . . , ft(a)].
Choose distinct elements c′1, . . . , c

′
p of A such that

c′i = ci if xi ∈ Im(ra) (for arbitrary a ∈ A).

Furthermore, choose an element c distinct from c′1, . . . , c
′
p and define the

Skolem functions f ′1, . . . , f
′
t for z1, . . . , zt by

f ′i(a) :=
{
fi(a) if zi ∈ Im(ra)
c otherwise.

Then, A |= β[c′1, . . . , c
′
p, a, f

′
1(a), . . . , f

′
t(a)] for all a ∈ A.

Conversely, assume that B is a model for φ with universe B. Thus there
exist c1, . . . , cp ∈ B such that

B |= ∀y∃z1 · · · ∃ztβ[c1, . . . , cp].

Set

A := {c1, . . . , cp} ∪ {b ∈ B : B |=
p∧
i=1

¬Ecib}

and let A be the restriction of B to A. Note that A is also a model
of φ, because, for every a ∈ A, the elements b1, . . . , bt such that B |=
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β[c1, . . . , cp, a, b1, . . . , bt] satisfy ¬Ecibj and are therefore in B. Since Eyy
is a conjunct of β, it follows that A |= ¬E[a, b] implies that a ̸= b. The only
atoms Evw in β that may be true in A have the form Evv or Exiy. Therefore
φ remains true in A if E is replaced by equality. But the formula obtained in
this way logically implies ψ. Thus, A is a model for ψ. ⊓⊔

Corollary 6.3.32. Sat[∃p∀∃∗, s]= ∈ NP for all p ∈ N and all finite s.

Proof. We just proved that a formula in Ackermann class with equality either
has a very small model, or that there exists a formula with the same quantifier
prefix and the same vocabulary, except that equality is replaced by a new
binary relation symbol, whose models yield models for the original formula.
The new formula is in the Gödel class without equality. In the case of a fixed
vocabulary and a bounded number of leading existential quantifiers there is
a model of cardinality O(n) (see Theorem 6.2.45). By Proposition 6.0.4 we
conclude that in this case the satisfiability problem is in NP. ⊓⊔

6.4 Standard Classes of Modest Complexity

In this section we consider the cases with ‘modest’ complexity; i.e. we classify
the prefix vocabulary classes whose satisfiability problem is in P, NP or Co-
NP. Our description of these classes is complete, except for the case where
the vocabulary consists of one unary function and equality, for which we will
present an almost complete classification in Sect. 6.4.2 and identify the open
problem that remains to be solved to complete the list. Most of the results
of this section are due to Grädel [196].

First we dispose of the relational cases, i.e. the prefix vocabulary classes
without function symbols.

6.4.1 The Relational Classes in P, NP and Co-NP

There are two simple cases of satisfiability problems that are solvable in
polynomial time, namely any class of ∃∀∗-formulae with finite vocabulary
(as settled by Theorem 6.2.20) and the essentially finite classes (see Propo-
sition 6.0.1).

Theorem 6.4.1 (The Classes in P). Let X be a formula class which is
contained in one of the classes

(i) [∃∀∗, s]= for s finite;
(ii) [Π, s]= for Π, s finite.

Then Sat(X) is decidable in polynomial time.
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We will show that no other relational prefix vocabulary class is solvable
in polynomial time, unless P = NP. First we determine the classes whose
satisfiability problems are in NP or in Co-NP.

Recall that due to Proposition 6.0.4, the problem whether a formula of
length n with p universal quantifiers has a model of size s can be decided
nondeterministically in time g(nsp) for some polynomial g. Thus, if X is a
formula class with a bounded number of universal quantifiers such that every
satisfiable formula in X has a model of polynomial size, then Sat(X) ∈ NP.

Theorem 6.4.2 (The Classes in NP). Let X be contained in any of the
classes

(i) [∃∀∗, all]=;
(ii) [∃∗∀q, all]= for q ∈ N;
(iii) [∃p∀2∃∗, s, ] for p ∈ N and s finite;
(iv) [∃p∀∃∗, s]= for p ∈ N and s finite;
(v) [Πp, (q)]= for p, q ∈ N and Πp containing at most p universal quanti-
fiers.

Then Sat(X) is in NP.

The cases (i), (ii), (iii) and (iv) are settled by Theorem 6.2.20, Theo-
rem 6.2.45 and Theorem 6.3.32; (v) follows immediately from Lemma 6.4.14
and Lemma 6.0.4.

The next theorem lists the minimal NP-complete classes.

Theorem 6.4.3. Let X be one of the classes

[∃∗, (0)]=, [∃∗, (1)],

[∃, (ω)], [∀, (ω)].

Then Sat(X) is NP-complete.

Proof. SAT (i.e., the satisfiability problem for propositional formulae) can be
reduced to any of these classes. Let ψ(X1, . . . , Xn) be a propositional formula.
Then, ψ is satisfiable if and only if the formulae

– ∃x∃y1 · · · ∃ynψ[Xi/(yi = x)]
– ∃x1 · · · ∃xnψ[Xi/Pxi]
– ∃xψ[Xi/Pix]
– ∀xψ[Xi/Pix]

are satisfiable. As usual, ψ[Xi/αi] denotes the formula obtained by replacing,
for i = 1, . . . , n, every occurrence of Xi in ψ by αi. ⊓⊔

Exercise 6.4.4. Prove that every prefix vocabulary class whose satisfiability
problem is in NP due to Theorem 6.4.2 is either contained in one of the classes
which are in P by Theorem 6.4.1, or includes one of the NP-complete classes
of Theorem 6.4.3.
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Theorem 6.4.5 (The Classes in Co-NP). Let X be a formula class con-
tained in one of the classes

(i) [∃p∀∗, s]= for p ∈ N and s finite;
(ii) [Πp, (q)]= for p, q ∈ N and Πp containing at most p existential quan-
tifiers.

Then Sat(X) is in Co-NP.

Proof. Every satisfiable relational formula with prefix ∃p∀∗ has a model of
size at most max(p, 1). Since s is finite, the list of structures that have to be
checked is fixed, i.e. it does not depend on the length of the formula.

By Proposition 6.2.1 a satisfiable formula of length n whose vocabulary
consists of equality and q monadic predicates has a model in which every
atomic type (i.e. every sequence of truth values for the monadic predicates)
is realized at most n times. Up to isomorphism, the number of structures of
this form is bounded by

(n+ 1)2
q

= nO(1) for fixed q.

Now the theorem is implied by the following observation. Let X be a class
of formulae with at most p existential quantifiers and suppose that given
any ψ ∈ X, there is a list of structures A1, . . . ,Ak which can be generated
in polynomial time, such that ψ ∈ Sat(X) implies that Ai |= ψ for some
i ∈ {1, . . . , k}. Then Sat(X) ∈ Co-NP.

Indeed, let M be a nondeterministic algorithm which, given a formula
ψ ∈ X, generates (deterministically) the structures A1, . . . ,Ak and checks
(nondeterministically) for each of these whether Ai |= ¬ψ. By Proposi-
tion 6.0.4, each of these checks can be performed in nondeterministic polyno-
mial time. If M finds a structure Ai in which ¬ψ is false, then M refutes ψ,
otherwiseM accepts ψ. ThusM accepts precisely the complement of Sat(X).

⊓⊔

Theorem 6.4.6. The satisfiability problems for each of the classes

[∃2∀∗, (0)]=, [∀∗∃, (0)]=, [∀∃∀∗, (0)]=
[∃2∀∗, (1)], [∀∗∃, (1)], [∀∃∀∗, (1)]

is Co-NP-complete.

Proof. By Theorem 6.4.5 the satisfiability problem for each of these classes
is in Co-NP. To prove completeness, we reduce the validity problem for
propositional formulae to the satisfiability problem for these classes: Let
ψ(X1, . . . , Xn) be a propositional formula. It is valid if and only if the for-
mulae

– ∃x∃y∀z1 · · · ∀zn(x ̸= y ∧ ψ[Xi/(zi = x)])
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– ∃x∃y∀z1 · · · ∀zn((Px⊕ Py) ∧ ψ[Xi/Pzi])
– ∀x∃y(x ̸= y) ∧ ∀x∀z1 · · · ∀znψ[Xi/(zi = x)]
– ∀x∃y(Px⊕ Py) ∧ ∀z1 · · · ∀znψ[Xi/Pzi]

are satisfiable. Note that the last two formulae are in the prefix class ∀∃∧∀∗
which is included in both the prefix classes ∀∗∃ and ∀∃∀∗. ⊓⊔

Thus, if X is any prefix vocabulary class, such that Sat(X) ∈ Co-NP
by Theorem 6.4.5; then either Sat(X) ∈ P by Theorem 6.4.1, or Sat(X) is
Co-NP-complete. Now we show that our classification of relational prefix vo-
cabulary classes with satisfiability problems in P, NP and Co-NP is complete.

If X is a relational prefix vocabulary class that is not contained in any of
the classes in Theorems 6.4.1, 6.4.2 and 6.4.5, then X contains at least one
of the following thirteen classes:

(1) [∃∗∀∗, (0)]= (8) [∀2∃∗, (0, 1)]=
(2) [∃∗∀∗, (1)] (9) [∀3∃∗, (0, 1)]

(3) [∃2∀∗, (ω)]= (10) [∀∃∗∀, (0, 1)]

(4) [∀∗∃∗, (0)]= (11) [∀∃∀∃∗, (0, 1)]

(5) [∀∗∃∗, (1)] (12) [∀∗∃, (0, 1)]

(6) [∀∃, (ω)] (13) [∀∃∀∗, (0, 1)]

(7) [∃∗∀∃, (0, 1)]

The classes (8)-(13) are conservative reduction classes. We prove that the
satisfiability problem for none of the other seven classes is in NP ∪ Co-NP
unless the polynomial-time hierarchy collapses to NP:

Theorem 6.4.7. The satisfiability problems for the classes

[∃∗∀∗, (0)]= [∃∗∀∗, (1)] [∃2∀∗, (ω)]

are Σp
2 -complete. In fact, Sat(X) ∈ Σp

2 for every class X of ∃∗∀∗-formulae
whose relations have bounded arity.

Proof. If a formula ψ ≡ ∃x1 · · · ∃xn∀y1 · · · ∀ymφ is satisfiable, then it has a
model of size at most n. If ψ contains k relation symbols, each of arity at
most p, then at most knp truth values have to guessed. Thus, the following
polynomial Σ2-algorithm decides the satisfiability of ψ:

1. Existential step: Guess a number q ≤ n, and guess, for every relation
P in ψ and every tuple a ∈ {0, . . . , q − 1}s (where s is the arity of P ),
a truth value P [a]. Then guess for every existentially quantified variable
xi an element ai ∈ {0, . . . , q − 1}.



294 6. Standard Classes with the Finite Model Property

2. Universal step: Choose for every universally quantified variable yi a
value bi.

3. If φ[a1, . . . , an, b1, . . . , bm] is true in the guessed model, then accept, oth-
erwise reject.

Completeness follows by reduction from [∃∗∀∗]∩QBF, i.e. the ∃∗∀∗-subclass
of quantified propositional logic. In fact, a quantified Boolean formula

∃X1 · · · ∃Xn∀Y1 · · · ∀Ymψ

is true if and only if the formulae

– ∃z∃z′(z ̸= z′ ∧ ∃x1 · · · ∃xn∀y1 · · · ∀ymψ[Xi/(xi = z), Yi/(yi = z)])
– ∃z∃z′(Pz ⊕ Pz′) ∧ ∃x1 · · · ∃xn∀y1 · · · ∀ymψ[Xi/Pxi, Yi/Pyi]
– ∃z∃z′(Qz ⊕Qz′) ∧ ∀y1 · · · ∀ymψ[Xi/Piz, Yi/Qyi]

are satisfiable. ⊓⊔

With similar arguments we obtain

Theorem 6.4.8. The satisfiability problems for the classes [∀∗∃∗, (0)]= and
[∀∗∃∗, (1)] are Πp

2 -complete.

Theorem 6.4.8 is implicit in [491] and generalizes to higher levels of the
polynomial time hierarchy.

Theorem 6.4.9. Sat[∃∗∀∃, (0, 1)] and Sat[∀∃, (ω)] are Pspace-hard.

Proof. For [∀∃, (ω)] this is settled by Theorem 6.3.28. Therefore it suffices to
construct a polynomial time reduction from Sat[∀∃, (ω)] to Sat[∃∗∀∃, (0, 1)]:

Let α be an abbreviation for

Qxx ∧
n∧
i=1

¬Qxixi.

Then a formula ψ := ∀y∃zβ with monadic predicates P1, . . . , Pn is
mapped to the formula

φ := ∃x1 · · · ∃xn∃x∀y∃z
(
α ∧ (Qyy → (Qzz ∧ β[Piu/Quxi]))

)
where Q is a binary relation. Obviously ψ is satisfiable, if and only if, φ is
satisfiable. ⊓⊔

Exercise 6.4.10. Prove that these classes are in fact Pspace-complete; fur-
thermore, Sat(X) is in Pspace for every X ⊆ [∃∗∀∃, all].

This completes the classification of the purely relational classes in P, NP
and Co-NP.
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6.4.2 Fragments of the Theory of One Unary Function

We now analyse the complexity of certain prefix classes in the theory of one
unary function. In particular we will prove the following results:

– The satisfiability problem for ∃∗∀∗-formulae is Σp
2 -complete. If the number

of existential quantifiers is bounded by a constant then the problem is Co-
NP-complete; if we only have a constant number of universal quantifiers
we get a problem that is NP-complete; if the number of both quantifiers is
bounded the problem is in P.

– Satisfiability of ∃∗∀∃∗-formulae is NP-complete.
– The satisfiability problem of the ∀2∃∗ prefix class is Nexptime-hard.

This does not yet give a complete classification of the classes in P, NP
and Co-NP. We will delineate the open problem that remains to be solved.

Configurations. To prove upper an bound on the complexity of fragments
of the theory of one unary function we analyse the possible models.

Definition 6.4.11. For simplicity we refer to a structure A = (A, f) with
one unary function as an algebra. Let B ⊆ A such that for all a ∈ B, there
exists an i > 0 with f i(a) ∈ B; we then can define the contraction of A to
B as the algebra (B, g) with g(a) = f i(a) for the minimal i > 0 such that
f i(a) ∈ B. We say that A is an enlargement of B if B is a contraction of A .

Given S ⊆ A we define the closure of S to be the set

S := {f i(a) : i ∈ N, a ∈ S}

Obviously, (S, f) is also an algebra. Let A = (A, f) be an algebra and
ā = (a1, . . . , ak) ∈ Ak; we say that (A, ā) is closed if A is the closure of
{a1, . . . , ak}.

Lemma 6.4.12. Let ψ := ∀y1 · · · ∀ymφ(x1, . . . , xk, y1, . . . , ym) be a universal
formula in the language of one unary function. If ψ is satisfiable, then there
exists a closed (A, a1, . . . , ak) with A |= ψ[a1, . . . , ak].

Proof. If (A, f) |= ψ[a1, . . . , ak], then also (S, f) |= ψ[a1 . . . , ak] where S =
{a1, . . . , ak}. ⊓⊔

Definition 6.4.13. Given A and elements ā = (a1, . . . , ak) we define, for
every n ∈ N, the contraction operator Zn which maps (A, ā) to (B, ā) where
B is a contraction of A. Let

S := {a1, . . . , ak}
V := S ∪ {a ∈ S : ∃b, c ∈ S(b ̸= c ∧ fb = fc = a)}
W := {a ∈ V : f i(a) /∈ V for all i > 0}
B := W ∪

∪
i≤n

f i(V )



296 6. Standard Classes with the Finite Model Property

Let B be the contraction of A to B and set

Zn(A, ā) = (B, ā).

If a ∈ V and fr+1(a) ∈ V , but f i(a) ̸∈ V for i = 1, . . . , r, then we call the
set {f(a), . . . , fr(a)} a segment. Intuitively, Zn(A, ā) is the structure obtained
by restricting A to the closure of {a1, . . . , ak} and by replacing every segment
longer than n by a segment of length n. The following properties of Zn follow
immediately:

(i) For every n and every (A, ā), the contraction Zn(A, ā) is closed.
(ii) The operator Zn is idempotent, i.e. Zn(Zn(A, ā)) = Zn(A, ā).

In the sequel we write (A, ā) |= φ to denote that A |= φ[ā].

Proposition 6.4.14. Let A be an algebra with elements a1, . . . , ak. Then for
every quantifier-free formula φ(x1, . . . , xk) with terms of length ≤ n

(A, ā) |= φ ⇐⇒ Zn(A, ā) |= φ.

Proof. Every atom of φ has the form frxi = fsxj with r, s ≤ n. Clearly the
two models are indistinguishable by atoms of this form. ⊓⊔

In general, Zn(A, ā) is infinite. However, we can define a finite description
Z∗
n(A, ā) of Zn(A, ā) by deleting from (the graph of) Zn(A, ā) all nodes in

(W−W ) (i.e. the paths that go ‘straight to infinity’ without meeting any other
path). Note, that Z∗

n(A, ā) uniquely determines Zn(A, ā). However, Z∗
n(A, ā)

is not an algebra – unless W = ∅ – because f is not defined on W .

Proposition 6.4.15. |Z∗
n(A, ā)| ≤ 2kn for all A and all ā = a1, . . . , ak.

Proof. The cardinality of V is bounded by 2k and |Z∗
n(A, ā)| ≤ n|V |. ⊓⊔

Definition 6.4.16. An [n, k]-configuration is an algebra A = (A, f), to-
gether with a tuple of (not necessarily distinct) elements a1, . . . , ak, such
that Zn(A, ā) = (A, ā).

Proposition 6.4.17. For every k ≥ 1, there is a polynomial pk(n) which
bounds the number of isomorphism classes of [n, k]-configurations .

Proof. Up to isomorphism, an [n, k]-configuration (A, ā) is uniquely deter-
mined by the following data which we call the map of (A, a):

– the cardinality of V , which is bounded by 2k;
– the elements a1, . . . , ak ∈ V ;
– the set W ⊆ V ;
– for every v ∈ V −W , the pair (v′, i), where v′ = f iv and i is the minimal

positive number such that f iv ∈ V . Clearly i ≤ n+ 1.

For fixed k the number of possible maps is polynomially bounded with respect
to n. ⊓⊔
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The ∃∗∀∗ Prefix Class.

Proposition 6.4.18. Let ψ := ∀y1 · · · ∀ymφ(x1, . . . , xk, y1, . . . , ym) be a sat-
isfiable formula in the language of one unary function f with φ quantifier-free
and with no term longer than n; let q = (m+ 1)(n+ 1). Then, there exists a
[q, k]-configuration which is a model for ψ.

Proof. Let (A, ā) be a model of ψ with A = (A, f) and ā = (a1, . . . , ak). We
claim that Zq(A, ā) is also a model for ψ. Since Zq is idempotent, Zq(A, ā) is
a [q, k]-configuration.

Suppose that Zq(A, ā) = (B ā) does not satisfy ψ with B = (B, g). Then
there exists b̄ = (b1, . . . , bm) ∈ Bm such that

(Zq(A, ā), b̄) |= ¬φ.

To prove the proposition, it suffices to construct b′1, . . . , b
′
m ∈ B such that

also
(A, ā, b̄′) |= ¬φ.

For every bi we distinguish two possibilities.
If bi belongs to V , W , or a segment of Zq(A, ā) which was not contracted

by Zq – i.e. if bi belongs to a part of B which ‘looks the same’ as the corre-
sponding part in A – then set b′i := bi.

Otherwise there exist c, d ∈ V and r, s ∈ N such that grc = bi, g
sbi = d,

and r+ s = q + 1. In A we have f t(c) = d for some t > q + 1. Let bi1 , . . . , biℓ
be the elements among b1, . . . , bm which are in this same segment. We may
assume that they are ordered in the following way. There exist r(0), . . . , r(ℓ) ∈
N such that r(0) + · · ·+ r(ℓ) = q + 1 and

gr(0)(c) = bi1 , . . . , gr(j)(bij ) = bij+1 , . . . , gr(ℓ)(biℓ) = d.

Let h be the maximal index such that r(h) > n; such a h exists because
ℓ ≤ m and q > (m+ 1)n. Now set

b′ij := fs(j)(c) where s(j) =

{
r(0) + · · ·+ r(j − 1) for j ≤ h
t− (r(j) + · · ·+ r(ℓ)) for j > h.

From the construction of the b′i it follows that Zn(A, ā, b̄
′)

congZn(B, ā, b̄) and therefore, by Proposition 6.4.14,

(A, ā, b̄′) |= φ ⇐⇒ (Zq(A, ā), b̄) |= φ.

⊓⊔

Theorem 6.4.19. For all k,m ∈ N,

(i) Sat[∃k∀m, (0), (1)]= ∈ P.
(ii) Sat[∃∗∀m, (0), (1)]= is NP-complete.
(iii) Sat[∃k∀∗, (0), (1)]= is Co-NP-complete.
(iv) Sat[∃∗∀∗, (0), (1)]= is Σp

2 -complete.



298 6. Standard Classes with the Finite Model Property

Proof. Let ψ := ∃x1 · · · ∃xk∀y1 · · · ∀ymφ be a formula in the language of
one unary function; let n be the length of the longest term in φ and let
q = (m+ 1)(n+ 1). Consider the following Σp

2 -algorithm.

1. Existential Step:Guess (the description of) a [q, k]-configuration (A, ā).
2. Universal Step: Choose (the description of) an [n, k+m]-configuration

(C, ā, b̄) such that there exist b̄′ = b′1, . . . , b
′
m in A with Zn(A, ā, b̄

′) ∼=
(C, ā, b̄).

3. Check whether (C, ā, b̄) |= φ. If yes, accept, otherwise reject.

By Proposition 6.4.15 this algorithm works in polynomial time. If the
number of existential quantifiers is bounded by a fixed k then, by Proposi-
tion 6.4.17, the existential choice can be replaced by a deterministic search
through all pk(n) possible configurations. If the number of universal quan-
tifiers is bounded by a fixed m, then a similar argument applies for the
universal choice of the elements b̄′. Finally by Propositions 6.4.14 and 6.4.18
the algorithm accepts ψ if and only if ψ is satisfiable.

Note that even for the first order theory of equality, satisfiability is NP-
complete for ∃∗-formulae and Σp

2 -complete for ∃∗∀∗-formulae (see Sect. 6.4.1.
The completeness of Sat[∀∗, (0), (1)]= in Co-NP is proved by reduction
from the validity problem for Boolean formulae. A propositional formula
ψ(X1, . . . , Xn) is valid if and only if

∀x∀x1 · · · ∀xn
(
(fx ̸= x) ∧ ψ[Xi/(xi ̸= x)]

)
is satisfiable. ⊓⊔

The ∃∗∀∃∗ Prefix Class. The Ackermann prefix class in the theory of one
unary function is NP-hard because it contains the pure existential theory of
equality. (The NP-completeness of this theory is proved in Sect. 6.4.1). We
establish the NP-completeness by presenting a nondeterministic satisfiability
test which accepts precisely the satisfiable ∃∗∀∃∗-formulae in the theory of
one unary function.

Satisfiability Test

Input: ψ := ∃x1 · · · ∃xk∀y∃z1 · · · ∃zrφ
set q = (r + 1)(n+ 1) where n = |φ|
guess (the description of) a [q, k]-configuration (B, ā)
initialize X := {(B, ā, b) : b ∈ B, Zq(B, ā, b) = (B, ā, b)}
initialize Y := ∅
while X ̸= Y do

begin
choose (B, ā, b) ∈ X
guess (the description of) a [q, k + 1 + r]-configuration (C, ā, b, ē) which

is an enlargement of (B, ā, b)
check whether Zn(C, ā, b, ē) |= φ. If not, reject.
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set Y = Y − {(B, ā, b)}
set X = X ∪ {Zq(C, ā, b′) : b′ ∈ C}
end

accept

By Proposition 6.4.17, the test runs in polynomial time.

Theorem 6.4.20. A formula ψ := ∃x1 · · · ∃xk∀y∃z1 · · · ∃zrφ in the language
of one unary function is satisfiable if and only if it is accepted by the satisfi-
ability test.

Proof. Assume that ψ is satisfiable. This means that there exist an algebra
A = (A, f), elements a1, . . . , ak of A and functions g1, . . . , gr : A → A such
that for all b ∈ A

(A, ā, b, ḡ(b)) |= φ.

Then the satisfiability test accepts ψ making the following guesses:

– (B, ā) = Zq(A, ā)
– (C, ā, b, ē) = Zq(A, ā, b, ḡ(b)).

Indeed, by Proposition 6.4.14 all instances of φ that are checked by the test
are satisfied.

The converse is more complicated. Assuming that the satisfiability test ac-
cepts ψ we will inductively define a model A. The construction of A proceeds
in stages. At every stage i > 0 an enlargement Ai of Ai−1 is defined. Finally
we set A =

∪
i∈N Ai. After stage i is completed we enumerate the (count-

ably many) elements of Ai − Ai−1 in some arbitrary way as ci,0, ci,1, . . .. We
turn this into an enumeration of all elements of A by choosing a bijection
h : N × N → N with h(j, k) ≥ j and by defining: bh(j,k) = cj,k. Let X

∗ be
the set X at the end of an accepting computation of the satisfiability test on
input ψ.

Stage 0: Initially the satisfiability test guesses a [q, k]-configuration (B, ā).
Set A0 := B. Clearly, Zq(A0, ā, b0) ∈ X∗.

Stage i+1: Let b := bi. There exists a unique pair (j, k) such that h(j, k) = i.
Thus, b = cj,k ∈ Ai because i ≥ j. Let (B, ā, b) = Zq(Ai, ā, b). By induction
we may assume that (B, ā, b) ∈ X∗. This means that during the execution of
the satisfiability test an enlargement (C, ā, b, ē) of (B, ā, b) was guessed which
satisfies φ.

Lemma 6.4.21. There exists an enlargement Ai+1 of Ai, containing e1, . . .,
er, such that Zn(Ai+1, ā, b, ē) ∼= Zn(C, ā, b, ē). Moreover, for every element b′

of Ai+1, Zq(Ai+1, ā, b
′) is in X∗.

Proof. Let Ai = (A, f), B = (B, g) and C = (C, g′). Clearly, B ⊆ A and
B ⊆ C. Without loss of generality we may assume that A∩C = B. Moreover



300 6. Standard Classes with the Finite Model Property

Zq(Ai, ā, b) = (B, ā, b) and Zq(C, ā, b, ē) = (C, ā, b, ē).

Recall from Definition 6.4.13 that the operation of Zq gives us the sets V ⊆ B
and V ′ ⊆ C. Let s ≤ r be the number of those elements among e1, . . . , er
which are not in B. Then (the graph of) C − B has at most s connected
components. Furthermore every connected component D of C −B is either
also a connected component of C, or there exists a unique v ∈ V ′ ∩ B such
that g′(d) = v for some d ∈ D. We call v the target of the component D. This
implies that that every element of (V ′−V )∩B belongs either to {e1, . . . , er}
or is a target of a connected component of C−B. Thus

|(V ′ − V ) ∩B| ≤ r.

Next we define an embedding σ : B → A. If u ∈ B belongs to V orW or to
a segment of B which was left invariant by the contraction Zq then set σ(u) =
u. On the other hand, let {g(v), g2(v), . . . , gq(v)} be a contracted segment;
its corresponding segment in Ai has the form {f(v), f2(v), . . . , fq+t(v)} for
some t > 0. Since q = (r + 1)(n + 1) there exists a minimal j ≤ q − (n + 1)
such that gj+1(v), . . . , gj+n(v) ̸∈ V ′. Now set, for i = 1, . . . , q

σ(gi(v)) =

{
f i(v) if i ≤ j
f i+t(v) if i > j

Now we can define Ai+1 = (A′, f ′):

A′ := A ∪ C

f ′(u) =

 f(u) if u ∈ A
g′(u) if u, g′(u) ∈ (C −B)
σ(g′(u)) if u ∈ (C −B) and g′(u) ∈ B

We have to show that Zn(Ai+1, ā, b, ē) ≃ Zn(C, ā, b, ē). By construction
V ′ is the same set in Ai+1 and in C and every segment (with respect to V ′) in
Ai+1 corresponds to a unique segment in C. Let S ⊆ A′ be a segment in Ai+1;
then either S ⊆ A or S ⊆ (C − B). If S ⊆ (C − B) then the corresponding
segment in C is also S. If S ⊆ A then the corresponding segment S′ in C lies
entirely in B; it is part of a possibly larger segment S′′ = {f(v), . . . , fs(v)}
of B (with respect to V ). The embedding σ of B into A has the property
that σ(S′) = S, unless s > q and S′ begins with the ‘breaking point’ gj+1(v)
of S′′. But this means that {gj+1, . . . , gj+n} ⊆ S′ and, since σ(S′) ⊆ S,
|S′|, |S| ≥ n.

Thus, in every case, corresponding segments S and S′ of Ai+1 and
C have the property that max(|S|, n) = max(|S′|, n). But this implies
Zn(Ai+1, ā, b, ē) ≃ Zn(C, ā, b, ē).

This proves the first part of the Lemma. From the construction of Ai+1 it
immediately follows for all b′ ∈ B, that Zq(Ai+1, ā, b

′) = Zq(Ai, ā, b
′) which,

by induction, is in X∗. If b′ ∈ (C − B), then Zq(Ai+1, ā, b
′) = Zq(C, ā, b

′)
which is put into X after the satisfiability test has disposed of (C, ā, b). Thus
Zq(Ai+1, ā, b

′) ∈ X∗ for all b ∈ A′. ⊓⊔
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It remains to prove that A |= ψ. Take an arbitrary element b of A; then
b = bi for some i. We show that there exist e1, . . . , er such that (A, ā, b, ē) |= φ.
By Lemma 6.4.21 the substructure Ai+1 of A contains elements e1, . . . , er such
that Zn(Ai+1, ā, b, ē) |= φ. Since A is an extension of Ai+1, Zn(A, ā, b, ē) ≃
Zn(Ai+1, ā, b, ē). By Proposition 6.4.14 this implies that (A, ā, b, ē) |= φ. ⊓⊔

We now can infer

Corollary 6.4.22. Sat[∃∗∀∃∗, (0), (1)]= is NP-complete.

Corollary 6.4.23. For all k,m ∈ N, Sat[∃k∀∃m, (0), (1)]= is in P.

Proof. Replace the existential guesses in the satisfiability test by a determin-
istic search through all possible configurations. From Proposition 6.4.17, it
follows that, for fixed k and m, the resulting procedure works in polynomial
time. ⊓⊔

The ∀2∃∗ Prefix Class. We now show that the class of ∀2∃∗-formulae
in the theory of one unary function is hard for nondeterministic exponen-
tial time. This is proved by a polynomial reduction from Sat[∀2∃∗, (ω)] to
Sat[∀2∃∗, (0), (1)]=. The reduction is given using the method of existential
interpretation.

First we construct for every n ∈ N a formula ψn in the language of one
unary function. Let

Di(x) := (f i+1x = f ix) ∧ (f ix ̸= f i−1x).

Then ψn := ∀x∀y∃z∃z1 · · · ∃znφn where φn is the conjunction of

f2n+2x = f2n+1x

D2n+1(z) ∧ f2n+1z = f2n+1x

(D2n+1(x) ∧D2n+1(y) ∧ f2n+1x = f2n+1y)→ (x = y)

n∧
i=1

(
(fzi = f2iz ∧ zi ̸= f2i−1z) ∨ (fzi = f2i+1z ∧ zi ̸= f2iz)

)
(D2i(x) ∧D2i−1(y) ∧ f2ix = f2i−1y)→ (f2(n−i)+1z = x ∨ f2(n−i)+2z = y).

(The last formula has to be included for i = 1, . . . , n.)
An algebra A = (A, f) is a model of ψn if and only if every connected

component C of A has the following form. There exist unique elements a,
b ∈ C such that f(b) = b, f2n(a) ̸= b and f2n+1(c) = b for all c ∈ C, i.e. there
is a unique chain of 2n+ 2 nodes in C with first element a and last element
b; there is no element mapped to a and no element besides a is mapped to
f(a). Moreover for i = 1, . . . , n, precisely one of f2i(a) and f2i+1(a) has an
element outside this chain that is mapped to it. We call a the leader of C,
and let L ⊆ A be the set of leaders of A. Clearly L is definable by the formula



302 6. Standard Classes with the Finite Model Property

δ(x) := (f2n+1x ̸= f2nx). On L we introduce n monadic predicates by the
formulae π1(x), . . . , πn(x) where

πi(x) := ∃u(fu = f2ix ∧ u ̸= f2i−1x).

Note that also the negation of πi is definable by an existential formula, namely

π̃i(x) := ∃u(fu = f2i+1x ∧ u ̸= f2ix).

Thus, a model A |= ψn uniquely determines a structure A∗ = (L,Q1, . . . , Qn)
for the language of n monadic predicates. Conversely, for every structure B
of this vocabulary, there exists an algebra A such that A∗ ∼= B.

Now, let χ be a formula in the pure monadic predicate calculus, with
predicates P1, . . . , Pn. We map it to a formula η in the language of one unary
function by relativizing every quantifier to δ and by replacing the predicates
Pi by the formulae πi and π̃i; positive occurrences of Pi are substituted by πi,
negative occurrences by π̃i. If χ is an ∀2∃∗-formula, then so is ψ′; therefore,
also the formula ψn ∧ η is equivalent to an ∀2∃∗-formula. Moreover, this
formula is computable in polynomial time from χ. Finally the analysis of the
models of ψn implies that χ is satisfiable if and only if ψn ∧ η is satisfiable.

Since Sat[∀2∃∗, (ω), 0] – in fact already Sat[∀2∃, (ω), 0] – is hard for non-
deterministic exponential time, by Theorem 6.2.13 we infer

Theorem 6.4.24. Sat[∀2∃∗, (0), (1)]= is hard for Nexptime via polynomial-
time reductions.

Finite Prefix Classes. We show that there are prefix classes in the theory
of one unary function which are defined by simple finite prefixes and whose
satisfiability problems are NP-hard:

Theorem 6.4.25. Let X contain all formulae of the theory of one unary
function with prefix ∀∃ ∧ ∀3. Then Sat(X) is NP-hard.

Proof. We will reduce 3-SAT to Sat(X). First we define, for every n ∈ N, an
axiom αn in the language of one unary function, which satisfies the following
properties:

(i) If A is a model of αn, then every connected component of A is a k-cycle
for some k ≤ 2n;
(ii) For every k ≤ n there exists a 2k-cycle in A if and only if there exists
no (2k − 1)-cycle in A;
(iii) αn has the form ∀x∀yβn(x, y) ∧ ∀x∃uδn(x, u) where βn and δn are
quantifier-free;
(iv) There is a Turing machine which, given n, constructs αn in time
O(n2).
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For every i ∈ N, let

Ci(x) := (f ix = x) ∧
∧

1≤j<i

(f jx ̸= x).

Ci[a] is true if and only if a is a member of an i-cycle. Then let βn(x, y)
be the conjunction of the following clauses.

2n∨
i=1

f ix = x

¬C2i(x) ∨ ¬C2i−1(y) for i = 1, . . . , n.

Let δn(x, u) be a tautology for n = 1 and, for n > 1, be the conjunction
of

(C2i−1(x) ∨ C2i(x))→ (C2i+1(u) ∨ C2i+2(u)) for i = 1, . . . , n− 1

(C2n−1(x) ∨ C2n(x))→ (C1(u) ∨ C2(u)).

Obviously αn := ∀x∀yβn ∧ ∀x∃uδn has the required properties. Now, let
ψ(X1, . . . , Xn) be a propositional formula in 3-CNF, i.e.

ψ :=
k∧
i=1

Yi1 ∨ Yi2 ∨ Yi3 where Yij ∈ {X1, . . . , Xn,¬X1, . . . ,¬Xn}.

The reduction maps ψ to the formula

φ := αn ∧ ∀x∀y∀z
( k∧
i=1

Fi1(x) ∨ Fi2(y) ∨ Fi3(z)
)

where

Fij (v) :=

{
¬C2k(v) if Yij is Xk

¬C2k−1(v) if Yij is ¬Xk

Obviously the transformation from ψ to φ is computable in polynomial
time. We claim that ψ ∈ 3-SAT if and only if φ is satisfiable.

Suppose that ψ is satisfied by the assignment (ε1, . . . , εn) ∈ {0, 1}n. Then
let A be the f - structure that consists of n connected components Z1, . . . , Zn,
where Zk is a (2k−1)-cycle if εk = 1 and otherwise, Zk is a 2k-cycle. Clearly,
A |= αn. Moreover, for every i, there is at least one literals Yij that is made
true by the assignment. If Yij is Xk then εk = 1 and A contains no 2k-cycle;
therefore, for all a ∈ A, A |= ¬C2k[a]. Otherwise, Yij is ¬Xk, i.e. A contains
no (2k− 1)-cycle and thus, for arbitrary a, A |= ¬C2k−1[a]. This implies that
A |= φ.

Conversely, suppose that A |= φ. For k = 1, . . . , n, let εk = 1 if A contains
a 2k − 1-cycle, εk = 0, otherwise. Since αn holds in A, εk = 1 is equivalent
with the non-existence of a 2k-cycle in A. By analogous reasoning as above
it follows that ψ(ε1, . . . , εn) is true as a propositional formula. ⊓⊔
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The exact classification of the complexities of the finite prefix classes in
the theory of one unary function remains open. The same holds for the ∃∗Π-
prefix classes where Π is finite.

Problem: Determine the finite prefixes Π ∈ {∃, ∀}∗ for which

(i) Sat[Π, (0), (1)]= is in P, NP or Co-NP;
(ii) Sat[∃∗Π, (0), (1)]= is in P, NP or Co-NP.

Up to this problem the classification of all prefix classes in the first order
theory of one unary function whose satisfiability problems are in P, NP or
Co-NP is complete.

6.4.3 Other Functional Classes

We now describe the standard classes of ‘modest’ complexity whose vocabu-
lary contains at least two functions, or a function and a relation, or a function
of arity greater than one.

We prove the following result:

Theorem 6.4.26. Let X be a prefix vocabulary class whose vocabulary con-
tains at least two functions, or a function and a relation, or a function of arity
greater than one. Then Sat(X) is NP-hard. Further, Sat(X) is NP-complete
if and only if X includes only existential formulae. Otherwise, Sat(X) is at
least Pspace-hard.

Note that the classes [∀, (0), (2)]= and [∀, (0), (0, 1)]= are unsolvable. Thus
Theorem 6.4.26 is immediately implied by the following three propositions:

Proposition 6.4.27. The satisfiability problem for existential first order
formulae, i.e. Sat[∃∗, all, all]=, is NP-complete.

Note that [∃∗, all, all]= is one of the maximal solvable classes.

Proof. Given an existential formula ∃x1 · · · ∃xkψ, let T be the set of terms
that occur in ψ, possibly as a subterm of another term. This means that for
every term s = fs1 · · · sr appearing in ψ, T contains not only s, but also
s1, . . . , sr and all their subterms. In particular, T contains all variables of ψ.
Let T = {t1, . . . , tm}. We transform ψ to the formula

∃t1 · · · ∃tm
(
ψ′ ∧

∧
s=fs1···sr

s∈T

s = fs1 · · · sr
)

where ψ′ is the same formula as ψ except that the terms in ψ are considered
as variables in ψ′. In the new formula all atoms are of the form Pz1 · · · zr,
z1 = z2 and fz1 · · · zr = zs where all the zi are variables. A satisfiable
formula of this form has a model of size at most k + m. Thus there is a
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straightforward procedure for deciding satisfiability of existential formulae in
nondeterministic polynomial time.

Moreover this problem is certainly at least as hard as satisfiability of
propositional formulae and therefore NP-complete. ⊓⊔

Proposition 6.4.28. If X contains any of the three classes

[∃, (1), (1)] [∃, (0), (2)]= [∃, (0), (0, 1)]=

then Sat(X) is NP-hard.

Proof. A propositional formula ψ(X1, . . . , Xn) is in SAT if and only if the
following formulae are satisfiable:

– ∃xψ[Xi/Pf
i−1x]ψ

– (∃x)ψ[Xi/(gf
i−1x = x)]

– (∃x)ψ[Xi/(ftix = x)] where the ti are terms defined as: t0 = x and ti+1 =
fxti.

⊓⊔

Proposition 6.4.29. The class Sat[∀, (1), (1)] is Pspace-hard.

Proof. Let A be a problem in Pspace. Without loss of generality we make the
following assumptions. A is decided by a Turing machine N in space nk and

time 2n
k

. After acceptance N remains in the accepting configuration. Let Σ
be the alphabet andQ the set of states of the Turing machine. A configuration
of N is encoded by a word of length nk over the alphabet Γ = Σ ∪ (Q×Σ)
and the transition function of N is described by function δ : Γ 3 → Γ (the jth

symbol of the successor configuration of c is determined by applying δ to the
(j− 1)th, jth and (j+1)th symbols of c). If we use instead of Γ the alphabet
{0, 1} then, for some constant d, the encoding of a configuration has length
dnk and the computational behaviour of N is described by a function δ from
{0, 1}3d to {0, 1}d.

Set m := dnk. We want to describe computations by N on inputs of
length n by structures A = (A, f, P ) (with unary function f and monadic
predicate P on the universe A) in the following way. Given any element a of
A, the set {f i(a) : i ∈ N} is a homomorphic image of the natural numbers
with successor, and P defines an infinite binary word on this set. We want
this word to be divided into segments of length 4m+ 3 which have the form

110b00b10 · · · bm−10c00c10 · · · cm0.

This is asserted by the formula ∀xα where

α :=

4m+2∨
i=0

(
Pf ix ∧ Pf i+1x

)
∧
(
(Px ∧ Pfx)→

2m+1∧
i=1

¬P (f2ix)
)
.
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Given a structure A which satisfies ∀xα, every a ∈ A with A |=
(Pa ∧ Pf(a)) is the leading element of such a segment. It defines a natu-
ral number b(a) < 2m with binary representation b0 · · · bm−1 and a word
c(a) = c0, . . . , cm−1 ∈ {0, 1}∗ via

bi = 1 iff A |= Pf2i+3(a)

ci = 1 iff A |= Pf2i+2m+3(a).

A computation is encoded by a sequence of 2m such segments; if ai is the
leading element of the ith segment then b(ai) = i and c(ai) encodes the ith

configuration of the computation.
It is not difficult to construct from the transition function δ quantifier free

formulae of length polynomial in m which express the following properties:

Next(x, y): c(y) encodes the successor configuration of c(x).
Acc(x): c(x) encodes an accepting configuration.
Inpw(x): c(x) is the initial configuration on input w.
Succ(x, y): b(y) = b(x) + 1 (mod 2m).
First(x): b(x) = 0.
Last(x): b(x) = 2m − 1.

Given an input w of length n construct the formula

ψ := (Px ∧ Pfx)→
(
Succ(x, f4m+3x) ∧

(
First(x)→ Inpw(x)

)
∧(

¬Last(x)→ Next(x, f4m+3x)
)
∧
(
Last(x)→ Acc(x)

))
.

N accepts w if and only if the formula ∀x(α∧ψ) is satisfiable. This proves
the Proposition. ⊓⊔

So we now have, except for the open problem in Sect. 6.4.2, a complete
classification of the prefix vocabulary classes whose satisfiability problems are
in P, NP or Co-NP.

6.5 Finite Model Property vs. Infinity Axioms

The question whether a formula class has the finite model property or whether
it contains infinity axioms is interesting by itself. Thus it is desirable to
have a classification of the prefix vocabulary classes with respect to this
question. Gurevich’s Classifiability Theorem implies that also in this case, a
finite classification exists. We present an almost complete such classification
here.

We have seen that in many cases, the satisfiability problem (and the finite
satisfiability problem) for a prefix-vocabulary class is decidable if and only
if the class has the finite model property. However, if both function symbols
and equality are present, then we may have decidable classes with infinity
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axioms. The maximal ones are the Rabin class [all, (ω), (1)]= and the She-
lah class [∃∗∀∃∗, all, (1)]= (see Chap. 7). It should also be noted that the
essentially finite classes – i.e. classes with finite prefix and finite relational
vocabulary – cannot be excluded from consideration. These classes are triv-
ial for algorithmic questions like decidability of the satisfiability problem,
but they may of course contain infinity axioms. In fact, any particular infin-
ity axiom has finite vocabulary and finite prefix; therefore every relational
reduction class has essentially finite subclasses with infinity axioms.

Example. The sentences

φ := ∀x∃y∀z(¬Rxx ∧Rxy ∧ (Ryz → Rxz))

ψ := ∀x∀y∀z∃u(¬Rxx ∧Rxu ∧ (Rxy ∧Ryz → Rxz))

are infinity axioms in the essentially finite classes [∀∃∀, (0, 1)] and [∀3∃, (0, 1)].

We will present the classification by two theorems. The first gives a list
of maximal classes with the finite model property, the second gives a list of
minimal classes with infinity axioms. The two lists almost exhaust all prefix
vocabulary classes. We will at the end of this section discuss the few cases
that remain open.

Theorem 6.5.1 (Maximal Classes with Finite Model Property).The
following nine classes have the finite model property.

(1) [∃∗∀∗, all]= (Ramsey 1930)

(2) [∃∗∀2∃∗, all] (Gödel 1932, Schütte 1934)

(3) [∃∗∀∃∗, all]= (Ackermann 1928)

(4) [all, (ω)]= (Löwenheim 1915)

(5) [all, (ω), (ω)] (Löb 1967, Gurevich 1969)

(6) [∃∗∀∃∗, all, all] (Gurevich 1973)

(7) [∃∗, all, all]= (Gurevich 1976)

(8) [∀∗, (ω), (1)]= (Ash 1975)

(9) [∃∗∀, all, (1)]= (Grädel 1996)

The finite model property of the classes (1) to (7) has already been estab-
lished in the previous sections of this chapter. The finite model property of
class (8) was proved by Ash using rather sophisticated machinery (Ramsey’s
Theorem, Vaught’s test and decomposition theorems for the monadic theory
of linear orderings). We present here an elementary proof.

Theorem 6.5.2 (Ash). The class [∀∗, (ω), (1)]= has the finite model prop-
erty.
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Proof. Let ψ = ∀x1 · · · ∀xkφ be a formula in the given class, where φ is
quantifier-free with monadic predicates P1, . . . , Pt, and a unary function f .
Further let m be such that φ contains only terms f ixj with i < m.

Given structures A,B of appropriate vocabulary and elements a, b of A
and B, respectively, we write (A, a) ∼r (B, b) to denote that for all monadic
predicates Pi and all j ≤ r

A |= Pif
j(a) ⇐⇒ B |= Pif

j(b).

Further, given k-tuples ā = a1, . . . , ak and b̄ = b1, . . . , bk of elements of A
and B, respectively, we write (A, ā) ∼=r (B, b̄) if for all i, j ≤ k and h, ℓ ≤ r

(i) (A, ai) ∼r (B, bi),
(ii) fh(ai) = f ℓ(aj) iff f

h(bi) = f ℓ(bj).

Since all atoms of φ have the form Pif
hxj or f

hxi = f ℓxj for h, ℓ < m it
follows that A |= φ[ā] iff B |= φ[b̄] whenever (A, ā) ∼=m (B, b̄).

Suppose now that A |= ψ and consider any substructure B ⊆ A that is
generated by a single element b, i.e. a substructure with universe B = {f i(b) :
i < ω}. Since A |= ψ and ψ is universal it follows that B |= ψ. If B is finite,
we are done. Otherwise (B, f) ∼= (ω, succ).

Clearly, for every r < ω, there are only finitely many ∼r-equivalence
classes. Thus, there exist c ∈ B and a natural number n > km such that
(B, c) ∼km (B, fn(c)). Let C be the substructure of B generated by c and let
D be the structure with universe D = {f i(c) : 0 ≤ i < n}, with f(fn−1(c)) :=
c and PD

i := PC
i ∩D. Obviously C |= ψ. We claim that also D |= ψ. To see this

we take any d̄ = d1, . . . , dk ∈ D and show that we can find c̄ = c1, . . . , ck ∈ C
such that (C, c̄) ∼=m (D, d̄).

Without loss of generality, we can assume that d1 = fh1(c), . . . , dk =
fhk(c) with 0 ≤ h1 ≤ h2 ≤ · · · ≤ hk < n. We distinguish two cases.

Case 1: If d1 is not reachable from dk, in the sense that D |= (f j(dk) ̸= d1)
for all j < m we can take c̄ = d̄.

Case 2: Otherwise D |= (f j(dk) = d1) for some j < m. Take the maximal
s ≤ k such that hi−hi−1 < m for i = 2, . . . s. Note that hs < sm ≤ km. Now
set

ci :=

{
fn(di) for i = 1, . . . , s
di for i = s+ 1, . . . , k.

It is easily verified that (C, c̄) ∼=m (D, d̄) in both cases. Since C |= φ[c̄]
for all c̄ it follows that D |= φ[d̄]. But d̄ was chosen arbitrarily, so we have
proved that D is a finite model of ψ. ⊓⊔

It remains to prove the finite model property of class (9) which is a frag-
ment of the Shelah class. In fact it turns out to be a maximal fragment with
the finite model property.
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Since we need a bound on the size of a finite model, this does not buy us much. Fortunately this can be helped. We consider the case where the structure B is finite. Without loss of generality, we may assume that b belongs to the cycle of B. Let p be the length of the cycle. The rest of the proof applies not only to the acyclic case but also to the cyclic case where p \geq n where n as as below.



6.5 Finite Model Property vs. Infinity Axioms 309

Theorem 6.5.3 (Grädel). The class [∃∗∀, all, (1)]= has the finite model
property.

Proof. We can replace leading existential quantifiers by constants and thus
assume that we have a sentence ψ = ∀xφ where φ is a quantifier-free formula
whose vocabulary consists of constants c1, . . . , ck, one unary function symbol
f and a finite number of relation symbols of arbitrary arity. Suppose that
A |= ψ and let B ⊆ A be the substructure generated by the constants, i.e.
the substructure with universe B = {f i(cj) : i < ω, j = 1, . . . , k}. (If ψ has
no constants, take the substructure generated by an arbitrary element c1 of
A.) Since ψ is universal, B |= ψ.

For elements a, b of B, let a ∼m b denote that B |= η[a] ↔ η[b] for all
atomic formula η(x) with one variable and terms f ix and f icj with i < m.

The {f}-reduct (B, f) of B can be seen as an infinite directed graph, with
an arc from a to b iff f(a) = b. If B is finite we are done. Otherwise, let K
be an infinite (weakly) connected component of this digraph. Obviously the
number of ∼m-equivalence classes is finite, so there exist b ∈ K and a natural
number n > m such that b ∼m fn(b) and {fn+i(b) : i < ω}∩{c1, . . . , ck} = ∅.
By identifying fn(b) with b, the component K is changed to a finite one. By
repeating this operation for all infinite components of B, we obtain a finite
structure C. For every element c of C there is an element b of B such that
b ∼m c. Since B |= φ[b] for all b, this implies that C |= φ[c]. Thus C is a finite
model of ∀xφ. ⊓⊔

This completes the proof of Theorem 6.5.1. We now consider minimal
classes that admit infinity axioms.

Theorem 6.5.4 (Minimal Classes with Infinity Axioms). Each of the
following classes contains infinity axioms.

(1) [∀3∃, (0, 1)] (6) [∀2, (1), (0, 1)]

(2) [∀∃∀, (0, 1)] (7) [∀, (0), (2)]=
(3) [∀2∃, (ω, 1)]= (8) [∀, (0), (0, 1)]=
(4) [∀2∃∗, (0, 1)]= (9) [∃∀2, (0), (1)]=
(5) [∃∗∀2∃, (0, 1)]= (10) [∀∃, (0), (1)]=

We have exhibited infinity axioms for the classes (1) and (2) in the ex-
ample above. The classes (3) – (8) are conservative (see Theorem 4.0.1). It
remains to show that the classes (9) and (10), i.e. the ∃∀2 and ∀∃ prefix
classes in the logic of one unary function admit infinity axioms.

Proposition 6.5.5. There exist infinity axioms in the first-order logic of one
unary function with prefix ∃∀2 and ∀∃, respectively.
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Proof. The desired infinity axioms are

φ := ∃x∀y∀z(fy ̸= x ∧ (fy = fz → y = z))

ψ := ∀x∃y(f2y = fx ∧ fy ̸= x)

Indeed, φ states that f is injective but not surjective. The argument for ψ
is only slightly more complicated. A model for ψ is given by the infinite
binary tree T = ({0, 1}∗, f) with f(λ) = λ and f(w0) = f(w1) = w for
all w ∈ {0, 1}∗. Now suppose that A = (A, f) is a finite model of ψ. Call
a ∈ A cyclic if fm(a) = a for some m < ω, and acyclic otherwise. Since A
is finite it contains a cyclic element a; but then there exists b ∈ A such that
f2(b) = f(a) and f(b) ̸= a. In particular, b is acyclic. By the finiteness of
A there exists a maximal number n < ω such that fn(c) = f(a) for some
acyclic element c. However, ψ implies that there exists an element d with
f2(d) = f(c) and therefore fn+1(d) = f(a) which contradicts the maximality
of n. Thus ψ admits no finite models. ⊓⊔

Theorem 6.5.1 and Theorem 6.5.4 give an almost complete classification
of the prefix vocabulary with the finite model property The only cases that
are open are some essentially finite subclasses of the Goldfarb class.

Indeed, for every prefix-vocabulary class X one of the following holds:

1. X is included in one of the classes (1) – (9) of Theorem 6.5.1 (and thus
has the finite model property), or

2. X contains one of the classes (1) – (10) of Theorem 6.5.4 (and thus has
infinity axioms), or

3. X is an essentially finite subclass of the ∃∗∀2∃∗-class with equality and
without functions (the Goldfarb class). More precisely, X has the form
[∃k∀2∃m, (p1, p2, . . .)]= such that k ≥ 0,m ≥ 1, all pi are finite and at
least one of p2, p3, . . . is positive (but only finitely many of them are).
Goldfarb [192] exhibits infinity axioms for some of these classes, such
as [∀2∃, (3, 9)]= and [∀2∃17, (1, 7)]=, but a complete classification is not
known. In particular, it seems to be unknown whether [∀2∃, (0, 1)]= has
infinity axioms.

6.6 Historical Remarks

The study of decidable cases of the Entscheidungsproblem started with
Löwenheim’s ground-breaking paper [365] where he established the decid-
ability and finite model property of the monadic predicate calculus (even
with equality). In the same paper he showed that first-order logic contains
infinity axioms and proved that the validity problem for first-order logic can
be reduced to the validity problem of the pure predicate calculus with only
binary predicates. Skolem [477] and Behmann [31] extended Löwenheim’s de-
cidability result to the fragment of second-order logic where all predicates,
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free and bound, are monadic. Bernays and Schönfinkel proved that a monadic
formula with n predicates (without equality) is valid if and only if it is valid
over a domain of cardinality 2n and thus established a small model property.

The first decidability results for formula classes with non-monadic pred-
icates were due to Bernays and Schönfinkel [35] in 1928 and concerned the
∃∗∀∗ and the ∀∃ prefix classes in the pure predicate calculus with relation
symbols of arbitrary arity. Ackermann [16] extended the latter result to the
class ∃∗∀∃∗ of relational sentences with at most one universal quantifier.
Other proofs of the same result were given by Skolem [478] and Herbrand
[254]. Ramsey [435] proved that the satisfiability problem for relational ∃∗∀∗-
sentences is decidable also in the predicate calculus with equality. In fact he
proved that the spectrum of every ∃∗∀∗-sentence without function symbols is
either finite or co-finite. To prove this result he developed his famous combi-
natorial theorem and initiated was is now called Ramsey theory, a still very
active subfield of combinatorics.

In 1932 – 1934, Gödel [186], Kalmár [293] and Schütte [457, 456] inde-
pendently discovered decision procedures for the class of ∃∗∀2∃∗-sentences
in pure predicate logic. Gödel [187] and Schütte also established the finite
model property of this class. The original proof relies on an ingenious and
very complicated model construction. In 1984, Gurevich and Shelah found a
simpler proof that replaces Gödel’s explicit combinatorial construction by a
probabilistic argument (see Sect. 6.2.3).

The results obtained later by Surányi [494] and Kahr, Moore and Wang
[288] that the prefix classes ∀3∃ and ∀∃∀ in pure predicate logic are reduc-
tion classes showed that the Bernays-Schönfinkel class [∃∗∀∗] and the Gödel-
Kalmár-Schütte class [∃∗∀2∃∗] are the two maximal decidable prefix classes
in pure predicate logic which are decidable for satisfiability (and finite satis-
fiability).

At the end of his paper [187] Gödel claims, without substantiation, that
his method to show the finite model property for the ∀2∃∗ class suffices to
show the same result also in the presence of equality. Only in the 1960’s
examples were discovered showing that Gödel’s criterion is not sufficient for
satisfiability of ∀2∃∗-sentences with equality. In 1984 Goldfarb proved the
undecidability of the ∀2∃-class and thus completed the classification of the
decidable and undecidable prefix classes with equality.

Thus, in predicate logic with equality (but without function symbols),
the ∃∗∀∃∗-sentences and the ∃∗∀∗-sentences form the two maximal decidable
decidable prefix classes.

Formula classes with function symbols had been excluded from consid-
eration for a long time. It was only in 1954, at the very end of his book
[18], in fact on the last four lines, that Ackermann suggested to investigate
the decision problem for formulae with both predicates and functions. How-
ever, such a study was initiated only in the late 1960s when Löb [363] and
Gurevich [223] proved that first-order logic without equality and with only
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monadic predicate and function symbols (the class [all, (ω), (ω)]=) has the
finite model property. In a series of papers Gurevich then classified decid-
able and undecidable standard classes with function symbols [223, 226, 227].
The most difficult case in first-order logic without equality is the class of
∃∗∀∃∗-sentences with arbitrary vocabulary of relation and function symbols.
Gurevich proved in [226] that this class has the finite model property and
therefore is decidable for satisfiability. The decidability result (but not the fi-
nite model property) also follows from the fact that the derivability problem
for the dual class [∀∗∃∀∗, all, all] is decidable; this had been announced by
Orevkov in [407] and proved by Maslov and Orevkov in [386] who cite Gure-
vich’s proof (accepted for publication in 1968, but published only in 1973).
Their method is proof theoretical and quite different from that of Gurevich.
See also [395] for a proof of this result.

Thus, the ∃∗∀∃∗-sentences form the unique maximal decidable prefix class
in first-order logic without equality, whereas the ∀2-sentences form a reduc-
tion class (even with very restricted vocabulary, such as one unary relation
and one binary function, or one binary relation and one unary function) [223].

For full first-order logic (with equality, arbitrary functions and rela-
tion symbols) only the existential prefix class (which readily reduces to the
propositional case) is decidable. In fact Gurevich proved that the classes
[∀, (0), (2)]= and [∀, (0), (0, 1)]= are reduction classes. This leaves two maxi-
mal decidable standard classes, both of which contain infinity axioms, namely
the Rabin class [all, (ω), (1)]= and the Shelah class [∃∗∀∃∗, all, (1)]= (see the
historical remarks in Sect. 7.4)

The study of complexity results for decidable cases of the decision prob-
lem originates in the work of Lewis [352] and Fürer [175, 177] who determined
upper and lower complexity bounds for the classical solvable cases. Specif-
ically they proved that the Löwenheim class, the Bernays-Schönfinkel class
and the Gödel-Kalmár-Schütte class have nondeterministic exponential time
complexity, and that the Ackermann class has deterministic exponential time
complexity (for details see Sect. 6.2).

The complexity of the Ackermann class with equality [∃∗∀∃∗, all]= was
first determined by Kolaitis and Vardi [314]. The proof presented here was
found independently, but later, by Grädel [196].

Grädel [200, 204] investigated the complexity of classes with function
symbols; in particular he strengthened Gurevich’s decision procedures for
the classes [∃∗∀∃∗, all, all] and [all, (ω), (ω)] and proved essentially optimal
complexity bounds. In his Habilitationsschrift [196] Grädel wrote a unified
presentation of complexity results for decidable cases of the decision problem
which has been the basis of a large part of this chapter. In particular, he de-
veloped there the particular bounded domino problem (see Sect. 6.1.1) that
we used for most of the lower complexity bounds. Other finite variants of
domino problems had been devised earlier by Lewis and Papadimitriou [355],
Harel [246], Savelsbergh and van Emde Boas [448], Chlebus [78] and Grädel
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[201, 203, 206]; they were used to prove lower complexity bounds for various
systems of propositional logic and decision problems in mathematical theo-
ries. In [196], Grädel also classified the standard classes whose satisfiability
problems are in P, NP or Co-NP (see Sect. 6.4).

A useful survey on solvable and unsolvable decision problems in mathe-
matical logic is given by Grigorieff [216]. The reader can find there a large
amount of related material that we don’t cover in this book (like decidability
and complexity results for mathematical theories).
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7. Monadic Theories and Decidable Standard
Classes with Infinity Axioms

Not all decidable prefix-vocabulary classes in first-order logic have the finite
model property. In fact, among the seven maximal decidable standard classes
as given by Theorem 6.0.2 the following two contain infinity axioms:

– [all, (ω), (1)]=, i.e. first-order logic with equality, one unary function and
monadic predicates.

– The Shelah class, i.e. the class [∃∗∀∃∗, all, (1)]= of prenex first-order sen-
tences with at most one universal quantifier, at most one unary function
symbol and arbitrary relation symbols, with equality, but without function
symbols of arity > 1.

Indeed, we can formulate infinity axioms with very modest quantifier
prefixes even in the first-order theory of one unary function (see Proposi-
tion 6.5.5). Since the finite model property does not hold, we need different
methods than in the previous chapter to establish decidability. It should also
be noted that for classes with infinity axioms, satisfiability and finite satisfi-
ability are two different problems. It is conceivable that one is decidable but
not the other. However, it turns out that for the classes studied here, both
satisfiability and finite satisfiability can be proved decidable by essentially
the same arguments.

These results, in our exposition, rely on Rabin’s famous result that S2S,
the monadic theory of the infinite binary tree, is decidable. This is one of
the most important decidability theorems for mathematical theories and has
numerous applications in several areas of mathematics and computer science.
We prove this result in Sect. 7.1. The proof, due essentially to Gurevich and
Harrington [236], replaces the most complicated parts of Rabin’s paper – no-
tably the Complementation Theorem for tree automata based on an induction
on countable ordinals – by simpler arguments based on the determinacy of
certain games. The crucial ingredient is the Forgetful Determinacy Theorem;
it is presented and proved in Sect. 7.1.4.

In Sect. 7.2 we show that the monadic theory of one unary function, like
many other monadic theories, can be interpreted in S2S and thus proved to be
decidable. It is a simple consequence of this result that the satisfiability prob-
lem and the finite satisfiability problem for the standard class [all, (ω), (1)]=
in first-order logic are decidable. However, the complexity is enormous. We
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show that even the first-order theory of one unary function is not elementary
recursive, i.e. its time complexity exceeds any constant number of iterations
of the exponential function.

In Sect. 7.3 we prove the decidability of the Shelah class [∃∗∀∃∗, all, (1)]=
by reducing it to the ∃∗∀∃∗-fragment of the monadic theory of one unary
function. This may be the hardest decidability proof in the book.

In Sect. 7.4, we give relevant historical remarks.

7.1 Automata, Games and Decidability of Monadic
Theories

7.1.1 Monadic Theories

Monadic (second-order) logic 1 is the extension of first-order logic that al-
lows quantification over monadic predicates. Predicates and functions of any
arity may appear in monadic formulae, but they may not be quantified over.
Monadic theories are useful in various branches of mathematical logic and its
applications. Often they have a reasonable level of expressiveness sufficient
to formalize interesting features but modest enough to be manageable. For
more information on monadic theories, we refer to [231].

Let σ be an arbitrary vocabulary of relation and function symbols.
Monadic formulae of vocabulary σ are built from first-order σ-formulae and
atomic formulae Zi(t) involving monadic predicate variables Zi by means
of negation, conjunction, disjunction, existential and universal quantification
over individual variables, and existential and universal quantification over the
set variables Zi. There is an infinite supply of monadic predicate variables
of course. A monadic σ-sentence is a formula of the monadic logic over σ
(that is a monadic σ-formula) without free occurrences of any individual or
set variables.

Definition 7.1.1 (Definable Relations). Let A be a σ-structure with uni-
verse A and ψ(x1, . . . , xk, Z1, . . . , Zm) be a formula with free individual vari-
ables x1, . . . , xk and free predicate variables Z1, . . . , Zm. The relation defined
by ψ on A is

ψA := {(ā, S̄) ∈ Ak × P(A)m : A |= ψ[ā, S̄] }

where P(A) stands for the power set of A. Let L be a logic, say first-order or
monadic second-order logic. We say that a given relation R ⊆ Ak × P(A)m
is definable by L on A if there exists a formula ψ(x1, . . . , xk, Z1, . . . , Zm) of
L such that R = ψA. A function is said to be definable if its graph is.

1 We will often the adjective ‘monadic’ as an abbreviation for ’monadic second-
order’. Thus monadic formulae are monadic second-order formulae, monadic the-
ory is monadic second-order theory, etc.
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Definition 7.1.2 (Monadic Theories). The monadic theory Thmon(A) of
a σ-structure A is the set of monadic σ-sentences ψ such that A |= ψ. The
monadic theory of a class C of σ-structures is Thmon(C) :=

∩
A∈C Thmon(A).

The weak monadic theory of a structure or a class of structures is defined in
a similar way, but predicate variables Zi range only over the finite subsets of
the universe.

The monadic theory of the binary tree is the monadic theory of the struc-
ture T 2 := ({0, 1}∗, succ0, succ1) over the set of binary words, with the suc-
cessor functions succ0(w) = w0 and succ1(w) = w1. The monadic theory of
T 2 is also called S2S (an acronym for (monadic) second-order theory of two
successors); the weak monadic theory of T 2 is denoted WS2S.

Sometimes a richer vocabulary for T 2 is used, including besides the two
successor functions also the constant λ (for the empty word), and the prefix
relation <. However, it is easy to see that λ and < are definable on T 2; hence
these modifications do not change the expressive power of S2S.

Exercise 7.1.3. Express λ and < in T 2.

Example 7.1.4. Here are some further examples of definable relations on
T 2. To enhance readability, we freely use abbreviations like x ≤ y, Y ⊆ Z,
Y = Z and write x0, x1 rather that succ0(x), succ1(x).

1. The lexicographical ordering ≺ on {0, 1}∗ is definable by

x < y ∨ ∃z(z0 ≤ x ∧ z1 ≤ y).

2. The formula

CHAIN(Z) := ∀x∀y(Zx ∧ Zy → x < y ∨ x = y ∨ y < x)

defines the class of chains, i.e. the class of subsets of {0, 1}∗ on which <
is a total order.

3. The class of infinite chains is defined by

INFCHAIN(Z) := CHAIN(Z) ∧ ∀x(Zx→ ∃y(x < y ∧ Zy)).

4. The formula

FIN(Z) := ¬∃X∃Y (∀y(Xy ↔ ∃x(y ≤ x ∧ Zx)) ∧
Y ⊆ X ∧ INFCHAIN(Y ))

expresses that the prefix-closure X of Z does not contain an infinite
chain. By König’s Lemma this is true if and only if Z is finite.

The last example shows that WS2S can be interpreted in S2S.

The sequential calculus is the monadic logic of the structure (ω, succ). The
monadic theory of (ω, succ) is also called S1S, for monadic (second-order)
theory of one successor.
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7.1.2 Automata on Infinite Words and the Monadic Theory of
One Successor

We assume that the reader is familiar with the basic notions and results
on finite automata and regular sets of finite words, as provided by most
introductory textbooks on the theory of computation.

We consider here automata on infinite objects, such as infinite words and
infinite trees. We only present the concepts and results that we need for
the decidability theorems we are interested in. For more information on this
exciting subject, we refer the reader to the excellent survey article by W.
Thomas [507] and the references given there.

Let Σ be a finite non-empty alphabet. We denote by Σω the set of ω-
sequences (or ω-words) α = α0α1 · · · over Σ, or equivalently, the set of func-
tions α : ω → Σ. As usual, for U, V ⊆ Σ∗ we write UV for the set of words
uv ∈ Σ∗ with u ∈ U, v ∈ V and Uω for the set of ω-words α = u0u1u2 · · ·
obtained by infinite concatenation of words ui ∈ U .

Definition 7.1.5. A Büchi automaton over the alphabet Σ is of the form
A = (S, S0, T, E) where S is a finite set of states, S0 ⊆ S is the set of initial
states, T : S ×Σ → P(S) is the transition function and E ⊆ S is the set of
final states. A triple (s, a, s′) such that s′ ∈ T (a, s) is called a transition of
A. A run of A on an ω-word α is an ω-sequence s0s1 · · · of states such that
s0 ∈ S0 and sn+1 ∈ T (sn, αn) for all n ∈ ω. The automaton A accepts α if
there exists a run of A on α that contains some state s ∈ E infinitely often.
Let

L(A) = {α ∈ Σω : A accepts α}

be the ω-language accepted by A.
A set L ⊆ Σω is called Büchi recognizable or ω-regular if there exists a

Büchi automaton A such that L = L(A).

Let A = (S, S0, T, E) be a Büchi automaton with states s, s′ ∈ S and let

w = w0 · · ·wn−1 ∈ Σ∗. We write s
w→ s′ if there exists a sequence s0 · · · sn of

states with s0 = s, si+1 ∈ T (si, wi) (for i = 0, . . . , n−1) and sn = s′. Clearly,
the sets

Wss′ := {w ∈ Σ∗ : s
w→ s′}

are regular sets of finite words.

Lemma 7.1.6. L(A) =
∪

s0∈S0,s∈E
Ws0s(Wss)

ω.

The ω-language recognized by A is non-empty if and only if there exists
an initial state s0 and a final state s of A such that Ws0s and Wss − {λ} are
non-empty. Clearly, the existence of a reachable final state which is located
in a loop of A is effectively decidable.
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Corollary 7.1.7 (Emptiness Problem for Büchi Automata). There is
an algorithm, which for every given Büchi automaton A decides whether
L(A) = ∅.

Remark. It is known that the emptiness problem for Büchi automata is
complete for Nlogspace (see [518]), and the universality problem for Büchi
automata (given A, decide whether L(A) = Σω) is Pspace-complete (see
[475]).

Next, we prove some simple closure properties for ω-regular languages.

Lemma 7.1.8. (i) If U ⊆ Σ∗ is regular, then Uω is ω-regular.
(ii) If U ⊆ Σ∗ is regular and L ⊆ Σω is ω-regular, then UL is ω-regular.
(iii) If L,L′ are ω-regular, then so are L ∪ L′ and L ∩ L′.

Proof. (i): Since U − {λ} is regular if U is, and (U − {λ})ω = Uω we can
assume that U does not contain the empty word. Let A be a finite automaton
recognizing U such that no transition of A leads into its initial state s0. A
Büchi automaton B recognizing Uω is constructed from A by adding tran-
sitions (s, a, s0) for any transition (s, a, f) of A into a final state f and by
declaring s0 as the single final state of B.

(ii): Let A be a finite automaton recognizing U and B be a Büchi automaton
recognizing L. Without loss of generality we assume that A and B have no
state in common. We obtain a Büchi automaton C recognizing UL by taking
the union of the two automata and adding transitions (s, a, s0) for every
transition (s, a, f) into a final state f of A and every initial state s0 of B.

(iii): Let A = (S, S0, T, E) and A′ = (S′, S′
0, T

′, E′) be Büchi automata
recognizing L and L′, respectively, such that S ∩ S′ = ∅. Then B = (S ∪
S′, S0 ∪S′

0, T ∪T ′, E ∪E′) is a Büchi automaton recognizing L∪L′. A Büchi
automaton for L∩L′ has the form C = (S×S′×{0, 1, 2}, S0×S′

0×{0}, T ′′, E′′)
where

T ′′(ss′i, a) := T (s, a)× T ′(s′, a)× {j}

where


j = 1 if i = 0 and s ∈ E
j = 2 if i = 1 and s′ ∈ E′

j = 0 if i = 2
j = i otherwise.

Thus, a run of C simulates in parallel a run of A and a run of A′. Initially
the third component of the state is 0. When some s ∈ E is reached in the
first component, the third component is set to 1 until a final state s′ ∈ E′ is
reached in the second component. Then the third component is set to 2 and
in the next step back to 0. Thus C reaches infinitely often a state with third
component 2 if and only if both A and A′ reach final states infinitely often.
Hence by setting E′′ := S × S′ × {2} we obtain the desired result. ⊓⊔
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Note that these closure properties are effective, i.e. the desired Büchi au-
tomaton recognizing, say, the union or intersection of two ω-regular languages
L,L′ can be effectively constructed from the Büchi automata for L and L′.

The following theorem is an immediate consequence of Lemma 7.1.6 and
Lemma 7.1.8.

Theorem 7.1.9 (Büchi). An ω-language L ⊆ Σω is Büchi recognizable if
and only if it can be represented as a finite union of sets UV ω where U, V ⊆
Σ∗ are regular sets. Further, one can even assume that V V ⊆ V .

A more difficult problem is the closure under complementation. On finite
words, the closure under complementation of the regular languages follows
immediately from the result of Rabin and Scott that every language recog-
nizable by a finite automaton can also be recognized by a deterministic one.
However, the corresponding result for Büchi automata fails and the closure
of the ω-regular languages under complementation has to be established by
more sophisticated arguments.

Exercise 7.1.10 (Deterministic Büchi Automata). A Büchi automaton
is deterministic if it admits for every state s and every symbol a precisely one
transition (s, a, s′). In contrast to the situation for automata over finite words,
it is not the case that every Büchi automaton is equivalent to a deterministic
one. To see this show that for Σ = {0, 1}, the ω-language Σ∗1ω of ω-words
with only finitely many occurrences of 0 (which is obviously ω-regular) cannot
be recognized by any deterministic Büchi automaton. However, there is an
obvious deterministic Büchi automaton recognizing the complement of Σ∗1ω,
i.e., the set of all binary ω-sequences with infinitely many occurrences of 0.
It thus follows that the class of ω-languages recognizable by deterministic
Büchi automata is not closed under complementation.

To prove that the ω-regular languages are closed under complementation,
we will (as in Büchi’s original proof) use Ramsey’s Theorem, in the version
for countable sets.

Given a set X, we denote by [X]k the set of k-element subsets of X.

Theorem 7.1.11 (Ramsey). For every finite setM , every k ∈ ω and every
function f : [ω]k → M there exists an infinite set X ⊆ ω such that f maps
all sets in [X]k to the same element of M .

For k = 1 this is the pigeonhole principle. We will need the case where
k = 2. Proofs of Ramsey’s Theorem can be found in [270, pp. 538–539] and
[76, pp. 168–169].

Theorem 7.1.12 (Büchi). The class of ω-regular languages is closed under
complementation.
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Proof. Given a Büchi automaton A = (S, S0, T, E) over Σ, we introduce a
congruence relation ∼A over Σ∗. (Here, a congruence relation is an equiva-
lence relation that is compatible with concatenation.) The equivalence classes
of ∼A are regular sets. We will then show that both L(A) and its comple-
ment can be represented as finite unions of sets UV ω where U and V are
equivalence classes with respect to ∼A. By Theorem 7.1.9 this implies that
Σω − L(A) is ω-regular.

Let s
w,E−→ s′ denote that there exists a run of A on w from state s to state

s′ such that at least one of the states in the run (including s and s′) belongs
to E. For words u, v ∈ Σ∗, let u ∼A v if for all states s, s′ of A

s
u→ s′ ⇔ s

v→ s′ and s
u,E−→ s′ ⇔ s

v,E−→ s′.

Lemma 7.1.13. (i) The relation ∼A is a congruence relation of finite
index over Σ∗. (The index is the number of equivalence classes.)
(ii) Each ∼A-class is regular.

Proof. The proof of (i) is straightforward. To see (ii), let

WE
ss′ := {w ∈ Σ∗ : s

w,E−→ s′}.

Obviously, the sets WE
ss′ are regular. Further the ∼A-class [w] of any

w ∈ Σ∗ is the intersection of the sets Wss′ , W
E
ss′ , Σ

∗ −Wss′ and Σ
∗ −WE

ss′

that contain w. ⊓⊔

We say that a congruence relation ∼ over Σ∗ saturates an ω-language
L ⊆ Σω if for any pair U, V of ∼-equivalence classes

UV ω ∩ L ̸= ∅ =⇒ UV ω ⊆ L.

Note that if ∼ saturates L then it also saturates its complement.

Proposition 7.1.14. (i) Let A be a Büchi automaton. Then ∼A satu-
rates L(A).
(ii) Let ∼ be any congruence relation over Σ∗ of finite index. Then, for
every ω-word α there exist ∼-classes U, V (even with V V ⊆ V ) such that
α ∈ UV ω.

Theorem 7.1.12 is an immediate consequence of this proposition. Indeed,
since ∼A saturates L(A) (and hence saturates Σω − L(A)) and since ∼A is
of finite index it follows that

Σω − L(A) =
∪
{UV ω : U, V are ∼A -classes, UV ω ∩ L(A) = ∅}.

Hence, Σω − L(A) is a finite union of ω-regular sets and thus ω-regular.

It remains to prove Proposition 7.1.14. Let U, V ⊆ Σ∗ be ∼A-equivalence
classes and α ∈ UV ω∩L(A). Thus α = uv1v2 · · · with u ∈ U and vi ∈ V −{λ}.
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Further, since A accepts α, there exists an ω-sequence s0s1s2 · · · of states such
that s0 ∈ S0,

s0
u→ s1

v1→ s2
v2→ s3

v3→ · · ·

and, since the run leads to acceptance, si
vi,E−→ si+1 is true for infinitely many

i. We have to show that every other ω-word β = u′v′1v
′
2 · · · ∈ UV ω is also

accepted by A. Since U, V are ∼A-classes, we have u ∼A u′ and vi ∼A v′i for
all i. Therefore

s0
u′

→ s1
v′1→ s2

v′2→ s3
v′3→ · · ·

and si
v′i,E−→ si+1 for infinitely many i. Hence β ∈ L(A).

To prove (ii) we use Ramsey’s Theorem. A congruence ∼ and an ω-word
α induce a function f : [ω]2 → Σ∗/ ∼ mapping {i, j} (with i < j) to the
∼-class of the word α(i, j) = αi · · ·αj−1. Since ∼ is of finite index we can
apply Ramsey’s Theorem and infer that there exists an infinite set X ⊆ ω
such that all words α(k, ℓ) := αk · · ·αℓ−1 for k, ℓ ∈ X, k < ℓ are ∼-equivalent.
In particular we have an infinite sequence i0 < i1 < i2 < · · · of indices such
that all segments α(ij , ij+1) belong to the same ∼-class. Let V be this class
and U be the ∼-class of the segment α(0, i0). Then α ∈ UV ω. This completes
the proof of Theorem 7.1.12. ⊓⊔

Corollary 7.1.15. Given a Büchi automaton A one can effectively construct
a Büchi automaton A recognizing the complement of L(A).

Proof. By Lemma 7.1.13, the ∼A-classes are regular sets and thus can be
defined e.g. by regular expressions. Compute these regular expressions using
the languagesWss′ andW

E
ss′ . For each pair U, V of ∼A classes, check whether

UV ω ∩ L(A) = ∅. Finally, construct a Büchi automaton recognizing the
appropriate finite union of such sets UV ω. ⊓⊔

We now are ready to prove the decidability of the sequential calculus.
We associate with every tuple V1, . . . , Vn of subsets of ω an ω-sequence
S(V1, . . . , Vn) over the alphabet {0, 1}n. Let cV : ω → {0, 1} be the char-
acteristic function of a subset V of ω. Then S(V1, . . . , Vn) = s0s1s2 · · · where
sm ∈ {0, 1}n indicates which of the sets V1, . . . , Vm contain the number m.
(It is convenient to write each letter of {0, 1}n as a column of n bits, so that
an ω-sequence α ∈ ({0, 1}n)ω can be seen as a binary matrix with n rows
and ω columns.)

Theorem 7.1.16. For every formula ψ(X1, . . . , Xn) in the monadic logic of
one successor, one can effectively construct a Büchi automaton Aψ over the
alphabet {0, 1}n such that for all V1, . . . , Vn ⊆ ω

(ω, succ) |= ψ[V1, . . . , Vn]⇔ Aψ accepts S(V1, . . . , Vn).
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Proof. We reformulate the sequential calculus in a formally first-order lan-
guage with the binary predicates ⊆ and Succ. The variables range over sub-
sets of ω; the interpretation of ⊆ is the usual one and Succ(U, V ) holds if and
only U = {m} and V = {m + 1} for some m ∈ ω. Obviously, every formula
of the sequential calculus can effectively be rewritten in this form.

The proof now proceeds by induction over ψ. For atomic formulae the
construction is easy. For X ⊆ Y we need an automaton that accepts precisely
the ω-words over {0, 1}2 that do not contain the letter 10. This is achieved by
an automaton with a single state s (which is initial and final) and transitions
(s, a, s) for all a ̸= 10. For the atom Succ(X,Y ) the desired automaton has
three states s0, s1, s2, where s0 is the unique initial state and 2 the unique
final state; the transitions are

(s0, 00, s0), (s0, 10, s1), (s1, 01, s2), (s2, 00, s2).

For formulae formed by disjunction, conjunction or negation we use that
the ω-regular languages are effectively closed under Boolean operations. Fi-
nally, let ψ(Ȳ ) = ∃Xφ(X, Ȳ ). By induction hypothesis one can construct
a Büchi automaton Aφ = (S, S0, T, E) recognizing the ω-sequences S(U, V̄ )
that satisfy φ[U, V̄ ]. The desired automaton for ψ(Ȳ ) – which, intuitively, on
S(V̄ ) “guesses” an additional component U and simulates Aφ on S(U, V̄ ) –
is Aψ = (S, S0, T

′, E) where T ′(s, ā) = T (s, ā0) ∪ T (s, ā1). ⊓⊔

We immediately get Büchi’s Theorem.

Corollary 7.1.17 (Decidability of S1S). The monadic theory of (ω, succ)
is decidable.

7.1.3 Tree Automata, Rabin’s Theorem and Forgetful
Determinacy

Let Σ be a non-empty finite alphabet. A Σ-tree is given by a labeling function
F : {0, 1}∗ → Σ assigning to every node of the infinite binary tree a letter
from Σ.

Definition 7.1.18. A Σ-tree automaton is a quadruple A = (S, T, T0, E)
where S is a finite set of states, T : S × {0, 1} ×Σ → P(S) is the transition
table, T0 : Σ → P(S) the initial table and E ⊆ P(S) is the set of final
collections of states. We assume that T0(a) and T (s, d, a) are non-empty for
all a ∈ Σ, d ∈ {0, 1} and s ∈ S.

It is convenient to view automata from a game-theoretic point of view
[236]. In order to describe when the automaton A accepts a Σ-tree F , we in-
troduce a game Γ (A,F ) between the automaton A and another player called
Pathfinder. The game starts at the root λ of the tree where the automa-
ton chooses a state s0 ⊆ T0(F (λ)). The players alternate; at odd positions
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Pathfinder chooses a direction d ∈ {0, 1}, at even positions the automaton se-
lects a state s ∈ S. The players thus define an infinite sequence s0d0s1d1s2 · · ·,
called a play. The choices of the automaton are restricted by the condition
that

sn+1 ∈ T (sn, dn, F (d1 · · · dn)).
The automaton wins the play s0d0s1d1s2 · · · if the the collection of states

that appear infinitely often in the play is a final collection, i.e. is contained
in E . Otherwise, Pathfinder wins. We say that the automaton accepts F if
it has a winning strategy for Γ (A,F ). We write L(A) for the set of Σ-trees
accepted by the Σ-tree automaton A.

Exercise 7.1.19. Let Σ = {0, 1} × {0, 1}. Construct a tree automaton A
that accepts a Σ-tree F if and only if F avoids the label 01, i.e. F (w) ̸= 01
for all nodes w. Further construct Σ-tree automata A0, A1 such that Ai
accepts F if and only there exists a node w ∈ {0, 1}∗ such that F (w) = 10,
F (wi) = 01 and F (v) = 00 for any other node v.

Exercise 7.1.20. Given a Σ1-tree automaton A and a Σ2-tree automaton B
construct a (Σ1 ∪Σ2)-tree automaton accepting L(A)∪L(B). Further, given
a (Σ1×Σ2)-tree automaton A construct a Σ1-tree automaton A that accepts
a Σ1-tree F if and only if there exists a Σ2-tree G such that A accepts (F,G).

The node of a game position p is the string Node(p) of even letters in p,
i.e. the node of the binary tree that is currently played. Note that if p is a
position where the automaton makes the next move then Node(p) = Node(ps)
for every successive position ps (where s ∈ S). For every node v ∈ {0, 1}∗ and
every Σ-tree F , the v-residue of F is the Σ-tree Fv with Fv(w) = F (vw).

The latest appearance record LAR(p) at position p is intuitively the list
of states (without repetitions) in the order of their latest appearance. We
give an inductive definition of LAR. It does not really matter what is the
LAR of the empty string; it is convenient to define it as a list of all states
(without repetition) in some order. Moves by Pathfinder do not change the
LAR, i.e. LAR(pd) =LAR(p) for any odd position p and d ∈ {0, 1}. If p = qs
for some even position q and s ∈ S, then LAR(p) = rs where r is the result
of removing s from LAR(q).

A strategy of either player in Γ (A,F ) is a function that assigns to each
position of that player a set of legal moves from that position. The Forgetful
Determinacy Theorem states that one of the players has a winning strategy
for Γ (A,F ) that is ‘forgetful’ in the sense that it only depends on the residual
game from the given position and on its latest appearance record (and not
on the entire history).

Theorem 7.1.21 (Forgetful Determinacy for Tree Automata). One
of the players has a strategy f for winning Γ (A,F ) that satisfies the following
condition: If p and q are positions from which the winner makes moves, such
that LAR(p) = LAR(q) and the Node(p)-residue and the Node(q)-residue of
F coincide, then f(p) = f(q).
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We will prove (a slightly more general version of) the Forgetful Deter-
minacy Theorem in the next section. But first we derive some interesting
consequences and show in particular, that the Forgetful Determinacy Theo-
rem gives a simple proof for the decidability of S2S.

Theorem 7.1.22 (Emptiness Problem for Tree Automata).There ex-
ists an algorithm that, given a Σ-tree automaton A, decides whether there
exists a Σ-tree accepted by A.

Proof. We first reduce the claim to the case where the alphabet contains
only one letter. Let A = (S, T, T0, E) be a Σ-tree automaton for an arbitrary
alphabetΣ. Then let B be the {0}-tree automaton (S, T ′, T ′

0, E) with T ′
0(0) :=∪

a∈Σ T0(a) and T
′(s, i, 0) =

∪
a∈Σ T (s, i, a). Obviously B accepts the unique

{0}-tree F if and only if A accepts some Σ-tree.
By the Forgetful Determinacy Theorem, one of the players has a forgetful

winning strategy for Γ (B,F ). List all forgetful strategies f1, . . . , fm for the
automaton and g1, . . . , gn for Pathfinder. Since the plays eventually become
periodic, one can effectively check each fi against each gj and thus determine
whether B accepts F . ⊓⊔

Theorem 7.1.23 (Complementation Theorem for Tree Automata).
One can effectively construct from each Σ-tree automaton A a Σ-tree automa-
ton A accepting exactly the Σ-trees rejected by A.

Proof. Let F be a Σ-tree and g be any (not necessarily winning) forgetful
strategy for Pathfinder. Without loss of generality, we may assume that g is
deterministic. Indeed, if g allows Pathfinder both moves from p, just refine g
to g(p) = 0. Let R be the set of a priori possible latest appearance records
of A, i.e. the set of all lists of states containing each state at most once. The
strategy g for Pathfinder can be considered as a function g : {0, 1}∗ × R →
{0, 1}.

Let ∆ be the set of all functions h : R → {0, 1}. We encode the strategy
g by the ∆-tree G with

G(w)(r) = g(w, r)

i.e. every node w is labeled by the function assigning to each LAR r the move
that Pathfinder makes from the node w with LAR r according to strategy
g. Combining the labels of a Σ-tree F and a ∆-tree G gives a (Σ ×∆)-tree
which may be denoted (F,G).

Lemma 7.1.24. Given A, one can effectively construct a (Σ ×∆)-tree au-
tomaton B such that the following holds: Pathfinder wins Γ (A,F ) via the
forgetful strategy represented by G if and only if B wins all plays of the game
Γ (B, (F,G)) (i.e., B wins by every conceivable strategy).

Proof. We construct a tree automaton B whose states are the latest appear-
ance records of A together with a new state win. The rôle of this additional



326 7. Monadic Theories and Decidable Standard Classes with Infinity Axioms

state is to force Pathfinder in the new game Γ (B, (F,G)) to play along the
strategy G. If she ever deviates from this strategy the state win will be en-
tered and not be left anymore. Of course the singleton set {win} will be a
winning collection for B.

Let A = (S, T, T0, E). For every nonempty LAR r ∈ R, let ℓ(r) be the
rightmost (that is the last) member of the list r. For every LAR r ∈ R, let
u(r, s) be the updated LAR obtained from r by removing s and appending it
at the end (so that ℓ(u(r, s)) = s). Every node in the tree (F,G) has a label
ah where a ∈ Σ and h : R → {0, 1} assigns a direction to each conceivable
LAR of A.

The desired automaton is of the form B = (R ∪ {win}, T ′, T ′
0, E ′); the

transition table T ′, the initial table T ′
0 and the set of final collections E ′ are

defined as follows.
To ensure that the win-state is never left we put T ′(win, d, ah) := win for

all a ∈ Σ, h ∈ ∆ and d ∈ {0, 1}. For r ∈ R, let

T ′(r, d, ah) :=

{
{win} if h(r) ̸= d
{u(r, s) : s ∈ T (ℓ(r), d, a)} if h(r) = d.

Intuitively, in terms of the game Γ (B, (F,G)), this means that the au-
tomaton assumes the win-state whenever Pathfinder at a node labeled ah
does not choose the direction d = h(r) prescribed by G. If Pathfinder chooses
h(r) (i.e. simulates the strategy G) then the automaton B simulates a move
of the old automaton, namely he picks one of the states s ∈ T (ℓ(r), d, a), and
the new state of B is the one obtained by updating r accordingly.

To define the initial table of B we identify a state with the list consisting
of just that state and put T ′

0(ah) := T0(a).
A set R0 ⊆ R∪{win} is in E ′ if either win ∈ R0 or the set {ℓ(r) : r ∈ R0}

is not a final collection of A. Thus, intuitively the plays of Γ (B, (F,G)) won
by the automaton correspond to plays of Γ (A,F ) won by Pathfinder along
strategy G.

We claim that B has the desired properties. Indeed, suppose Pathfinder
wins Γ (A,F ) with strategy G. Then B wins Γ (B, (F,G)) by any strategy:
If Pathfinder sticks to strategy G (i.e. at any position with state r and label
ah she chooses the direction h(r)) then B wins because the final collection
of states thus produced corresponds to the sequence of LAR’s of a play of
Γ (A,F ) won by Pathfinder. On the other side if Pathfinder ever deviates
from G, then B wins because the win-state is assumed.

Conversely, suppose that the automaton A wins Γ (A,F ) with a strategy
f against Pathfinder’s strategy G. It suffices to show that B has a strategy f ′

that loses when the pathfinder plays along the strategyG in Γ (B, (F,G)). The
desired losing strategy f ′ of B is obtained by utilizing the winning strategy f
of A. It is losing because f wins against G and because the winning conditions
for B essentially complement the winning conditions for A. ⊓⊔
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Lemma 7.1.25. For every tree automaton B one can effectively construct
a tree automaton C which accepts a tree H if only if B wins all plays of
Γ (B,H).

Proof. Let B = (S, T, T0, E) be a Σ-tree automaton. The condition that B
wins all plays of Γ (B,H) means that each path d0d1d2 · · · ∈ {0, 1}ω through
the infinite binary tree satisfies the following condition where the ω-sequence
H(λ)H(d0)H(d0d1) · · · ∈ Σω is the sequence of labels along this path:

(*) For all sequences s0s1 · · · ∈ Sω such that s0 ∈ T (H(λ)) and sn+1 ∈
T (sn, dn,H(d0 · · · dn)) the collection of states that occur infinitely often
in s0s1 · · · belongs to E .

Condition (*) is expressible by an S1S-formula φ(X, Ȳ ) with a free set
variable X to encode the given sequence d0d1d2 · · · and a tuple Ȳ of set
variables to encode the label sequenceH(λ)H(d0)H(d0d1) · · · (see the exercise
below).

By Theorem 7.1.16, there exists a Büchi automaton B′ = (S′, S′
0, T

′, E′)
over the alphabet {0, 1} ×Σ that accepts a pair of sequences d0d1d2 · · · and
H(λ)H(d0)H(d0d1) · · · if and only if they satisfies condition (*).

We use B′ to construct a Σ-tree automaton C which wins Γ (C,H) if and
only if for every path d0d1 · · · chosen by Pathfinder, the induced sequence
H(λ), d0H(d0), d1H(d0d1), . . . is accepted by the Büchi automaton B′. In
other words, C accepts H if and only if B wins all conceivable plays of
Γ (B,H).

The desired C = (S′′, T ′′, T ′′
0 , E ′′) with

S′′ := S′

T ′′(s, d, a) := T ′(s, da)

T ′′
0 (a) :=

∪
s∈S′

0

∪
i∈{0,1}

T ′(s, ia)

E ′′ := {X ⊆ S′ : X ∩ E ̸= ∅}.

Let us justify the definition of T ′′(a). One can view a sequential (Büchi)
automaton as a tree automaton playing against a sequential “pathfinder”
that does not make any choices. There is, however, a little discrepancy in
the way sequential and tree automata start. A sequential automaton starts
without looking at the label of zero, then the “pathfinder” makes a move
(from say −1 to 0), and only then the automaton reacts to the label of zero.
On the other hand, the very first move of a tree automaton depends on the
label of the root. Thus the first move of a tree automaton corresponds to
the first two moves of sequential automaton (with an additional move of the
sequential “pathfinder” from −1 to 0 that does not correspond to any move
of the tree pathfinder). ⊓⊔
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Exercise 7.1.26. Construct explicitly an S1S-formula expressing statement
(∗) above. Hint: A sequence H(λ), d0H(d0), d1H(d0d1), . . . is encoded by sub-
sets D ⊆ ω and Ha ⊆ ω (for a ∈ Σ) namely D = {n < ω : dn = 1} and
Ha = {n < ω : H(d0 · · · dn−1}) = a}. Let H̄ = (Ha)a∈Σ . The desired for-
mula has the form ψ(X, Ȳ ) such that ψ[D, H̄] is true if and only if D and
H̄ encode a sequence satisfying (∗). To construct ψ, proceed as follows: Let
ψ(X, Ȳ ) := ∀Z̄φ(X, Ȳ , Z̄) where φ states that if Z̄ encodes a state sequence
s0s1 . . . such that X and Z̄ constitute a legal play of Γ (B,H) then the col-
lection of states s such that for all i ∈ ω there exists a j > i with sj = s
belongs to E .

We now finish the proof of the Complementation Theorem. Given a Σ-
tree automaton A, use Lemma 7.1.24 and Lemma 7.1.25 to construct a Σ×∆
automaton C that accepts a tree (F,G) if and only if Pathfinder wins Γ (A,F )
with the strategy encoded by G.

Let D be the Σ-tree automaton which, on every Σ-tree F guesses a ∆-
tree G and simulates C on (F,G). More formally if C = (S, T, T0, E) is any
Σ ×∆ automaton then let D = (S, T ′, T ′

0, E) be the Σ-tree automaton with
T ′(s, d, a) :=

∪
d∈∆ T (s, d, ab) and T

′
0(a) =

∪
b∈∆ T0(ab).

A Σ-tree F is accepted by D iff there exists a ∆-tree G such that C
accepts (F,G). But his means that D accepts precisely the trees rejected by
A. ⊓⊔

We now are ready to prove that S2S is decidable.

Theorem 7.1.27 (Rabin’s Tree Theorem). The monadic theory of the
infinite binary tree is decidable.

Proof. As in the case of S1S, it is convenient to reformulate S2S in a (formally
first-order) language with binary predicates ⊆, Succ0 and Succ1, with vari-
ables ranging over subsets of {0, 1}∗, with the obvious interpretation of ⊆ and
with Succi(U, V ) if and only U = {w} and V = {wi} for some w ∈ {0, 1}∗.

Obviously, every monadic second-order formula on the language of two
successor function can be translated into an equivalent formula of this form.

Let Σ = {0, 1} and Σn be the n-fold Cartesian product of Σ. Every tuple
V1, . . . , Vn of subsets of the infinite binary tree yields a Σn-tree T (V1, . . . , Vn)
that labels each w ∈ {0, 1}∗ with cV1

(w), . . . , cVn
(w) where cV is the charac-

teristic function of V .

Theorem 7.1.28. With every S2S-formula ψ(X1, . . . , Xn) one can effec-
tively associate a Σn-tree automaton Aψ such that for all V1, . . . , Vn ⊆ {0, 1}∗

T 2 |= ψ[V1, . . . , Vn] ⇐⇒ Aψ accepts T (V1, . . . , Vn).

Proof. By induction over φ. The construction is easy for atomic ψ (see Ex-
ercise 7.1.19). For ψ = φ ∨ η and ψ = ∃Xφ, use Exercise 7.1.20. For ψ = ¬φ
use the Complementation Theorem. ⊓⊔
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Thus a formula ψ is a theorem of S2S if and only if the set of tree accepted
by the automaton A¬ψ is empty. Since A¬ψ can be effectively constructed
from ψ and since the emptiness problem for tree automata is decidable, this
proves Rabin’s Tree Theorem. ⊓⊔

7.1.4 The Forgetful Determinacy Theorem for Graph Games

In this section we formulate and prove a more general version of the For-
getful Determinacy Theorem. Our presentation follows Zeitman’s proof [546]
which in turn simplifies (and generalizes in some respect) the proof given by
A. Yakhnis and V. Yakhnis [540]. More information on the background and
history of forgetful determinacy is given in Sect. 7.4.

Graph Games. Let MOVE be a finite alphabet. An arena A is a coloured
bipartite multi-digraph (a directed graph in which parallel edges are allowed)
that satisfies the following conditions:

– The vertices are divided into east vertices and west vertices. Edges go only
from east to west vertices or from west to east vertices.

– There is a distinguished vertex called the start vertex of A. Every vertex
is reachable from the start vertex, and there is at least one outgoing edge
from each vertex.

– The edges of A are labeled by elements of MOVE in such a way that no
two outgoing edges from the same vertex have the same label.

– There is a finite set S of colours that partition the set of vertices. (Zeit-
man [546] allows multiply coloured vertices but this is unnecessary for our
purposes here.) We write Cs for the set of vertices with colour s.

A game on A is played by two players, Mr. 0 and Mr. 1, who alternately
choose an outgoing edge from the current vertex, thus defining an infinite
path (possibly revisiting some vertices) through A. A position p is a finite
directed path through A from the start vertex; it is uniquely described by
a word in MOVE∗. We identify p with the appropriate word. The labels on
the edges leading out of the last vertex of a position p are the possible moves
at position p. A play in A is an ω-sequence P ∈ MOVEω such that all of its
finite prefixes are positions. We denote the set of plays over A by PLAY (A).
This set is divided into two complementary parts: the winning sets for Mr. 0
and for Mr. 1. Mr. δ wins a play if the play belongs to his winning set. We
will only consider winning sets that are Boolean combinations of sets [Cs],
where [Cs] is the set of plays that pass infinitely often through a vertex of
colour s.

Definition 7.1.29. A graph game is a triple Γ = (A, ε,Wε), where A is an
arena, ε ∈ {0, 1} (denoting the player who goes first), and Wε ⊆ PLAY (A)
is a Boolean combination of sets [Cs], the winning set for player ε.
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It is Mr. ε’s turn to move at the vertices whose orientation (east or west)
coincides with that of the start vertex; call the set of these vertices Vε. The
set of remaining vertices will be denoted V1−ε. Thus, for each δ, it is Mr. δ’s
turn to move at vertices v ∈ Vδ.

Definition 7.1.30. A forgetful strategy f for Mr. δ in Γ is a function f :
Vδ → P(MOVE) assigning to every vertex v ∈ Vδ a non-empty set of possible
moves (i.e. labels of outgoing edges) from v. The strategy is “forgetful” in
the sense that it depends only on v and not on how v was reached.

The latest appearance record LAR of a position is an ordering of the
colours defined inductively. The LAR of the start vertex is an ordering whose
last colour is that of the start vertex. If a position q is obtained from a
position p by adjoining an edge to a vertex of colour s, then LAR of q is
obtained from LAR of p by moving s to the last place. The colouring of an
arena A is forgetful if any two positions ending at the same vertex have the
same LAR. In this case we can speak of the LAR at vertex v.

Theorem 7.1.31 (Forgetful Determinacy). Let Γ = (A, ε,Wε) be any
graph game with a forgetful colouring of the arena A. Then one of the players
has a forgetful strategy winning Γ .

Before we prove this more general version of the Forgetful Determinacy
Theorem, we prove that it implies the version for tree automata (Theo-
rem 7.1.21). A game Γ (A,F ) between a tree automaton A and Pathfinder
on the Σ-tree F gives a graph game whose alphabet comprises the states of
A and (some names for) the two directions left and right. A starts the game
and chooses a state according to its initial table, then Pathfinder chooses
(the name for) a direction, then A chooses a state and so on. All positions p
where A makes a move have the same default colour. If A chooses a state s
at p then the colour of position ps is s. This colouring is forgetful in a trivial
way.

The Forgetful Determinacy Theorem for tree automata states that one
of the players has a winning strategy that is the same for any two positions
with the same LAR and the same residual game.

To prove this, we define an equivalence relation on the vertices of an
arbitrary graph game Γ = (A, ε,Wε) , that relates vertices having the same
LAR and the same future. This will allow us to define a factor game and thus
to show that the Forgetful Determinacy Theorem gives in fact a forgetful
strategy that assigns the same value to any two equivalent vertices.

Consider an arena A with a forgetful colouring. We say that two vertices
v, w of A are equivalent, v ∼ w, if the following conditions hold where Cs is
the collection of vertices of colour s:

– v and w both are east vertices or both are west vertices;
– LAR(v) = LAR(w);
– the same sequences of moves are possible from v and w;
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– furthermore, for any colour s, the same sequences of moves lead from v or
w to Cs.

Exercise 7.1.32. Prove that the equivalence relation ∼ has the following
properties:

– if v ∼ w then, for all s ∈ S, v ∈ Cs iff w ∈ Cs;
– if v ∼ w and if there is an edge labeled by µ from v to a vertex v′, then

there is an edge labeled by µ from w to a vertex w′ such that w ∼ w′.

Corollary 7.1.33 (Strong Forgetful Determinacy). Let Γ = (A, ε,Wε)
be a graph game in which the colouring of A is forgetful. Then one of the
players has a forgetful strategy f winning Γ such that f(v) = f(w) for all
vertices v, w with v ∼ w.

Proof. We define a factor game Γ/∼ = (A/∼, ε,Wε). The arena A/∼ has as
its vertex set the set of V/∼ of equivalence classes [v] of vertices v ∈ V . The
new start vertex is the equivalence class of the original start vertex. There is
an edge labeled by µ ∈ MOVE from [v] to [w] in A/∼ if there is an outgoing
edge labeled µ from a vertex in [v] to a vertex in [w]. A vertex [v] of A/∼ is
coloured by s ∈ S if one (and hence all) of the vertices in [v] has colour s; we
write Cs/∼ for the set of equivalence classes [v] with colour s. Also, [v] is a
east vertex if the vertices in [v] are east; otherwise [v] is a west vertex.

Obviously, if p is a position that ends at v in A, then p is also a position
in A/∼ that ends at [v]. Furthermore PLAY (A) = PLAY (A/∼). The set
[Cs] of plays that pass infinitely often through a vertex with colour s is the
same for A and A/∼. Thus also Wε coincides on both arenas.

Note that the colouring of A/∼ is forgetful. By the Forgetful Determinacy
Theorem, there exists a forgetful winning strategy g for one of the players
in Γ/∼. The forgetful strategy f for Γ defined so that f(v) := g([v]) is a
winning strategy that has the same value at any two vertices of A related by
∼. ⊓⊔

The Forgetful Determinacy Theorem for tree automata is a special case
of this corollary.

Proof of the Forgetful Determinacy Theorem. Let δ be 0 or 1. From
now on, f denotes a forgetful strategy for Mr. δ, and g denotes a forgetful
strategy for Mr. (1− δ). We say that a play P is consistent with with f and
g after position p = µ0 · · ·µn if every position pm = µ0 · · · , µm, m ≥ n, in P
satisfies the following condition where v is the last vertex of pm: µm+1 ∈ f(v)
if v ∈ Vδ, and µm+1 ∈ g(v) if v ∈ V1−δ. We say that f wins Γ from vertex
v against g if for all positions p that end at v, all plays consistent with f
and g after p are in Wδ. We say that f wins Γ for Mr. δ if f wins Γ from
the start vertex against the strategy for Mr. (1− δ) that allows any possible
move at each vertex in V1−δ. A strategy f ′ for Mr. δ is a refinement of f if
f ′(v) ⊆ f(v) for all v ∈ Vδ.
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The set of winning vertices for Mr. δ with restrictions f and g, denoted
Win(Γ, δ, f/g), is the set of vertices v such that Mr. δ has a refinement of f
that wins Γ from v against g. Note that playing a winning refinement against
g from a vertex in Win(Γ, δ, f/g) keeps the play within the set of winning
vertices. Indeed, suppose that f ′ is a refinement of f that wins against g at
v, and that w is a vertex reached by a play that is consistent with f ′ and
g after position p that ends at v. Then w is in Win(Γ, δ, f/g) because any
play consistent with f ′ and g after a position ending at w differs from a play
consistent with f ′ and g after p only with respect to a finite prefix, and thus
is also in Wδ since membership in this set depends only on the set of colours
that are reached infinitely often.

The Forgetful Determinacy Theorem is a consequence of the following
theorem.

Theorem 7.1.34. Let Γ = (A, ε,Wε) be a graph game with a forgetful
colouring, f a forgetful strategy for Mr. δ , and g a forgetful strategy for
Mr. (1 − δ) in Γ . Then Mr. δ has a refinement of f that wins against g
at every vertex in Win(Γ, δ, f/g), and Mr. (1 − δ) has a refinement of g
that wins against f at every vertex in Win(Γ, 1−δ, g/f). Furthermore, every
vertex of A is either in Win(Γ, δ, f/g) or in Win(Γ, 1− δ, g/f).

The Forgetful Determinacy Theorem follows by taking for f and g the
trivial strategies that allow at each vertex the set of all possible moves from
that vertex. Since the start vertex of A is either in Win(Γ, δ, f/g) or in
Win(Γ, 1− δ, g/f), there either is a forgetful strategy that wins Γ for Mr. δ,
or there is one that wins Γ for Mr. (1− δ).

To prove Theorem 7.1.34 we first consider the presentation of the winning
sets Wδ and W(1−δ). Any intersection of sets [Cs] and complements [Cs]c of
such sets will be called a term. Clearly, the sets Wδ and W(1−δ) can be
expressed as unions of terms. Let β ∈ {0, 1} be such that Wβ has the fewest
of such terms.

Lemma 7.1.35. Either Wβ or its complement can be expressed in the form

W = (U1 ∪ [B1]) ∩ · · · ∩ (Um ∪ [Bm]) = ([B1] ∩ · · · ∩ [Bm]) ∪
( m∪
i=1

Ui

)
where each Bi is a union of sets Cs and the sets Ui (the derived winning
sets) are unions of terms. Furthermore, each Ui is empty, or has fewer terms
than Wβ, or the complement of Ui has the same number of terms as Wβ

and contains a term in which no set of the form [Cs]c occurs (that is, every
member of that term has the uncomplemented form [Cs]).

Proof. Note that
∪
j∈I

[
Cj

]
=

[∪
j∈I C

j
]
for any I ⊆ S. If Wβ contains a

term in which no [Cs] set is complemented, say

Wβ = ([Cs1 ] ∩ [Cs2 ] · · · ∩ [Csk ]) ∪ U ′,
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then Wβ can easily be expressed in the desired manner with each Ui = U ′.
Otherwise Wβ contains some number of terms, say m, each of which contains
some sets of the form [Cs]c. Let Bi be the union of the sets Cs that appear
in complemented form in the ith term. If there are uncomplemented [Cs]
sets in the same term, let Vi be their intersection; otherwise let Vi be all of
PLAY (A). Then

Wβ =

m∪
i=1

(Vi ∩ [Bi]
c) =

m∪
i=1

(
(Vi ∪

(∪
j ̸=i

(Vj ∩ [Bj ]
c))) ∩ [Bi]

c
)
.

Define Ui as the complement of the set Vi ∪
(∪

j ̸=i(Vj ∩ [Bj ]
c)
)
. Each Ui

set is empty, or its complement has m terms and contains one, namely Vi,
with no complemented sets. Also W(1−β) = (U1 ∪ [B1])∩ · · · ∩ (Um ∪ [Bm]) =

([B1] ∩ · · · ∩ [Bm]) ∪
(∪m

i=1 Ui
)
. ⊓⊔

Clearly, Theorem 7.1.34 is true if one of the winning sets is empty, that
is, has no terms. Otherwise the winning set with the fewest terms or its
complement can be expressed in the form described by Lemma 7.1.35. By
induction on the minimum number of terms in either of the winning sets one
can show that Theorem 7.1.34, is implied by the following lemma.

Lemma 7.1.36. Let A be an arena with a forgetful colouring and suppose
that

Wδ = (U1 ∪ [B1]) ∩ · · · ∩ (Um ∪ [Bm]) = ([B1] ∩ · · · ∩ [Bm]) ∪
( m∪
i=1

Ui
)

where each Bi is a union of sets Cs. If Theorem 7.1.34 holds for each game
Γ i obtained from the given game Γ by replacing the winning set for Mr. δ
with Ui, then it also holds for given game Γ (in which Wδ is the winning set
for Mr. δ).

Exercise 7.1.37. Prove Theorem 7.1.34 from Lemma 7.1.36. Hint: Use in-
duction on the minimum number of terms in either of the winning sets.

To prove Lemma 7.1.36, we introduce the notion of the rank of a vertex
(with respect to a given player δ, a set of vertices X, and forgetful strategies
f and g). A vertex v has rank k > 0 if the following two conditions hold:

– Player δ has a refinement of f that allows him to reach a vertex in X within
k moves from v as long as his opponent plays according to the strategy g.

– Mr. (1−δ) has a strategy refining g that keeps Mr. δ from reaching X from
v in fewer than k moves as long as Mr. δ plays f .

More formally, the rank is defined inductively as follows. Given any for-
getful strategy f , a vertex w is called an f -successor of a vertex v ∈ Vδ if
there exists a move µ ∈ f(v) that labels an edge from v to w. Recall that Vδ
is the set of vertices from which player δ makes moves.
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Then, rank(X, δ, f/g)(v) = 1 if either v ∈ Vδ and there exists a move
µ ∈ f(v) from v into X, or v ∈ V1−δ and all moves µ ∈ g(v) lead from v into
X. If v is a vertex that is not of rank 1, . . . , k, let rank(X, δ, f/g)(v) = k+1 if
either v ∈ Vδ and there exists an f -successor w of v with rank(X, δ, f/g)(w) =
k; or if v ∈ V1−δ and all g-successors of v are ranked and the maximal
value of rank(X, δ, f/g)(w) for g-successors w of v is k. Further, we say that
rank(X, δ, f/g)(v) = 0 if v ∈ X and rank(X, δ, f/g)(v) ̸= k for all k > 0.

Also let Dom(X, δ, f/g) be the set of vertices v where rank(X, δ, f/g)(v)
is defined, and Dom+(X, δ, f/g) be the set of vertices where this rank is
positive.

We next define two basic strategies, one for each player. Here and below,
when defining a strategy for a given player at vertex v, we always assume
it is that player’s turn to move at v. The basic strategy for Mr. δ is to
decrease the rank. Let decrease(X, δ, f/g)(v) be f(v) if v /∈ Dom+(X, δ, f/g);
otherwise decrease(X, δ, f/g)(v) is the set of µ ∈ f(v) that label an edge
from v to a vertex w with rank(X, δ, f/g)(w) < rank(X, δ, f/g)(v) or with
w ∈ X. The basic strategy for Mr. (1−δ), is to avoid the set Dom(X, δ, f/g);
thus let avoid(X, 1 − δ, g/f) be the strategy that assigns to a vertex v the
set of µ ∈ g(v) that label an outgoing edge from v to a vertex outside of
Dom(X, δ, f/g) if this set is not empty, and is the same as g(v) otherwise.
Note that any play from a vertex v ̸∈ Dom+(X, δ, f/g), that is consistent
with f and avoid(X, 1− δ, g/f) remains out of Dom+(X, δ, f/g) and in fact
remains out of Dom(X, δ, f/g) after the first move (v itself may belong to
Dom(X, δ, f/g)).

We now define a monotone operator on sets of vertices of A such that the
set of winning vertices for Mr. δ is the greatest fixed point of that operator.
For 1 ≤ i ≤ m and X a set of the vertices of A, define

Fi(X) := Dom+(X ∩Bi, δ, f/g) ∪Win(Γ i, δ, f/giX)

where giX = avoid(X ∩Bi, 1− δ, g/f). Further, let H(X) :=
∩

1≤i≤m Fi(X).
We have to show that each Fi, and therefore H, is indeed monotone.

Lemma 7.1.38. X ⊆ Y =⇒ Fi(X) ⊆ Fi(Y ).

Proof. Let v ∈ Fi(X) and v /∈ Dom+(Y ∩Bi, δ, f/g). Since

Dom+(X ∩Bi, δ, f/g) ⊆ Dom+(Y ∩Bi, δ, f/g),

it follows that v /∈ Dom+(X ∩ Bi, δ, f/g). Therefore, v ∈ Win(Γ i, δ, f/giX).
Let f ′ be the refinement of f that wins against giX at v. Since v /∈
Dom+(Y ∩Bi, δ, f/g), any play from vertex v that is consistent with f ′ and
giY is also consistent with f ′ and giX , so f ′ wins against giY at v. Thus,
v ∈Win(Γ i, δ, f/giY ), that is, v ∈ Fi(Y ). ⊓⊔
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Define the sequence Xα (where α ranges over ordinals) as follows. Let X0

be the entire vertex set of A. For α > 0, let

Xα := H(X<α) where X<α :=
∩
β<α

Xβ .

Since H is monotone, this sequence is non-increasing, and therefore there is
a first ordinal η such that Xη = Xη+1, which is the greatest fixed point of
H. Let P = Xη. Then

P =
∩

1≤i≤m

(Dom+(P ∩Bi, δ, f/g) ∪Win(Γ i, δ, f/giP )).

Lemma 7.1.39 (Strategy for Mr. (1− δ)). There is a forgetful strategy
G for Mr. (1 − δ) that refines g and wins Γ against f from all vertices not
in P .

Proof. Fix α and i and consider the set Win(Γ i, 1 − δ, giX<α/f). By the
assumption that Theorem 7.1.34 holds for each game Γ i, there is a forgetful
strategy gαi refining giX<α and winning Γ i against f from all vertices in
Win(Γ i, 1 − δ, giX<α/f). The strategy G coincides with g on vertices in P .
For every vertex v ̸∈ P take the smallest ordinal α such that v ̸∈ Xα. Then
v ∈ X<α −H(X<α). Thus, there exists a smallest i such that v /∈ Fi(X<α).
We associate the pair ⟨α, i⟩ with v. Then v /∈ Dom+(X<α∩Bi, δ, f/g) and v /∈
Win(Γ i, δ, f/giX<α). By the assumption for Γ i, v ∈Win(Γ i, 1− δ, giX<α/f).
Let G(v) = gαi(v).

Consider a play from v ̸∈ P that is consistent with f and G. Any play
that is consistent with f and gαi after a position that ends in a vertex out-
side Fi(X<α) stays out of Fi(X<α). As the play continues from v, each pair
associated with a vertex in the play must be lexicographically greater than
or equal to the pair associated with the next vertex.

Consequently, there must be some point of the play after which the pairs
associated with vertices do not change. Assume that from some point on in
the play, the pair associated with each vertex is ⟨α, i⟩. From this point on
all vertices reached are in X<α, and G at these vertices, as a refinement of
giX<α , not only stays out of Dom(X<α ∩ Bi, δ, f/g), but actually stays out
of Bi. After this point the same winning strategy for Mr. (1 − δ) for Γ i is
played. Thus, the play after this point is consistent with f and gαi and wins
Γ i for Mr. (1− δ). This means that the play is in the complement of Ui and
in the complement of [Bi], and therefore wins Γ for Mr. (1− δ). ⊓⊔

Lemma 7.1.40 (Strategy for Mr. δ). Mr. δ has a forgetful strategy F re-
fining f that wins against g from all vertices v ∈ P .

Proof. By assumption, there exists for each i a forgetful strategy f i refining
f that wins Γ i against giP from all vertices in Win(Γ i, δ, f/giP ). Outside of
P , let F (v) = f(v). For v ∈ P , the strategy F for Mr. δ is defined as follows.
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First we choose a goal at v which is an integer in the interval [1, . . . ,m].
Recall that each Bk is the union of some collection βk of colors Cs. Suppose
that LAR(v) = s1s2 · · · sn. Replace each sj by the values of k in increasing
order such that Csj ∈ βk; the result is some sequence σ1(v). Prune σ1(v) by
discarding all but the rightmost occurrence of each value k in the sequence;
let σ2(v) be the result. The goal is the leftmost value in σ2(v).

Before we proceed, let us make a few remarks about the goals that will be
used later. If v ∈ Bj −Bk then j appears to the right of k in σ2(v). Assume
that, in a given play, there is a point w such that no later point v belongs
to Bk. Then the part of σ2(v) after k cannot decrease in length. In fact, the
goal chosen along this play eventually does not change and equals the index
j (not necessarily equal to k) of a set Bj that is never reached after some
point on this play.

Now we are ready to define F at vertex v ∈ P :

F (v) =

{
f i(v) if v /∈ Dom+(P ∩Bi, δ, f/g)
decrease(P ∩Bi, δ, f/g)(v) otherwise,

where i is the goal picked at v for Mr. δ .
Once any play consistent with F and g reaches a vertex in P , it remains

in P . Indeed, any move made by Mr. (1 − δ) according to g from a vertex
in Fi(P ) must be to a vertex in Fi(P ) or P ; just examine the two cases
corresponding to the two summands of Fi(P ). Further, any move made by
Mr. δ according to F from a vertex in P at which the goal is i must also
be to a vertex in Fi(P ) or P ; just examine the two cases in the definition of
F . Finally notice that each Fi(P ) ⊆ P . For, suppose v ∈ Fi(P ) − P . Since
v ̸∈ P , Mr. (1 − δ) has a strategy that forces the play to stay out of P and
wins Γ from v. But since v ∈ Fi(P ), then – starting from v – it is possible
for Mr. δ either to reach P ∩ Bi (and therefore to reach P ) or else to win
Γ i and hence to win Γ f since Ui ⊆Wδ; this gives the desired contradiction.
Thus the play stays in P , since Fi(P ) ⊆ P for each i.

We now show that F wins Γ for Mr. δ against g from any vertex v ∈ P .
Consider an element of PLAY (A) that is consistent with F and g after a
position p that ends at vertex v in P as it continues after v.

Case 1: There is a point in the play after which the goal i does not change,
and Dom(P ∩Bi, δ, f/g) is not reached. Then play after this point is that of
f i against giP and wins Γ i (and hence Γ ) for Mr. δ.

Case 2: There is no point after which the goal i remains the same. This
means that the play keeps hitting all of the sets Bi for 1 ≤ i ≤ m, and this
constitutes a win for Mr. δ.

Case 3: There is a point after which the goal i does not change, but there is
no point after which Dom(P ∩Bi, δ, f/g) is not reached. Then it must still be
the case (see the remarks about the goals just before the definition of F ) that
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the play keeps hitting all of the sets Bi for 1 ≤ i ≤ m, and this constitutes a
win for Mr. δ. ⊓⊔

We thus have exhibited a forgetful strategy for each player that is a re-
finement of his initial strategy, and that wins against the opponent’s initial
strategy at any of his winning vertices. Also P = Win(Γ, δ, f/g), and any
vertex not in P is in Win(Γ, 1− δ, g/f). This proves Lemma 7.1.36 and thus
the Forgetful Determinacy Theorem.

7.2 The Monadic Second-Order Theory of One Unary
Function

In this section we prove that the monadic theory (and the weak monadic
theory) of a unary function with a countable domain is decidable. It imme-
diately follows that the satisfiability and finite satisfiability problems for the
class [all, (ω), (1)]= are also decidable.

We will then show that this theory is not elementary recursive, i.e. it
cannot be decided in k-fold exponential time, for any fixed k. In fact we
prove a stronger result, giving an explicit non elementary recursive lower
bound even for the first order theory of one unary function.

Rabin’s Tree Theorem easily generalizes to SnS, the monadic theory of
the infinite n-ary tree. As we will show next, it also implies the decidability
of SωS, the monadic theory of the countably branching tree. To avoid an
infinite vocabulary one usually works with with the structure

Tω := (ω∗, <,≺)

where < is the prefix relation and ≺ the lexicographic order on ω∗.
Note that (the graph of) each successor function succi (i ∈ ω) is first-

order definable on Tω, by a formula saying that x ≺ y and there are precisely
i elements z satisfying x ≺ z ∧ z ≺ y.

Example 7.2.1. For future reference we exhibit some definable relations on
Tω.

1. The formula

α(Z) := Zλ ∧ ∀x(Zx→ Zx0) ∧ ∀x∀y(Zy ∧ x < y → x0 ≤ y)

expresses that Z = {0}∗.
2. The class of all sets C ⊆ {0n10m : n,m < ω} is definable on Tω by

β(Z) := ∃Y (α(Y ) ∧ ∀x∃z(Zx→ Y z ∧ z1 ≤ x ∧
∀y(z1 ≤ y < x→ y0 ≤ x))).
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3. Finally the class S of all sets C ⊆ {0n10m : n,m < ω} that contain for
every n at most one word of the form 0n10m, is defined by

γ(Z) := β(Z) ∧ ∀x∀y∀z(Zx ∧ Zy ∧ z1 < x ∧ z1 < y → x = y).

Theorem 7.2.2. SωS, the monadic theory of Tω, is decidable.

Proof. Let A := {λ} ∪ {1n101n20 · · · 01nk : 1 ≤ k, 1 ≤ ni} ⊆ {0, 1}∗. Note
that Tω ≃ (A,< |A,≺|A) where < |A and ≺|A are the restrictions of < and
≺ to A. Further A is first-order definable on T 2, e.g. by the formula

δ(Z) := Zλ ∧ ¬Z0 ∧ ∀x(¬Zx00 ∧ (Zx→ (Zx1 ∧ Zx10))).

Exercise 7.2.3. Prove that δ(Z) indeed defines A.

Thus, every monadic formula ψ in the language of Tω can be translated
into an S2S-formula φ such that

Tω |= ψ ⇐⇒ T 2 |= φ.

Hence, the decidability of SωS follows from the decidability of S2S. ⊓⊔

7.2.1 Decidability Results for One Unary Function

We now prove that Rabin’s Tree Theorem implies the decidability of the
following theories:

(i) The monadic theory of one unary function over a countable domain.
(ii) The weak monadic theory of one unary function.

The decidability of the satisfiability and the finite satisfiability problems
for [all, (ω), (1)]= is a simple corollary of these results.

Let Kωf be the class of structures A = (A, f) with one unary function
over a countable (i.e. finite or countably infinite) domain. As in Sect. 6.4.2
we refer to a structure A = (A, f) as an algebra. Further, if B ⊆ A is closed
under f , we write (B, f) for the subalgebra with universe B, i.e. we do not
distinguish notationally between f and its restriction to B.

We want to prove that Thmon(Kωf ), the monadic theory of one unary
function with a countable domain, is can be interpreted in SωS. To do this
we make some general observations on algebras.

Elements a, b of an algebra A = (A, f) are connected if fn(a) = fm(b) for
some n,m ∈ N. Connectedness is an equivalence relation and every algebra
can be written as the disjoint union of its connected components. We call a
countable disjoint union A =

∪
n<ω An of algebras an ω-sum.

The algebras (Zn, succ) and (ω, succ) are called the basic algebras.

Lemma 7.2.4. For every connected algebra A one of the following two al-
ternatives holds:
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(i) A contains precisely one basic subalgebra and this subalgebra is finite.
(ii) A contains (infinitely many) copies of (ω, succ), but no finite basic
subalgebra.

Proof. Let a be an element of an algebra A and consider the set T (a) =
{fn(a) : n ∈ N}. Obviously (T (a), f) is a subalgebra of A. If fn(a) ̸= fm(a)
for all n ̸= m then (T (a), f) ≃ (ω, succ). Otherwise, let (m,n) be the lexi-
cographically minimal pair of natural numbers such that fm(a) = fm+n(a),
and let S(a) = {fm(a), fm+1(a), . . . , fm+n−1(a)}. Now, (S(a), f) is a subal-
gebra of A which is isomorphic to (Zn, succ). This proves that every algebra
contains a basic subalgebra.

Now suppose that A contains two distinct basic subalgebrasB,C. The two
subalgebras have a common element a; otherwise they would lie in different
connected components of A which is impossible. If B is finite, then it consists
of elements fk(a) and therefore C includes B. But then C properly includes
B and therefore cannot be basic. By symmetry, C cannot be finite either.
Thus both subalgebras are of the type (ω, succ), but an algebra of that type
has infinitely many isomorphic subalgebras. ⊓⊔

Definition 7.2.5. The enveloping algebra (B, g) of a basic algebra A =
(A, f) is defined as follows. Let N = ω − {0}, B = AN∗ and

g(an1 · · ·nknk+1) := an1 · · ·nk
g(a) := f(a).

Lemma 7.2.6. Let A,A′ be basic algebras of the same type, let B be the
enveloping algebra of A, and C be any countable connected extension of A′.
Then every isomorphism π : A′ → A can be extended to an embedding, i.e.
an injective homomorphism π̂ : C ↪→ B. Thus, every countable algebra can
be embedded into an ω-sum of enveloping algebras.

Proof. Let C = (C, f) and B = (B, g). For x, y ∈ C − A′, define x < y if
x = fk(y) for some k > 0. It is easy to see that this is a partial order where
each y is preceded by only finitely many x’s. It follows that one can choose
an enumeration c0, c1, . . . , of C such that j < i whenever f(ci) = cj and ci
is not contained in A′. Suppose that π̂(cj) is already defined for all j < i.
If ci belongs to A′, let π̂(ci) = π(ci). If ci does not belong to A′, then by
assumption π̂ is already defined on f(ci); let π̂(f(ci)) = w ∈ AN∗. Take the
minimal element k ∈ N such that wk ̸∈ {π̂(cj) : j < i} and set π̂(ci) := wk.
By construction π̂ is one-one and by the definition of an enveloping algebra
g(wk) = w so π̂ is a homomorphism. ⊓⊔

Lemma 7.2.7. There exists a monadic formula χ(x, y, Z) in the language
of Tω with the following properties: For all C ⊆ ω∗, the binary relation

FC := {(a, b) : Tω |= χ[a, b, C]} ⊆ ω∗ × ω∗
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is either the empty set or the graph of a unary function fC on a domain
BC ⊆ ω∗ such that (BC , fC) is an ω-sum of enveloping algebras. Further,
every ω-sum of enveloping algebras, is isomorphic to some (BC , fC), for C ⊆
ω∗.

Proof. Let S be the class of all C ⊆ ω∗ such that

(i) C ⊆ {0n10m : n,m < ω}.
(ii) For every n, C contains at most one word of the form 0n10m.

According to Example 7.2.1, S is definable on Tω.
Given C ∈ S, let An,C := {0n10i : i ≤ m} if 0n10m ∈ C and An,C :=

{0n10i : i ≤ ω} if C contains no word of the form 0n10m. Further, let

BC :=
∪
n<ω

An,CN
∗

where, as above, N = ω − {0}. Note that BC is definable in terms of C on
Tω, i.e. there exists a monadic formula δ(y, Z) such that for all C ∈ S

BC = {b ∈ ω∗ : Tω |= δ[b, C]}.

Exercise 7.2.8. Construct such a formula δ(y, Z).

The function fC : BC → BC is defined as follows: If a = 0n10iw for
some w ∈ N∗ − {ε} then f(a) is the predecessor of a; if a = 0n10i ∈ C then
f(a) = 0n1; finally, if a = 0n10i ̸∈ C then f(a) = a0 = 0n10i+1.

It is easy to see that the set of triples (a, b, C) such that C ∈ S, a ∈ BC
and b = fC(a) is definable by an SωS-formula χ(x, y, Z).

Exercise 7.2.9. Construct χ(x, y, Z) explicitly.

Note that (An,C , fC) ≃ (Z/mZ, succ) if 0n10m ∈ C, and (An,C , fC) ≃
(ω, succ) if C contains no word 0n10m. As a consequence (BC , fC) is an ω-
sum of enveloping algebras. Conversely for every ω-sum A =

∪
n<ωBn of

enveloping algebras, let

C = {0n10m : Bn is an enveloping algebra for (Zm, succ)}.

Then (BC , fC) ≃ A. ⊓⊔

Theorem 7.2.10 (Rabin). Thmon(Kωf ), the monadic theory of a unary
function on a countable domain, is decidable.

Proof. Let χ(x, y, Z) be the SωS-formula constructed in the previous lemma,
and

α(X,Z) := ∀x∃y(Xx→ Xy ∧ χ(x, y, Z).

For all non-empty A,C ⊆ ω∗ we have that Tω |= α[A,C] if and only if (A, fC)
is a subalgebra of (BC , fC).
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Since, by Lemma 7.2.6, every countable algebra can be embedded in an
ω-sum of enveloping algebras, it follows that for every countable algebra A,
there exist A,C ⊆ ω∗ such that Tω |= α[A,C] and A ≃ (A, fC).

Now, let ψ be a sentence of the monadic logic of one unary function.
Without loss of generality we can assume that ψ is in term-reduced form,
i.e., the function f appears only in atoms of form fx = y where x, y are
variables. To translate ψ into an SωS-formula φ(X,Z), replace all atoms
fx = y by χ(x, y, Z), relativize all individual quantifiers to X and all set
quantifiers to subsets of X. Then, ψ is a theorem of Thmon(Kωf ) if and only
if

Tω |= ∀X∀Z(α(X,Z)→ φ(X,Z)).

This proves that Thmon(Kωf ) is decidable. ⊓⊔

Corollary 7.2.11. The weak monadic theory of a unary function on a count-
able domain is decidable.

Proof. Finiteness is definable in SωS (see Example 7.1.4). Hence we can mod-
ify the translation from ψ to φ(X,Z) by relativizing all set quantifiers to finite
subsets of X. In this way also the weak monadic theory of one unary function
is interpreted in SωS. ⊓⊔

Notice that the Löwenheim-Skolem Theorem generalizes to monadic
second-order logic; if a monadic sentence has model then it has a (at most)
countable model. It follows that the weak monadic theory of unary function
is decidable.

Corollary 7.2.12. The satisfiability and the finite satisfiability problems for
the standard class [all, (ω), (1)]= are decidable.

Proof. Let ψ be a first-order sentence with monadic predicates Z1, . . . , Zm
and one unary function. If ψ is satisfiable then, by the Löwenheim-Skolem
Theorem, ψ has a countable model. Thus, ψ is unsatisfiable if and only if
∀Z1 · · · ∀Zm¬ψ is a theorem of the Thmon(Kωf ).

Further, ψ has no finite model if and only

∃Y ∀z Yz → ∀Z1 · · · ∀Zm¬ψ

is a a theorem of the weak monadic theory of one unary function. (The
premise tells us that Y is the whole universe.) By Theorem 7.2.10 and Corol-
lary 7.2.11, these problems are decidable. ⊓⊔

7.2.2 The Theory of One Unary Function is not Elementary
Recursive

We denote by Sat(Kf ) the set of satisfiable formulae in the first order theory
of one unary function, i.e. in our usual notation Sat[all, (0), (1)]=.
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Definition 7.2.13. Let expk(n) be the k-fold iterated exponential function
with base two:

exp0(n) = n; expk+1(n) = 2expk(n)

and furthermore, let

exp∞(n) := expn(1) = 22
··
·2
}
n

be the ‘tower of twos’ function. A problem is said to be elementary recursive
if and only if it it decidable in time O(expk(n)) for some fixed k ∈ N.

We will show that Sat(Kf ) is not elementary recursive. We first prove a
technical lemma that we need in the proof, to the effect that, in first-order
logic with equality, the number of occurrences of any predicate in a given
formula can be reduced to one:

Lemma 7.2.14. There exists a polynomial time algorithm which, given a
prenex first-order sentence ψ and a predicate P , transforms ψ into a new
sentence ψ′ of the same vocabulary with the following properties

(i) ψ′ contains at most one occurrence of P .
(ii) |ψ′| = O(|ψ|).
(iii) ψ and ψ′ are equivalent on every structure of cardinality at least two.

Proof. Let ψ := Q1x1 · · ·Qkxkφ and P ȳ1, . . . P ȳm be the list of atoms in φ
containing the predicate P ; every ȳi is a r-tuple of variables from x1, . . . , xk.
The idea of the proof is to replace every atom P ȳi by an equality z = zi where
z, z1, . . . , zm do not occur in φ. The equivalence of these equalities with the
original atoms is asserted by the formula

α := ∀u∀v1 · · · ∀vr(
[ m∨
i=1

(
u = zi ∧

r∧
j=1

vj = yij)
]
→ (z = u↔ P v̄)

)
.

This formula has just one occurrence of P and its length is linear in the
length of ψ; thus the formula

ψ′ := Q1x1 · · ·Qkxk∃z∃z1 · · · ∃zm
(
α ∧ φ[P ȳi/(z = zi)]

)
has the required properties. Here φ[P ȳi/(z = zi)] is the formula obtained by
replacing P ȳi by z = zi. ⊓⊔

Theorem 7.2.15. There exists a constant c > 0 such that

Sat(Kf ) ̸∈ Ntime(exp∞(cn/ logn)).
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Proof. As in most of our lower bound proofs we use a reduction from an
appropriate domino problem: We will show that for every domino system D

DOMINO(D, exp∞(n)) ≤n logn Sat(Kf ).

Suppose that D contains the tiles d1, . . . , dr. First we express the tiling
conditions in a language with r+1 binary predicates P0, . . . , Pr together with
equality. Given an initial condition w = w0, . . . , wn−1 ∈ D∗, there exists a
formula ψ of this language which has a model of cardinality t if and only
if D tiles Z(t) with initial condition w (where t is an arbitrary number not
smaller than n).

Intuitively, the interpretation of P0 is the graph of the successor function
and for i > 0, Pi contains the points that are tiled by di. We abstain from
writing down ψ in full detail; it asserts that each model B = (B,P0, . . . , Pr)
looks as follows:

(i) P0 is the graph of a permutation of B with only one cycle;
(ii) the predicates (Pi)1≤i≤r partition B ×B;
(iii) the adjacency conditions imposed by H and V are satisfied;
(iv) there is an element 0 ∈ B such that the points (0, 0), . . . , (0, n − 1)
are tiled by w0, . . . , wn−1. Here 0, . . . , n − 1 are the first n points with
respect to the order defined by P0 and 0.

Only (iv) depends on w and on n. The formula ψ can be constructed in
such a way that it has length O(n log n) and (in view of Lemma 7.2.14 above)
that every relation symbol Pi occurs only once in ψ. In fact by using the tree
representation of the numbers up to n (see Lemma 6.1.10) we could do even
with length O(n) at the expense of two new relation symbols.

Exercise 7.2.16. Construct ψ explicitly.

On the second step of the proof we construct a sequence of first-order
formulae of length O(n log n) to interpret structures B = (B,P0, . . . , Pr) of
cardinality at most exp∞(n) in algebras A = (A, f):

Let A = (A, f) be a model of the formula

α := ∃x∀y(fx = x ∧ fn+1y = x).

Then A is a tree of height at most n + 1 with f mapping every node to its
parent. Each node a ∈ A defines the subtree Ta containing all descendants
of a. The height of a is meant to be the height of Ta. For 0 ≤ m ≤ n we
inductively define equivalence relations Em on the nodes of height at most
m: All leaves are E0-equivalent. Two nodes are Em-equivalent, if for every
Em−1-equivalence class K they either both have no child in K or both have
at least one child in K. Note that for each m there may exist up to exp∞(m)
Em-equivalence classes.
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Exercise 7.2.17. Prove the last claim. Notice that there is exactly one E0

equivalence class. There are at most two E1 equivalence classes: one comprises
nodes of height zero and the other comprises nodes of height one.

We construct formulae βm(x, y) expressing that x and y have height at
most m and that they are Em-equivalent:

β0(x, y) := ∀z(fz ̸= x ∧ fz ̸= y)

βm(x, y) := ∀z(fm+1z ̸= x ∧ fm+1z ̸= y) ∧
∀u∃v((fu = x→ fv = y) ∧ (fu = y → fv = x) ∧

βm−1(u, v)).

Translating βn into prenex normal form gives a formula of length O(n logn);
if we wouldn’t insist on prenex normal form we could do with length O(n)
by using a fixed stock of variables (independent of n).

Now take the formulae

δ(x) := (fx ̸= x) ∧
(f2x = fx) ∧ (∀y. fy = x)(∀z. fz = x)(βn−1(y, z)→ y = z)

γ := (∀x. δ(x))(∀y. δ(y))(βn(x, y)→ (x = y)).

Here (∀x. φ)ψ is used as an abbreviation for ∀x(φ → ψ) (the quantifier
∀x is relativized to φ). The formula δ(x) expresses that x is a child of the
root and that no two children of x are En−1-equivalent. If α and γ are true
in A then the set

B := {a ∈ A : A |= δ[a]}
has cardinality at most exp∞(n).

Next we encode r + 1 binary relations on B using the following idea: For
i = 0, . . . , r define functions gi : {0, 1} × {0, 1} → N by

gi(j, k) = 2 + 4i+ 2j + k.

The images of different gi are disjoint. It is not difficult (but a bit lengthy)
to write down formulae πi(x, y) which state:

There exists a z which is a child of the root such that for every En−1-
equivalence class K and for all j, k ∈ {0, 1}, the following holds: If x
has j and y has k children in K then z has precisely gi(j, k) children
in K.

Let Pi := {(a, b) ∈ B×B | A |= πi[a, b]}. We thus have defined a first-order
interpretation I, that associates with every algebra A a structure I(A) =
(B,P0, . . . , Pr) with r + 1 binary relations. For every structure C with r + 1
binary relations, there exists a algebra A such that A |= α∧ γ and I(A) ≃ C.
Moreover the formulae πi(x, y) can be constructed in such a way that they
contain just one occurrence of βn−1 (see Lemma 7.2.14); they therefore have
length O(n log n).
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Given an arbitrary formula η with binary relations P0, . . . , Pr, let η
′ be

the formula obtained by relativizing every quantifier to a new unary predicate
D and by transforming the formula in such a way that D occurs only once.
Then translate η into the formula

φ := α ∧ γ ∧ η′[Dx/δ(x), Pixy/πi(x, y)]

where, as usual, η′[Dx/δ(x), Pixy/πi(x, y)] is the formula obtained by replac-
ing atoms Dx by δ(x) and atoms Pixy by πi(x, y) for arbitrary variables x, y.
The resulting formula φ contains one unary function and no relation symbols;
it is satisfiable if and only if η has a model of size at most exp∞(n).

If we apply this translation to the formula ψ constructed above, the re-
sulting formula φ has length O(n log n) because it contains at most one
occurrence of α, γ, δ and π0, . . . , πr and because the lengths of these for-
mulae are bounded by O(n logn). Furthermore φ is satisfiable iff ψ has
a model B with at most exp∞(n) elements which is true if and only if
w ∈ DOMINO(D, exp∞(n)). ⊓⊔

7.3 The Shelah Class

The Shelah class is the standard fragment [∃∗∀∃∗, all, (1)]= of first-order logic
with equality. Thus, a Shelah sentence is a prenex sentence φ of first-order
logic with equality such that:

– The prefix of φ is dominated by ∃∗∀∃∗.
– The vocabulary of φ contains no function symbols of arity ≥ 2 and at

most one unary function symbol. There is no restriction on the number of
predicates or their arities.

Theorem 7.3.1. Both the satisfiability and the finite satisfiability problems
for Shelah sentences are decidable.

The (finite) satisfiability problem is reduced to the (finite) satisfiability
problem for the class [∃∗∀∃∗, (ω), (1)]= whose decidability follows from the
decidability of the (finite) satisfiability problem for the class [all, (ω), (1)]=
proved above (Corollary 7.2.12). The Shelah class has infinity axioms (see
the beginning of this chapter), but the two reductions are very similar. To
avoid unnecessary repetitions, we prove only that the satisfiability problem
for Shelah class is decidable. However, the proof remains valid if the term
satisfiability is interpreted as finite satisfiability.

7.3.1 Algebras with One Unary Operation

Throughout this section, we restrict attention to first-order formulae (that
may use the equality sign) whose only function symbol of positive arity is a
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unary function symbol Par (an allusion to “parent”). For future reference,
let FO(Par) be the corresponding fragment of first-order logic with equality.

Accordingly a (total) algebra is a nonempty set with a unary operation
Par. A partial algebra is a nonempty set with a partial unary operation
Par. We introduce some terminology and prove simple properties of partial
algebras.

Suppose that A is a partial algebra and x, y, z, with or without subscripts,
are elements of A. If y = Par(x), then y is the parent of x and x is a child of
y. Define Par0(x) = x and Pari+1(x) = Par(Pari(x)). If y = Pari(x) for some
i ≥ 0, then x is younger than y and a descendent of y, and y is older then x
and an ancestor of x.

We write x ≤ y if x is younger than y. We write x < y if y = Pari(x) for
some i > 0. Clearly, < is transitive. However it is not necessarily irreflexive.
An element x cyclic if x < x and acyclic otherwise. Clearly, < is a partial
order on acyclic elements.

Elements x, y are comparable if x ≤ y or y ≤ x. A sequence of elements
x0, . . . , xk is a path from x1 to xk if, for every i < k, either xi+1 = Par(xi) or
xi = Par(xi+1). Here k may be zero. Elements x, y are connected if there is
a path from x to y. Connectivity is an equivalence relation. The equivalence
classes are the components of A. A is connected if it has only one component.

Lemma 7.3.2. If x0, x1, . . . , xl is a shortest path from x = x0 to y = xl,
then there is k ≤ l, such that
(i) xi+1 = Par(xi) for i < k, and (ii) xi = Par(xi+1) for i ≥ k.

Proof. Suppose that (x0, x1, . . . , xl) is a shortest path from x to y. Call a
pair ei = (xi, xi+1) positive (resp. negative) if xi+1 = Par(xi) (resp. xi =
Par(xi+1)). If ei is negative and ei+1 is positive then xi−1 = Par(xi) = xi+1

which allows us to shorten the given path. Thus, no negative ei is followed
by a positive ei+1. If all ei are positive then y is an ancestor of x and the
desired k = l. Otherwise the desired k is the least number such that ek is
negative. ⊓⊔

A pair ei may be both positive and negative. Consider for example the
path 0, 1, 2, 3 in the case when Par(0) = 1, Par(1) = 2, Par(2) = 1, and
Par(3) = 2.

Corollary 7.3.3. If x, y are connected then they have a common ancestor.

Lemma 7.3.4. Every connected partial algebra A has the following proper-
ties.

(i) If x, y are cyclic then x < y.
(ii) The cyclic elements together with the inherited operation Par form a
connected total algebra (called the cycle of A).
(iii) If x is any cyclic element and n is the minimal number such that
Parn(x) = x then the cycle consists of the n elements Pari(x), i < n.
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(iv) Every cyclic element has exactly one cyclic child.
(v) Every element is a descendent of any cyclic element.
(vi) If there is a cyclic element then A is total.

Proof. (i): Let z be a common ancestor of x and y, so that Park(x) =
Parl(y) = z for some k and l. Since y is cyclic, there is n > 0 such that
Parn(y) = y. Clearly, Parin(y) = y for every i. Choose i so that in ≥ l. Then

Park+(in−l)(x) = Parin−l(z) = Parin−l(Parl(y)) = Parin(y) = y.

(ii ): If x = Parn(x) for some n > 0, then x has a parent y = Par(x).
Furthermore, y is cyclic because

Parn(y) = Parn+1(x) = Par(Parn(x)) = Par(x) = y.

(iii): Let x and n be as in (iii). By (i), every cyclic element is an ancestor of
x and therefore equals to some Pari(x).

(iv): Let x and n be as in (iii) and y be any cyclic child of x. By (iii),
y = Pari(x) for some i < n. By the minimality of n, i = n− 1.

(v): Let x be a cyclic element and y any element. By (ii), the common ancestor
z of x and y is cyclic. By (i), z ≤ x. By transitivity, y ≤ x.
(vi ): By (ii), every cyclic element has a parent. By (iv), every acyclic element
has a parent. ⊓⊔

In addition to the family terminology, we have the following geometric
picture in mind. If x, y are acyclic and x < y then y is higher than x; if
a component has cyclic elements, they form a horizontal plateau above all
acyclic elements.

Lemma 7.3.5. There are at most two shortest paths from x to y. If x0, . . . , xl
and y0, . . . , yl are distinct shortest paths from x to y then there are m < n ≤ l
such that:

(i) xi = yi = Pari(x) if i ≤ m, and xi = yi = Parl−i(y) if i ≥ n,
(ii) xm = Parn−m(xn) and xn = Parn−m(xm).

In other words, both paths rise to a cycle of even length, traverse the cycle
in different directions to the opposite element and then descend together.

Proof. By Lemma 7.3.2, there exist k1, k2 such that xi+1 = Par(xi) for i <
k1, and xi = Par(xi+1) for i ≥ k1, and yi+1 = Par(yi) for i < k2, and
yi = Par(yi+1) for i ≥ k2. Set m = min{k1, k2} and n = max{k1, k2}.
(i): Check by induction on i that xi = yi for i ≤ m. Similarly xi = yi for
i ≥ n.
(ii): If m = n then the two paths coincide. Thus m < n. Without loss of
generality, k1 = m and k2 = n. By the definition of k1, k2, we have xm =
Parn−m(xn), yn = Parn−m(ym). ⊓⊔
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Lemma 7.3.6. If x, y are connected then, for each l, there are at most three
ancestors of y on distance l from x.

Proof. It suffices to prove the lemma in the special case when x ≥ y. Indeed,
let x be arbitrary and P be a be a shortest path x = x0, x1, . . . , xk such that
xk ≥ y. Then xi ̸≥ xk for all i < k. By Lemma 7.3.2, xi = Pari(x) for i ≤ k.
By Claim (v) of Lemma 7.3.4, every xi is acyclic. It easy to see that P is
an initial segment of any shortest path from x to an ancestor of y. Thus it
suffices to prove that there are at most three ancestors of y on distance l− k
from xk.

In the rest of the proof, we suppose that x ≥ y. For brevity, call ancestors
of y red. Red elements form a line or a cycle with a handle. The handle is the
red line rising to one of the red cyclic elements; call that red cyclic element
central .

By Lemma 7.3.2, a shortest path from x to a red element consists of
red elements. If red elements form a cycle without a handle, then every red
element has at most one red child. If the cycle is small then there are no red
elements on distance l from x. If the cycle is sufficiently large, then there are
at most two red elements on distance l from x. One is given by a positive
path (that is a path x0, . . . , xl where each xi+1 = Par(xi)) from x and the
other by a negative path from x. If red elements form a line then there are at
most two red elements on distance l from x; one is given by a positive path
and the other, if it exists, is given by a negative path. Similarly, there are at
most two red elements of distance l from x if red elements form a cycle with
a handle and x belongs to the handle and the distance from x to the central
red element is ≤ l. The remaining case is this: red elements form a cycle with
a handle and x is either cyclic or acyclic but close to the central red element.
In either scenario, there are at most two cyclic red elements on distance l
from x and at most one acyclic red element on distance l from x. ⊓⊔

Finally we will say that z is between elements x and y if the following
conditions are satisfied:

– x < z < y.
– If x is cyclic and l = min{i : Pari(x) = y} then z = Parj(x) for some

positive j < l.

Let (x, y] be the set of elements z such that either z = y or z is between x
and y. Similarly, let [x, y] be the set of elements z such that z = x, z = y or
z is between x and y.

7.3.2 Canonic Sentences

Sentences as Sets of Clauses. As usual, the depth of a term is defined
by induction: The depth of an individual constant or variable is zero, and
Depth(Par(t)) = 1+Depth(t). A literal is an atomic formula or the negation of
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such. If α is an atomic formula then +α is α and −α is the negation of α. The
constituent terms of an atomic formula P (t1, . . . , tr) are the terms t1, . . . , tr,
and the constituent terms of a non-atomic formula φ are the constituent
terms of the atomic subformulae of φ. A predicate (that is a relation name)
is proper if it is different from the equality sign. A literal ±P (t1, . . . , tr) is
proper if the predicate P is so.

Definition 7.3.7. A literal α is admissible if it has one of the three following
forms:

– a proper literal with all constituent terms of depth 0,
– an inequality with both constituent terms of depth 0,
– an equality t1 = Par(t2) where each ti is of depth 0.

We reserve the variable u to be used with the universal quantifier; it is the
universal variable. All other variables are existential . (We will not consider
formulae with more than one universal quantifier in this section.)

Strings of any ordered alphabet are ordered lexicographically (if s1 is
a proper prefix of s2 then s1 precedes s2 in the lexicographical order). The
lexicographical order is total. Without loss of generality, we suppose that con-
stants and variables are strings in some finite alphabet, that every constants
lexicographically precedes every variable and that the universal variable u is
the lexicographically first variable.

Definition 7.3.8. A clause K is a conjunction of admissible literals (called
the constituent literals of K) satisfying the following conditions:

– If distinct variables v1, v2 occur in K and v1 lexicographically precedes v2
then K contains the inequality v1 ̸= v2.

– If an existential variable v and a constant c occur in K then K contains
the literal c ̸= v.

– If a constant c occurs in K then K contains either the equality c = u or
the inequality c ̸= u.

If a variable v occurs in a clause K and a constant d does not then K(v/d)
is the clause obtained from K by replacing v with d and making the obvious
additional changes to ensure that the result is a clause. Let EV(K) be the
collection of existential variables of a clause K.

Definition 7.3.9. The E-closure K̄ of a clause K with existential variables
v1, . . . , vm is the formula (∃v1 . . .∃vm)K.

Definition 7.3.10. A first-order sentence φ is canonic if

– φ has the form (∀u)[K̄1 ∨ · · · ∨ K̄m] where K1, . . . ,Km are clauses (the
constituent clauses of φ), and

– the constants (resp. variables) of φ form an initial segment in the lexico-
graphical order of constants (resp. variables).
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Theorem 7.3.11. The satisfiability problem for Shelah sentences reduces to
the satisfiability problem for canonic sentences.

Proof. Let φ0 be a Shelah sentence. Without loss of generality, φ0 contains
a universal quantifier, so that the prefix of φ consists of two batches of exis-
tential quantifiers separated by a universal quantifier. Remove the first batch
and replace the corresponding variables with constants in the quantifier-free
part of the sentence. Let φ be the resulting sentence. Clearly, φ is satisfiable
if and only if φ0 is so.

In the remainder of the proof, we perform several transformation on φ
until we get a canonic sentence. In each case, the output is equivalent to the
input and both will be called φ. Think about φ as the current formula.

Transformation 0: Start. Transform the quantifier free part QF(φ) of φ to
an equivalent quantifier free formula that is built from literals by means of
conjunctions and disjunctions; those literals will be called the constituent
literals of φ. For each literal α, let Depth(α) be the sum of the depths of the
constituent terms of α.

Transformation 1: Term-depth reduction. Let I be the collection of inadmis-
sible constituent literals of φ and d =

∑
α∈I Depth(α). If d > 0, choose a

subterm Par(t) of depth 1 of a term in I and replace QF(φ) with

(∃v)[v = Par(t) ∧ φ′]

where v is a fresh existential variable and φ′ is the result of replacing Par(t)
with v in QF(φ). Repeat this procedure until d = 0.

Transformation 2: Elimination of inadmissible constituent literals. Reduce
QF(φ) to disjunctive normal form and let I be the collection of inadmissible
constituent literals of φ. It is easy to see that every α ∈ I is an equality. If
I ̸= ∅, choose a literal t = t′ in I. Without loss of generality, t precedes t′ in
the lexicographical order. Do the following for every disjunct of QF(φ) that
has the chosen literal as a conjunct: delete the chosen conjunct and replace
t′ with t in the remaining conjuncts. Repeat this procedure until I = ∅.

Transformation 3: Finale. Use the equivalences

(∃v)(α ∨ β) ≡ (∃v)α ∨ (∃v)β and (∃v)(γ) ≡ γ,

where γ does not contain v, to transform φ into a canonical sentence. ⊓⊔

In the rest of this section we prove the decidability of the satisfiability
problem for canonic sentences. For brevity, we make the following conven-
tions:

– A clause is identified with the set of its constituent literals.
– A canonic sentence is identified with the set of constituent clauses.
– Canonic sentences are called simply sentences.
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7.3.3 Terminology and Notation

Generalized Structures. We generalize the notion of structures in two
ways. First, we allow a structure to include a variable assignment. Second,
we allow first-order statements to be undefined.

Vocabularies. We extend the notion of vocabulary by allowing vocabularies
to contain individual variables. In addition to variables, a vocabulary may
contain the function name Par, various predicates and individual constants.

A model or structure A of vocabulary Υ interprets every variable v ∈ Υ
as a an element A(v) of A. The vocabulary of a structure A will be denoted
Voc(A). If v ̸∈ Voc(A) and a belongs to A, then A(v/a) is the expansion of
A to v (or, more exactly to the vocabulary Voc(A) ∪ {v}.

The vocabulary Voc(ψ) of a formula ψ contains the predicates, constants
and free variables of ψ and the function name Par if it occurs in ψ. We say
that a structure A is a structure for a formula ψ if Voc(A) includes Voc(ψ)
but does not contain any bound variables of ψ.

The satisfaction relation is defined in the obvious way. We require, how-
ever, that A is a structure for ψ if A satisfies ψ. Instead of giving a detailed
definition of satisfaction, we give the following useful criterion.

Lemma 7.3.12. Let A be a structure for a sentence φ. A satisfies φ if and
only if, for every x ∈ A, some K ∈ φ is satisfied in A(u/x).

Proof. Obvious. ⊓⊔

A structure A is a model of ψ if and only if it satisfies ψ.

Truth Values. An atomic statement about a structure A is a statement of the
form P (a1, . . . , ar) where P is an r-ary predicate in the vocabulary of A and
a1, . . . , ar are elements of A. (An atomic statement P (a1, . . . , ar) can be rep-
resented by the pair (P, (a1, . . . , ar)).) Usually each such statement is either
true or false in A. We allow proper atomic statements to be undefined. In
other words, atomic statements will take values in the set {true, false, undef},
but each equality statement will evaluate to either true or false.

It follows that if A is a structure for an atomic formula α then the truth
value TVA(α) of α at A belongs to the set {true, false, undef}. To compute
truth values of arbitrary first-order formulae at A, we order the three truth
values as follows: false < undef < true. Then conjunction and universal quan-
tification are minimization operators while disjunction and existential quan-
tification are maximization operators. The negation is consistent with the
usual negation and leaves undef intact. A generalized structure A satisfies
a formula ψ is ψ evaluates to true in A. It is easy to see that a sentence is
satisfiable if and only if it is satisfiable in a generalized structure.

In the rest of this section, structures are the two-way generalized struc-
tures.
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Literal Statements, Edges and Amalgams. An literal statement about
a structure A is an atomic statement about A or the negation of such. A
literal statement ±P (a1, . . . , ar) is proper if P is so.

An edge of structure A is a true literal statement about A. A structure
A is a substructure of a structure B of the same vocabulary (and B is a
superstructure of A) if every element of A is an element of B and every edge
of A is an edge of B. If A is a substructure of B then, for every a ∈ A,
ParA(a) = ParB(a); this is so because equalities take only boolean values
true and false. However, B may have an edge ±P (ā) that is not an edge of A
even though all elements of ā are elements of A; in this case P (ā) evaluates
to undef in A. If every edge of B with elements from A is also an edge of A,
then A is an induced substructure of B. Notice that each nonempty subset X
of a structure A that is closed under Par gives rise to an induced substructure
of A with universe X; this substructure is called the restriction of A to X
and denoted A|X.

Structures A,B of the same vocabulary agree on the common part X of
their universes (or simply agree) if X is empty or else X is closed under Par
in both structures and A|X = B|X.

The amalgam of pairwise agreeing structures A1, . . . ,Ak is the unique
structure A such that (i) A is the union of A1, . . . , Ak and (ii) the collection
of edges of A is the union of the collection of edges of A1, . . . ,Ak. Structures
Ai are summands of A.

A is the amalgam of A1, . . . ,Ak over a set X if, for all i < j, X is the
common part of Ai and Aj . If A is the amalgam of A1, . . . ,Ak over a set X,
we say also that A is the amalgam of A1, . . . ,Ak over the structure A1|X.

Lemma 7.3.13. If structures A1, . . . ,Ak pairwise agree and each of them
satisfies a sentence φ, then their amalgam satisfies φ as well.

Proof. We use the satisfiability criterion of Lemma 7.3.12. An arbitrary el-
ement x of the amalgam belongs to the universe Ai of some summand Ai.
Since Ai |= φ, there is a clause K ∈ φ such that some expansion of Ai(u/x)
satisfies K. The corresponding expansion of the amalgam satisfies K as well.

⊓⊔

Nobles and Plebeians. Distinguished elements are princes; they also are
royal . Ancestors of princes are noble, and the other elements are plebeian.
(Notice that children of a prince may be plebeian.) We use this terminology
extensively. The collection of all noble elements of a structure A is denoted
by Noble(A). The restriction of A to Noble(A) is the noble substructure of A.
A component of A is royal if it contains a prince; otherwise it is plebeian. An
expansion A+ of A to a collection V of variables if plebeian if all elements
A+(v), v ∈ V , are plebeian.

Let κ be a positive integer. A noble element x is a κ-baron if the distance
from x to the nearest prince is at most κ.
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Lemma 7.3.14. In a structure with n princes, the number of κ-barons is
≤ 3κn2.

Proof. For each κ-baron x, there are princes y1, y2 and a number l ≤ κ such
that y1 ≤ x and Distance(x, y2) = l. By Lemma 7.3.6, there are at most three
descendents of y1 on distance l from y2. ⊓⊔

The Adjunct Logic. Recall FO(Par), the first-order logic of unary function
Par, introduced in Sect. 7.3.1. The adjunct logic of Par is the extension of
FO(Par) with the strict younger-than relation x < y defined in Sect. 7.3.1.
Notice that the adjunct logic is a fragment of second-order logic.

The non-strict younger-than relation x ≤ y is definable in the obvious
way: x < y ∨ x = y. A priori, one may expect that x < y is equivalent to
x ≤ y ∧ x ̸= y, but this is not necessarily true. The condition x ≤ y ∧ x ̸= y
is sufficient for x < y but it is not necessary in general. If x is cyclic then
x < x but the condition x ≤ y ∧ x ̸= y fails.

We are interested in formulae of the adjunct logic where Par occurs only
in atomic formulae of the form t1 = Par(t2) with both terms t1 and t2 of
depth zero. Only such formulae will be called adjunct formulae.

Lemma 7.3.15. In a given algebra A, each κ-baron x is definable by an
existential adjunct formula with < κ quantifiers.

Proof. Since x is a κ-baron, there are princes y1, y2 and a number l ≤ κ
such that y1 ≤ x and Distance(x, y2) = l. It takes no quantifiers to express
that y1 ≤ x. By Lemma 7.3.6, there are at most three descendants of y1
on distance l from y2. In the proof of Lemma 7.3.6, we have described the
possible paths of length l from y1 to descendants of y1. It is easy to see that
l − 1 quantifiers suffice to specify the path leading to x. ⊓⊔

Capitals, Towns and Villages.

Definition 7.3.16. The syntactical partial algebra of a clause K is the fol-
lowing partial algebra P: Elements of P are the constants and variables of
K, and ParP(t) = t′ if the clause t′ = Par(t) belongs to K. A subclause K ′

of K is a component of K if there exists a component P ′ of P such that a
literal α ∈ K belongs to K ′ if and only if all constants and variables of α
belong to P ′

Notice that a clause may contain inter-component literals.

Definition 7.3.17. The component of a clause K containing u is the capital
of K, any non-capital component containing a constant is a town of K, and
any non-capital component without constants is a village of K. A variable
that belongs to the capital (resp. a town, a village) is a capital (resp. town,
village) variable.
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7.3.4 1-Satisfiability

Definition 7.3.18. Let A be a structure.

– A subset X of A is 1-regular if the plebeian elements of X are pairwise
comparable.

– Every equality or inequality statement α about A is 1-relevant to A. An
equality or inequality formula α is 1-relevant to A if all variables of α
belong to Voc(A). In either case, A 1-satisfies α if A |= α.

– A proper literal statement α = α(x1, . . . , xr) about A is 1-relevant to A if
the set {x1, . . . , xr} is 1-regular. A 1-satisfies α if either α is 1-irrelevant
to A or A |= α. A is 1-regular if all edges of A are 1-relevant to A.

– A proper literal α = α(v1, . . . , vr) is 1-relevant to A if A is a structure
for α and the literal statement α(A(v1), . . . ,A(vr)) is 1-relevant to A. A
1-satisfies α if A is a structure for α and either α is 1-irrelevant to A or
A |= α.

– A 1-satisfies a clause K if it 1-satisfies all literals of K. A 1-satisfies K̄ if
some expansion of A 1-satisfies K.

– A 1-satisfies a sentence φ if A is a structure for φ and, for every x ∈ A,
there exists K ∈ φ such that A(u/x) 1-satisfies K̄.

If A 1-satisfies a formula ψ, we write A |=1 ψ and say that A is a 1-model
of ψ.

Lemma 7.3.19. (i) Suppose that a structure A 1-satisfies a sentence φ
and B is the substructure of A obtained by removing all 1-irregular edges.
Then B |=1 φ.
(ii) An amalgam of 1-regular structures is 1-regular.
(iii) An amalgam of structures Ai 1-satisfies a sentence φ if each Ai 1-
satisfies φ.

Proof. (i): 1-irregular edges cannot witness the 1-satisfiability of literals.

(ii): Any edge of the amalgam belongs to one of the summands.

(iii): If u takes value in Ai, then Ai provides the necessary witnessing instan-
tiation of existential variables. ⊓⊔

Theorem 7.3.20. A sentence φ is satisfiable if it is 1-satisfiable. Moreover,
if φ is 1-satisfiable in a structure A then it is satisfiable in a structure whose
noble substructure is that of A.

Proof. Assume that a sentence φ is 1-satisfiable and let A be a 1-model of
φ. Let c = Card(A). We may suppose without loss of generality that c ≤ ℵ0
because the proof of the Löwenheim-Skolem Theorem (see [76]) remains valid
in the case of 1-satisfiability. On the ground of Lemma 7.3.19, suppose without
loss of generality that A is 1-regular.
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Fix a choice function that, given a plebeian acyclic component X of A,
produces an element of X. Call the produced elements and their ancestors
pseudo noble.

Stratify A by assigning a numerical depth δ(x) to each element. The depth
of any noble, cyclic and pseudo noble element is zero. The depth of any other
element x is the distance from x to the closest ancestor of depth zero. The
depth d = δ(A) of A is the supremum of the depths of its elements.

Let κ be the number of existential variables in φ, n be the maximal
number of proper literals in the clauses of φ and ε = 2−n. If c = ℵ0, set s = ℵ0.
Otherwise choose s to be a positive integer so large that c(sκ+1)d+1(1−ε)s <
1.

Construct an increasing series of structures Ai, i ≤ d, as follows. A0 is
the amalgam of A and sκ isomorphic copies of A over Noble(A). Ai+1 is the
amalgam of Ai and sκ additional isomorphic copies of Ai over {x ∈ Ai :
δ(x) ≤ i}. If d is infinite, then Ad is the amalgam of all structures Ai.

Fix witnessing isomorphisms from A to other summands of A0 and from
each Ai, i < d, to other summands of Ai+1. These isomorphisms give rise
to canonic automorphisms of Ad. For example, for each summand A′

2 of A3,
there exists a canonic automorphism θ of Ad that fixes A1 and maps A2 onto
A′

2. In addition the trivial automorphism of Ad will also be called canonic.
Check by induction on i that, for each x ∈ Ai, there is a composition of

canonic automorphism that maps element of A to x. Check by induction on
i that, in the case of finite A, Card(Ai) ≤ c(sκ+ 1)i+1 and thus Card(Ad) ≤
c(sκ+ 1)d+1.

For each undefined proper atomic statement P (x1, . . . , xr) about Ad, toss
a fair coin and make the statement true (resp. false) if the coin comes up
heads (resp. tails). The result is a random structure B. It suffices to prove
that the probability Pr[B ̸|= φ] < 1.

Given an arbitrary x ∈ B, we estimate the probability that B(u/x) 1-
satisfies the existential closure of someK ∈ φ. Since there is an automorphism
of Ad that maps an element of A to x, we may suppose without loss of
generality that x ∈ A. Since A |=1 φ, there exists K ∈ φ such that some
expansion A+ of A to EV(K) 1-satisfies K. Fix appropriate K and A+.

We construct an expansion C of B(u/x) to EV(K) in stages.
Preliminary stage. If A+(v) is noble or A+(v) ≥ x, set C(v) = A+(v).
Let V ′ be the collection of the remaining existential variables of K. The

rest of the construction proceeds by induction on δ(A+(v)). For each finite
i ≤ d, let Vi = {v ∈ V ′ : δ(A+(v)) ≤ i}. Let f be an injective map from the
collection of plebeian components of A that do not contain x to the collection
of summands of A0 different from A.

Stage 0. Suppose that v ∈ V0. Then A+(v) lies in a component A′ ∈
Domain(f). Set C(v) = θ(A+(v) where θ is the canonic automorphism that
takes A to A′.
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Stage (i+1). We suppose that C is defined on Vi and, for each v ∈ Vi,
there is a composition of canonic automorphisms that takes A+(v) to C(v).
Let X = {A+(w) : w ∈ Vi}, j = i+ 1 and

Y = {y : δ(y) = 0} ∪ {y ∈ A : x ≤ y} ∪X.

Partition Vj − Vi into blocks with the same closest ancestor in Y . Let y ∈ Y
and v1, . . . , vr be all variables v′ ∈ Vj − Vi such that y is the closest ancestor
of A+(v′) in Y . Clearly, A+(v1), . . . ,A

+(vr) are incomparable in A.
We define an auxiliary automorphism θy of Ad. If y is noble or x ≤ y, θy is

the trivial automorphism. If Component(y) ∈ Domain(f) but y ̸∈ X, let θy be
the canonic automorphism that moves A to the summand f(Component(y)).
In the remaining case, y = A+(w) for some w ∈ Vi; let thetay be a composi-
tion of canonic automorphisms such that θ(A+(w)) = y.

Choose canonic automorphisms η1, . . . , ηr of Ad that fix Ai and move Aj
to different summands of Aj+1. Set C(vq) = ηq(θy(A

+(vq))).

Lemma 7.3.21. (i) δ(C(v)) = δ(A+(v)).
(ii) C(v1) = C(v2) if and only if A+(v1) = A+(v2).
(iii) C(v1) < C(v2) if and only if A+(v1) < A+(v2).

Proof. (i). Obvious.

(ii): The only if direction is obvious. Prove the if direction by contradiction.
Suppose that C(v1) = C(v2) and consider all cases when C has been defined
at v1 and v2.

(iii): Induction on e = δ(A+(v2)). ⊓⊔

Let α = α(v1, . . . , vr) ∈ K and xq = A+(vq). First we suppose that α is
1-relevant to A+ and check that C |= α. If α is an equality or inequality, use
claim 2 of the previous lemma. Suppose that α is proper. If every xq is noble
then, according to the preliminary stage of the construction of C, C |= α.
So suppose that some of elements xq are plebeian and all plebeian elements
xq are pairwise comparable. We illustrate the proof on an example where
r = 3, all elements xq, and plebeian, dq = δ(x1) and d1 < d2 < d3. According
to the stage d1 of the construction of C, some canonic automorphism θ1
takes x1 to C(v1). According the stage d2 of the construction of C, some
automorphism θ2 fixes Ad2 and moves x2 to C(v2. According to the stage d3 of
the construction of C, some automorphism θ3 fixes Ad3 and moves x3 to C(v2).
Let θ be the composition of automorphisms θ1, θ2, θ3. Since C |= α(x1, x2, x3),
C |= α(θ(x1), θ(x2), θ(x3)) = α(C(v1),C(v2),C(v3)).

Second we suppose that α is 1-irrelevant to A+ and check that the truth
value of α is undefined in Ad. To simplify notation let x1 and x2 be incompara-
ble plebeians. First suppose that A1 of x1 differs from the component A2 of x2.
If Ak ∈ Domain(f) for some k then the component of Ad that includes f(A

k)
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contains C(xk) but not C(x3−k). If neither A
k belongs to Domain(f) and Akd

is the component of Ad that includes Ak, then C(v1) ∈ A1
d ̸= A2

d ∈ C(v2).
Second suppose that A1 = A2. Without loss of generality, δ(x1) ≤ δ(x2) =

e. According to stage e of the construction of C, C(x1) and C(x2) belong to
different summands of Ae+1 and thus are incomparable.

Thus, for every α 1-irrelevant to A+, probability Pr[C |= α] = 1/2. By the
definition of n, Pr[C |= K] ≥ 2n = ε. Hence Pr[C ̸|= K] ≤ 1− ε.

Since each Ai is composed of sκ summands, there exist versions C1, . . . ,Cs
of C such that, for every v ∈ Var(K), if A+(v) is plebeian and A+(v) ̸≥ x then
all elements s elements C1(v), . . . ,Cs(v) are distinct. It follows that, for every
α ∈ K 1-irrelevant to A+, the events C1 |= α, . . . ,Cs |= α are independent.
The probability that none of expansions C1, . . . ,Cs models K is ≤ (1− ε)s.

Thus the probability p that of the event B(u/x) ̸|= K is ≤ (1 − ε)s.
In the case of infinite A, p = 0. Since B is countable, the event B ̸|= φ is
the intersection of countably many events of probability zero and thus has
probability zero.

In the case of finite A, by the choice of s, we have:

Pr[B ̸|= φ] ≤ p · Card(B) ≤ c(sκ+ 1)d+1(1− ε)s < 1.

⊓⊔

Corollary 7.3.22. A sentence is satisfiable if and only it is 1-satisfiable.

7.3.5 2-Satisfiability

Definition 7.3.23. Suppose that A is a structure for a clause K.

– A proper literal α ∈ K is 2-relevant to A with respect toK if it is 1-relevant
to A and some component of K contains every variable v ∈ Var(α) such
that A(v) is plebeian.

– An equality or inequality literal α ∈ K is 2-relevant to A with respect to
K.

– A 2-satisfies K if, for every α ∈ K, either α is 2-irrelevant to A wrt K or
A |= α.

Definition 7.3.24. – A structure A 2-satisfies the existential closure K̄ of
a clause K if A is a structure for K̄ and some expansion of A satisfies K.

– A 2-satisfies a sentence φ if A is a structure for φ and, for every x ∈ A,
there exists K ∈ φ such that A(u/x) 2-satisfies K̄.

Lemma 7.3.25. The amalgam of structures Ai 2-satisfies a sentence φ if
each Ai 2-satisfies φ.

Proof. Obvious. ⊓⊔
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Theorem 7.3.26. A sentence φ is 1-satisfiable if it is 2-satisfiable. More-
over, if φ is 2-satisfiable in a structure A then it is 1-satisfiable in a structure
whose noble substructure is that of A.

Proof. Assume that A 2-satisfies φ and let c = Card(A). Without loss of
generality, c ≤ ℵ0. If A is infinite, let s = ℵ0. Otherwise let s be a positive
integer so big that s(1−2−n)s < 1 where n is the maximal number of proper
literals in clauses of φ.

Let m be the maximal number of non-capital components in the clauses
of φ and construct isomorphisms ηr : A → Ar, 0 ≤ i < ms, such that η0
is the identity map and, for all q < r, Aq ∩ Ar = Noble(A). Let A∗ be the
amalgam of structures Ai and construct a random superstructure B of the
amalgam as follows. For every undefined proper 1-regular atomic statement
α about A∗, toss a fair coin and make α true (resp. false) if the coin comes
up heads (resp. tails). It suffices to prove that Pr[B |=1 φ] < 1.

Let x be an arbitrary element of B. By symmetry, we may suppose that
x ∈ A. Fix K ∈ φ and an expansion A+ of A(u/x) to EV(K) such that
A+ |=3 K.

Let K0 be the capital component of K and K1, . . . ,Kl be the other com-
ponents of K. Call an expansion C of B(u/x) to EV(K) admissible if there
is an injective function

f = fC : {0, . . . , l} → {r : r < ms}

such that f(0) = 0 and C(v) = ηf(i)(A
+(v)) for all v ∈ Var(Ki). Let C range

over the admissible expansions.
Estimate the probability Pr[C ̸|=1 K]. Let α ∈ K. If α is 2-relevant to C

wrt K then some Ki contains all variables of α with plebeian interpretations
in C. Since ηi is an isomorphism and A |=2 K, C |= α. Assume that α
is 1-relevant but 2-irrelevant to C with respect to K. There are variables
v1, v2 ∈ Var(α) with plebeian interpretations in C which belong to different
components of K. C(v1) and C(v2) belong to different summands of A∗ and
TVA∗(α) = undef. The probability Pr[C ̸|= α] = 1/2. Thus Pr[C ̸|=1 K] ≥
2−n.

There exist s admissible expansions C such that functions fC have disjoint
ranges. The events C |=1 K are independent. Hence the probability p that
B(u/x) fails to 1-satisfy K̄ is ≤ (1− 2−n)s. If s = ℵ0 then p = 0. The event
B ̸|=1 φ is the intersection of ℵ0 events of probability zero and thus has
probability zero.

Suppose that s is finite. Then Pr[B ̸|=1 φ] is bounded by cp which is < 1
by the choice of s. ⊓⊔

Corollary 7.3.27. A sentence is 2-satisfiable if and only if it is 1-satisfiable.
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7.3.6 Refinements

We start with constructing a computable function ρ(Υ, κ) where Υ is a vocab-
ulary and κ a positive integer. The we use ρ to define a refinement relation
on sentences. The particular choice of ρ will not be exploited in this section,
but it will be exploited later.

Definition 7.3.28. Noble elements a, b of a structure A are κ-similar if, for
every existential adjunct formula ψ(v) with ≤ κ quantifiers, A(v/a) |= ψ if
and only if A(v/b) |= ψ.

κ-similarity is an equivalence relation; its equivalence classes will be called
κ-similarity classes.

Definition 7.3.29. ρ0(Υ, κ) is a computable bound on the number of κ-
similarity classes in Υ -structures. It is supposed that the function ρ0(Υ, κ) is
monotone in both arguments.

The existence of a computable bound on the number of κ-similarity classes
in Υ -structures is obvious.

Definition 7.3.30. ρ1(Υ, κ) = 4(κ + 1)ℓρ0(Υ, κ) where ℓ is the number of
individual constants in Υ . Further, ρ(Υ, κ) = κ · (ρ1(Υ, κ))κ.

Definition 7.3.31. A clause L is an immediate refinement of a clause K if
it satisfies the following conditions.

– L implies K̄.
– L contains ≤ ρ(κ) new constants.
– L contains less existential variables than K.

Definition 7.3.32. A sentence φ′ is an immediate refinement of a sentence
φ if φ′ is obtained from φ by replacing a clause K ∈ φ with an arbitrary
collection of immediate refinements of K.

Lemma 7.3.33. A sentence is satisfiable if it has a satisfiable refinement.

Proof. Obvious. ⊓⊔

Definition 7.3.34. The refinement relation on clauses (resp. sentences) is
the transitive closure of the immediate refinement relation.

Lemma 7.3.35. The refinement relation on sentences is well ordered.

Proof. Assign the ordinal
∑
k<κmkω

k to a given sentence φ; here κ is the
number of existential variables in φ and mk is number of clauses in φ with k
existential variables. Refinement decreases the ordinal. ⊓⊔

Lemma 7.3.36. The number of refinements of a given sentence φ is finite
and computable from φ.
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Proof. The number of refinements is ≤ 2N where N is the number N of
clauses that appear in φ and its refinements is computable from φ. Thus it
suffices to prove that N is finite and computable from φ.

Let κ = Card(EV(φ)). Refinements of a given clause K ∈ φ form a tree
of height κ where K is the root and a clause L2 is a child of a clause L1 if
and only if L2 is an immediate refinement of L1.

⊓⊔

Lemma 7.3.37. The poset of all refinements of a given sentence φ is com-
putable from φ.

Proof. Obvious. ⊓⊔

Definition 7.3.38. A sentence is modest if it has no 3-satisfiable refine-
ments.

Theorem 7.3.39 (Refinement Theorem). The satisfiability problem re-
duces to that for modest sentences.

A decision algorithm for the satisfiability of modest sentences is not sup-
posed to recognize modesty. It just happens to work correctly on modest
sentences.

Proof. Let F be a decision algorithms for satisfiability of modest sentences.
Construct the poset of refinements of the given sentence φ and then, using
F , traverse the poset bottom up and check the satisfiability of refinements
of φ. If any of the refinements is 3-satisfiable then φ is so. Otherwise, φ is
modest and F (φ) tells us if φ is satisfiable. ⊓⊔

Lemma 7.3.40. Degenerated clauses of a satisfiable modest sentence have
no existential variables.

Proof. By contradiction suppose that a degenerate clause K of is satisfiable
modest sentence φ contains an existential variable v. K contains an equality
u = c. Let A be a model of φ and x = A(c). Then the structure A(u/x) has
an expansion A+ that satisfies some clause L ∈ φ. If L ̸= K, then φ − {K}
is satisfied in A which contradicts the modesty of φ. Assign a new constant
c′ to the element A+(v) and let A∗ be the resulting expansion of A. Refine φ
by replacing K with K(v/c′) and let φ∗ be the resulting expansion. Clearly,
A∗ satisfies φ∗. ⊓⊔

7.3.7 Villages

In this section we prove the clauses of a satisfiable modest sentence have no
villages. Fix a positive integer κ and restrict attention to formulae that use
only the first κ existential variables.
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Matching Nobles. Recall that noble elements a, b of a structure A are κ-
similar if and only if

A(v/a) |= ψ ⇐⇒ A(v/b) |= ψ

for every existential adjunct formula ψ(v) with ≤ κ quantifiers.

Definition 7.3.41. Similar nobles a < b are κ-matching if they are κ-similar
and Distance(a, b) > 2κ.

Since κ is fixed, terms “κ-similar” and “κ-matching” are abbreviated to
“similar” and “matching” respectively. Recall the definition of ρ1 (Defini-
tion 7.3.30).

Lemma 7.3.42. In any structure of vocabulary Υ , if N is a set of noble
elements of cardinality > ρ1(Υ, κ) then there exists a pair a < b of matching
noble elements such that (a, b] includes the κ-vicinity of some element of N .

Proof. Let A be an arbitrary Υ -structure and N a subset of A of cardinality
> ρ1(Υ, κ). There is a prince p of A with > 4(κ+ 1)ρ0(Υ, κ) ancestors in N .
Further, there exists a finite X ⊆ N such that every x ≥ p, all elements of
X are E-equivalent and Card(X) > 4(κ + 1). Either all elements of X are
acyclic or they all are cyclic. Call elements of X red.

Case 1: Red elements are acyclic. Choose a to be the minimal red element
and b the maximal red element.

Case 2: Red elements are cyclic. Let δ be the maximal distance between
red elements. Choose a and b such that Distance(a, b) = δ and Card(

(
X ∩

(a, b]
)
≥ Card(

(
X ∩ (b, a]

)
. Then Card(

(
X ∩ (a, b]

)
≥ 2(κ+ 1) and therefore

there exists ≥ 2(κ+ 1) red elements between a and b.
It is easy to see that in either case there is a red element x such that (a, b]

includes the κ-vicinity {y : Distance(x, y) ≤ κ} of x. ⊓⊔

Folds. Let a < b be matching elements of a structure A and a′ = Par(a).
We extend A to a structure B = A + Fold(a, b) which consists of A and an
additional plebeian component Fold(a, b).

Let η be a one-to-one correspondence between the interval (a, b] of A and
a set X disjoint from A. If x ∈ (a, b] then η(x) ∈ X, and if x ∈ X then
η(x) ∈ (a, b]. In either case η2(x) = x.

We construct the desired plebeian component Fold(a, b) of B on the el-
ements of X so that B = A ∪ X. If x ∈ X and x ̸= η(b), set ParB(x) =
η(ParA(η(x))). If x = η(b), set ParB(x) = η(a′).

Next we define the truth value t = TVB(α) of a proper atomic statement
α = P (x1, . . . , xr) about B such that the set {x1, . . . , xr} intersects X. Set
t = undef if at least one of the following conditions is satisfied:

– There exists q such that xq ∈ A but xq is not a baron (that is not a
κ-baron).
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– There exist p, q such that xp ∈ X and xq ∈ X but Distance(xp, xq) ≥ κ.
– The set {x1, . . . , xr} is not 1-regular.

Suppose that none of these condition is satisfied. Then there exists x ∈
{x1, . . . , xq} such that every plebeian xq = Par

iq
B(x) for some iq < κ. Set

t = TVA(P (y1, . . . , yr)) where elements yq are defined as follows. If xq is a

baron then yq = xq, and if xq is plebeian then yq = Par
iq
A (η(x)).

Deterministic Construction. Let φ be a satisfiable modest sentence with
κ existential variables and let n be the maximal number proper literals in
clauses of φ. Fix a model A of φ of cardinality c ≤ ℵ0. If c = ℵ0, let s = ℵ0.
Otherwise let s be a positive integer so large that c(1−2n)s < 1. Construct the
amalgam A∗ of the following structures over the union of royal components
of A:

– A itself and s additional copies of A,
– ns isomorphic copies of A+Fold(a, b) for every pair of matching elements
a < b in A.

Lemma 7.3.43. A∗ 2-satisfies φ. Moreover, for every summand B of A∗ of
the form A + Fold(a, b) and every element x ∈ B − A, there exists K ∈ φ
such that some plebeian expansion of A∗(u/x) 2-satisfies K.

Proof. Let B and x be as the lemma and a′, η be as in the definition of
folds. Since A |= φ, there exists K ∈ φ such that some expansion A+ of
A(u/η(x)) to EV(K) 2-satisfies K. Fix appropriate K and A+. We construct
an expansion C of A∗(u/x) to EV(K).

First we deal with capital existential variables v. Clearly, η(x) ∈ (a, b].
Since a, b are similar and different, there is no prince in the κ-vicinity of η(x).
Hence A+ maps the capital component of K onto a connected subset Y0 of A
of cardinality ≤ κ. Y0 is not necessarily included in the interval (a, b]. It may
overspill over the a-side of the interval (in which case it contains a) or over the
b-side of interval (in which case it contains b′ = ParA(b)) but not both because
Distance(a, b) > 2κ. If A+(v) is between a and b, set C(v) = η(A+(v)). Let
Y = Y0 − (a, b].

Case 1: Y contains a. Let Z be the superset of Y that contains all elements
PariA(a) with i < κ. Let ∆ be the quantifier-free diagram of Z in the adjunct
language. Since a, b are matching, there exists a one-to-one mapping θ of Z
to a subset of A such that θ(a) = b and θ preserves ∆. (Notice that θ maps
nobles to nobles; because the nobility is expressible in a quantifier free way
in the adjunct language.) If A+(v) ∈ Y , set C(v) = η(θ(A+(v))). It is easy to
see that C 2-satisfies the capital of K. Indeed, if α is a literal in the capital
of K that is 2-relevant to C and α contains some v with A+(v) ∈ Y then Z
contains the A+ interpretations of all variables in α. By the definition of θ,
it preserves the truth value of α. It remains to use the definition of η.

Case 2: Y contains b′. This case is similar to the previous one. Let Z be
the superset of Y that contains all elements PariA(b) with i < κ. Let ∆ be the
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quantifier-free diagram of Z in the adjunct language. Since a, b are matching,
there exists a one-to-one mapping θ of Z to a subset of A such that θ(b) = a
and θ preserves ∆. If A+(v) ∈ Y , set C(v) = η(θ(A+(v))). It is easy to see
that C 2-satisfies the capital of K.

Second we deal with town variables. Let T be the union of all towns of
K. Choose C such that C |= T and every C(v), v ∈ Var(T ), is plebeian. The
possibility of such a choice follows from the following claim.

Claim. Some plebeian expansion of A satisfies T .

Proof. Assume the contrary and assign a new constant to every non-royal
baron of A; let A′ be the resulting expansion of A. Construct a refinement
φ′ of φ by replacing K with all clauses K(v/ξ) where v is a town variable of
K and ξ is a new constant. We check that A′ |= φ′. That gives the desired
contradiction because φ is modest.

Let x ∈ A′. Since A |= φ, there exist L ∈ φ and an expansion X of A(u/x)
to EV(L) that satisfies L. Let X′ be the expansion of A′ to EV(L) consistent
with X. Clearly X′ |= L if L ̸= K. Suppose L = K. By the assumption, some
X(v), v ∈ Var(T ), is noble. Since every town of K contains a constant, X(v) is
a baron and therefore interprets a new constant ξ in A′. Then A′ |= K(v/ξ).

⊓⊔

Third we deal with village variables. For every village V of K, choose C
such that C |= V and every C(v), v ∈ Var(V ), is plebeian. The possibility of
such a choice follows from the following claim.

Claim. Some plebeian expansion of A∗ satisfies V .

Proof. Assume the contrary. For every expansion X of A to Var(V ) that
satisfies V , there exists a variable vX ∈ Var(V ) such that X(vX) is noble.

Case 1: There are ≤ ρ(Voc(A), κ) elements X(vX). Assign a new constant
to each of these elements and refine φ by replacing K with clauses K(v/ξ)
where v ∈ Var(V ) and ξ is a new constant. It is easy to see that the expansion
of A to the new constants satisfies the refinement of φ which contradicts the
modesty of φ.

Case 2: There are > ρ(Voc(A), κ) elements X(vX). By the definition of ρ,
there exist matching elements a′ < b′ of A such that (a′, b′] includes the κ-
vicinity of someX(vX). Let A′ be a summand of A∗ of the form A+Fold(a′, b′)
different from A0 and let η be as in the definition of folds (with a′, b′ playing
the role of a, b). The plebeian extension X of A∗ to Var(V ) that sends every
v to η′(A+(v)). Obviously X |= V . This gives us the desired contradiction.

⊓⊔

It remains to check that C |=2 K. Obviously, C satisfies all equalities and
inequalities of K. Suppose that α ∈ K is 2-relevant to C wrt K, so that some
component K ′ of K contains all variables of α with plebeian interpretations
in C. Since C is plebeian, K ′ contains all variables of α. By the construction,
C |= α. ⊓⊔
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Randomization. Let A and A∗ be as above. The construction of A∗ involved
a cardinal s but the particular choice of s has not been exploited in the
previous subsection; we will do that in this subsection. Construct a random
superstructure B of A∗ by assigning, randomly and independently, a proper
truth value to each undefined atomic statement about A∗.

Lemma 7.3.44. With a positive probability, B 2-satisfies φ. Moreover, the
probability of the following event is positive: For every x ∈ B, there exists a
clause K ∈ φ and an expansion C of B(u/x) to EV(K) such that C |=2 (K)
and C(v) is plebeian for every village variable v of K.

Proof. By Lemma 7.3.43, it suffices to restrict attention to elements x that
belong to summands of A∗ that are isomorphic to A. By symmetry, it suffices
to restrict attention to elements x ∈ A. Consider such an element x. Fix
a clause K ∈ φ and an expansion A+ of A(u/x) such that A+ |= K. We
construct the desired village-plebeian expansion C of A∗(u/x). Let C0 be the
reduct of A+ obtained by disinterpreting the village variables of K.

Claim. For every village V of K, there exists an expansion X of A(u/x)
to Var(V ) such that (i) X satisfies V and (ii) there exist matching elements
a < b such that (a, b] contains all elements X(v), v ∈ Var(V ).

Proof. Suppose the contrary and let V be a counter-example village. Let Y
be the set of all elements X(v) where X ranges over expansions of A(u/x) to
Var(V ) that satisfy V and v ranges over Var(V ). Recall the definition of ρ1
(Definition 7.3.30).

Case 1: Card(Y ) ≤ ρ1(Voc(A), κ). Introduce a new constant for each
element of Y and check that be the corresponding expansion of A satisfies
the refinement of φ obtained by replacing K with all clauses K(v/ξ) where
v ∈ Var(V ) and ξ is a new constant. This contradicts the modesty of φ.

Case 2: Card(Y ) > ρ(Voc(A), κ). Use the definition of ρ1. ⊓⊔

It follows that, for every village V , there exist an expansion X of A(u/x)
to Var(V ) such that (i) X satisfies V and (ii) some folding component of A∗

contains all elements X(v), v ∈ Var(V ). By the construction of A∗, there
exists an expansion X of C0 such that (i) X satisfies all villages of K and
(ii) X maps the variables of different villages to different folding components
of A∗; call such expansions of C0 admissible.

Obviously, an admissible expansion X satisfies all equalities and inequal-
ities of K. Suppose that α ∈ K is 2-relevant to X wrt K. Obviously, X |= α
if α has no village variables or α has only village variables. In the remaining
case, some village V contains all variables of α that have plebeian interpreta-
tions in X, and some other variables of α have noble interpretations. By the
construction of B, Pr[X |= α] = 1/2. Hence Pr[X ̸|=2 K] ≤ 1 − 2−n where n
is the maximal number of proper literals in clauses of φ.

By the construction of B, there exist admissible expansions X1, . . . ,Xs
of C0 such that no two of them use the same folding component. The events
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Xr |=2 K are independent. Hence the probability p that B(u/x) fails to 2-
satisfy K̄ in a village-plebeian way is ≤ (1−2−n)s. If s = ℵ0 then p = 0. The
event B ̸|=1 φ is the intersection of ℵ0 events of probability zero and thus
has probability zero.

Suppose that s is finite. Then Pr[B ̸|=1 φ] is bounded by cp which is < 1
by the choice of s. ⊓⊔

Theorem 7.3.45. No clause of a satisfiable modest sentence φ has any vil-
lages.

Proof. By contradiction suppose that a clause K ∈ φ has a village V . By the
previous lemma, some B |=2 φ. Let ℓ be the number of different components
of K and an amalgam B′ of ℓ+ 1 copies B0, . . . ,Bℓ−1 of B over Noble(B).
For each j ≤ ℓ, let ηj be an isomorphism from B onto Bj that is the identity
map on Noble(B). We suppose that B0 = B and η0 is the identity map.

Since φ is modest, φ − {K} is not 2-satisfiable and thus there is x ∈ B
such that K is the only clause of φ 2-satisfied by some expansion of B(u/x).
By the previous lemma, there exists an expansion C of B(u/x) that maps
all variables of V to plebeians. Introduce a new constant for each element
ηj(C(v)) where j ≤ ℓ and v ∈ Var(V ) and let B∗ be the resulting expansion
of B′. Let Kj be the result of replacing every v ∈ Var(V ) by the constant
with value ηj(C(v)). Construct a refinement φ∗ of φ by replacing K with
clauses Kj . We check that B∗ |=2 φ

∗.
Let y be an arbitrary element of B′. We need to find a clause L ∈ φ∗

such that some expansion X of B∗(u/y) 2-satisfies L. Since B′ |= φ, there
exists a clause M such that some expansion D of B′(u/y) 2-satisfies M . If
M ̸= K, let L = M ; the desired X is the expansion of B∗(u/y) to EV(L)
consistent with D. Suppose that M = K . Since K has only ℓ components,
some summand Bj is disjoint from D(K). Let L = Kj ; again the desired X
is the expansion of B∗(u/y) to EV(L) consistent with D on EV(L)− V .

Thus φ∗ is 2-satisfiable which contradicts the modesty of φ.
Theorem 7.3.45 is proved ⊓⊔

7.3.8 Contraction

Without loss of generality, we restrict attention to sentences with at least one
constant.

Lemma 7.3.46. Every satisfiable modest sentence φ has a model where each
component has a prince.

Proof. Let A be model of φ and B the substructure of A obtained by remov-
ing all plebeian components. We check that B |= φ. Let x be an arbitrary
element of B. Since A |= φ, there exists an expansion A∗ of A(u/x) to EV(φ)
that satisfies some clause K ∈ φ. Clearly, B contains the A∗-interpretations
of all capital and town variables of K. By Theorem 7.3.45, K has no villages.
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Hence, the expansion of B(u/x) to EV(φ) that is consistent with A∗ satisfies
K. ⊓⊔

In the sequel we restrict attention to structures without plebeian compo-
nents. Fix a positive integer κ.

Definition 7.3.47. Noble(x) is the closest noble ancestor of x. Define x ≼ y
if there is i ≤ κ such that Pari(Noble(x)) = Noble(y) and Distance(x, y) ≤ κ.
As expected, x ≺ y if x ≼ y and x ̸= y.

The condition “there is i ≤ κ such that Pari(Noble(x)) = Noble(y)”
cannot be replaced by a weaker condition Noble(x) ≤ Noble(y). For example,
consider the case when x is a noble element of a cycle of length > 2κ and
y = Parκ(x), so that x ≺ y but y ̸≺ x. The weaker condition would give
y ≺ x.

Definition 7.3.48. If there is a unique noble y with Pari(y) = x then y =
Par−i(x).

Collapsing a Noble Interval. Assume that A is a structure, a < b are
matching nobles of A, a′ = Par(a) and b′ = Par(b). We define a new structure
B on elements A− (a, b]. Set ParB(x) = ParA(x) unless x = a in which case
set ParB(x) = b′. Given a proper atomic statement α = P (y1, . . . , yr) about
B, we define the truth value TVB(α) of α in B. Let Troublea(α) be the set
of elements xq ≼ a, and let Troubleb(α) be the set of elements xqsuccb. If at
least one of the trouble sets is empty, set TVB(α) = TVA(α). Suppose that
both trouble sets are nonempty. If every element of Troubleb(α) is noble, set

TVB(P (y1, . . . , yr) = TVA(x1, . . . , xr)

where xq = yq unless there is i < κ such that yq = Pari+1(b) in which case
xq = Pari+1(a). If every element of Troublea(α) is noble, set

TVB(P (y1, . . . , yr) = TVA(x1, . . . , xr)

where xq = yq unless there is i ≤ κ such that yq = Par−i(a) in which case
xq = Par−i(b). Otherwise set TVB(α) = undef.

Lemma 7.3.49. Let φ be a modest sentence with κ existential variables that
is satisfied in A. Then B 2-satisfies φ.

Proof. Let x be an arbitrary element of B. Fix a clause K ∈ φ and and
expansion A+ of A(u/x) that satisfies K. We construct an expansion C of
B(u/x) that satisfies K. Let X = {A+(v) : v ∈ Var(Capital(K)) and X∗ be
the union of X and the set of barons.

If X is disjoint from (a, b], set C(v) = A+(v) for all v ∈ Var(K); it is
clear that C |= K. Suppose that X intersects (a, b]. Then either x ≼ a or
b ≺ Noble(x).
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Case 1: x ≼ a. Since a and b are matching, there is a partial isomorphism
η from A to A such that Domain(η) = X∗, η fixes the barons, η takes nobles
to nobles and η(a) = b. Set

C(v) =

{
η(A+(v)) (A+(v) ∈ (a, b],
A+(v) otherwise.

Obviously C satisfies the equalities and inequalities of K. Suppose that
α(v1, . . . , vr) is a proper literal of K that is 2-relevant to C wrt K, xq =
A+(vq) and yq = C(vq).

Subcase 1: Every xqsucca is noble. For every such xq there is i ≤ κ such
that xq = Pari+1(a) and yq = Pari+1(b), so that Troubleb(α(y1, . . . , yr))
consists of nobles. By the definition of B,

TV(α(y1, . . . , yr) = TVA(α(x1, . . . , xr)).

Subcase 2: Some plebeian xqsucca. Then every town variable vp has a
baronial interpretation in C and every xp ≼ a is noble. Thus every yp = η(xp).
Hence

TV(α(y1, . . . , yr) = TVA(α(η(x1), . . . , η(xr))) = TVA(α(x1, . . . , xr)).

Case 2: xsuccb. Since a and b are matching, there is a partial isomorphism
η from A to A such that Domain(η) = X∗, η fixes the barons, η takes nobles
to nobles and η(b) = a. Set

C(v) =

{
η(A+(v)) (A+(v) ∈ (a, b],
A+(v) otherwise.

Obviously C satisfies the equalities and inequalities of K. Suppose that
α(v1, . . . , vr) is a proper literal of K that is 2-relevant to C wrt K, xq =
A+(vq) and yq = C(vq).
Subcase 1: Every xq ≼ a is noble. For every such xq there is i ≤ κ such that
xq = Par−i(a) and yq = Par−i(a), so that Troublea(α(y1, . . . , yr)) consists of
nobles. By the definition of B,

TV(α(y1, . . . , yr) = TVA(α(x1, . . . , xr)).

Subcase 2: Some plebeian xq ≼ a. Then every town variable vp has a baronial
interpretation in C and every xpsuccb is noble. Thus every yp = η(xp). Hence

TV(α(y1, . . . , yr) = TVA(α(η(x1), . . . , η(xr))) = TVA(α(x1, . . . , xr)).

⊓⊔
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Creating a Cycle. Again, assume that A is a structure, a < b are matching
nobles of A and a′ = Par(a). Suppose that the component of A that contains a
has no cycle. We define a new structureB on elements A−{x : Noble(x) > b}.
Set ParB(x) = ParA(x) unless x = b in which case set ParB(b) = a′. Let
α = P (x1, . . . , xr) be a proper atomic statement about B that is 1-relevant
to B, Trouble(α) be the set of elements xq ≺ b, and Troublea(α) be the set
of elements xqsucca

′.
If at least one of the trouble set is empty, set TVB(α) = TVA(α).
If Troubleb(α) is not empty and Troublea(α) contains only nobles, set

TVB(α) = TVA(α
′) where α′ is obtained from α by replacing Pari+1

A (a)
with Pari+1

A (b) for i < κ.
If Troublea(α) ̸= ∅ and Troubleb(α) contains only nobles, set TVB(α) =

TVA(α
′) where α′ is obtained from α by replacing Par−iA (b) with PariA(a) for

i < κ.
Otherwise set TVB(α) = undef.

Lemma 7.3.50. Let φ be a modest sentence with κ existential variables that
is satisfied in A. Then B 2-satisfies φ

Proof. Let x be an arbitrary element of B. Fix a clause K ∈ φ and and
expansion A+ of A(u/x) that satisfies K. We construct an expansion C of
B(u/x) that satisfies K. Let X = {A+(v) : v ∈ Var(Capital(K)) and Y be
the union of X and the set of barons.

If X is disjoint from {y : b ≺ Noble(y), set C(v) = A+(v) for all v ∈
Var(K); it is clear that C |= K. Suppose that X intersects {y : b ≺ Noble(y).
Then x ≺ b.

Since a and b are matching, there is a partial isomorphism η from the
restriction A|Y to A such that η fixes the barons, takes nobles to nobles and
η(b) = a. Set C(v) = η(A+(v)) if v is a capital variable and Noble(A+(v)) > b.
Otherwise set C(v) = A+(v).

Obviously C satisfies the equalities and inequalities of K. Suppose that
α = α(v1, . . . , vr) is a proper literal of K that is 2-relevant to C wrt K. Let
xq = A+(vq) and yq = C(vq).

Subcase 1: For every vq, if Noble(xq) > b then xq is noble. Thus xq ≤
b or xq > b. In the first case, yq = xq. In the second case, there is i <
κ such that xq = Pari+1

A (b) and yq = Pari+1
A (a). By the definition of B,

TVB(α(y1, . . . , yr)) = TVA(α(x1, . . . , xr) = true.
Subcase 2: Some plebeian xq > b. For every town variable vp, xp is a baron

and therefore yp = xp = η(xp). For every capital variable vp with xp ≺ b,
there is i < κ such Par−iA (b) and therefore yp = Par−iA (a) = η(xq). Thus

TVC(α(v1, . . . , vr)) = TVB(α(y1, . . . , yr)) =

TVA(α(η(x1), . . . , η(xr))) = TVA(α(x1, . . . , xr) = true.

⊓⊔
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Limiting the Number of Nobles. Recall the definitions of ρ0(Υ, κ) and
ρ1(Υ, κ) in Section 7.3.6.

Theorem 7.3.51. Every modest satisfiable sentence φ of vocabulary Υ with
κ existential quantifiers has a model with < ρ1(Υ, κ) nobles.

Proof. By Lemma 7.3.50, there exists a structure A2 that 2-satisfies φ and
has only finitely many noble elements. By the proof of Theorem 7.3.26, there
is a structure A1 that 1-satisfies φ and has exactly the same noble elements
as A2. By Theorem 7.3.20, there exists a structure A0 that satisfies φ and
has exactly the same noble elements as A1.

Let ℓ be the number of individual constants in Υ and A be a structure for
φ with the minimal number of nobles. By Lemma 7.3.49, A has no matching
noble elements. It follows that, for every prince p and every similarity class
X, p has < 2κ+2 ancestors in X. Thus, the number of nobles in A is bounded
by 2(κ+ 2)ℓρ0(Υ, κ) which is < ρ1(Υ, κ). ⊓⊔

7.3.9 Towns

Theorem 7.3.52. The clauses of a modest satisfiable sentence have no town
variables.

Proof. By contradiction suppose that a clause K of a modest satisfiable sen-
tence φ has town variables. Let Υ = Voc(φ) and κ = Card(EV(φ)). By
Theorem 7.3.51, φ has a model A where the number of nobles is bounded
by ρ1(Υ, κ). Since φ is modest, φ − {K} is unsatisfiable and therefore there
exist elements x ∈ A such that A(u/x) satisfies K̄ but does not satisfies any
L̄ with L ∈ φ− {K}; call such elements x red .

For each red x, fix an expansion Ax of A to EV(K) that 2-satisfies K.
Call red elements x, y equivalent if, for every variable v of K, both Ax(v)
and Ay(v) are plebeian or they both are noble and equal. The number of red
equivalence classes is bounded by ρ2(Υ, κ) = (ρ1(Υ, κ))

κ.
Without loss of generality, we may suppose that the expansions Ax are

chosen in such a way that if x, y are equivalent red elements then Ax and Ay
coincide on the town variables of K. It suffices to check that the expansion
A′
y of A(u/y) obtained from Ay by replacing Ay(v) with Ax(v) for all town

variables of K 2-satisfies K. But this is obvious.
Call an element y of A pseudo-noble if there exists a red element x such

that y = Ax(v) for some town variable v of K. The number of pseudo-nobles
is bounded by κρ2(Υ, κ) which is equal to ρ(Υ, κ). A pseudo-noble element
may be noble or plebeian.

Assign new constants to all non-royal pseudo-noble elements of A; let A∗

be the resulting expansion of A. If X is a red equivalence class and x ∈ X,
let KX be the result of replacing each town variable v of K with a constant
for Ax(v). Refine φ by replacing K with all clauses KX ; let φ∗ be the refined
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sentences. It is easy to see that A∗ 2-satisfies φ∗, which contradicts the mod-
esty of φ. ⊓⊔

7.3.10 The Final Reduction

In this section, we reduce the satisfiability problem for modest sentences
to the satisfiability problem for [∃∗∀∃∗, (ω), (1)]=. Of course this means also
that the finite satisfiability problem for modest sentences reduces to the finite
satisfiability problem for [∃∗∀∃∗, (ω), (1)]=. Both the satisfiability and finite
satisfiability problems for [all, (ω), (1)]= are decidable (see Sect. 7.2). This
concludes the proof of Theorem 7.3.1.

Remark. In fact, we reduce the satisfiability problem for modest sentences
to the satisfiability problem for a special subfragment of [∃∗∀∃∗, (ω), (1)]=.
Instead or referring to Sect. 7.2, one can prove directly that the satisfiability
problem for the subfragment is decidable. We will not do that here.

We will use the fact that the clauses of modest sentences have no town or
village variables (Theorems 7.3.45 and 7.3.52). In this section, the term “sen-
tence” is further restricted to mean sentences whose clauses have no town or
village variables. All variables of such a clause belong to the same component,
namely to the capital of the clause. This trivializes the distinction between
1-satisfiability and 2-satisfiability. However, the 1-satisfiability of a sentence
remains a nontrivial necessary and sufficient condition of the satisfiability of
the sentence; we will take advantage of this condition. Recall that we deal
only with vocabularies that contain constants.

Definition 7.3.53. A kingdom is a structure Q such that the vocabulary of
Q contains an initial segment of individual constants and every element of
Q is royal. If Q is a kingdom, then Mod(Q) is the class of structures A such
that the noble substructure of A is isomorphic to Q and A has no plebeian
components.

Notice that in every structure A ∈ Mod(Q), all plebeian element are
acyclic.

Definition 7.3.54. The kingdom-constraint 1-satisfiability problem for mod-
est sentences is the following decision problem:

Instance: A kingdom Q and a sentence φ such that Voc(φ) = Voc(Q).
Question: Is φ 1-satisfiable in Mod(Q)?

Lemma 7.3.55. The satisfiability problem for modest sentences reduces to
the kingdom-constraint 1-satisfiability problem for modest sentences.

Proof. By Corollary 7.3.22, the satisfiability problem for modest sentences
reduces to the 1-satisfiability problem for modest sentences. It suffices to
prove that there exists an algorithm F that, given a modest sentence φ,
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computes a collection F (φ) of kingdoms such that φ is 1-satisfiable only if
there exists Q ∈ F (φ) such that φ is 1-satisfiable in Mod(Q). The existence of
such F follows from Theorem 7.3.51. For example, F (φ) can be the collection
of all kingdoms of cardinality < ρ1(Υ, κ) where Υ = Voc(φ) and κ is the
number of existential variables in φ. One can be more parsimonious though
and take advantage of the modesty of φ. If a clause K ∈ φ contains an
equality d = Par(c) where c, d are constants then we can ignore kingdoms
where d ̸= Par(c). Indeed, every model A of φ contains an element x such
that A(u/x) satisfies K (otherwise A satisfies φ−{K} which contradicts the
modesty of φ) and thus d = Par(c) in A. ⊓⊔

Definition 7.3.56. A sentence φ of vocabulary Υ is plebeian if every clause
K ∈ φ satisfies the following conditions:

1. Either there is a constant c ∈ Υ such that K contains the equality c = u
(in which case K is royal), or else K contains the inequality c ̸= u for
every constant c ∈ Υ (in which case, K is plebeian).

2. K contains the inequality c ̸= v for every constant c ∈ Υ and every
existential variable v of K.

Corollary 7.3.57. Suppose that Q is a kingdom, A ∈ Mod(Q) and A satis-
fies a clause K of a plebeian sentence φ. Then:

– A(v) is plebeian for every existential variable of K.
– A(u) is plebeian if K is plebeian.

Lemma 7.3.58. The kingdom-constraint 1-satisfiability problem for modest
sentences reduces to the kingdom-constraint 1-satisfiability problem for ple-
beian sentences.

Proof. Let Q be a kingdom of vocabulary Υ and φ a modest sentence with
Voc(φ) = Υ . We construct a pseudo-plebeian sentence φ∗ of vocabulary Υ
that is satisfiable in Mod(Q) if and only if φ is 1-satisfiable in Mod(Q).
Call a clause K ∈ φ bad if it does not contain all constants of Υ . If φ has
no bad clauses, set φ∗ = φ. Suppose φ has bad clauses. We illustrate the
transformation of φ to the desired φ∗ on an example where φ has only one
bad clause K and there are exactly two constants c, d in Υ that do not occur
in K. The transformation is done in two stages.

First replace K with clauses

K(u/c),K(u/d),K ∪ {c ̸= u, d ̸= u}

to ensure that condition 1 is satisfied. Clearly, an arbitrary A ∈ Mod(Q)
1-satisfies φ if and only if it 1-satisfies the modified sentence φ′. Let L ranges
over the three new clauses.

Second replace each L a number of new clauses to ensure that condition
2 is satisfied. We illustrate the second stage on the example where L is the
plebeian clause K ∪ {c ̸= u, d ̸= u} with exactly two existential variables v
and w. The new classes are
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– L(v/c)(w/d), L(v/d)(w/c),
– L(v/c) ∪ {c ̸= w, d ̸= w},
– L(v/d) ∪ {c ̸= w, d ̸= w},
– L(w/c) ∪ {c ̸= v, d ̸= v},
– L(w/d) ∪ {c ̸= v, d ̸= v},
– L ∪ {c ̸= v, c ̸= w, d ̸= v, d ̸= w}.

Clearly an arbitrary A ∈ Mod(Q) 1-satisfies φ′′ if and only if it 1-satisfies the
resulting φ∗. ⊓⊔

Recall the syntactical partial algebra of a clause K defined in the para-
graph ‘Capitals, Towns and Villages’ of Sect. 7.3.3.

Definition 7.3.59. Suppose that φ is a sentence and K ranges over the
clauses of φ.

– A proper literal α ∈ K is regular in K if it satisfies the following condition.
– Let v1, v2 be arbitrary distinct variables in α. In case K is royal, suppose
additionally that v1, v2 are existential. Then v1 < v2 or v2 < v1 in the
syntactical partial algebra of K.

– Reg(K) is the result of deleting all irregular proper literals from K.
Reg(φ) = {Reg(K) : K ∈ φ}.

– φ is regular if it is plebeian and Reg(φ) = φ.

Lemma 7.3.60. The kingdom-constraint 1-satisfiability problem for plebeian
sentences reduces to the kingdom-constraint 1-satisfiability problem for regu-
lar sentences.

Proof. Let Q be a kingdom of vocabulary Υ and φ a constant-saturated
sentence with Voc(φ) = Υ . We check that if A ∈ Mod(Q) and A |=1 Reg(φ)
then A |=1 φ.

Let x ∈ B. Since A |=1 Reg(φ), there exists K ∈ φ such that some
expansion B of A(u/x) 1-satisfies Reg(K). Let α ∈ K − Reg(K) and let
v1, v2 witness the irregularity of α. Clearly elements x1 = B(v1) and x2 =
B(v2) are plebeians. Let P be the syntactical partial algebra of K. Recall
that we consider only sentences without town or village variables in this
section. Hence v1, v2 are both capitals variables and therefore are connected
in P. Let w be the youngest common ancestor of v1, v2 in P. Since v1, v2
are incomparable in P, there exists distinct children w1, w2 of w such that
v1 < w1 and v2 < w2 in P. It follows that x1, x2 are incomparable and thus
the statement α about B is 1-irrelevant to B. Hence B 1-satisfies α. ⊓⊔

Call a kingdom Q perfect if different individual constants have different
interpretations in Q.

Lemma 7.3.61. The kingdom-constraint 1-satisfiability problem for regular
plebeian sentences reduces to the perfect-kingdom-constraint 1-satisfiability
problem for regular sentences.
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Proof. Obvious. ⊓⊔

Recall that a sentence is monadic if its vocabulary contains no predicates
(or function names) of arity > 1. In the case of monadic sentences, there is
no need to distinguish between satisfiability and 1-satisfiability.

Lemma 7.3.62. The perfect-kingdom-constraint 1-satisfiability problem for
regular sentences reduces to the perfect-kingdom-constraint satisfiability prob-
lem for monadic regular sentences.

Proof. We demonstrate the proof on an example. Suppose that, in addition
to the function symbol Par and individual constants, the vocabulary Υ of
the given instance (Q, φ) of the perfect-kingdom-constraint 1-satisfiability
problem for regular sentences contains only a ternary predicate P . Let κ be
the number of existential variables in φ.

Let Υ ′ be a monadic vocabulary obtained from Υ be replacing P with
unary predicates (P, e1, e2, e3) where each ei is an individual constant of Υ or
a natural number ≤ κ and exactly one of expressions ei is 0. We illustrate the
intended meaning of the new predicates on examples. (P, c, 0, 2)(x) codes the
fact that P (c, v,Par2(v) holds and Par2(v) is plebeian. (P, 0, 3, d)(v) codes
the fact P (v,Par3(v), d) holds and Par3(v) is plebeian.

We construct an instance (Q′, φ′) of the perfect-kingdom-constraint 1-
satisfiability problem for monadic regular sentences such that the vocabulary
of (Q′, φ′) equals Υ ′. The desired φ′ is constructed by replacing the atomic
P -formulae in φ. Suppose that α = P (t1, t2, t3) is an atomic formula in a
clause K of φ.

Case 1: At least two of terms ti are constants. If t2, t3 are constants,
replace α with (P, 0, t2, t3)(t1). If t3, t1 are constants and t2 is a variable,
replace α with (P, t1, 0, t3)(t2). If t1, t2 are constants and t3 is a variable,
replace α with (P, t1, t2, 0)(t3).

Case 2: Exactly one of the terms ti is a constant. Because of symmetry,
we consider only the subcase when t1 is a constant. There exist a unique
variable v ∈ {t2, t3} and natural numbers k2, k3 ≤ κ such that t2 = Park2(v)
and t3 = Park3(v). Replace α with (P, t1, k1, k2)(v).

Case 3: None of terms ti is a constant. Since φ is plebeian, there exist a
unique variable v ∈ {t1, t2, t3} and natural numbers k1, k2, k3 such that K
implies that each ti = Parki(v). Replace α with (P, k1, k2, k3)(v).

Q′ is obtained from Q as follows: Replace every edge ±P (t1, t2, t3) with
a new edge (P (0, t2, t3)(ta). It is easy to see that φ′ is satisfied in Mod(Q′)
if and only if φ is satisfied in Mod(Q).

Indeed, suppose that A |= φ. Call an edge ±P (x1, x2, x3) of A relevant if
either x1, x2, x3 are royal or there exist a plebeian y ∈ {x1, x2, x3} and natural
numbers k1, k2, k3 ≤ κ such that each plebeian xi = Parki(y). Remove all
irrelevant edges from A. Delete irrelevant edges and replace each relevant
edge ±P (x1, x2, x3) with a new unary edge in the obvious way. For example,
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if x interprets a constant c and y = Pari(z) then the new unary edge is
(P, c, k, 0)(z). The resulting structure A′ belongs to Mod(Q′) and satisfies φ.

Conversely, suppose that a structure B ∈ Mod(Q′) satisfies φ′. There
exists a structure A ∈ Mod(Q) such that B = A′. Clearly, A satisfies φ. ⊓⊔

Lemma 7.3.63. The perfect-kingdom-constraint 1-satisfiability problem for
monadic regular sentences reduces to the satisfiability problem for the class
[all, (ω), (1)]=.

Proof. The reduction is obvious. ⊓⊔

We have proved

Theorem 7.3.64. The satisfiability problem for modest sentences reduces to
the satisfiability problem for [∃∗∀∃∗, (ω), (1)]=.

The satisfiability problem for [all, (ω), (1)]= is decidable; see Sect. 7.2 in
this connection. Theorem 7.3.1 is proved.

7.4 Historical Remarks

The early history of finite automata on infinite objects involves Church, Büchi
and Trakhtenbrot [83, 63, 512]. It culminated with Büchi’s decision procedure
for the monadic theory of the free algebra with one constant and one unary
function, in other words, the monadic theory of one successor, or S1S. Recall
that here monadic means monadic second-order. Büchi’s decision procedure
uses finite automata in an essential way. Every finite automaton gives rise to
a Σ1

1 formula, and every formula φ is reducible to such an automaton formula
which is thus a normal form for φ.

Later Shelah gave a simpler and more direct proof of the decidability of
S1S that does not use automata; see [467, 231]. But the automaton approach
has its own advantages and far-reaching generalizations. The interplay of
automata and logic has proven to be very powerful. Here we concentrate on
results relevant to our main subject.

In [430], Rabin used automata on infinite trees to prove the decidability
of the monadic theory of the infinite binary tree, in other words, the monadic
theory of two successors, or S2S. That is the famous Rabin’s Tree Theorem.
S2S is quite rich. Many interesting mathematical theories have been proved
decidable by interpreting them in S2S. We return to this subject below.

The general idea of Rabin’s proof of the Tree Theorem is simple and clear
but some lemmas are very hard. The hardest is the Complementation Lemma
for tree automata which is based on a transfinite induction on countable
ordinals ordinals (up to ω1, the first uncountable ordinal). In [433], Rackoff
gave a simpler algorithm (with a simpler correctness proof) to check whether
a given automaton accept any tree at all. He also gave a simpler construction
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of the complementation automaton. “The proof that our construction works,
however, is difficult and very similar in complexity to Rabin’s proof (. . . )
that his (more difficult) construction works”, wrote Rackoff.

The game approach was pioneered by Büchi and Landweber [68, 66].
In [67], Büchi used games to give an alternative proof of Rabin’s Comple-
mentation Theorem. His proof is still very hard and retains the induction
over countable ordinals. In the meantime, Gurevich and Harrington proved
the Forgetful Determinacy Theorem (FDT) which is of independent inter-
est and showed that it implies Rabin’s Tree Theorem rather easily [236];
our derivation of Rabin’s Tree Theorem from FDT follows [236]. Indepen-
dently, Muchnik has found an alternative game-theoretic proof of Rabin’s
Tree Theorem [400]. In [540], Alexander and Vladimir Yakhnis filled in all
the details missing in the sketchy extended abstract [236] and strengthened
Gurevich-Harrington’s results in several ways; in particular they provided ex-
plicit winning strategies for the players. Zeitman adapted their proof to the
case of graph games [546]. Our exposition follows [546] (though, for the sake
of brevity, we prove a slightly less general result sufficient for our purposes).
Several other proofs of Rabin’s Tree Theorem have been published recently,
notably [401] and [548]. For more information on automata on infinite objects,
see [507].

As we said above, many mathematical theories have been proved decid-
able by interpretation into S2S. In particular, Rabin [430] established the
decidability of the monadic theory of one unary function over a countable
domain; our exposition follows Rabin’s proof. Earlier, Ehrenfeucht [143] had
announced (without proof) that the first-order theory of one unary func-
tion is decidable. Gurevich [227] observed that Rabin’s results imply that
the satisfiability problem and the finite satisfiability problems for the class
[all, (ω), (1)]= are decidable. In 1974, Meyer [390] announced that the first-
order theory of one unary function has non-elementary complexity. This re-
sult was strengthened by Compton and Henson [89] to the particular lower
complexity bound proved in Sect. 7.2.2.

The decision problem for the Shelah class was left open in [225] where it
was conjectured that the satisfiability and finite satisfiability problems for the
Shelah class were decidable. Modulo this conjecture, the decision problem for
prefix-vocabulary classes with equality and at least one function symbol of
positive arity had been settled. Shelah found a beautiful and intricate proof of
the conjecture [468], which explains the name “Shelah class”. Unfortunately
Shelah’s paper is far too sketchy. The detailed proof above is published for
the first time. We acknowledge Shelah’s help.
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8. Other Decidable Cases

8.1 First-Order Logic with Two Variables

We denote by Lk the restriction of first-order logic to formulae of relational
vocabulary (i.e. without function symbols) that contain only the variables
x1, . . . , xk.

Logics with only a bounded number of variables are important in many
branches of mathematical logic and its applications, including finite model
theory, model checking, database query languages and knowledge represen-
tation. Of course, interesting sentences in Lk are not in prenex normal form.
Quite to the contrary, one extensively uses the possibility to re-use variables.

Example. To express that a graph G = (V,E) contains a path of length 37,
a sentence in prenex normal form needs 38 variables. By re-using variables,
the same property is expressible in L2, by a sentence of the form

∃x∃y(Exy ∧ ∃x(Eyx ∧ ∃y(Eyx ∧ · · ·) · · ·))).

The decision problem for Lk is unsolvable (even for formulae without
equality) for all k ≥ 3 since L3 extends the prefix class [∀∃∀].

We prove in this section that L2 has the finite model property, a result
due to Mortimer [396] (see the historical remarks in Sect. 8.4).

Theorem 8.1.1 (Mortimer). L2 has the finite model property. As a con-
sequence, Sat(L2) is decidable.

The bound on the model size implied by Mortimer’s proof is doubly expo-
nential. Recently Grädel, Kolaitis and Vardi [208] strengthened Mortimer’s
Theorem by proving an (essentially optimal) small model property for L2

with a single exponential bound on the model size. In addition this new
proof is much simpler than Mortimer’s proof.

The first step towards this result is a reduction to a normal form for
L2, essentially due to Scott [459]. A similar reduction appears in Mortimer’s
paper.

Lemma 8.1.2. For each sentence ψ ∈ L2 one can construct in polynomial
time a sentence φ ∈ L2 of the form
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φ := ∀x∀yα ∧
m∧
i=1

∀x∃yβi

where α and βi are quantifier-free such that

(i) φ |= ψ.
(ii) For every model A of ψ there exists a unique expansion B of A such
that B |= φ.
(iii) If n is the length of ψ, then φ contains at most n relation symbols
and has length O(n log n).

Proof. If ψ has not the required form then choose (an occurrence of) a sub-
formula of form Qyη of ψ where Q is ∃ or ∀ and η is quantifier-free. Select
a unary predicate R not contained in ψ and let ψ′ be the result of replacing
Qyη in ψ by Rx. If Qyη occurs in ψ inside the scope of a quantifier ∃x or ∀x
(which is always the case if x appears in η) then ψ′ is a sentence; otherwise
it may contain a free occurrence of x. The formula

ψ′ ∧ ∀x(Rx↔ Qyη)

satisfies the properties (i) and (ii). For Q = ∃ this formula is equivalent to

ψ′ ∧ ∀x∀y(η → Rx) ∧ ∀x∃y(Rx→ η)

and for Q = ∀, it is equivalent to

ψ′ ∧ ∀x∀y(Rx→ η) ∧ ∀x∃y(η → Rx).

Let φ be obtained by iterating this reduction step until the formula has
the desired form. If at the end, φ contains a free variable, replace it by
its universal closure. Finally, use that a conjunction of ∀∀-formulae can be
combined to a single ∀∀-formula. ⊓⊔

Note that the prenex normal form of φ is in the ∀2∃∗-class.

Recall that a k-table of vocabulary σ is a σ-structure with universe
{1, . . . , k}. Further, for any σ-structure A and distinct elements a1, . . . , ak
of A we denote by TA[a1, . . . , ak] the unique k-table B such that the function
a1 7→ 1, . . . , ak 7→ k is an isomorphism from A|{a1,...,ak} (i.e., the substructure
of A induced by a1, . . . , ak) to B.

Definition 8.1.3. An element a of A is a king if no other element realizes
the same 1-table, i.e. if TA[b] ̸= TA[a] for all b ̸= a.

By Lemma 8.1.2 we can restrict attention to L2-sentences

φ := ∀x∀yα ∧
m∧
i=1

∀x∃yβi
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where α and βi are quantifier-free. Moreover we assume that βi(x, y) |= x ̸= y,
for all i ≤ m. This is no loss of generality since the equivalence

∀x∃yη(x, y) ≡ ∀x∃y(x ̸= y ∧ (η(x, x) ∨ η(x, y)))

holds on all structures with at least two elements.
Fix such a sentence φ of vocabulary σ. Obviously we can assume that σ

consists of unary and binary predicate symbols only.

Proposition 8.1.4. Suppose that A |= φ. Let K be the set of kings in A and
P = {TA[a] : a ∈ A} the set of 1-tables realized in A. Then φ has a model
with at most (m+ 1)|K|+ 3m(|P | − |K|) = O(n2r) elements (where n = |φ|
and r is the number of predicate symbols in σ).

Proof. Since A |= ∀x∃yβi for i = 1, . . . ,m there exist Skolem functions fi :
A→ A such that A |= βi[a, fi(a)] for all a ∈ A and i = 1, . . . ,m. The court of
A is the substructure C ⊆ A induced by C := K∪{fi(k) : k ∈ K, i = 1, . . .m},
i.e. by the kings and their immediate dependents (to account for the case that
A is a republic we allow here that C = ∅). Further, let Q ⊆ P be the set of
1-tables realized by the kings.

We extend C to a model D |= φ with universe

D := C ∪ ((P −Q)× {1, . . . ,m} × {0, 1, 2}).

The construction is in four steps:

1. D is an extension of C, i.e. D|C = C.
2. We specify the 1-tables of the remaining elements: for b = (B, i, j) ∈
D − C, set TD[b] := B.

3. Fix a ‘choice function’ h : P → A assigning to every 1-table B ∈ P
an element h(B) of A with TA[h(B)] = B. To guarantee for all d ∈ D
and i = 1, . . . ,m that D |= ∃yβi[d] we provide appropriate witnesses as
follows:

a) If d is a king, this is trivial since already C |= ∃yβi[d].
b) Let d ∈ C − K be a non-royal member of the court. If fi(d) also

belongs to the court then again already C |= ∃yβi[d]. Otherwise
TA[fi(d)] = B ∈ P − Q. Let e = (B, i, 0) and set TD[d, e] :=
TA[d, fi(d)]. Thus D |= ∃yβi[d].

c) Let d = (B, j, ℓ) ∈ D − C and a = h(B). Consider the element
b = fi(a) witnessing that A |= ∃yβi[a].
If b is a king then set TD[d, b] := TA[a, b]. (Note that there arises
no conflict, since all witnesses for kings belong to the court and d is
outside the court; thus TD[d, b] has not been defined yet.)
Otherwise TA[b] = B′ ∈ P − Q. Let e = (B′, i, ℓ + 1(mod 3)) and
set TD[d, e] := TA[a, b]. Since A |= βi[a, b] it follows that D |= βi[d, e]
and hence D |= ∃yβi[d]. Note that no conflicts arise since no 2-table
TD[d, e] is defined twice (see Fig. 8.1).
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4. To complete the construction choose, for every pair of d, d′ ∈ D (with
d ̸= d′) for which TD[d, d′] is not defined yet, two distinct elements a, a′ of
A such that TA[a] = TD[d], TA[a

′] = TD[d′] and set TD[d, d′] := TA[a, a
′].
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Figure 8.1. Providing witnesses for ∀x∃yβi in D

Since σ contains only unary and binary predicates this completes the defi-
nition of D. It is easy to verify that D |= φ. Since a signature with r predicate
symbols admits 2r 1-tables the bound on the model size is established. ⊓⊔
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This gives an almost optimal upper bound for the complexity of Sat(L2).
The normal form φ associated with a given L2-sentence ψ of length n can be
constructed in polynomial time and has at most n predicate symbols. Thus
only models up to size 2O(n) need to be checked which by Lemma 6.0.4 can
be done in nondeterministic exponential time.

Corollary 8.1.5 (Grädel, Kolaitis, Vardi). Sat(L2) ∈ Ntime(2O(n)).

Note that for formulae that are already in the normal form provided
by Lemma 8.1.2, the complexity is Ntime(2O(n/ logn)) since a formula of
length n (when written with a fixed number of symbols) contains at most
O(n/ log n) distinct predicates. By Corollary 6.2.14 this bound is optimal,
even for formulae in the class [∀∀ ∧ ∀∃].

However, an L2-sentence of length n may well have Ω(n) nested quanti-
fiers, so it is not clear whether the upper bound Ntime(2O(n/ logn)) can be
achieved for arbitrary L2-sentences.

Exercise 8.1.6 (L2 with constants). Let L+
k be the extension of Lk to

formulae that may contain constant symbols. Show that the small model
property of Proposition 8.1.4 and the complexity bound of Corollary 8.1.5
also hold for L+

2 . Hint: Constants are kings. Use the same model construction
as in the proof of Proposition 8.1.4 but instead of 2-tables, define r+2-tables
TD[c1, . . . , cr, d, e] where c1, . . . , cr are the interpretations of the constant
symbols.

Note that this result cannot be extended to function symbols of positive
arity. Indeed, since [∀, (0), (2)]= and [∀2, (0, 1), (1)] are reduction classes, it
follows that even the extension of L1 by unary functions or the extension of L2

(without equality) by a single unary function are undecidable for satisfiability.
Also other rather modest extensions of L2 lead to undecidable satisfiability

problems (see Sect. 5.3, and, for a broader treatment [211]).

Remark. An interesting two-variable logic is C2, the extension of L2 by
counting quantifiers ∃≥m and ∃≤m, for arbitrary m ∈ N . Note that C2 does
not have the finite model property; indeed the sentence

∀x∃=1yExy ∧ ∀x∃≤1yEyx ∧ ∃x∀y¬Eyx,

asserts that E is the graph of an injective but not surjective function and is
thus satisfiable only over infinite domains. However it was proved by Grädel,
Otto and Rosen that the satisfiability problem for C2 is decidable [210].

Remark. In applications of logic to computer science and linguistics (related
e.g. to knowledge representation systems, automatic verification, concurrent
systems) a number of logic problems arose that are closely related to the
classical decision problem, but are not covered by the standard framework.
Indeed, many logics used in computer science applications can be seen as
(parts of) fragments of first-order logic. In many cases, however, the relevant
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fragments are not those determined by quantifier prefix and vocabulary that
were traditionally studied by logicians. Among important fragments are those
determined by the number of variables and, in fact, a number of logics used
in computer science can be embedded into L2 or C2. In particular this is the
case for propositional modal logics and for a number of knowledge representa-
tion logics (or concept logics) belonging to the so-called KL-ONE family [27].
Thus the results on decidability, upper complexity bounds and finite model
property for L2 and C2 immediately imply corresponding results for those
logics.

We note in this context that the standard propositional modal logics
do not have the full expressive power of L2 (see e.g. [21]); they also have
lower decision complexity (see [242]). Andréka, van Benthem and Németi [22]
study another interesting fragment of first-order logic, the so-called guarded
fragment. It is characterized by the restriction that quantifiers can be used
only in the form

∃ȳ(α(x̄, ȳ) ∧ φ(x̄, ȳ))
where α(x̄, ȳ) is atomic and φ(x̄, ȳ) is itself a guarded formula whose free
variables all have to occur in α. It is easy to see that propositional modal logic
can be embedded into the guarded fragment of first-order logic. Andréka, van
Benthem and Németi prove that the guarded fragment is decidable and that
it has nice model-theoretic properties. A slightly weaker result was proved in
[19].

8.2 Unification and Applications to the Decision
Problem

8.2.1 Unification

Let X be a countable set of variables and Ω a vocabulary of function symbols.
The set of Ω-terms with variables in X is denoted by T (Ω,X). A substitution
is a function π : X → T (Ω,X) such that π(x) = x for all but finitely many
x ∈ X. Since T (Ω,X) is the free Ω-algebra generated by X, a substitution
uniquely extends to a homomorphism π : T (Ω,X)→ T (ω,X); the term π(t)
is obtained by simultaneous replacement of all occurrences of variables x by
π(x).

A unifier of two terms s, t ∈ T (Ω,X) is a substitution π such that π(s) =
π(t). A substitution π is more general than a substitution τ if τ = σπ for
some substitution σ.

An instance of the unification problem is a finite list (s1, t1), . . . , (sn, tn)
of pairs of terms. A solution for such an instance is a unifier π (preferably a
most general unifier) such that π(s1) = π(t1), . . . , π(sn) = π(tn).

Representing Terms by Labeled Dag’s. Since a term may contain multi-
ple occurrences of a particular subterm, it is often more efficient to represent
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terms by labeled directed acyclic graphs (dag’s) instead of strings. A labeled
dag for T (Ω,X) is a finite directed acyclic graph G = (V,E) such that

– every node v ∈ V has a unique label ℓ(v) ∈ Ω ∪X;
– for each variable x ∈ X, there is at most one node with label x;
– if v has label f ∈ Ω, and f has arity k, then there are precisely k arcs

leaving v; they have the labels 1, . . . , k, respectively.

A root of a dag is a node of in-degree 0. The leaves are the nodes of
out-degree 0. Note that leaves are labeled by a constant or a variable.

Every node v in a dag of this form represents a term tv ∈ T (Ω,X):

– If v is a leaf, then tv := ℓ(v).
– If the label of v is a function symbol f of arity k, and the arcs labeled

1, . . . , k lead to the vertices v1, . . . , vk, then tv = ftv1 · · · tvk .

IfG is a dag with single root w we also write tG for the term tw represented
by the root of G. Note that a term, written as string of symbols, may be
exponentially longer than its dag representation. Indeed, consider the dag
G consisting of nodes v0, . . . , vn+1 labeled by a binary function symbol f , a
node vn with label x, and with two arcs labeled 1,2 from vi to vi+1 for each
i ≤ n (see Fig. 8.2). Obviously |tG| ≥ 2n.

Figure 8.2. Compact dag-representation of a term

Theorem 8.2.1. The unification problem is solvable in polynomial time.

Proof. A given finite list I of pairs of terms (s, t) is represented by a dag G
such that

– every term in I is represented by some node of G;
– distinct nodes of G represent distinct terms (i.e. the dag representation is

concise);
– for each pair (s, t) the dag contains an undirected edge, labeled with the

equality sign, that connects the nodes representing s and t.

Given the list I as a string of symbols, a corresponding dag representation
can be constructed in polynomial time.

If I contains a pair (s, t) where s and t start with a different function
symbol, then we can immediately stop and declare the terms to be non-
unifiable (clash failure). If s and t are identical terms then we can eliminate
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the pair (s, t) from I (in the dag representation this means that we eliminate
self-loops). A substitution unifies two terms s = fs1 . . . sk and t = ft1 . . . tk
if and only if it is a unifier of (s1, t1), . . . , (sk, tk). We can thus remove the
edge connecting the roots of s and t and replace it by k edges connecting the
corresponding children of them.

This process is repeated until at least one term of each pair in the list
is a variable. This takes only polynomial time and results in no significant
increase in the size of the dag representation since we just manipulate edges.

Let (x, t) be a pair in the list where x is variable and t ̸= x. We check
whether x occurs in t; if yes, then we stop and declare the list to be non-
unifiable (occur check failure). Otherwise we replace the occurrences of x
in all other terms of the list by t (i.e. we replace all arcs leading to x by
arcs leading to the root of t). By repeated application of this procedure we
either find that the list is non-unifiable or transform it into a finite col-
lection of pairs (x1, s1), . . . , (xn, sn) where x1, . . . , xn are distinct variables
and s1, . . . , sn are terms that do not contain x1, . . . , xn. The substitution
π : xi 7→ si (for i = 1, . . . , n) is a unifier of the original list. Indeed, π
obviously unifies (x1, s1), . . . , (xn, sn) and all operations performed by the
algorithm on the given list of pairs preserve the set of unifiers of the list.
Obviously the algorithm runs in polynomial time. ⊓⊔

Exercise 8.2.2. Prove that the unifier constructed in the proof of Theo-
rem 8.2.1 is in fact a most general unifier.

A dag is called simple if the only nodes with in-degree greater than 1 are
leaves. Given a term t (as a string of symbols) a simple dag representing t
can be constructed in linear time with logarithmic workspace. Conversely,
given a simple dag G with a single root, the term represented by G can also
be written out in linear time and logarithmic space.

We will show now, that the unification problem is in fact complete for
polynomial time under log-space reductions. It is therefore unlikely that the
unification problem is in NC, i.e. admits a parallel algorithm running in poly-
logarithmic time with polynomial hardware. Indeed, P-complete problems
have efficient parallel algorithms only if NC = P. It is widely conjectured
that NC is a proper subclass of P. We refer to [215, 416] for background on
P-completeness and parallel complexity.

Theorem 8.2.3 (Dwork, Kanellakis, Mitchell).The unification problem
is log-space complete for P, even for simple dags.

Proof. We reduce a variant of the circuit value problem (CVP) to the unifi-
cation problem. Here a circuit is a directed acyclic graph with four types of
nodes. Input nodes have no incoming edges and precisely one outgoing edge,
called an input edge. NAND nodes have have two incoming edges and one
outgoing edge. Branching nodes have one incoming edge and at least one out-
going edge. Finally the circuit has a unique output node with one incoming
edge and no outgoing edge. Each input edge is labeled with either 0 or 1.
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The labeling of input edges extends in the usual way to an assignment
of Boolean values to all other edges of the circuit. The circuit value problem
CVP is the problem of deciding, for a given a circuit of this form, whether the
value assigned to the output edge is one. It is well known, that this problem
is P-complete (see [215, Sect.6.2]).

Given a circuit C, we will construct a simple dag G representing two
terms t1, t2 with roots r1, r2, respectively. For every edge e of C, we include
in G two nodes a(e, 1) and b(e, 1) belonging to t1 and two nodes a(e, 2) and
b(e, 2) belonging to t2. Given nodes u, v of G we write u ∼ v to indicate that
the terms tu and tv are unifiable. The idea of the construction is to encode
the Boolean value f(e) of edge e by the possibilities to unify the terms ta(e,i)
and tb(e,j): If f(e) = 0 then a(e, 1) ∼ b(e, 2) and b(e, 1) ∼ a(e, 2); if f(e) = 1
then a(e, 1) ∼ a(e, 2) and b(e, 1) ∼ b(e, 2).

For input edges, this property is ensured by making the nodes correspond-
ing children of the roots. If e is the jth input edge and f(e) = 1, then (for
i = 1, 2) there exist arcs labeled 2j − 1 from ri to a(e, i) and arcs labeled 2j
from ri to b(e, i). If f(e) = 0 for the jth input edge e, then we twist the arcs
from r2, i.e. the arc labeled 2j−1 from r2 leads to b(e, 2) and the arc labeled
2j from r2 leads to a(e, 2).

For branching nodes and NAND nodes we add gadgets to the dag in
order to propagate the unification properties correctly. Suppose that e is an
incoming edge to a branching node with outgoing edges e1, . . . , ek. Then, for
each j = 1, . . . , k and i = 1, 2 we put arcs from a(e, i) to a(ej , i) and from
b(e, i) to b(ej , i).

For NAND nodes with incoming edges e′, e′′ and outgoing edge e we add
the subgraph shown in Fig. 8.3 (for simplicity we write a′(1) for a(e′, 1) etc.).

To complete the description of G we have to define the labeling of the
nodes by function symbols and variables. Every node with k > 0 outgoing
arcs is labeled with the k-ary function symbol fk. If e is the output edge of
G, then the nodes a(e, 1) and a(e, 2) are labeled with the constant symbol c
and the nodes b(e, 1) and b(e, 2) with a different constant d. All other leaves
are labeled by distinct variables.

It remains to show that the output edge of C has value 1 if and only
if t1 and t2 are unifiable. This follows if we can prove that the encodings
of Boolean values by unification properties is correctly propagated through
the representations of the branching nodes and NAND gates of C in G. For
branching nodes this is obvious.

For NAND-nodes the verification is split into two steps.

Claim 1. The four possible assignments of Boolean values to e′ and e′′ force
unifications among the terms represented by u′, v′, w′, u′′, v′′, w′′ as follows:

– if f(e′) = f(e′′) = 0 then u′ ∼ u′′, v′ ∼ v′′ and w′ ∼ w′′;
– if f(e′) ̸= f(e′′) then u′ ∼ v′′, v′ ∼ w′′ and w′ ∼ u′′;
– if f(e′) = f(e′′) = 1 then u′ ∼ w′′, v′ ∼ u′′, w′ ∼ v′′.
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Figure 8.3. NAND gates

Claim 2. The three possible patterns of unifications among the terms repre-
sented by u′, v′, w′, u′′, v′′, w′′ force unifications among the terms represented
by a(e, 1), b(e, 1), a(e, 2), b(e, 2) as follows:

– if u′ ∼ u′′, v′ ∼ v′′ and w′ ∼ w′′ then a(e, 1) ∼ a(e, 2) and b(e, 1) ∼ b(e, 2);
– if u′ ∼ v′′, v′ ∼ w′′ and w′ ∼ u′′ then a(e, 1) ∼ a(e, 2) and b(e, 1) ∼ b(e, 2);
– if u′ ∼ w′′, v′ ∼ u′′, w′ ∼ v′′ then a(e, 1) ∼ b(e, 2) and b(e, 1) ∼ a(e, 2).

Exercise 8.2.4. Verify these two claims.

Suppose that f(e) = 0 for the output edge e of C. If t1 and t2 were
unifiable, then the unification properties would propagate through C in such
a way to enforce that a(e, 1) ∼ b(e, 2). However, this is impossible since a(e, 1)
and a(e, 2) are labeled with different constants. On the other side, the two
roots can be unified if the output edge has value 1. ⊓⊔

Corollary 8.2.5 (Dwork, Kanellakis, Stockmeyer). Unification is P-
complete, even if both terms are represented by trees and have no common
variable, each variable appears at most twice in a term and no function symbol
has arity greater than two.

Proof. Note that the dagG constructed in the proof of Theorem 8.2.3 consists
of two trees that share only variable nodes. Let x1, . . . , xn be the variables
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appearing in both terms t1, t2. Replace the single occurrence of xj in ti by a
new variable xi,j . We force x1,j and x2,j to be equal by increasing the arity
of the roots by n, and adding new arcs labeled j from the root ri to a new
leaf labeled xi,j , for every j = 1, . . . , n, i = 1, 2. The terms transformed in
this way are unifiable if and only if the original terms are. Finally we reduce
the maximal arity to two by replacing each subterm fk(s1, . . . , sk) with a
function symbol of arity k > 2 by g(s1, g(s2, . . . , g(sk−1, sk)) · · ·) where gk is
a new binary function symbol (see Fig. 8.4). ⊓⊔

Figure 8.4. Elimination of function symbols with arity > 2

8.2.2 Herbrand Formulae.

AHerbrand formula is a first-order formula in prenex normal whose quantifier-
free part is a conjunction of atomic and negated atomic formulae.

Theorem 8.2.6. The satisfiability problem for Herbrand formulae without
equality is P-complete.

Proof. To decide whether a given Herbrand formula is satisfiable we first
transform it to Skolem normal form. We then rename variables so that no
variable occurs in more than one atom.

This preserves the propositional structure, so we obtain a sentence of the
form
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ψ := ∀x1 · · · ∀xn
∧
i

αi ∧
∧
j

¬βj

where αi and βj are atomic formulae Pt1 · · · tk that do not share variables.
Due to Theorem 2.1.12 and the equivalences

∀x̄(ψ ∧ φ) ≡ ∀xψ ∧ ∀x̄φ ≡ ∀x̄ψ ∧ ∀ȳφ[x̄/ȳ] ≡ ∀x̄∀ȳ(ψ ∧ φ[x̄/ȳ])

the sentence obtained in this way has a Herbrand model if and only if the
original sentence was satisfiable.

Clearly, ψ has a Herbrand model if and only if it does not contain two com-
plimentary literals Ps1 · · · sk and ¬Pt1 · · · tk such that (s1, t1), . . . , (sk, tk) are
unifiable. By Theorem 8.2.1 this is decidable in polynomial time.

A trivial reduction from the unification problem implies that the satisfia-
bility problem for Herbrand formulae is P-complete. Indeed, a pair of terms
(s, t) that do not share variables is unifiable if and only if the universal clo-
sure of Ps ∧ ¬Pt (for a monadic predicate P ) is unsatisfiable. ⊓⊔

Remark. For Herbrand formulae with functions and equality, satisfiability
is undecidable. As we have proved in Chap. 4.1 this applies already to the
class [∀, (0), (2)]= ∩HERBRAND of Herbrand sentences with one universally
quantified variable and two unary function symbols. In contrast, Wirsing [534]
proved that the class [all, all, (1)]= ∩ HERBRAND is decidable by reducing
it to S2S, the monadic second-order theory of the infinite binary tree (see
Chap. 7.1).

8.2.3 Positive First-Order Logic

The positive fragment of first-order logic, denoted FO+, is the set of first-
order formulae (of arbitrary vocabulary) in which the negation sign ¬ does
not appear.

Note that Sat(FO+) is trivial: every positive formula is satisfiable over a
domain with only one element. However, the validity problem is more difficult.

Theorem 8.2.7 (Kozen). The validity problem for FO+ is NP-complete.

Proof. To see that Val(FO+) ∈ NP we first show that we can restrict atten-
tion to sentences of purely functional vocabulary (i.e. without relation sym-
bols besides equality). Given a σ-structure A = (A,R1, . . . , Rs, f1, . . . , ft), let
A0 = (A,∅, . . . ,∅, f1, . . . ft) be the structure with the same universe and the
same functions as A, but where all relations are empty. We call the structures
A0 reduced.

Obviously, positive formulae are preserved under augmenting relations.
Thus, if ψ ∈ FO+ and A0 |= ψ then A |= ψ. It therefore suffices to check
whether ψ holds in all reduced structures. Let ψ0 be the formula obtained
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from ψ by substituting false for all atomic formulae Rit1 · · · tm. The vocab-
ulary of ψ0 is functional and, since ψ and ψ0 are equivalent on reduced
structures, we have that

ψ0 ∈ Val(FO+) ⇐⇒ ψ ∈ Val(FO+).

We can thus assume that ψ is built from equalities (s = t) of terms by
means of conjunction, disjunction, existential and universal quantifiers. Since
ψ is now purely functional, its Herbrand structure H is uniquely determined.

We next reduce the validity problem for FO+ to the problem of evaluating
an existential sentence in the Herbrand structure H. Indeed, ψ is valid if
and only if ¬ψ is unsatisfiable. Let ∀x1 · · · ∀xkη (with η quantifier-free) be
the Skolem normal form of ¬ψ. Note than the Skolem normal form can be
computed in polynomial time and it preserves the propositional structure.
Thus η is the negation of a positive formula and ψ is valid if and only if
∀x1 · · · ∀xkη is unsatisfiable. By Theorem 2.1.12, this is true if and only if
H |= ∃x1 · · · ∃xk¬η.

We are now in a position to reduce Val(FO+) nondeterministically to the
unification problem. We just have to eliminate disjunctions.

Suppose that the given existential formula has the form

∃x1 · · · ∃xk
n∧
i=1

mi∨
j=1

φi,j .

We nondeterministically choose in each conjunct
∨mi

j=1 φi,j one φi,j(i) among
the φi,j and consider the simplified formula

∃x1 · · · ∃xk
n∧
i=1

φi,j(i).

Clearly, the original sentence is a logical consequence of the simplified one.
Conversely, if H |= ∃x1 · · · ∃xk

∧n
i=1

∨mi

j=1 φi,j then the right choice of the
φi,j(i) yields a sentence that holds in H.

This nondeterministic reduction step is repeated until all disjunctions are
eliminated. The resulting formula has the form

∃x1 · · · ∃xk
m∧
i=1

si = ti.

Such a sentence holds in H if and only if the terms (s1, t1), . . . , (sm, tm)
are unifiable, which, by Theorem 8.2.1 can be determined in polynomial time.

This proves that Val(FO+) ∈ NP.

To see that Val(FO+) is NP-hard, we present a reduction from SAT. Given
a Boolean formula ψ in conjunctive normal form with propositional variables
X1, . . . , Xn, let
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∃0∃1∃x1 · · · ∃xnψ[Xi/(xi = 1),¬Xi/(xi = 0)]

be the existential closure of the positive first-order formula that is obtained
from ψ by replacing every positive literal Xi by the equality (xi = 1) and
every negative literal ¬Xi by (xi = 0). Clearly, this formula is valid if and
only if ψ is satisfiable. ⊓⊔

Remark.Kozen also considered the more general entailment problem whether
Σ |= ψ, where ψ ∈ FO+ and Σ is a finite set of atomic sentences and nega-
tions of atomic sentences of form t1 = t2 and Rt1 · · · tk where t1, . . . , tk are
terms without variables. Theorem 8.2.7 implies that this problem is NP-hard
even for Σ = ∅. Kozen [322] proved that it is NP-complete for arbitrary Σ.

8.3 Decidable Classes of Krom Formulae

Recall that a Krom formula is a first-order formula whose quantifier-free part
is a conjunction of Krom clauses, i.e. of subformulae (α ∨ β) where α and β
are atoms or negated atoms.

In Chap. 5.1.1 we proved that the following prefix classes of Krom sen-
tences without functions and equality are reduction classes (even when re-
stricted to Horn sentences):

– [∀∃∗∀] (Krom 1970)
– [∃∀∃∀], [∀∃2∀] (Aanderaa and Börger 1971, Orevkov 1973)
– [∀2∃∀], [∀∃∀2] (Lewis 1972)

In this section we show that the satisfiability problem is decidable for
the Aanderaa-Lewis class [∀∃∀]∩KROM and for the Maslov class [∃∗∀∗∃∗]∩
KROM.

The remaining Krom classes in pure predicate logic are [∀∃∀∃k]∩KROM
(with k > 0) and [∀∃∀∃∗] ∩ KROM. It is open whether these classes are
decidable for satisfiability.

8.3.1 The Chain Criterion

We describe a convenient graph-theoretic criterion for the unsatisfiability of
Krom formulae. We start with the propositional case.

Let Φ be a set of propositional Krom clauses (Y ∨ Z) where Y,Z are
literals, i.e. propositional variables or their negations. (To simplify notation
we always identify ¬¬X with X.)

With Φ we associate a directed graph G(Φ) whose vertices are the literals
of Φ, i.e. the propositional variables appearing in Φ and their negations. There
is an arc in G(Φ) from Y to Z if and only if some clause of Φ is equivalent
to the implication (Y → Z). (Note that a clause (Y ∨ Z) gives two arcs
(¬Y → Z) and (¬Z → Y ) and a clause consisting of a single literal Y is
equivalent to the implication ¬Y → Y ).
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Lemma 8.3.1 (Chain Criterion). A set Φ of propositional Krom clauses
is unsatisfiable if and only if there exists a variable X and a cycle in G(Φ)
that contains both X and ¬X.

Proof. We write Y
Φ→ Z if there is a path in G(Φ) from Y to Z. Let V (Φ) be

the set of propositional variables of Φ. Suppose that there exists an assign-

ment ε : V (Ψ)→ {0, 1} that makes Φ true. Clearly, if ε(Y ) = 1 and Y
Φ→ Z,

then also ε(Z) = 1. It is therefore impossible that X
Φ→ ¬X Φ→ X, i.e. there

cannot be cycle in G(ψ) containing both X and ¬X.

Conversely, suppose that there is no variable X with X
Φ→ ¬X Φ→ X. An

assignment ε that satisfies Φ can be constructed as follows.
Initially, let S be the set of all literals of Φ. Pick any literal Y ∈ S such

that not Y
Φ→ ¬Y . Set ε(Y ) = 1 and remove Y and ¬Y from S; further, for

all Z such that Y
Φ→ Z, set ε(Z) = 1 and remove Z,¬Z from S. Repeat this

procedure until S is empty.
No matter how the literals Y are chosen, there never arises a conflict,

in the sense that for some Z, both Y
Φ→ Z and Y

Φ→ ¬Z. Indeed it would

the follow that also Z
Φ→ ¬Y and ¬Z Φ→ Y and therefore Y

Φ→ ¬Y Φ→ Y ,
contradicting our assumption.

Moreover, any assignment ε constructed in this way satisfies Φ. Otherwise,
Φ would contain a clause (U ∨ V ) such that ε(U) = ε(V ) = 0. This means
that in the course of the procedure the literals ¬U,¬V have been set true.
Suppose that this happened first with ¬U . But since there is an arc ¬U → V
in G(Φ), the procedure then would have set ε(V ) = 1. ⊓⊔

Corollary 8.3.2. 2-SAT, the satisfiability problem for propositional Krom-
formulae, is in Nlogspace.

Exercise 8.3.3. Prove this corollary (use that Nlogspace is closed un-
der complementation). Further, prove that 2-SAT is in fact complete for
Nlogspace via log-space reduction.

Remark. Using more general variants of the chain criterion, Aspvall, Plass
and Tarjan [25] present a linear time algorithm for evaluating Krom sentences
of quantified propositional logic and Grädel [207] proved that this problem
is also complete for nondeterministic logarithmic space.

For future reference we make the following simple observation.

Lemma 8.3.4. Suppose that there is a cycle of G(Φ) containing X and ¬X.
Then for any literal Y on that cycle, there also exists a cycle containing Y
and ¬Y .

Proof. This is an immediate consequence of the fact that with every path
from X to Y , G(Φ) also contains a path from ¬Y to ¬X. ⊓⊔
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Although we have formulated the chain criterion for sets of propositional
Krom clauses, it is applicable also in the context of first-order Krom formulae.

Indeed, let ψ be a first-order Krom sentence and ∀x1 · · · ∀xkφ its func-
tional form. The Herbrand expansion E(ψ) of ψ is the (in general infinite)
conjunction over all formulae φ[t1, . . . , tk] obtained by substituting terms
from the Herbrand universe H of ψ for the variables.

A literal of E(ψ) is an atomic statement Pt1 · · · tk of E(ψ) or the negation
of such. In the same way as above we construct a (possibly infinite) directed
graphG(ψ) whose nodes are the literals of E(ψ) and apply the chain criterion.

Lemma 8.3.5. E(ψ) is inconsistent (and thus ψ unsatisfiable) if and only
if there is a cycle in G(ψ) containing an atomic statement and its negation.

A simple application of this proves the Pspace-completeness for the re-
striction of the Bernays-Schönfinkel class to Krom formulae.

Recall that we already proved in Sect. 2.2.4 that satisfiability of rela-
tional Krom formulae with prefix ∃2∀∗ is a Pspace-hard problem (see The-
orem 2.2.50). The chain criterion gives a corresponding upper bound.

Theorem 8.3.6. The satisfiability problem for [∃∗∀∗] ∩ KROM is Pspace-
complete.

Proof. A relational sentence of form ∃x1 . . .∃xn∀y1 · · · ∀ymφ (where φ is
quantifier-free) has Herbrand universe H = {c1, . . . , cn}. Thus the Herbrand
expansion E(ψ) is a finite propositional Krom formula

E(ψ) :=
∧
u1∈H

· · ·
∧

um∈H
φ[x1/c1, . . . , xn/cn, y1/u1, . . . , ym/um]

where we consider the atomic statements Pt1 · · · tk as propositional variables.
It thus suffices to show, that it can be checked with polynomial workspace

(with respect to the length of the original formula) whether there is a cycle
in the graph G(ψ) that contains some atom P t̄ and also its negation. Note
that G(ψ) may have exponentially many vertices. However it is not necessary
to construct ψ and G(ψ) explicitly.

Instead, we use a nondeterministic procedure to guess a literal P t̄ and an
appropriate cycle through G(ψ) containing both P t̄ and ¬P t̄; at each moment
the only data stored on the work-tape are P t̄, the current arc Rū → R′v̄ of
the cycle, and the single bit, whether ¬P t̄ has already been reached.

Suppose that the algorithm has already established that there is a path
from P t̄ to Rū. In the next step, a literal R′v̄ is guessed such that Rū→ R′v̄
is an arc of G(ψ); this is the case iff there exist a clause (¬Rz̄ ∨ R′z̄′) of φ
and a substitution taking z̄ to ū and z̄′ to v̄. Then Rū is replaced by R′v̄.
This is repeated until ¬P t̄ is reached; then proceeds in the same way to find
a path from ¬P t̄ to P t̄. If the algorithm finds a cycle, it accepts. If after 2n

iterations, no cycle has been found the algorithm rejects.
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Thus, we have described a nondeterministic algorithm requiring polyno-
mial space, which determines (un)satisfiability of φ. Since nondeterministic
algorithms can be simulated by deterministic ones with only quadratic in-
crease of space, the result follows. ⊓⊔

Exercise 8.3.7. Prove that the satisfiability problem for [∃∗∀k]∩KROM is
complete for Nlogspace, for any fixed k.

Exercise 8.3.8. [106] Prove that the satisfiability of monadic Krom sen-
tences, i.e. of the class [all, (ω)]∩KROM is decidable in polynomial time. Hint:
Let ψ be a monadic Krom sentences in prenex normal form with quantifier-
free part φ. Transform ψ to a new formula be replacing φ with φ ∧ α where
α is the conjunction of

(i) all Krom clauses that are tautological consequences of clauses of φ,
and
(ii) all Krom clauses C that can be obtained from a clause of φ by a
substitution of universally quantified variables by arbitrary variables of
φ, such that C contains either two universal variables, or an existential
variable x and a universal variable y dominated by x.

Repeat this process till a fixed point ψ′ is reached. Prove that

1. ψ is satisfiable if and only if ψ′ is.
2. ψ′ is satisfiable if and only if its quantifier-free part is propositionally

consistent.
3. The length of ψ′ is polynomially bounded with respect to the length of
ψ.

In fact, the satisfiability problem for monadic Krom sentences is complete
for P [106].

8.3.2 The Aanderaa-Lewis Class

In this section and the next one we consider the two maximal decidable
relational Krom prefix classes.

Theorem 8.3.9 (Aanderaa, Lewis). The satisfiability problem for [∀∃∀]∩
KROM is decidable.

The proof proceeds as follows. First it is shown that the Aanderaa-Lewis
class can be reduced to a subclass of sentences containing only binary atoms
with certain restrictions of the pattern of variables that occur inside the
clauses.

We then consider the chain criterion explained in the previous section.
Note that the Herbrand universe for an ∀∃∀-sentence ψ can be identified
with ω, and the Skolem function for the existential variable corresponds to
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the successor function. Thus the vertex set of G(ψ) consists of the literals
Pmn and ¬Pmn where m,n ∈ ω and P is a predicate of ψ, Given a natural
number k, we write G(ψ, k) for the subgraph of G(ψ) containing only literals
Smn with m,n ≤ k.

The proof of Theorem 8.3.9 reduces the unsatisfiability of the given ∀∃∀-
Krom sentence ψ to arithmetic considerations on linear Diophantine equa-
tions. This will imply that in fact the chain criterion for a small subgraph
G(ψ, k) of G(ψ), with k polynomially bounded in |ψ|, is necessary and suffi-
cient for the unsatisfiability of ψ.

In fact these considerations will imply that Sat([∀∃∀]∩KROM) is complete
for Nlogspace.

Exercise 8.3.10. Show that the satisfiability problem for ∀∃∀-Krom sen-
tences is log-space reducible to that for ∀∃∀-Krom sentences with binary
predicates only. Hint: ∀∃∀-sentences have only two independent variables.
For details, see [133].

Definition 8.3.11. A signed predicate is a predicate symbol either alone or
preceded by a negation sign. The functional form of an ∀∃∀-Krom sentence
is ∀x∀yφ(x, x′, y). The clauses of φ have the form (Suv ∨ S′wz) where S, S′

are signed predicates and u, v, w, z ∈ {x, x′y}. A clause is monadic if it is of
form (Sxx ∨ S′xx) and it is elementary it is of one of the forms

(Sxy ∨ Sxy), (Syx ∨ S′yx), (Sxy ∨ S′x′y), (Syx ∨ S′yx′).

Exercise 8.3.12. Show that the satisfiability problem for binary ∀∃∀-Krom
sentences is log-space reducible to that for binary ∀∃∀-Krom sentences with
monadic and elementary clauses only [133, pp. 235–237].

In the sequel we assume that ψ := ∀x∃u∀yφ is an ∀∃∀-Krom sentence
with only binary predicates and only monadic and elementary clauses. By
the chain criterion, ψ is unsatisfiable if and only if there exists a predicate
P and numbers m,n ∈ ω such that both Pmn and ¬Pmn lie on a cycle of
G(ψ). We show next that we can in fact assume m = n.

Indeed, let C be the cycle containing Pmn and ¬Pmn. If C contains a
literal Srr (for some signed predicate S and r ∈ ω) then by Lemma 8.3.4 both
Srr and its negation lie on a cycle of G(ψ). Otherwise ψ remains unsatisfiable
even if we omit all its monadic clauses.

An elementary chain is a path in G(ψ) defined by elementary clauses only.
Clearly, if G(ψ) contains an elementary chain from Sij to S′kℓ then it also
contains elementary chains from S i+ p j + q to S k+ p ℓ+ q, for all natural
numbers p, q.

Let p = max(m,n) −m, q = max(m,n) − n and r = m + p = n + q =
max(m,n). Given that G(ψ) contains elementary chains from Pmn to ¬Pmn
and back, it follows that both Prr and ¬Prr lie on an elementary cycle of
G(ψ). We have proved:
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Lemma 8.3.13. ψ is unsatisfiable if and only there exists an atomic state-
ment Prr such that both Prr and ¬Prr lie on a cycle of G(ψ).

We now show how this problem is related to a problem on linear Dio-
phantine equations. In the sequel Γ is the set of signed predicates of ψ and
S, S′ always stand for signed predicates.

Definition 8.3.14. A chain from S to S′ is a path in G(ψ) from a literal
Smn to a literal S′pq. The yield Y (C) of a chain from Smn to S′pq is the
pair (p− n, q −m) ∈ Z× Z.

Let E be the set of elementary chains in G(ψ) and let K be the set of
chains that begin and end with monadic atomic statements. Obviously chains
in K can be decomposed into subchains that are either elementary or consist
of a single arc coming from a monadic clause.

For any S, S′ ∈ Γ let Ξ(S, S′) ⊆ Z× Z be the set of yields of elementary
chains from S to S′. Further, let Θ(S, S′) be the set of yields (p, p) of chains
in K from S to S′.

We thus have the following modified criterion for the unsatisfiability of ψ.

Lemma 8.3.15. ψ is unsatisfiable if and only there exists a predicate P such
that

(0, 0) ∈ Θ(P,¬P ) ∩Θ(¬P, P ).

Semilinear Sets. Consider equations of the form a · x = b where a ∈ Zn,
b ∈ Z and u · v :=

∑n
i=1 uivi. We are interested in solutions over the natural

numbers, i.e. in v ∈ Nn such that a · v = b. Such a solution v is minimal if
v ̸= 0 and there is no solution u ̸= v such that ui ≤ vi for all i ≤ n.

Lemma 8.3.16. If max(|a1|, . . . , |an|, |b|) ≤ c and v is a minimal solution
of a · x = b, then max(v1, . . . , vn) ≤ nc2.

Proof. Clearly vi = 0 if ai = 0. Thus we can eliminate these components and
assume that ai ̸= 0 for all i. If all vi < c then we are done. Otherwise, we
can assume that vi ≥ c for i = 1, . . . , k and vi < c for i = k+1, . . . , n (where
k ≥ 1).

Suppose that among a1, . . . , ak there are both positive and negative com-
ponents, e.g. a1 > 0 and a2 < 0. Then u = v+(a2,−a1, 0, . . . , 0) is a smaller
solution of the equation than v which contradicts the minimality of v. Hence
a1, . . . , ak are all positive or all negative. It follows that

|
k∑
i=1

aivi| = |b−
n∑

i=k+1

aivi| ≤ nc2

and therefore vi ≤ nc2 for all i. ⊓⊔
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Definition 8.3.17. For u ∈ Zn and a finite set V ⊂ Zn, let

L(u, V ) := {u+ v1 + · · ·+ vm : m ∈ N,vi ∈ V }.

A semilinear set is a subset of Zn that can be written as a finite union
of sets of form L(u, V ). A presentation of an element of a semilinear set is a
decomposition as a sum of u and vi and the size of the presentation is the
number of summands in the decomposition.

Exercise 8.3.18. Let U, V ⊆ Nn be the sets of minimal solutions of, respec-
tively, a · x = b and a · x = 0. Prove that the set of all solutions of a · x = b
is the semilinear set

∪
u∈U L(u, V ).

Let s = |Γ | denote the number of signed predicates in ψ.
Note that Ξ(S, S′) and Θ(S, S′) can be seen as functions F that associate

with every sentence ψ (on the special form considered here) a set F (ψ) ⊆
Z× Z, We call such functions F tractable if there exist polynomials p and q
such that for all ψ

(i) F (ψ) is semilinear and admits a presentation in which every integer
has magnitude bounded by p(s).
(ii) Any element of F (ψ) which has a presentation of size N is the yield
of some chain in G(ψ,Nq(s)).

We will show that Ξ(S, S′) and Θ(S, S′) are tractable for all S, S′ ∈ Γ ,
and that the polynomial bounds p and q are independent of S and S′.

An (S, S′)-word is a word W ∈ Γ ∗ that begins with S and ends with S′.
Suppose that for all signed predicates S, S′ ∈ Γ , we have a set X(S, S′) ∈
Z× Z. For each sequence W = S0 · · ·Sn ∈ Γ ∗, let

ΣX(W ) := {u0 + · · ·+ un−1 : ui ∈ X(Si, Si+1)}.

We will use the following simple combinatorial fact on sets ΣX(W ).

Lemma 8.3.19. For all S, S′ ∈ Γ and w ∈ Z × Z there exists an (S, S′)-
word W with w ∈ ΣX(W ) if and only if there words U,Z1, . . . , Zn ∈ Γ ∗ such
that

(i) U is an (S′S′)-word.
(ii) Zi is an (Si, Si)− word for some Si occurring in U .
(iii) Each of U,Z1, . . . , Zn has length ≤ s2 + 1.
(iv) w = u+

∑n
i=1 zi where u ∈ ΣX(U) and zi ∈ ΣX(Zi).

Exercise 8.3.20. Prove this Lemma. Hint: In one direction, apply the pi-
geonhole principle to excise sequences Z1, . . . , Zn from the given sequence W
until it is short. In the other direction construct W by interpolating Zi at an
occurrence of Si in U (see [133, pp. 238–239]).
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We will apply Lemma 8.3.19 for several different definitions of X(S, S′).
First, let E(S, S′) ∈ Z×Z be the set of pairs (p, q) such that for all m,n ≥ 1,
the implication (Smn→ S′m+p n+ q) is equivalent to an instance of an ele-
mentary clause of ψ. Clearly E(S, S′) ⊆ {(0, 0), (0, 1), (1, 0), (0,−1), (−1, 0)}.

Lemma 8.3.21. For all S, S′ ∈ Γ , Ξ(S, S′) is semilinear. In fact Ξ(S, S′)
is the union of sets L(u, V ) where every integer occurring in u or an element
of S has absolute value bounded by s2. Thus, Ξ(S, S′) is tractable.

Proof. If W is an (S, S′)-word of length k such that (p, q) ∈ ΣE(S, S′) then
there are elementary chains in G(ψ) from Smn to S′m + p n + q for all
m,n ≥ k − 1. Conversely, the yield of any elementary chain from S to S′

clearly belongs to ΣE(W ) for some W . Thus Ξ(S, S′) is the union over all
sets ΣE(W ) for (S, S′)-words W . By the previous Lemma, each ΣE(W ) can
be represented as

L(u, ΣE(Z1) ∪ · · · ∪ΣE(Zn))
where u ∈ ΣE(U) for some (S, S′)-word U of length ≤ s2 + 1 and where
{Z1, . . . , Zn} is the set of all words in Γ ∗ that and have length ≤ s2 + 1 and
begin and end with the same symbol (which must occur also in U).

Finally, note that for words W of length m, ΣE(W ) contains only pairs
(p, q) with |p|, |q| ≤ m− 1. ⊓⊔

The diagonal of a set V ∈ Z× Z is D(V ) := V ∩ {(m,m) : m ∈ Z}.

Lemma 8.3.22. For all S, S′, D(Ξ(S, S′)) is tractable.

Proof. Let a ∈ Z × Z, B = {b1, . . . , bm} ⊆ Z × Z, and let (p, p) be in the
diagonal of L(a, B). Thus, there exists x = (x1, . . . xm) ∈ Nm such that

p = a1 +

m∑
i=1

bi1xi = a2 +

m∑
i=1

bi2wi

i.e., w is a solution of

(∗)
m∑
i=1

(bi1 − bi2)xi = a2 − a1.

As noted in Exercise 8.3.18 this implies that w ∈ L(u, V ) where u is a
minimal solution of (∗) and V is the set of minimal solutions for the associated
homogeneous equation. Let V = {v1, . . . ,vn} and w = u+

∑n
j=1 ejvj where

e1, . . . , en ≥ 0. Thus

p = a1 +
∑m
i=1(ui +

∑n
j=1ejvji)bi1 = a1 +

∑m
i=1uibi1 +

∑n
j=1ej

∑m
i=1vjibi1.

Thus D(L(a, B)) is semilinear: For can be written as the union, taken
over all minimal solutions u of (*), of the sets of pairs (p, p) where

p ∈ L(a1 +
∑m
i=1uibi1, {

∑m
i=1vjibi1 : j = 1, . . . , k}).
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Taking the union of this expression over all pairs (a, B) in a presentation
of Ξ(S, S′) we obtain a presentation for D(Ξ(S, S′). The numbers in the
presentation of Ξ(S, S′) are bounded in magnitude by s2, so m < (2s2 + 1)2

and with Lemma 8.3.16 it follows that the absolute values of the components
of u and vi are bounded by (2s2 +1)2s4. Applying Lemma 8.3.16 once more
we infer that all integers in the presentation of D(Ξ(S, S′)) are polynomially
bounded in s. Finally, suppose that we have a presentation of size N of
(p, p) ∈ D(Ξ(S, S′)). Thus

p = a1 +
∑
i = 1muibi1 +

∑N
j=1

∑m
i=1vjibi1.

This is a sum of a1 and the bi1 with at most mmax{ui} + Nmmax{vji}N
terms. Thus, we obtain a presentation of (p, p) as a member of Ξ(S, S′) of
size bounded by N times a polynomial in s. Thus, since Ξ(S, S′) is tractable,
so is its diagonal. ⊓⊔

Let Y (S, S′) = Ξ(S, S′) ∪ {(0, 0)} if some clause of ψ is equivalent
to (Sxx → S′xx) and Y (S, S′) = Ξ(S, S′) otherwise. Clearly, Y (S, S′) is
tractable.

If (p, p) ∈ Y (S, S′) then for all sufficiently large m, there exist chains in
K from Smm to S′m + p m + p; either the chain is elementary or p = 0
and the chain consist of a single arc from Smm to S′mm. Hence, for all
(S, S′)-words W such that (p, p) ∈ ΣY (W ) there are chains in G(ψ) from
Smm to S′m+p m+p for all large enough m. On the other side every chain
from Smm to S′m + p m + p can be decomposed into subchains that are
either elementary or consist of a single arc coming from a monadic clause.
Thus for every (p, p) ∈ Θ(S, S′) there exists an (S, S′)-word W such that
(p, p) ∈ ΣY (W ).

Hence Θ(S, S′) is the union of the sets ΣY (W ) for (S, S′)-wordsW . Again
we apply Lemma 8.3.19 to decompose W into words of length ≤ s2 + 1.

Lemma 8.3.23. Θ(S, S′) is tractable, for all S, S′ ∈ Γ .

Proof. Let W = S1 · · ·Sk ∈ Γ ∗, with k ≤ s2 + 1 and let each set Y (Si, Si+1)
be presented as in the previous lemma. Then ΣY (W ) is the union of all sets
L(u1+· · ·+uk−1, V1∪· · ·∪Vk−1) such that (ui, Vi) is in the given presentation
of Y (Si, Si+1). Clearly, ΣY (W ) is tractable. Let q be the polynomial such
that, for all such W , every element of ΣY (W ) with a presentation of size N
is the yield of some chain in G(ψ,Nq(s)) and let q′(s) bound the numbers in
the presentation of ΣY (W ).

For any word U ∈ Γ ∗ of length ≤ s2 + 1, let SU be the set of a0 + a1 +
· · ·+ am where m ≥ 0, a0 ∈ ΣY (U) and ai ∈ ΣY (Zi) for some word Zi ∈ Γ
of length ≤ s2 + 1 that begins and ends with si for some Si occurring in U .
By Lemma 8.3.19 and the arguments given above, Θ(S, S′) is the union of
of the sets SU taken over all words U ∈ Γ that have length ≤ s2 + 1, begin
with S and end with S′. For such a SU , a presentation is given by the union
of the sets
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L(b0 + b1 + · · ·+ br, V0 ∪ V1 ∪ · · · ∪ Vr ∪ {b1, . . . , br})

where (b0, V0) is in the presentation of ΣY (U) and, for each i, (bi, Vi) is in
the presentation of ΣY (Zi) for some word of length ≤ s2 +1 that begins and
ends with the same symbol of U ; moreover we can assume that all (bi, Vi)
are distinct (since we have included the set {b1, . . . , br} with the union of the
Vi).

To find a bound on r, note that each bi and each element of Vi is bounded
in magnitude by q′(s). The union of all the Vi has therefore at most 2q′(s)+1
elements. If r > q′(s)(2q′(s)+1) then there is a j such that Vj ⊆

∪
i ̸=j Vi and

bj = bi for some i ̸= j so we can simplify the given expression. It follows that
r can be bounded by a polynomial q′′(s) and therefore also the magnitude of
b0 + b1 + · · ·+ br is polynomially bounded in s.

The tractability of Θ(S, S′) now follows easily. ⊓⊔

We can now summarize the proof of Theorem 8.3.9 and, in fact, determine
precisely the complexity of Sat([∀∃∀] ∩KROM).

Given an ∀∃∀-Krom sentence we first reduce it (using only logarithmic
work space) to an ∀∃∀-Krom sentence ψ with only binary predicates and
only monadic and elementary clauses. By Lemma 8.3.15 ψ is unsatisfiable if
and only there exists a predicate P such that

(0, 0) ∈ Θ(P,¬P ) ∩Θ(¬P, P ).

Since the sets Θ(P,¬P ) and Θ(¬P, P ) are tractable, the chain criterion
for unsatisfiability need to be applied only to G(ψ, p(s)) where p is a poly-
nomial and s is the number of signed predicates of ψ. This can be done with
nondeterministic logarithmic space.

Clearly the problem is also hard for Nlogspace (since already the satis-
fiability problem for propositional Krom formulae is).

Corollary 8.3.24 (Denenberg, Lewis).The satisfiability problem for ∀∃∀-
Krom sentences is complete for Nlogspace.

Exercise 8.3.25. [41] Show that [∀∗, (ω, ω)] ∩ KROM is decidable by an
effective reduction to the Aanderaa-Lewis class.

Exercise 8.3.26. [42] Show that [∀∗, (ω, ω), (1)]∩KROM is decidable. Hint:
Use the preceding exercise.

Exercise 8.3.27. [133] Show that [∀∗, (ω, ω), (1)]= ∩ KROM is decidable.
Hint: For any formula ψ in the latter class, let ψ′ be the result of replacing
equality with a new predicate letter I and conjoining to the quantifier-free
part the formula

Ixx ∧ Pxfx ∧Qfxx ∧ (Qxy → Qfx y) ∧ (Pfx y → Pxy) ∧
∧(Qxy → ¬Ixy) ∧ (Pxy → ¬Ixy)
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where P and Q are new dyadic predicate letters, f is the function sign, and
x and y are universally quantified variables.

Now we have: ψ is satisfiable iff (1) ψ has a finite model, or (2) ψ has a
model over the natural numbers, with f interpreted as the successor function.
But (2) holds iff ψ′ is satisfiable. Hence the set of sentences ψ for which (2)
holds is recursive, hence the set of satisfiable ψ is r.e., hence the class is
decidable.

8.3.3 The Maslov Class

The Maslov class is the class of ∃∗∀∗∃∗-Krom sentences in pure predicate
logic. Its satisfiability problem was proved to be decidable by Maslov [378]
using his ‘inverse method’. We present here a different decidability proof due
to Fermüller [160] based on the resolution method (see [286, 439]).

We first recall some basic definitions and facts on resolution. Here, a clause
is a set of literals, i.e. atomic formulae and negations of atomic formulae. It is
read as the disjunction over its elements. Given a clause C and a substitution
π we write Cπ for the clause obtained by applying the substitution π to all
variables appearing in C.

A clause set is read as the universal closure of the conjunction over all its
elements. Thus, every clause set corresponds to a formula ψ = ∀y1 · · · ∀yrφ
where φ is a conjunction of clauses and every formula of this form gives rise
to a clause set S.

Definition 8.3.28 (Resolution). Let C,D and E be clauses. E is an R-
resolvent – or Robinson-resolvent — of C and D if

(i) There exist substitutions σ, τ such that Cσ and Dτ have no common
variables.
(ii) There exist A ⊆ Cσ and B ⊆ Dτ such that (A ∪ B) can be unified.
Here A denotes the set of complementary literals to the literals in A. Let
θ be the most general unifier of (A ∪B).
(iii) E = ((Cσ −A) ∪ (Dτ −B))θ.

We write R(S) for the set of R-resolvents of S. It is well-known that
R-resolution is complete, i.e. a clause set S is unsatisfiable if and only if the
empty clause can be derived from S by R-resolution.

An important tool to prove the completeness of certain resolution strate-
gies is the concept of semantic trees.

Definition 8.3.29. A semantic tree based on a set K of atoms is a binary
tree whose edges are labeled by the atoms of K and their negations in the
following way. Fix an enumeration α0, α1, . . . of K. The two edges leaving
the root are labeled α0,¬α0; if αi labels the edges entering a node, then αi+1

and ¬αi+1 label the outgoing edges from that node.
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For any clause set S the Herbrand base of S is the set of all atomic state-
ments Pt1 · · · tr where P is a predicate symbol occurring in S and t1, . . . , tr
are elements of the Herbrand universe of S. Let now T be a semantic tree
that is based on a subset of the Herbrand base of S.

A clause C ∈ S fails at a node v of T if there exists a ground instance
C[t1, . . . , tr] of C such that the complement of every literal in C[t1, . . . , tr]
appears as a label on the path from the root to v. A node v is a failure node
for S if there exists a clause of S that fails at v and no clause of S fails at
a node u < v (i.e. at a node u that precedes v on the path from the root to
v). A node whose two successors are both failure nodes is called an inference
node. We say that T is closed for S if every branch of T contains a failure
node.

The following fact is a simple consequence of Herbrand’s Theorem.

Lemma 8.3.30. If S is unsatisfiable, then there exists a finite subset K of
the Herbrand base of S such that every semantic tree based on K is closed
for S.

Exercise 8.3.31. Derive Lemma 8.3.30 from Herbrand’s Theorem.

A resolution strategy F is a mapping that assigns to any clause set S a
set F (S) ⊇ S of Robinson-resolvents of clauses in S or, as in the case of
M -resolution (to be introduced below), a set of instances of R-resolvents of
S.

Definition 8.3.32. A resolution strategy F is complete with respect to se-
mantic trees for a class C of clause sets if for every unsatisfiable S ∈ C there
exists a semantic tree T which is based on a finite subset of the Herbrand
base for S such that a) T is closed for S, and b) for any two clauses C,D
of S that fail immediately below, but not at, an inference node v of T there
exists a resolvent E ∈ F (S) of C and D such that E fails at v.

Lemma 8.3.33. Let F be a resolution strategy which is complete via seman-
tic trees for some class C of clause sets. Then F is a complete refutation
calculus for C, i.e. allows to derive the empty clause from every unsatisfiable
clause set S ∈ C.

Proof. Let S ∈ C be unsatisfiable and T be a finite semantic tree satisfying
the conditions of Definition 8.3.32. Since S ⊆ F (S), T is closed for F (S) and
any failure node for S is either a failure node for F (S) or some predecessor
of this node is a failure node for F (S). Either the empty clause belongs to S
(and then nothing must be proved) or there exists at least one inference node
v for S in T (otherwise we could find a branch of T without a failure node,
which is impossible since T is closed for S). Let E ∈ F (S) be the resolvent
of the two clauses that fail at the successor nodes of v. Clearly, E makes
v a failure node for F (S). This means that T contains strictly less failure
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nodes for F (S) than for S. Thus every application of the resolution strategy
F strictly reduces the number of failure nodes until we reach a set containing
the empty clause. ⊓⊔

Exercise 8.3.34. Prove that R-resolution is complete with respect to se-
mantic trees for all C.

We now introduce a special resolution strategy, calledM -resolution, which
will establish the decidability of the Maslov class.

We recall some basic definitions. The depth of a term is defined as usual:
variables and constants have depth 0 and the depth of ft1 · · · tr is the max-
imum of the depths of its arguments t1, . . . , tr increased by one. The depth
of a formula or of a clause is the maximal depth of the terms occurring in it.
A term, clause or formula is called functional if it has depth > 0.

Definition 8.3.35. Two functional terms fs1 · · · sk and gt1 · · · tk are con-
gruent if (t1, . . . , tk) is a permutation of (s1, . . . , sk). A clause C is uniform
if either C is function-free or there exists a functional argument t of some
literal of C such that each argument of any literal of C is either a constant,
an argument of t, or congruent to t.

Consider a formula ψ := ∃x1 · · · ∃xp∀y1 · · · ∀yq∃z1 · · · ∃zrφ in the Maslov
class. Its functional form is ∀ȳφ′ where φ′ is obtained from φ by substitut-
ing constants c1, . . . , cp for x1, . . . , xp and Skolem functions f1ȳ, . . . , frȳ for
z1, . . . , zr. The set S(φ′) of Krom clauses of φ′ satisfies the following condi-
tions:

(i) All terms have depth ≤ 1 (i.e. there is no nesting of function symbols).
(ii) Every clause is uniform.

Let M be the set of Krom clauses satisfying (i) and (ii).

Definition 8.3.36 (M-Resolution). The set RM (S) of M -resolvents of a
clause set S ⊆ M is the the set of all clauses Eπ ∈ M , where E is an R-
resolvent of clauses in S and π is a substitution (based on the functions and
variables of S).

Lemma 8.3.37. For every S ⊆M there exists a semantic tree T for S such
that any two clauses which fail immediately below an inference node v of T
yield an M -resolvent that fails at v.

Proof. Given a clause set S, let α0, α1, . . . be an enumeration of the Herbrand
base such that deeper atoms succeed less deep ones and within atoms of the
same depth uniform atoms precede those that are not uniform.

Let C,D ∈ S be two clauses that fail immediately below an inference node
v of the semantic tree T defined by this enumeration. By the completeness
of R-resolution with respect to semantic trees there exists an R-resolvent E
of C and D which fails at v. We show there also exists an M -resolvent Eπ of
C and D that fails at v.
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We distinguish three cases:

1. If E is function-free then E is itself an M -resolvent.
2. Suppose that E has depth 1. Since C,D ∈ M there exists a functional

term t such that all functional terms of E, are congruent to t. If E is
uniform, then E ∈ M and we are done. Otherwise E contains variables
that do not occur in t. Since E fails at v there exists an instance Eσ of
E such that all literals in Eσ appear as labels on the path from the root
to v. Note that, due to the chosen enumeration of the Herbrand base,
Eσ is uniform on σ(t). Let y be any variable of E that does not appear
in t; y can only occur as the argument of a predicate symbol Therefore
either σ(y) is a constant, or σ(y) = σ(s) where s is an argument of t,
or σ(y) = σ(t). We define a substitution π as follows: For every variable
y that occurs in E but not in t, let π(y) := σ(y) if σ(y) is a constant
and π(y) := s if σ(y) = σ(s) where s = t or s is an argument of t. For
all other variables z, let π(z) := z. Obviously, Eπ is uniform on t and
therefore Eπ ∈ M . But we also have that (Eπ)σ = Eσ, so Eπ indeed
fails at v.

3. Otherwise C and D have smaller depth than E. But this is impossible:
If θ is a most general unifier of two uniform functional atoms of depth
1, then no θ(x) is a functional term. Therefore, the greater depth of the
resolvent could arise only if there is some function-free atom α resolved
upon and there is a functional atom β, not being resolved upon, in the
same clause as α. By uniformity, β contains all variables of α. Since β has
greater depth than α, it follows that βθ has greater depth than αθ, for
all substitutions θ. In particular this holds for θ being the most general
unifier used to generate E. Note that αθ is the resolved atom. Let now σ
be the substitution such that all literals in Eσ appear on the path from
the root to v. It then follows that Eσ has greater depth than αθσ.
But the enumeration of the atoms underlying the semantic tree has been
chosen in such a way that the depths of the atoms on the path to v do not
exceed the depth of the resolved atom, whence we have a contradiction.

⊓⊔

By Lemma 8.3.33 and 8.3.37, it follows that M -resolution is complete for
clause sets in M . For a given finite vocabulary of constants, predicate and
function symbols the set of clauses in M is finite.

Theorem 8.3.38 (Maslov). Sat([∃∗∀∗∃∗] ∩KROM) is decidable.

In fact, since the number of clauses in M (up to renaming of variables)
is exponentially bounded in the size of the underlying vocabulary, it follows
that the satisfiability problem for the Maslov class is solvable in deterministic
exponential time, a result that was first proved by Denenberg and Lewis [106]
based on another resolution-based decidability proof for the Maslov class due
to Joyner [286]. They also a established a matching lower bound.
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Theorem 8.3.39 (Denenberg, Lewis). The satisfiability problem for the
Maslov class is complete for Dtime(2O(n)) via log-lin reductions.

8.4 Historical Remarks

The finite model property of L2 was established by Mortimer [396]. An im-
mediate consequence of this is the decidability of Sat(L2) a result that is
sometimes attributed to Scott [459]. However, what Scott actually proved
is that L2-sentences can be effectively transformed into prenex sentences in
the ∀2∃∗-class such that satisfiability is preserved. At that time it had not
been detected yet that, contrary to Gödel’s claim [188, p. 326], his decidabil-
ity proof for the ∀2∃∗-class can not be extended to formulae with equality
(see Chapter 4). Thus, Scott’s reduction appeared to give a proof for the
decidability of Sat(L2), but in fact, it applies only to L2-sentences without
equality.

Mortimer’s proof for the finite model property of L2 is much more com-
plicated than the one presented here which is due to Grädel, Kolaitis and
Vardi [208]; moreover the bound on the model size that can be derived from
Mortimer’s proof is doubly exponential, whereas the new proof gives a single
exponential bound. One of the reasons for this improvement and simplifica-
tion is that the new proof exploits the full power of the normal form for L2

given by Lemma 8.1.2 whereas Mortimer only makes use of the weaker fact
that L2 can be reduced to sentences with quantifier rank 2. The correspond-
ing lower bound for L2 is an immediate consequence of a result by Fürer
[177].

The first unification algorithm was published by Herbrand [253]; he in-
troduced three properties of first-order formulae, called A, B and C. While
properties B and C are the basis for the celebrated Herbrand Theorem, the
concept A was more or less forgotten. Herbrand described a unification al-
gorithm which forms part of the test whether a formula satisfies property
A.

In his seminal paper on the resolution method J. Robinson [439] presents
a unification algorithm and proves that this algorithm computes a most gen-
eral unifier. This basic unification algorithm was later rediscovered by Knuth.
In its naive form, Robinson’s unification algorithm is of exponential time and
space complexity. Later Robinson proposed a more succinct representation
of terms which improved the space complexity of his algorithm, but the time
complexity remained exponential. The first published polynomial-time unifi-
cation algorithm is due to Venturini-Zilli [524]; her algorithm has quadratic
time complexity. The asymptotically best unification algorithm known to-
day is the linear time algorithm by Paterson and Wegman [417]. The P-
completeness of the unification problem was proved by Dwork, Mitchell and
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Kanellakis [137]. For a number of special cases that can be solved efficiently
in parallel, we refer to the paper by Dwork, Kanellakis and Stockmeyer [138]
from where we have taken the proof of Theorem 8.2.3. For more information
on unification theory we refer to the survey [28] by Baader and Siekmann.

The observation that the P-completeness of unification implies the P-
completeness of the satisfiability problem for Herbrand formulae was made
by Denenberg and Lewis [106]. The results of Sect. 8.2.3 on positive first-order
logic are taken from Kozen’s paper [322].

The properties of Krom formulae were studied by Krom [329, 330, 331,
333]. The chain criterion for unsatisfiability of Krom sentences was proved
in [331]. More general variants, applying to quantified propositional Krom
formulae, were formulated by Aspvall, Plass and Tarjan [25] and by Grädel
[207].

The decidability of the Aanderaa-Lewis class [∀∃∀]∩KROM was proved in
[2, 12]. The proof presented here is taken from [106] and [133]. At roughly the
same time as Robinson [439] introduced the resolution method, Maslov [378]
proposed a related technique, the so-called ‘inverse method’ for establishing
deducibility in first-order logic. Using the inverse method Maslov proved that
the satisfiability problem for ∃∗∀∗∃∗-Krom sentences is decidable. In a later
paper [381], Maslov proved the decidability of his class K which generalizes
a number of known decidable classes in pure predicate logic, such as the
monadic class and the Gödel-Kalmàr Schütte class. We refer to [544] for a
modern exposition on the inverse method and the class K. Aanderaa and
Goldfarb [10] proved that the Maslov class has the finite model property.
The decidability proof presented here is due to Fermüller [160] (see also [163,
286] for more background and applications of the resolution method to the
decision problem). The complexity results for decidable Krom classes are due
to Denenberg and Lewis [105, 106, 107] For further remarks on Krom classes,
in particular concerning undecidability results, we refer to Sect. 5.5.
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A. Appendix: Tiling Problems

Cyril Allauzen1 and Bruno Durand2

A.1 Introduction

In this appendix, we prove the undecidability of the following problems:

– the origin constrained domino problem (Wang in [531]): given a set of tiles
and a tile as input, ask whether it is possible to form a tiling of the plane
which contains the given tile;

– the unconstrained domino problem (Berger’s Theorem in [33]): the input
is a tile set and the question is whether one can tile the plane with it;

– the periodic domino problem (Berger and Gurevich-Koryakov in [237]): the
input is also a tile set, but the question is whether it can be used to form
a periodic tiling of the plane.

The last construction provides a direct proof of the recursive inseparability
result of Berger and Gurevich-Koryakov (Theorem 3.1.7 in this book and
reference [237]). Its intuitive meaning is that it is not possible to separate,
with any computing device, tile sets that cannot tile the plane from tile sets
that can tile the plane periodically.

In order to study these problems, we present recursive transformations of
Turing machines into tile sets. These constructions are not independent of
each other, thus the reader will probably not understand the last one if he
did not understand the first one.

We do not present in this Appendix the original proofs of these theorems:
they were based on Berger’s construction (see [33]). We present a simplified
proof inspired by R. Robinson’s ideas in [440]. Both proofs are based on the
construction of an aperiodic tile set (i.e. a tile set that can tile the plane, but
not periodically) but Berger’s aperiodic tile set contains more that 30 000
tiles whereas Robinson’s contains 56 tiles. The reason why these aperiodic
tile sets are fundamental in these proofs is the following: imagine that any tile
set that can tile the plane can also tile it periodically. Then, one could solve
the unconstrained domino problem in the following way: form all possible

1 Elève du Département de Mathématiques et Informatique, ENS-Lyon, 46 Allée
d’Italie, 69364 Lyon Cedex 07, France.

2 Laboratoire de l’Informatique du Parallélisme, ENS-Lyon CNRS, 46 Allée
d’Italie, 69364 Lyon Cedex 07, France.
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n × n squares of tiles. If no correct tiling is formed then stop and answer
“no”. If one of these squares induces a periodic tiling of the plane, then stop
and answer “yes”. Else increment n and iterate the process. If no aperiodic
tile set exists then the domino problem is decidable by the previous algorithm
(and this was conjectured by Wang in [532]).

In the sequel, we first study the origin constrained domino problem; inde-
pendantly, we construct a particular aperiodic tile set with ad hoc properties,
and then we prove the undecidability of the domino problem. In the end, we
adapt the proof in order to get the undecidability of the periodic domino
problem and the inseparability theorem.

A.2 The Origin Constrained Domino Problem

We now consider the origin constrained domino problem, for which a tile
set and a particular tile are given as input. The problem is to form a tiling
of the plane containing this chosen tile. Wang proved that this problem is
undecidable in [532]. Another version of this problem consists of forming a
nontrivial tiling of the plane which is blank almost everywhere, using a tile
set and a blank tile (see [440]).

The proof of this theorem consists of a reduction from the halting problem
for Turing machines on an empty input. Let us consider such a machine with
a bi-infinite tape. Let Q = {qo, q1, . . . , qk} be the set of states, q0 ∈ Q be the
initial state, and Qf ⊂ Q be the set of halting states. Let S = {s0, s1, . . . , sl}
be the set of symbols, and s0 ∈ S the blank symbol. Let M = {L,R} be the
possible movements for the head of the machine. The action of the machine
is determined by the transition function γ : (Q−Qf )× S → S ×M ×Q. In
the sequel, we transform such a machine into a tile set.

The idea of the transformation is to force rows of the tilings to represent
the tape of the machine while columns will represent the evolutions of cells
of the tape during the computation. In other words, the tilings represent the
space × time diagram of the (possibly infinite) computation of the machine
on an empty tape.

More precisely, a configuration of the machine (tape, position of the head,
and state) is represented on the upper and lower edges of our tile set. This
tile set is described in Figures A.1 to A.3.

Figure A.1. Alphabet tile
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Figure A.2. Merging tiles

Figure A.3. Action tiles

Note that we use labeling and arrows to represent colours. It is an easy
exercise to prove that these representations are equivalent (i.e. it is possible to
transform a tile set with arrows into a tile set with colours without modifying
the set of valid tilings).

An “alphabet” (Fig. A.1) tile transmits without modification the symbol
sk, and is constructed for all k. Merging tiles (Fig. A.2) combine a state qi
with a symbol sj . For the sake of simplicity, we construct all tiles correspond-
ing to all combinations of states and symbols. However not all of them will be
able to take part of our tilings. The first tile (resp. the second tile) of Fig. A.3
is constructed if and only if γ(qi, sj) = (sk, L, ql) (resp. γ(qi, sj) = (sk, R, ql)).

Assume that we have a row of tiles whose upper edges represent the tape
of the machine at time t. Assume in addition that the machine is not in a
halting state. Then, one of these tiles contains an up arrow labeled qisj , and
all others contain an up arrow with a symbol label (such as sk). Then there is
only one possibility to tile the next row: it must represent the configuration
of the machine at time t+ 1.

If we assume that the machine starts on a blank tape, then we can use
tiles of Fig. A.4 in order to represent its initial configuration.

Figure A.4. Tiles involved in
an initial configuration

Let us add now a blank tile to the tile set defined in Figures A.1 to A.4.
We obtain a tile set associated to the considered Turing machine. Let us select
the second tile of Fig. A.4 as the imposed tile. Then in order to tile the plane,
this tile must have, to its left, the first tile of Fig. A.4, and, to its right, the
third tile of the same Fig.. This implies that the only way to tile the bottom
half-plane is to use the blank tile. Thus, the upper sides of the row on which
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the imposed tile appears represent the initial configuration. Hence, one can
tile the plane with the previous tile set if and only if the considered Turing
machine does not halt. The undecidability of the origin constrained domino
problem is proved.

A.3 Robinson’s Aperiodic Tile Set

Figure A.5. Robinson’s aperiodic tile set

Robinson’s aperiodic tile set is formed by the 6 tiles of Fig. A.5 and by their
images by all possible rotations and symmetries. We prove in the sequel that
this tile set can only form aperiodic tilings of the plane. These tiles are not
exactly Wang tiles since they have bumps and humps instead of colours.
Nevertheless, it is an easy exercise to transform this tile set into a set of
coloured Wang tiles.

Let us first consider Robinson’s tile set without the particular shape of
the corners. Then the two tiles of the first column are the same. We rep-
resent bumps and humps by arrows: symmetrical bumps are represented by
a centered arrow, non-symmetrical ones are represented by two arrows, one
centered and the other one slightly shifted. We obtain the tiles of Fig. A.6
and we add to them all the tiles obtained by symmetries and rotations. Then,
we transform arrows into colours and obtain a set of Wang tiles. For the sake
of simplicity we prefer to work with tiles of Fig. A.6 rather than with the
Wang tiles obtained by the above transformation.

We call the first tile of Fig. A.6 “a cross” and other tiles “arms”. The
direction of the pictured cross is “up-right”. Arms point on the direction of
their main arrow. We represent these tiles with the help of the abbreviated
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Figure A.6. The five basic tiles

symbols of Fig. A.7. The cross represents a cross-tile of any orientation while
the other one represents any arm, whose main arrow is oriented as pictured.

Figure A.7. Abbreviated notations

On another hand, we can suppress the bumps on the sides of Robinson’s
tiles and we obtain two polygons represented in Fig. A.8, which we call re-
spectively bumpy and humpy.

Figure A.8. A bumpy and a humpy tile

Assume now that the whole plane is tiled by these two polygons. Then in
the neighborhood of each corner, one bumpy tile and three humpy ones must
be found. This implies that either the bumpy tile appears on every other row,
and on on every other cell on that row, or it appears on every other column,
and on every other cell of that column.

We can thus obtain the periodic pattern of Figure A.9: bumpy tiles appear
on cells whose coordinates are both odd. There are other possible tilings with
these tiles, one of them is depicted in Figure A.10. More precisely, either every
even row contains only humpy tiles and on every odd row humpy and bumpy
tiles alternate; or the same situation holds for columns instead of rows. The
important property is that given a bumpy tile, there exist a line (vertical or
horizontal) centered on that tile on which there are bumpy tiles every two
cells.

Let us now consider a tiling of the plane with the basic tiles. Assume that
a cross appears somewhere. To the right of this cross, we find a sequence
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Figure A.9. First solution

Figure A.10. Second solution

of right arms (possibly empty or infinite), and then there is another cross.
Two consecutive crosses on a row are face-to-face or back-to-back. If they are
face-to-face, then the vertical arm between these crosses points downwards
(see Fig. A.11). If they are back-to-back, then the vertical arm between these
crosses may point either upwards or downwards (see Fig. A.12).

Figure A.11. Face-to-
face crosses

Figure A.12. Back-to-
back crosses

The distance between two consecutive crosses is odd: let us assume for
instance that both of them point upwards (see Fig. A.13). Then all tiles
between them have tails of arrows on their upper side – they are either
vertical or horizontal arms. The tile above the left cross (resp. the right
cross) is necessarily a left arm (resp. a right arm) because this tile has a left
tail (resp. right tail) on its bottom side. Thus the upper-right tile of the cross
is also a cross and by iteration of this argument, one proves that there is
one cross every two cells on this row. Hence the number of tiles between two
crosses is odd.
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Figure A.13. This row is forced by two face-to-face crosses

Let us now consider a tiling of the plane with Robinson’s tiles. We then
have the constraint that bumpy tiles must appear. In the sequel, we call these
tiles “1-squares”; note that all of them are crosses.

Let us consider a 1-square. It faces another 1-square located two tiles
farther in a direction (vertical or horizontal) because it is bumpy. Thus we
obtain the construction of Fig. A.14 or a rotated version. We are sure that
we have arrows on the 3 neighbor cells the direction of which is imposed.
Hence we are sure that the “center” cell is a cross (see Fig. A.15). Observe
now that two crosses cannot be found side-by-side because arrows diverge
from the center of any cross. Thus there is only one possible position of the
bumpy tiles that must be found on this row: it must face the two bumpy tiles
we started with. We are in the case of Fig. A.9. Thus we must obtain a figure
similar to Fig. A.16 that we call a “3-square”. A cross must be present at
the center of this square but its orientation is not imposed: we obtain exactly
4 possible 3-squares with 1-squares as corners.

Figure A.14. The first step of the construc-
tion of a 3-square

Let us now consider the central cross of a 3-square. It must face another
cross. Then this cross must be at the center of another 3-square, otherwise
double arms would not coincide. We thus obtain a 7-square as in Fig. A.17.
By iteration of the same construction, we can construct a (2n− 1)-square for
all n ∈ N. By König’s Lemma, it is possible to tile the plane with Robinson’s
tiles. Note that we have just proved a stronger result: all tilings of the plane
with Robinson’s tiles consist of nested (2n−1)-squares. Note also that we do
not obtain directly a tiling of the whole plane, but we obtain at least a tiling
of a quarter of the plane (that is why we have invoked König’s Lemma).
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Figure A.15. The second step of the construc-
tion of a 3-square

Figure A.16. A 3-square

Let us now prove that all tilings by Robinson’s tile are not periodic. We
have proved above that 1-squares must appear in all tilings. Each 1-square
uniquely determines the position of the 3-square in which it is included; there
are only 4 possible positions, according to the orientation of the cross. Then,
the 3-square uniquely determines the position of the 7-square in which it is
included (4 possible positions). By iteration, for all n ∈ N, the tiling contains
a (2n − 1)-square. These (2n − 1)-squares are not periodic structures hence
all tilings by Robinson’s tile are not periodic.

A.4 The Unconstrained Domino Problem

The goal of this section is to transform a Turing machine into a tile set which
can tile the plane if and only if the machine does not halt on a blank tape.
The basic idea is that the computation of the machine should be represented
in a uniform manner in any tiling of the plane. More precisely, we construct
a tile set such that, given a time t, there exists a size n such that the t first
steps of the computation of the machine are represented in any n× n square
correctly tiled. Thus, we just have to force a tiling error when the halting state
appears, and the theorem will be proved. Note that this notion of uniform
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Figure A.17. A 7-square

distribution of computations is analogous to the notion of quasiperiodicity: a
tile set is quasi periodic if any finite pattern that appears in the tiling appears
in all sufficiently large squares.

Let us consider again Robinson’s tiles presented in Section A.3. We proved
that in the center of all (2n+1 − 1)-squares one must find a cross, and that
a (2n+1 − 1)-square is formed by four (2n − 1)-squares. The centers of these
(2n − 1)-squares are four crosses that delimit a square of size 2n that we call
a 2n-frame. Furthermore, all crosses that are face-to-face delimit a 2k-frame.

Observe now that two of these frames intersect if and only if a corner of
one of them is the center of the other one. Equivalently, a 2n-frame intersects
only one 2n+1-frame and four 2n−1-frames (see Fig. A.18).

We now modify the five basic tiles (Fig. A.6) by giving two different
colours for the slightly shifted arrow. This arrow can be either red or green
with the following constraint: on the arms, the colour of the horizontal arrows
(resp. of vertical arrows) must be the same. For the central tile (with two
double arms), if the vertical arrow is green, then the horizontal one must
be red (resp. red and green). All tiles excepted the last one of Fig. A.6 are
duplicated once, hence we obtain 9 tiles. We give the humpy shape to the
green cross and we obtain a new tile set.

Thus, if we do not consider colours, the tilings that can be formed with
this tile set are exactly the same ones as with Robinson’s tiles. The only
difference is that frames are coloured, and if 2n-frames are red then 2n+1-
frames are green and conversely. The “humpy” constraint on the green cross
imposes that 2-frames are green and thus that a 2n-frame is green if n is odd
and red if n is even (see Fig. A.18 and A.19).
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Figure A.18. A 4-frame

Let us now consider only red squares (that are 4n-frames). These squares
do not intersect, and any tiling of the plane contains a sequence of frames of
size 4, 42, . . . , 4n, . . .

In the sequel, we call 4n-zone the surface delimited by a 4n-frame. In
this zone, we are interested in “free” rows. These rows are those which do
not intersect a 4k-frame where k < n. In a 4n-zone, if we suppress columns
and rows that intersect a 4n−1-zone, we obtain four 4n−1-zones side-by-side.
Thus if the number of free rows is denoted by Fn in a 4n-zone, then it satisfies
Fn = 2Fn−1. As F1 = 3, Fn = 2n + 1. The same argument proves that there
are Fn = 2n+1 free columns in a 4n-zone. Hence there are (2n+1)2 free cells in
a 4n-zone (located on a free row and on a free column). It is approximatively
the square root of the number of all cells of the zone.

It is easy to modify our tile set so that cells that are not free are marked
with a different colour. In order to do that, we impose that red squares send
vertically and horizontally an “obstruction” colour outside their borders (see
Fig. A.20). This transformation is very easy in its principle but tedious to
prove. The reader can do this transformation as an exercise.

Let us now consider a Turing machine. On each free tile, we superim-
pose the tiles representing the space-time local behavior of the machine as
represented in Figures A.1 to A.3. The tiles that are obstructed in only one
direction (vertically or horizontally) will transmit the state of the tape in the
other direction (horizontally or vertically). We do not modify tiles that are
obstructed in both directions. Furthermore, we impose that the lowest free
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Figure A.19. A 16-frame
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Figure A.20. Computation zones
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cells of a zone are associated to the blank colour of the tape (i.e. s0) excepted
the center one which is associated with the head in an initial state (i.e. q0s0).
We do not give full details for this construction but its justification is that a
copy of a down-most tile in a red zone may only appear as a down-most tile
in another red zone. The center one is recognized because it is the only free
down-most cell which also belongs to a green frame.

Thus with this tile set, we can tile arbitrarily large squares of the plane
if and only if the Turing machine does not halt. Berger’s theorem is proved.
Note that the computation at time step t can be found in any 4t2×4t2 square
of the tiling, since these squares contain a 4n-zone with 4n > t2.

A.5 The Periodic Problem and the Inseparability Result

With the previous construction, we can also prove the undecidability of the
periodic domino problem: is it possible, with a given tile set, to tile the plane
periodically? We modify the previous tile set so that it can tile the plane
periodically if and only if the associated Turing machine halts. Otherwise it
can tile the plane as in the previous proof (not periodically).

First, we transform the halting state of the machine in such a way that
if the machine enter this state, then it stays in this state forever and does
nothing on the tape. When a colour qfsi (where qf is a halting state) arrives
on a red frame, then this frame is transformed into a purple frame. This
means that we duplicate tiles for red frames into tiles for purple frames and
that if a halting state arrives on the frame, it is only possible to put these
purple tiles. We impose another difference between red and purple frames:
outside the zone, the edges of purple tiles are blank, except for corners where
the outside edges are blue.

In other words, if the machine halts, then we have cut out sufficiently
large squares on which the halting state appears. These squares are blank on
their edges and blue on their corners. Then, the neighbors of such a square
might be identical squares. Thus if the machine halts, then it is possible to
form a periodic tiling on the plane with the tile set. The periodic pattern is
a 4n-zone with n large enough so that the Turing machine halts.

Conversely, if one can construct a periodic tiling of the plane, then a
purple tile (hence a purple square) must appear in it – otherwise we have a
tiling of the plane with the tiles of the previous section and we proved that
it cannot be periodic. As there is a purple frame in the tiling, we can find
inside it a halting computation of the Turing machine.

The undecidability result is proved but as an exercise, the reader can
prove that the tile set can form only periodic tilings if the machine halts, and
can form only aperiodic tilings if the machine does not halt.

We can strengthen this result and obtain the inseparability theorem (The-
orem 3.1.7 in this book). Let us consider Turing machines with two halting
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states (1 and 2). Then we can do the previous construction with the differ-
ence that if the halting state 2 appears in the tiling, then a tiling error is
forced. For instance we impose that if a tile represents this state on its upper
edge, then we cannot put another tile as north neighbor. If the halting state 1
appears, then the construction is as presented before for the undecidability
of the periodic tiling.

Thus, if we denote by τx the tile set associated to the Turing machine
φx, as the sets H1 = {x, φx(0) = 1}, H2 = {x, φx(0) = 0}, and H =
{x, φx(0) diverges} are recursively inseparable (see Chapt. 2), we have the
following property:

– if x ∈ H1, then τx can tile the plane periodically,
– if x ∈ H2, then τx admits no tiling,
– if x ∈ H, then τx admits a tiling but not a periodic one.

Hence we have proved the recursive inseparability of the tile sets that
cannot tile the plane and those that can be used to tile the plane periodically.
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Springer-Verlag, 1990.
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niques. In H. Kleine Büning, editor, Computer Science Logic, CSL’95. Se-
lected papers, Lecture Notes in Computer Science No. 1092, pages 130 – 144.
Springer, 1996.

72. H. Carstens. Über die Kompliziertheit numerischer Modelle. PhD thesis,
Institut für math. Logik und Grundlagenforschung der Universität Münster
i.W., 1972. See also: Reducing hyperarithmetic sequences, in: Fundamenta
Mathematicae 89, 1975, 5-11.

73. A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the ACM,
28:114–133, 1981.

74. A. Chandra, H. Lewis, and J. Makowsky. Embedded implicational depen-
dencies and their inference problem. In Procedings of 13th Annual ACM
Symposium on Theory of Computing, pages 342–354, 1981.

75. C. Chang and H. Keisler. An improved prenex normal form. Journal of
Symbolic Logic, 27:317–326, 1962.
Proves that in a logic with equality each formula α is logically equivalent to
a prenex conjunctive normal form whose alternations have length max(2, p)
where p is the number of predicate symbols occuring in α. For the case without
equality the same normal form is shown with alternation length max(3, p).

76. C. Chang and J. Keisler. Model theory. North-Holland, 1990.
77. B. Chlebus. On the computational complexity of satisfiability in propositional

logics of programs. Theor. Computer Science, 21:179–212, 1982.
78. B. Chlebus. Domino-tiling games. Journal of Computer and System Sciences,

32:374–392, 1986.
The paper investigates the computational complexity of strategy problems for
games in which two players build bounded domino tilings. In particular it is
shown that the square tiling game is complete for Pspace, that the rectangle
tiling game is complete for Exptime and that the high tiling game is complete
for double exponential time. These results are shown to provide simple proofs
for the hardness part of the following completeness results for propositional
logic satisfiability problems: Pspace-completeness of quantified propositional
logic [493, 491], Exptime-completeness of propositional dynamic logic [167],
Pspace-completeness for propositional modal logic [337], double exponential
time completeness of propositional dynamic logic with double-star programs
[77]. See also [203, 206].

79. C. Christen. Spektren und Klassen elementarer Funktionen. PhD thesis, ETH
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Prädikaten. Zeitschr. f. math. Logik u. Grundlagen d. Math., 35:137–153,
1989.
See comment to [124].

120. M. Deutsch. Zum Reduktionstyp ∃∞∀∃∀(ρ, 1) und zur spektralen Darstellung
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Gödel, Skolem, and Maslov classes are shown to be decidable via terminat-
ing proof search procedures based on different variants and refinements of
resolution. The decidability proofs are mostly accompanied by undecidability
results for slight syntactical generalisations of the decidable classes.

160. C. Fermüller. A resolution variant deciding some classes of clause sets. In
E. Börger, H. Kleine Büning, and M.M. Richter, editors, Computer Science
Logic, CSL’90, Lecture Notes in Computer Science No. 533, pages 128 – 144.
Springer, 1991.
Using a particular variant of resolution, the decidability is proved for a class
of clause sets which contains clausal versions of the Gödel-Kalmar-Schütte
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Ω(cn/ logn) and O(dn/ logn) for some constants c, d > 1, see Chap. 6.2. This
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der ersten Stufe. PhD thesis, Institut f. math. Logik und Grundlagen-
forschung, Universität Münster, 1965.
Proof for the conservative reduction class [∀∃∗∀, (0, 1)], found independently
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Solovay and J. van Heijenoort.
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∀y1∀y2∃x∀y3α ∈ [∀2∃∀, (ω, ω)] in which in addition to monadic predicates
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a quantifier-free formula φ(x, y, z) holds”. Here φ(x, y, z) is symmetric with
respect to x and y: φ(y, x, z) = φ(x, y, z). These statements, written as first-
order sentences, form a subclass X of [∀2∃, (ω, 1)]=. The authors prove that X
has the finite model property. Contrast this with the fact that [∀2∃, (ω, 1)]=
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is a conservative reduction class (see [192] and Chap. 4 of this book). Fur-
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See comment to [203].
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m or Πp
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Presburger arithmetic has nondeterministic exponential complexity. It is a
minimal prefix class with this property since the ∃∗-sentences form an NP-
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To prove lower complexity bounds, finite versions of domino problems are
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with nondeterministic exponential lower complexity bounds.
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Theor. Computer Science, 101:35–57, 1992.
The expressive power on finite structures of certain fragments of second order
logic is investigated and related to computational complexity. The fragments
studied are second order Horn logic, second order Krom logic and certain vari-
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in [177] (see also Sect. 6.2) this bound is essentially optimal.

209. E. Grädel and M. Otto. Inductive definability with counting on finite struc-
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The result of [220] is strengthened to k = 0. Superseded by [219].

219. Y. Gurevich. On the algorithmic decision of the satisfiability of predicate
logic formulas. Algebra i Logika, 5:25–55, 1966. In Russian.
The main technical result is that class [∀∃∀∃∗, (0, 1)] is a conservative reduc-
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∑
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First, the classifiability theorem for prefix-vocabulary classes is proved; see
Section 2.3 of this book. Second, the decision problem for (the prefix-
vocabulary fragments of) pure logic of predicates and functions is completed,
though the treatment of the most difficult decidable class is deferred to [226].
In particular, the classes [∀2, (0, 1), (1)] and [∀2, (1), (0, 1)] are proved to be
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1984.

231. Y. Gurevich. Monadic second-order theories. In J. Barwise and S. Feferman,
editors, Model-Theoretical Logics, pages 479–506. Springer-Verlag, 1985.
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Sciences, 42:346–398, 1991.
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lems are proved complete concerning tilings, the Post correspondence, etc.
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The author strengthen Berger’s undecidability result for the unconstrained
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of this book.
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lems in der Prädikaten- und Termlogik. PhD thesis, Universität Freiburg,
1973.
Solves the decision problem for ε-logic by proving the conservative reduction
class property for first-order sentences containing no other function symbol
than Hilbert’s ε-operator and no other relation than equality (see Corol-
lary 5.3.5) and by extending the decidability of Löwenheim’s class to the
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predicates [365] and for the elimination of functions; the classes [all, (0, 0, 1)]
and [all, (0, 3)] are proved to be reduction classes. Being based upon Herbrand
expansions the proofs are in terms of provability and use a finitistic notion of
satisfiability instead of the set-theoretic one.
2. Solutions for “Special cases of the Entscheidungsproblem” (Ch .3 of [254],
pp. 243–250 of the english translation): New proofs are given for the finite con-
trollability of (a) monadic predicate logic ([365]), (b) the Bernays-Schönfinkel
class ([35]), (c) the Ackermann class ([16]). Also the class Herbrand of what
are nowadays called Herbrand formulae is shown to be decidable for formulae
without functions or equality (see the editor’s note L, pp. 262–263 op. cit.
and [182] for the finite controllability, see [137] for the completeness for P
and [439] for resolution as decision procedure for this class). Note that when
the equality is included, the class Herbrand= is still decidable; for predicate
logic with functions and equality the class Herbrand is undecidable (see
[505, 389] and Chap. 4 of this book). For a systematic treatment of decision
problems for predicate logic without functions or equality based upon the
theory of Herbrand expansions see [133, 351].

254. J. Herbrand. Sur le problème fondamental de la logique mathématique, vol-
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309. H. Kleine Büning and T. Lettmann. Aussagenlogik: Deduktion und Algorith-
men. Teubner, 1994.

310. J. Klop. Term rewriting systems. In T. Maibaum S. Abramsky, D. Gabbay,
editor, Handbook of Logic in Computer Science, vol. II, pages 1–116. Oxford
University Press, 1992.
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In this paper and [456], Schütte proves the decidability and the finite model
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The paper adopts the point of view of satisfiability rather than of validity
(as does [365]). As a corollary of Skolem’s normal form the class [∀∗∃∗, all]
is established as a conservative reduction class. Gödel [187] has improved
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478. T. Skolem. Über die mathematische Logik. Norsk Mat. Tidsskrift, 106:125–
142, 1928.
This paper contains among other results another proof for the decidability of
the Ackermann class (see [16]). It establishes the decidability of the class of
[∃∗∀∗∃∗, all]-formulae in which every atomic formula that contains any uni-
versally quantified variable contains either all of them or at least one of the
following existentially quantified variables. It also establishes the decidabil-
ity of the class of prefix sentences with a prefix terminating with universal



Annotated Bibliography 469

quantifiers such that every atomic subformula contains at least one variable
bound by these universal quantifiers. See [480] for an extension.
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