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STABLE WALKING OF A 7-DOF BIPED ROBOT
F. Plestan®* . JW. Grizzle™, E.R. Westervelt™, G. Abba*

Abstract

The primary goal of this paper is to demonstrate a means to prove asymptotically stable walking in a planar, under
actuated, five-link biped robot model. The analysis assumes a rigid contact model when the swing leg impacts the
ground and an instantaneous double-support phase. The specific robot model analyzed corresponds to a prototype
under development by the CNRS in France. The viability of the theoretically motivated control law is demonstrated on
a detailed simulator for the prototype which includes torque limits and a compliant model of the ground, and thus a
non-instantaneous double support phase.
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I. INTRODUCTION

This paper develops a provably, asymptotically stabilizing controller for the walking motion of a
prototype, five-link, planar biped robot consisting of a torso and two legs with knees but no feet; see
Figure 1. The prototype, named RABBIT!, has four independent actuators: the axis between the torso
and each thigh is actuated as is the axis of each knee. The actuators have been sized so that robot
is capable of generating motions of at least 5km/h when walking and 12km/h when running. These
speeds compare well with the capabilities of humans [6]. Many of the technical considerations that
went into the design of the robot are summarized in [6]. The principal motivations for constructing the
prototype were to study modeling (especially hybrid mechanical systems and compliant contact mod-
els), determination of optimal trajectories, limit cycles, stabilization of trajectories and the transition
between walking and running [28].

The prototype is limited to motion in the saggital plane by means of a radial bar. While the end
of the robot’s legs are fitted with wheels, these are provided so that radial movements of the contact
points between the robot’s leg and the floor are completely free; no mobility exists between the legs and
the “feet” in the sagittal plane. The radius of the circular path imposed by the bar is approximately
3 m. The design of stabilizing controllers for the lateral motion of a walking robot has been addressed

in [18], where it is shown that stability can be achieved by actively adjusting the lateral distance
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between the feet; this issue is not studied here. Section II develops the dynamical model of the robot
and specifies all of the mechanical parameters. A rigid model is used for the contact between the swing
leg and ground and the double support phase in assumed to be instantaneous. The contact between
the support leg and the ground is modeled as a pivot, so, when walking on a rigid surface, the model
has five degrees of freedom. Section III develops the controller. The work presented here is a natural
continuation of [11], [12] where the asymptotic stability of the walking motion of a robot with a torso,
two legs and no knees was fully proved. The structure of the controller is motivated by the desire to
render as tractable as possible the task of rigorously establishing the asymptotic stability of walking
motions. The principal idea is to design the controller so that the image of the Poincaré map has
dimension one, which greatly simplifies the stability analysis problem. The controller’s performance
is first evaluated by simulation in Section IV, under the hypotheses of a rigid contact model, an
instantaneous double support phase, and no slipping of the support leg. The simulations indicate
that the controller induces an asymptotically stable walking motion of 0.75 m/s, with peak torques of
105 Nm. The required torques are well within the capabilities of the prototype. The actual stability

of the induced walking motion is then proven in Section V under the above hypotheses.

As a final step before implementing the controller on the prototype, the controller’s performance
is evaluated in Section VI on a more detailed simulator developed by the French Project Commande
de Robots a Pattes [28]. The main novelty of the detailed simulator is the inclusion of a nonlinear,
compliant model of the contact between the robot’s limbs and the ground [14], [20], [5] and a dynamic
friction model [4], [19], [23]. The detailed simulator thus exercises all seven of the robot’s degrees of
freedom (the angles of the five links plus the Cartesian coordinates of the hips), and thus serves as
an independent check of the validity of the key hypotheses made in the mathematical derivation of
the controller; in particular, the contact points of the limbs may slip and/or rebound, and the double
support phase is not instantaneous. The controller’s performance on the more complete model is shown

to be very similar to that obtained under the idealized hypotheses of Section IV.

II. RoBOT MODEL

The robot is modeled as a planar biped. It consists of a torso, hips, and two legs with knees, but

no ankles (see Figure 1). It thus has 7 degrees of freedom (the five joint angles plus the Cartesian
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coordinates of the hips, for example). A torque is applied between each leg and the torso, and a torque
is applied at each knee. It is assumed that the walking cycle takes place in the sagittal plane and
consists of successive phases of single support.

The complete model of the biped robot consists of two parts: the differential equations describing
the dynamics of the robot during the swing phase (these equations are derived using the method of
Lagrange [25]), and an impulse model of the contact event (the impact between the swing leg and the
ground is modeled as a contact between two rigid bodies [15]). The contact between the stance leg and
the ground is modeled as a pivot. As in [11], [12], the complete model can be expressed as a nonlinear

system with impulse effects [27].

A. Swing phase model

The dynamic model of the robot between successive impacts is derived from the Lagrange formalism
D(q)-4+Clq,q)-¢+Glg) = B-u (1)

with ¢ = (q31, @41, @32, Qa2, 1) (see Figure 2) and u = (uy, ug, us, uq)" (see Figures 4 and 5). The torques
Uy, Ug, uz, and u, are applied between the torso and the stance leg, the torso and the swing leg, at
the knee of the stance leg and at the knee of the swing leg, respectively. The model can be written in

state space form by defining

. d w
= [ 2= b ol e | @@

where w := ¢, and x := (¢,w’)". The state space of the model will be restricted to physically rea-
sonable values of ¢ for walking. To define these bounds, it is convenient to introduce the coordinates

(P31, a1, P32, Pa2) (see Figure 3) where

D31 %(C]:n + qu1)

Pu1 _ T+ qa1 — g3 (3)
D32 %(Q32 +qu) |’

D42 T+ Qa2 — q32

Note that, for the computation of (3), it is assumed that the two legs of the biped robot have the
same length, and the tibia and the femur have also the same length (it is the case of the prototype
RABBIT). The variable p3; (resp. ps2) is the angle between the vertical axis and a “virtual” leg

joining the hips to the foot of the stance leg (resp. the swing leg) and the variable py; (resp. p42) is the
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relative angle of the stance leg (resp. swing leg) knee. The state space for the system will be taken as
X ={(¢.w)|geM we R}, where M={q| —Z<q<Z, ZE<py<ZT 0O<py<m E<
P32 < %, 0 < pso < 7}. With this choice of M, the robot’s torso and support leg are never below the
walking surface, which is taken as {(q,w) € X'|z; = 0}, the set of points where the height of the end

of the support leg is zero.

B. Impact model

An impact occurs when the swing leg touches the walking surface, also called the ground. The
impact between the swing leg and the ground is modeled as a contact between two rigid bodies. The
development of the impact model requires the full seven degrees of freedom of the robot. Let us add

Cartesian coordinates (z, z5) to the hips. One then obtains the following extended model
De(Qe) : de + Ce(Qea QE) : q(f + Ge(Qe) = Be -u+ 6Femt (4)

with ¢ = (q31, qa1, @32, Qu2, @1, T, 21)'. O F.py represents the external forces acting on the robot at the
contact point. The basic hypotheses are

1. the contact of the swing leg with the ground results in no rebound and no slipping of the swing leg;
2. at the moment of impact, the stance leg lifts from the ground without interaction;

3. the impact is instantaneous;

4. the external forces during the impact can be represented by impulses;

5. the impulsive forces may result in an instantaneous change in the velocities, but there is no instan-
taneous change in the positions; and

6. the torques supplied by the actuators are not impulsional.

From these hypotheses, the angular momentum is conserved. One deduces
De(d; - q;) = lew (5)

where F,; is the result of the contact impulse forces. ¢ (resp. ¢.) is the velocity just after (resp.
before) impact. An additional set of two equations is obtained by supposing that the stance leg does
not rebound nor slip at impact. Then, from the condition that the swing leg does not rebound nor

slip at impact, one obtains

=0 (6)
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with F(q.) = (w2, 22)" the Cartesian coordinates of the end of the swing leg. The result of solving (5)
and (6) yields an expression? for ¢ in term of ¢;. The final result is an expression for 27 := (¢, w™)
(state value just after the impact) in terms of 2= := (¢ ,w™) (state value just before the impact),
which is expressed as

xt = Alz). (7)

C. Nonlinear system with impulse effects

The overall biped robot model can be expressed as a nonlinear system with impulse effects [27]

= f(x)+g(@) u x ¢S (8)
o= Az x €S,
where,
S :={(qw) € X|zg =0, Ly;guze < 0}. 9)

Solutions are taken to be right continuous (see [12] for details). With this convention, as long as the
robot is initialized in A with the swing leg on or above the walking surface, all valid solutions of the

model result in the robot remaining on or above the walking surface.

III. FEEDBACK CONTROLLER DESIGN

This section develops the extension of the controller of [11], [12] for the 5 link biped with knees.
The fundamental idea is to encode walking in terms of a set of “posture conditions”, which are in turn
expressed as “holonomic constraints” on the position variables. These “constraints” are then used to
construct outputs of the mechanical model and are “imposed” on the robot via feedback control. The
controller is designed on the basis of the assumptions made in Section II, namely that the impact
model is rigid and the double support phase is instantaneous. These hypotheses will be re-visited in

Section VI.

A. Output definition

In human walking, one observes that the torso is maintained at a nearly vertical angle, the hips
remain roughly centered between the feet and at a nearly constant height above the walking surface,

and the end of the swing leg traces an approximately parabolic trajectory. In addition, the knees are

2The solvability of the equations is easily verified; see [12].
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never hyper-extended (as opposed to a bird) and only slightly flexed (as opposed to a monkey). These
observations have been used to build a set of control objectives through the following output functions:

v = ki (@1 — qua)
Yo = ko (dy +dy)
ys = ks (2 — zpa(dy))
ya = kg- (2’2 - sz(d1))-

In the above, the coordinates of the hips, (zy, zy7), and the end of the swing leg, (s, 22), are expressed

(10)

in the coordinate frame of the foot of the stance leg, (z1, z1) (see Figure 2):

T =0

21 =0

Tg — L3 : SiH(Q31) + L4 : SiH(Q41)

zg = —Ls-cos(qs1) — Ly - cos(qar) (11)
T = Tyg— Lg . SiIl(Q32) — L4 . sin(q42)

29 = zy+ Ls-cos(gs) + La - cos(qus)

di = xzy—x = Lz-sin(gs1) + Ly - sin(qqq)

dy = xy—x9= Lz-sin(gsa) + Ly - sin(qya).

The output y; is chosen to maintain the angle of the torso at a desired constant value, say ¢;4. The
output ¥y, ensures the advancement of the hips while the swing leg goes from behind the stance leg to
in front of it (see Figure 3 for the definition of d; and dy). The output y3 controls the hip height in
such a way that the hips can rise and fall by a small amount in a natural way. The desired trajectory
zpq of the hips is defined as a second order polynomial of dy such that d; € [—sld/2,sld /2], where sld
is the desired step length, zpnvax (resp. zpyin) is the maximum (resp. minimum) desired value of zy

over a step and
zpa(—sld/2) = zimin,  2ma(0) = zovax,  zma(sld/2) = zpvin. (12)

The output y4 controls the trajectory of the end of the swing leg; the desired trajectory zs, is defined
as a second order polynomial of d; such that d; € [—sld/2,sld/2], where zopax is the maximum desired

value of z5 over a step and
ng(—Sld/2) = 0, 22d<0) = Z9MAX, ng(Sld/Z) =0. (13)

The gains ky, ko, k3 and k, are constant values to be chosen later. Thus, with the same notation as in

(10), the output vector reads as

i || e e |
_ o 2(q . 2 - (d1lq 2q
y = hig) = [ hala) ‘ - [ By (on(0) — 2l (@) (14)
ha(q) ks - (22(q) — z24(d1(q)))
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B. Controller synthesis

The control objective is to drive the outputs (14) to zero. Since the outputs (14) only depend on
the generalized positions, ¢, and the dynamic model (2) is second order, the relative degree of each
output component is either two or infinite. Using standard Lie derivative notation [16], [25], direct
calculation yields

j = Lih(z)+ LyLsh(x)-u. (15)

For the moment, it is supposed that the matrix L,L¢h is invertible on the region of interest. This will
be confirmed later in the paper. The method of computed torque (or inverse dynamics) can then be

used to define

v = Lfch + LoLsh - u, (16)
resulting in four double integrators
yi = v, ©=1t%o4. (17)

One possible approach to control design would be to design asymptotically stabilizing controllers, such
as v; = knyi + kioys, for the double integrators (17). In general, when such a feedback is applied to
the full hybrid model (8), it is no longer able to drive the outputs (14) asymptotically to zero due to
the impulsive effects of the impacts. A general means of trying to “overcome” this can be observed in
the literature: for experimental as well as simulation based studies, the feedback gains appear to be
universally chosen sufficiently large so that the time constant for driving the outputs to zero is much
less than the time interval of a single step. A biological basis for doing this is much more difficult to
establish because the experiments are not easy to do well. Nevertheless, the evidence suggests that if
a perturbation is deliberately introduced in a human’s gait [7], [8], the subject’s gait will recover to
its original state in just a few cycles.

The use of high-gain control can be made to work quite well in simulation. The difficulty comes
in mathematically analyzing the existence and stability of periodic orbits induced by the controller.
Since we are dealing with periodic orbits, Poincaré’s method is the appropriate tool. However, to
apply it one must compute the induced discrete-time dynamics from a hyper-surface transversal to the
orbit back to the hyper-surface [13], [21]. The induced discrete-time dynamics is called the Poincaré

map. In the case of the model (8), the hyper-surface has dimension nine and the computation of
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the Poincaré map is impractical. The key idea established in [12] is that for a mechanical system
with N-degrees of freedom and m-independent inputs, the feedback control design can be carried out
in a way that greatly simplifies the stability analysis problem: the dimension of the image of the
Poincaré map can be reduced from 2N — 1 to N —m. For the biped considered here, this results in a
one-dimensional analysis problem. The Poincaré map for this one-dimensional problem must still be
computed numerically. The main points are that its numerical computation is very easy and it leads
to conclusive existence and stability properties for periodic orbits. The feedback design proceeds as
follows. Define a continuous® feedback v = v(y, ) on (15) so that each of the four double integrators

y; = v; is (globally) finite-time stabilized. The feedback functions used here come from [2]:

éylae ylg
— \I} y = l . y27 € y2 . 18
v (v, 9) p; W3 (s, € - 5) (18)
(94, € 94)
Each function v¢;(y;, € - 1;) (i =1 to 4) is defined as
iy, e i) = —sign(e- ) - |e- ga|™ — sign(di(yi, e - 41)) - |di(yir e - 41)| 7= (19)
with 0 < a < 1 and
Gi(yi € U) = i+ s=sign(e-g) - [e-v;]*™™ (20)

The real parameter € > 0 allows the settling time of the controllers to be adjusted. The overall feedback

applied to (8) is given by

u(r) = (LoLh(x))" - (U(h(z), Lth(z)) — L3h(x)). (21)

This is the method of computed torque with a finite-time stabilizing controller on each of the double

integrators.

IV. SIMULATIONS

Consider the biped robot model (8) with the following parameter values (see Figures 4, 5)

Mechanical parameters Torso Femur Tibia
Mass(kg) Mr=20 M;=6.8 | M;=3.2

Length (m) L1=0.625 L;=04 | L,=0.4
Position of the Center of Mass (m) | X7=0.01, Zr=0.2 | 23=0.16 | 24,=0.128

3The theory in [11], [12] does NO'T allow the use a discontinuous feedback as is commonly used in sliding mode control.
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Consider the feedback of Section III-B with the following parameters*

Output | Gain | Parameters
1 k1=62.5 | q14 = 7/30 rad

Y2 ko=500
Ys k3:1 ZHMIN = 0.745 m, ZHMAX = 0.76 m, sld=0.5m
Ya k4=1 zomax = 0.01 m, sld= 0.5 m

The initial velocity of the hips, vy, equals 1.25 m/s. In the feedback (21), € = 0.05 and o = 0.9. The
parameter ¢ > 0 allows the settling time of the controller to be adjusted and 0 < o < 1 achieves a
finite-settling time. The choice of the parameter values has been made with an eye towards keeping

the magnitudes of the applied torques within the capabilities of the actuators of the prototype.

Several aspects of the solution corresponding to the model and feedback with the above parameters
are now highlighted. Figure 6 displays the outputs driven to zero by the feedback controller before
impact. This implies that the posture constraint encoded in the output function (14) is satisfied and
that the proof of stability to be presented in the next section can be applied. Figure 7 displays the
walking motion of the biped robot as a series of stick figures over four steps. The walking appears to
be natural, i.e., how a human without arms might walk. Figure 8 displays the applied torques over
a few walking cycles; note that the peak torque magnitude is about 105 Nm, which is compatible
with the prototype RABBIT’s torque limits. Figure 9 displays the normal and tangential forces acting
on the stance leg end; note that the maximum force is about 700 N, which is compatible with the
prototype RABBIT’s limit of 1500 N. Figure 10 displays the coordinates z, (vertical height of the end
of the swing leg) and zy (vertical height of the hips), which are key quantities in the definition of the

outputs used to generate the feedback controller.

In Figures 6-10 the walking trajectories appear to be asymptotically stable. This appearance will
be proven in the next section. The feedback parameters chosen in the above table were tuned by
hand; a more systematic approach will be presented in a future publication. There is robustness about
the choice of feedback parameters; that is, the robot still walks with moderate variations in feedback
parameters. The output function chosen, (14), is certainly not unique; for example, controlling torso
angle, horizontal hip placement, and swing and stance leg knee angles will also yield a stable walking

motion.

4The torso appears to be leaning backwards because the center of mass is not located along the axis of the torso.
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V. STABILITY PROOF

The purpose of this section is to prove the asymptotic stability or instability of trajectories resulting
from the biped in closed loop with the controller (21). An important result from [12] is that stability
(or instability) can be proven on the basis of the restriction of the Poincaré map to a one dimensional
manifold. In the following, only the bare minimum of mathematical notation needed to use this tool
will be introduced. The reader seeking a careful development of these ideas is refereed to [12]. Let
Z denote the zero dynamics manifold, i.e. Z = {(¢q,q) € X|h(q) = 0,L;h(q) = 0}. The conditions
required to define the reduced Poincaré map are
1. SN Z is a smooth submanifold of A’;

2. the decoupling matrix L,L¢h is invertible; and

3. the convergence time of the controller is strictly less than the time of a single step of the robot.

A. Smoothness of SN Z

From standard results in [3], S N Z will be a smooth one-dimensional manifold if the map

h(q)
Lysh(q;q) (22)
2(q)

has constant rank® equal to nine on SN Z. A simple argument shows that this is equivalent to the

rank of [h(q)" 22(¢)]" being equal to five. Hence, define the 5 x 5 matrix
oh
A = { o ] (23)

9zp
Oq

whose determinant in the p coordinates is proportional to

. . . p .
sin (p4z) - sin (p31) - sin <§> - sin (p41)- (24)
On M, it is easily verified that the determinant vanishes only at p3; = w. However, if ¢ € Z and
p31 = 7, then z5(q) = 0.01 # 0, and thus ¢ € S. Hence, the determinant of A is non-zero on SN Z. If
(q,w) € SN Z, then it follows that ¢ is equal to a constant; call this value gy. Furthermore, it follows
that w is parameterized by a single variable. This parameterization is developed next. Let

2(g) = [h(‘” | (25)

rr(q)

SRecall that the rank of a map at a point is by definition the rank of its Jacobian matrix evaluated at the same point.
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where zy is the horizontal position of the robot’s hips. It is straightforward to verify that & has full

rank at go. On Z, it follows that £h(q) = Lh(q,w) = 0, and thus

0 d 0P
=—d(g) = — - w. 26
o | =g =5 (26)
Thus, 0 : IR — SN Z by
do
otvi) = | o] (27)
q

is a diffeomorphism from IR to S N Z, with vz the hips horizontal velocity just before the impact.

B. Proof of the decoupling matrix invertibility

The complexity of the decoupling matrix, L,Lsh, makes a direct proof of invertibility highly non-
trivial. Moreover, since the point e+ = (7, 7,7, 7,0)" is an extremum of the height of the hips, the
decoupling matrix for the choice of outputs (14) is necessarily singular at g.,;. Hence, proof of the
invertibility of the decoupling matrix must be local in ¢. One method of local proof is to demonstrate
sign definiteness of the decoupling matrix’s determinant in an open set about the biped’s trajectories.
Sign definiteness implies the determinate never equals zero in that set and, hence, in that set, the
decoupling matrix is invertible. This is the method used here. The proof is carried out in two steps.
In the first step, the decoupling matrix is simplified by the application of an invertible feedback [22]
to the model®. In the second step, elementary bounds on the individual terms appearing in the
determinant of the decoupling matrix are determined and used to compute upper and lower bounds
on the determinant of the decoupling matrix. To apply the technique of [22], it is easiest to work in

relative coordinates

q = (@31, qa1, @32, Qu2, 1)’ (28)
where

(z31 31 — q1

(%41 _ 431 — q41 . (29)

q32 32 — q1

Ga2 q32 — 42

Denote the dynamic model (1) in these new coordinates as

D(q)-G+C(q.q)-q+G(@ = B-u. (30)

By standard results in [16], the invertibility of the decoupling matrix is invariant under the application of invertible feedbacks.
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It is easily shown that B has the form

B- { ! } (31)
Next, partition the coordinates into
Go = (G31, Qa1 G2, Ga2)" and gy = qu, (32)
the “actuated” coordinates and “un-actuated” coordinates, respectively. Write (30) as
D11(q)Ga + D12(9)Gp + C1(q, )da + G1(q) = (33)
D1 (q)Ga + Da2(@)Gp + Co(q, §)Ga + G2(q) = 0, (34)
and solve (34) for g, as
Gy = —Dan(q) " <D21((j)da + C5(7, §)da + Gz((j)) : (35)
Substituting (35) into (33) yields
D(q)ia + C(, @) + G() = u (36)
where”
D(@) = Du(q) — Dia(q) D3 (7) Den () (37)
C@.9 = Ci(a.9) ~ Di(@) Dy (9)Ca(4. 9) (38)
G@) = Gi(a) — Dio(@) Day (@) G(q) (39)
Applying the partial linearizing feedback
u=D(q)v+ C (7, ia + G(@) (40)
to (33) allows (33) and (34) to be re-written as
Go = v (41)
i = —Du(@) " (Da1(@)iia + Co(q, o + Ga()) - (42)

The model (41) and (42) is feedback equivalent to the original system. It can be expressed in state

space form with the same choice of x as before to obtain

~

T = f(z)+ g(x)v. (43)

"The invertibility of Dao is assured by the positive definiteness of D.
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Since the rank of the decoupling matrix is invariant under invertible feedback, the decoupling matrices
for systems (2) and (43) have the same rank. The determinant of the decoupling matrix for (43) can

be directly computed and shown to be of the form®

o Num(q)
with
114 1
Num(q) = > kVgN (V) and Den(q) =Y kPgP (cPq) (45)
i=1 i=1

where the k;’s are constants, g;’s are sine and cosine functions, and ¢;’s are row vectors in IR°. For a
given subset @ C M (recall that M is the allowed set for the configuration variables), upper and lower
bounds on the determinant of the decoupling matrix can be found via calculation of the minimum and
maximum of each of the 125 terms of the numerator and denominator over . For example, if the

denominator in (44) is positive, then

- Maxgeo Num(q) = max;e; maxgep, Num(q)

max det L; L :h(q) (46)

geo mingeo Den(q) — mine; mingeo, Den(q)
where, O C U,;c; O;, and the O; are closed and bounded. The max and min operations in (46) are
especially trivial to evaluate if the sets O; are selected to be of the form

O, = {x | @ < @ <G A < an < e (47)
Ty < @32 < @5557 4t < Quo < 4B, @ <@ < C]f,rfam} :
The above technique was applied to the apparent limit-cycle of Section of IV. Individual closed
sets O; were determined by dividing the time trajectory into disjoint pieces, and over bounding the
configuration variables so that over the ¢ —th time interval, the trajectory of the configuration variables
lies strictly in the interior of O;. As an illustration, Figure 13 shows the result of this process for g¢s;.
Division of the trajectories in time into pieces over which the determinant could be proven to be
sign definite was accomplished with a simple binary search algorithm. The results of this process are
presented in Table I, which gives the upper and lower bounds of the determinant of the decoupling
matrix as well as the minimum and maximum of the determinant over each subset, and the beginning

and end of each set’s division in time. It should be noted that: (1) this process could be iterated to

prove the decoupling matrix’s invertibility over a larger subset of the biped’s state space, and, (2) the

81t is straightforward to check that the decoupling matrix depends only upon the configuration variables, ¢, and not on the
angular velocities.
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fact that this method works is not an accident. Results from real analysis can be used to show that
the decoupling matrix is invertible on an open set about the configuration variable trajectories if and
only if a there exists a set O which is the interior of a union of a finite number of closed sets O; as

described above.

C. The reduced Poincaré map

The Poincaré surface will be taken to be S, the impact surface. Let P : S — S be the usual

% map. For those trajectories for which the convergence time of the controller (21) is less

Poincaré
than the time to make a single step, the trajectory will have converged to the zero dynamics manifold,
7, in finite-time. In this case, P takes values in S N Z. The reduced Poincaré map is defined to
be p: SNZ — SNZ by p(xr) = P(z); that is p := P|snz. To compute p, it is easiest to use the
identification of SN Z with IR given by (27). Thus, define A : IR — R by A := 0~ ' opoo. The function

A can be computed in a straightforward manner:

Reduced Poincaré map: \: IR — IR

1. Let v > 0 denote the horizontal velocity of the robot’s hips just before impact (the restriction to
positive velocities corresponds to the robot walking from left to right). Compute = := o(vy) € SNZ,
the position of the robot just before impact.
2. Apply the impact model to x~, that is, compute z* := A(x7).
3. Use z7 as the initial condition in (2) controlled by (21), the robot in closed loop with the controller,
and simulate until one of the following happens:

a. There exists a (first) time 7" > 0 where 29(7") = 0. If T is greater than the settling time of the
controller, then \(vg) := v (T); else, A(vy) is undefined at this point.

b. There does not exist a 7" > 0 such that z5(7") = 0; in this case, it is also true that A(vy) is

undefined at this point. -

D. Stability results

To determine if the closed-loop system is stable under the controller (21), the function X is computed

for v;; € [1,2]. Figure 11 displays the functions A\. One deduces that A is undefined for v less than

9Since not every initial condition in S will result in the robot making a successful step, P is in general only a partial map; that
is, its domain of definition is not all of S. The same is true, of course, for the reduced Poincaré map.
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1.05 m/s and more than 1.55 m/s. A fixed point appears at approximately 1.25 m/s, and corresponds
to an asymptotically stable walking cycle. Figure 12 displays the limit cycle over several steps with the
previous parameters of simulation, in particular v;; = 1.25 m/s; it appears that the trajectory is very
close to the limit cycle at the beginning of the simulation, which confirms that the point v; = 1.25 m/s

is fixed.

VI. WALKING ON A COMPLIANT SURFACE

On the actual prototype, the contact between the ends of the legs and the ground will not be rigid
and the ends of the legs may slip. This section presents the results of evaluating the controller (21) on
a detailed simulator for RABBIT [28] that includes the normal forces on the legs due to a compliant
contact with the ground [14], [20], [5] and the tangential forces due to dynamic friction [4], [19], [23].
For the sake of completeness, the models are first summarized and then the simulation results are

reported.

The rigid and compliant models are conceptually very different. As presented in Section II, the
rigid model is composed of a dynamical nonlinear system for the swing phase, and an impulsional
system for the contact event. With the assumptions stated in Section II (in particular, the impact is
instantaneous), this implies that there is no double support phase during a step. The compliant model,
on the other hand, is an ordinary (non-hybrid) dynamical nonlinear system and allows a double support
phase where there is simultaneous contact between the swing leg and the ground and the stance leg
and the ground. Of course, this fact was not taken into account in the synthesis of the controller, and
applying the controller to the case of walking on a compliant surface allows a check of its robustness

properties.

A. Compliant contact and friction models

The dynamic model is based on the full 7 DOF model of the biped with a computation of the forces

acting on the end of each leg:

De(qe) - Go + Ce(Ges Ge) - G + Gelqe) = Be-u+ Ji(qe) - F, (48)
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where, ¢. = (¢s1, q32, a1, a2, @1, T, 21) s J(ge) is the 4 x 7 Jacobian matrix of the end points of the

two legs
J( ) _ 8 ﬁllggzg (49)
e\Ge - aqe $2(Qe) ’
22((16)

and F' consists of the normal and tangential forces acting on the ends of the two legs
F = (Fnly E17 Fn2a F;E2)/ . (50)

The robot’s dynamics are then described by ordinary (non-hybrid) differential equations over the entire
step, even during the impact, which will have a non-zero duration. The model of the normal force
can be viewed as a vertical nonlinear spring-damper. Let z5 be the penetration of a link into the
ground, A, the damping coefficient of the vertical damper, k, the stiffness of the vertical spring and n
a coefficient characterizing the form of the surfaces in contact. Note, if z¢ > 0, the link is not touching
the ground, then these forces are equal to zero.

The normal force applied to the link when in contact with the ground is given by
F,=—-X\,- |Zg|n - Za + k - |Zg|n. (51)

The tangential force, F; = u(d,v)-|F,|, is in the form of a friction model with a non-constant coefficient
of friction. The Lugre friction model is used to evaluate the friction coefficient p [4], [23]. This model
supposes that the interface between the two contacting surfaces is a contact between bristles. The
bristle dynamics are modeled by horizontal springs and dampers, which, if the applied tangential force
is sufficient, are deflecting and slipping. The model uses the average deflection d of the bristles as the
internal state of the friction, d = v — [v] - Z—Z -d, where v is the relative velocity of the contacting
surfaces, op,9 the stiffness of the horizontal spﬁng and oy is the coefficient of static friction. In the
overall friction coefficient, pu(d) = opg-d+op - d +apo-v, opy is the damping coefficient of the horizontal

damper and a5 is the coefficient of viscous friction. Thus, the complete model of the tangential force
is given by
Fo= p(d)-|F
d = v—|v] - —-

Qapo

p(d,v) = opo-d+op - d+04h2'v
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In the case of the biped, the above models are applied to the ends of each of the legs. The penetration
2 (where i equals 1 or 2) is the vertical coordinate of the end of leg ¢; this value is derived from the

height of the hips, 2y, and the angular coordinates ¢3; and qq;
2qi = zp+ Lg - cos(qsi) + Ly - cos(qai) (53)

The relative velocity v; (where i equals 1 or 2) is the relative velocity of the end of the leg ¢ with
respect to the ground; this value is derived from the horizontal velocity of the hips &, and the

angular coordinates and velocities gs;, qsi, ¢3; and ¢y,

v; = Zg— Ls-cos(qsi) - Gsi — La- cos(qui) - qui (54)

B. Simulations

In this section, the feedback controller of Section III-B is directly applied to the biped robot model
derived from (48). It is assumed that the mechanical parameters defined in Section IV are the same,
and that the parameters of the controller have not been changed. The initial condition vy is started
at 1.25 m/s, i.e. the same initial condition used in the rigid case. The ground parameters are taken

to be as close as possible to the parameters of the ground used by the prototype RABBIT

A =6x10° n=15  k=20x 105,
oho =260,  op =0.6, any=0.285, e = 0.18.

Note that

1. n = 1.5 since the end of each of RABBIT’s legs is equipped with a wheel in the frontal plane,

2. The walking surface for the prototype RABBIT is quite rigid as can be seen by the stiffness k, and
the damping coefficient \,.

The controller in closed-loop with the 7 DOF robot model and the compliant contact model still results
in an apparently attractive limit cycle. Figures 14-18 present some simulation results over a few cycles
near the stable orbit. Figure 14 displays the outputs, which are still driven to zero before the impact.
The walking motion of the biped robot is shown in Figure 15 over four steps; the average walking speed
of the robot on the compliant surface is very close to the walking speed under the rigid contact model,
0.75 m/s. Figure 16 displays the applied torques over a few walking cycles (four steps); note that the

peak torque magnitude is now around 100 Nm, or about 5 Nm less than in the rigid case. Figure 17
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displays the normal forces acting on the leg ends: it is clear that there is now a double-support phase.
One cannot directly compare the forces with the rigid case where the forces due to the impact were
modeled as impulses. Figure 18 displays the coordinates zy, 21 and 2o, which give the vertical position
of the hips and the ends of the legs. The coordinate of the end of the stance leg, z1, is less than zero,
showing that there is penetration in the ground of about 0.7 mm, which gives a maximum value of 9.3
mm for zs.

The model was also simulated with a set of parameters for the contact model, resulting in the stance
leg penetrating approximately 15.0 mm into the ground. When the robot was commanded to increase
the height of the swing leg by the appropriate amount, stable walking was also achieved, though with
a higher average walking speed.

In summary, these results show that the analysis based on a rigid walking model is a good predictor
of the robot’s behavior on a compliant walking surface, in the case where the “real” walking surface
is not too elastic. This gives us the confidence to proceed with the next phase of the project, which is

the implementation of the controller on the prototype.
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Set 1 2 3 ] 5
- min | 200.6015 | 195.6540 | 176.6454 | 168.6733 | 164.5381
31 max | 206.2789 | 204.6540 | 199.6066 | 180.2140 | 172.0809
- min | 21.3857 | 30.2072 | 31.3540 | 25.3320 | 21.3857
a1 max | 30.8175 | 35.4827 | 36.7536 | 31.9875 | 25.8437
} min | 162.5663 | 167.0718 | 183.7315 | 200.8510 | 201.3176
932 max | 170.4469 | 187.4432 | 204.9036 | 205.9872 | 205.9682
- min | 18.7285 | 23.7618 | 34.4153 | 26.6624 | 21.3857
qa2 max | 24.2410 | 385711 | 41.1357 | 35.1106 | 27.2010
min 5.6016 5.7363 5.9273 5.9400 5.9400
N max 6.0600 6.0470 6.0600 6.0600 6.0600
det Lo L h(x) min | -310.3236 | -529.5476 | -631.5226 | -422.2026 | -266.2791
9=f max | -0.0245 | -0.2840 | -0.5837 | -0.4718 | -3.8473
. start 0.0000 0.0794 0.2176 0.5539 0.6206
stop 0.0794 0.2176 0.5539 0.6206 0.6455

TABLE T

O SET DEFINITION AND DETERMINANT VALUE
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Fig. 1. Photo of RABBIT prototype.
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Fig. 2. Schematic of biped robot; absolute angles.
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Fig. 3. Schematic of biped robot; relative angles.
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Fig. 4. Schematic of biped robot leg.
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