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Abstract— Hybrid Vehicle fuel economy and drivability per-
formance are very sensitive to the “Energy Management”
controller that regulates power flow among the various energy
sources and sinks. Many methods have been proposed for
designing such controllers. Most analytical studies evaluate
closed-loop performance on government test cycles. Moreover,
there are few results that compare stochastic optimal control
algorithms to the controllers employed in today’s produc-
tion hybrids. This paper studies controllers designed using
Shortest Path Stochastic Dynamic Programming (SPSDP). The
controllers are evaluated on Ford Motor Company’s highly
accurate proprietary vehicle model over large numbers of real-
world drive cycles, and compared to a controller developed
by Ford for a prototype vehicle. Results show the SPSDP-
based controllers yield 2-3% better performance than the Ford
controller on real-world driving data, with even more improve-
ment on a government test cycle. In addition, the SPSDP-based
controllers can directly quantify tradeoffs between fuel economy
and drivability.

I. INTRODUCTION

Hybrid vehicles have become increasingly popular in
the automotive marketplace in the past decade. The most
common type is the electric hybrid, which consists of an
internal combustion engine (ICE), a battery, and at least
one electric machine (EM). Hybrids are built in several
configurations including series, parallel, and the series-
parallel configuration considered here. Hybrid vehicles are
characterized by multiple energy sources; the strategy to
control the energy flow among these multiple sources is
termed “Energy Management” and is crucial for good fuel
economy. An excellent overview of this area is available in
[13].

This energy management problem has been studied ex-
tensively in academic circles [7], [9], [11], [13]. There are
many proposed methods available for both the non-causal
(cycle known in advance) and causal (cycle unknown in
advance) cases. It is rather unclear how much of this work is
used by industry in actual production vehicles. Many papers
show simulations on representative vehicles, although most
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of this work focuses on the certification test cycles. There are
relatively few results showing how these algorithms perform
in practice [2], [3], [8], [11] and how they compare to the
existing industrial state of the art.

The controller design method studied here is Shortest Path
Stochastic Dynamic Programming (SPSDP), which has been
used in this application several times before [4], [6], [14].
Recent results [10] have developed this method so that real-
world constraints on drivability and powertrain behavior can
be incorporated. In addition to generating a class of optimal
controllers, this method allows direct study of the tradeoffs
between different performance goals, specifically drivability
and fuel economy. The ability to easily generate Pareto
tradeoff curves is perhaps just as interesting as a specific
fuel economy benefit.

We believe that the SPSDP energy management for-
mulation of [10] is the first model-based optimal energy-
management strategy that can be used directly in a produc-
tion vehicle with minimal manual tuning. To validate this
hypothesis, real-world driving data is used to evaluate con-
troller performance for typical drivers. A common customer
complaint is that the fuel economy shown on the “window
sticker” does not match the vehicle performance in practice.
By using large numbers of real-world drive cycles, controller
performance can be evaluated and optimized with respect to
both average drivers and government certification.

The purpose of this paper is to study energy management
controllers in a real-world scenario and compare them to an
industrially-designed controller. It is hoped that these results
can verify the usefulness of this algorithm and take these
methods from academic research papers into industrial labs
and onto the road.

This research is a collaborative effort of the University
of Michigan and Ford Motor Company. This partnership
allows broad access to proprietary in-house tools, albeit with
some restrictions on the level of detail that can be published.
This work uses Ford’s high-fidelity vehicle simulation model
[1], which is used to develop HEV control algorithms and
evaluate fuel economy for production vehicles. The vehicle
studied here is a prototype and does not match any vehicle
currently on the market. As a benchmark, Ford supplied an
energy management controller developed for this prototype.

This paper builds on previous work [10] and focuses on
real-world simulation studies and comparison to industrial
controllers, rather than detailed algorithm descriptions. Brief
descriptions of the methods used are included here, but for
more detail see [10].



II. VEHICLE

A. Vehicle Architecture

The vehicle model studied in this paper is a prototype
series-parallel electric hybrid. A 2.4 L diesel engine is cou-
pled to the front axle through a clutched 6-speed automated
manual transmission. An electric machine, EM1, is directly
coupled to the engine crankshaft, and can generate power
regardless of clutch state. A second electric machine, EM2,
is directly coupled to the rear axle through a fixed gear ratio
without a clutch, therefore the electric machine is always
rotating at a speed proportional to vehicle speed. Energy is
stored in a 1.5 kWh battery pack. The system parameters are
listed in Table I.

TABLE I
VEHICLE PARAMETERS

Engine Displacement 2.4 L
Max Engine Power 120 kW
Electric Machine Power EM1 (Front) 15 kW
Electric Machine Power EM2 (Rear) 35 kW
Battery Capacity 1.5 kWh
Battery Power Limit 34 kW
Vehicle Mass 1895 kg

B. Vehicle Models

The work presented in this paper uses two different dy-
namic models to represent the same prototype hybrid vehicle.
The first model is quite simple; it has a sample time of
1s, uses lookup tables, and has very few states. It is used
primarily to design the controller and do the optimization,
and is called the “control-oriented” model.

The second model comes from Ford Motor Company and
uses its in-house modeling architecture. This sophisticated
model is used to test fuel economy and controller behavior by
simulating controllers on drive cycles. This model is referred
to as the “vehicle simulation” model in this paper [1].

This combination of models allows the controller to be
designed on a simple model that keeps the problem feasible,
while providing accurate fuel economy results on a complex
model.

C. Control Model

When using Shortest-Path Stochastic Dynamic Program-
ming, the off-line computation cost is very sensitive to the
number of system states. For this reason, the model used to
develop the controller must be as simple as possible. The
vehicle model used here contains the minimum functionality
required to model the vehicle behavior of interest on a
second-by-second basis. Dynamics much faster than the
sample time of 1s are ignored. Long-term transients that
only weakly affect performance are also ignored; coolant
temperature is one example.

The vehicle hardware allows three main operating condi-
tions:

1) Parallel Mode-The engine is on and the clutch is
engaged.

2) Series Mode-The engine is on and the clutch is
disengaged. The only torque to the wheels is through
EM2.

3) Electric Mode-The engine is off and the clutch is
disengaged; again the only torque to the wheels is
through EM2.

The model does not restrict the direction of power flow. The
electric machines can be either motors or generators in all
modes.

The dynamics of the internal combustion engine are ig-
nored; it is assumed that the engine torque exactly matches
valid commands and the fuel consumption is a function only
of speed, ωICE , and torque, TICE . The fuel consumption
F is derived from a lookup table based on dynamometer
testing,

Fuel flow = F (ωICE , TICE).

The automated manual transmission has discrete gears and
no torque converter. The transmission is modeled with a
constant mechanical efficiency of 0.95. Transmission gear
shifts are allowed every time step (1s) and transmission dy-
namics are assumed negligible. When the clutch is engaged,
the vehicle is in Parallel Mode and the engine speed is
assumed directly proportional to wheel speed based on the
current transmission gear ratio Rg,

ωICE = Rgωwheel.

The electric machine EM1 is directly coupled to the
crankshaft, and thus rotates at the engine speed ωICE ,

ωEM1 = ωICE .

In Parallel Mode, the engine torque TICE and EM1
torque TEM1 transmitted to the wheel are assumed pro-
portional to wheel torque based on the current gear ratio
Rg and the transmission efficiency ηtrans. The rear electric
machine EM2 torque TEM2 transmitted to the wheel is
proportional to the constant EM2 gear ratio REM2 and rear
differential efficiency ηdiff . The total wheel torque Twheel

is thus the sum of the ICE and EM1 torques to the wheel
ηTransRg(TICE + TEM1) and the rear electric machine
EM2 torque to the wheel ηdiffREM2TEM2,

ηtransRg(TICE + TEM1) + ηdiffREM2TEM2 = Twheel.
(1)

The clutch can be disengaged at any time, and power
is delivered to the road through the rear electric machine
EM2. This condition is treated as the ”neutral” gear 0, which
combines with the 6 standard gears for a total of 7 gear states.
If the engine is on with the clutch disengaged, the vehicle
is in Series Mode. The engine-EM1 combination acts as a
generator and can operate at arbitrary torque and speed. The
EM1 command is a speed rather than a torque in Series
Mode. If the engine is off while the clutch is disengaged,
the vehicle is in Electric Mode.

The battery system is similarly reduced to a table lookup
form. The electrical dynamics due to the motor, battery, and
power electronics are assumed sufficiently fast to be ignored.



TABLE II
VEHICLE MODE DEFINITIONS.

Gear State Clutch State Engine State Mode
0 Disengaged Off Electric
0 Disengaged On Series

1-6 Engaged On Parallel
1-6 Engaged Off Undefined/not used

The energy losses in these components can be grouped
together such that the change in battery State of Charge
(SOC) is a function κ̄ of Electric Machine speeds ωEM1

and ωEM2, torque TEM1 and TEM2, and battery SOC at the
present time step,

SOCk+1 = κ̄(SOCk, ωEM1, ωEM2, TEM1, TEM2). (2)

Assuming a known vehicle speed, the only state variable
required for this vehicle model is the state of charge (SOC).
Changes in battery performance due to temperature, age, and
wear are ignored. During operation, the desired wheel torque
is defined by the driver. If we assume the vehicle must meet
the torque demand perfectly, then the sum of the ICE and EM
contributions to wheel torque (1) must equal the demanded
torque Tdemand,

Twheel = Tdemand.

This adds a constraint to the control optimization, reducing
the 4 control inputs to a 3 degree of freedom problem. In
Parallel Mode the control inputs are Engine Torque, EM1
Torque, and Transmission Gear. In Series Mode, the electric
machine command becomes EM1 Speed.

Optimization using the control-oriented model assumes a
“perfect” driver. The desired road power is calculated as the
exact power required to drive the cycle at that time. Now,
given vehicle speed, demanded road power and this choice
of control inputs, the dynamics become an explicit function
κ of the state Battery SOC and the three control choices as
shown in Table III,

TABLE III
VEHICLE DYNAMIC MODEL

State Control Inputs
Battery Charge (SOC) Engine Torque

EM1 Torque (Parallel) or Speed (Series)
Transmission Gear

SOCk+1 = κ(SOCk, TICE , TEM1, Gear). (3)

In Series Mode, TEM1 is replaced with ωEM1. The engine
fuel consumption can be calculated from the control inputs.
Operational Assumptions:

This control-oriented model uses several assumptions
about the allowed vehicle behavior.

1) The clutch in the automated manual transmission
allows the diesel engine to be decoupled from the

wheels. This allows the engine to shut off during
forward motion.

2) There is no ability to slip the clutch for starts.
3) There are no traction control restrictions on the amount

of torque that can be applied to the wheels.
4) Series Mode is not used. The engine is off if the clutch

is disengaged.

D. Vehicle Simulation Model

As part of this project, Ford provided an in-house model
used to simulate fuel economy. It is a complex, MAT-
LAB/Simulink based model with a large number of parame-
ters and states [1]. Every individual subsystem in the vehicle
is represented by an appropriate block. For each new vehicle,
subsystems are combined appropriately to yield a complete
system.

This vehicle simulation model contains the baseline con-
troller algorithm. To generate simulation results using this
controller, a target drive cycle is provided to the existing
model with no modifications.

To use the vehicle simulation model with the algorithm
developed here, the SPSDP controller is implemented in
Simulink by interfacing appropriate feedback and command
signals: Battery SOC, Vehicle Speed, Engine State, Gear
Command, etc. The vehicle simulation model can then be
“driven” by the SPSDP controller along a given drive cycle.

III. DRIVABILITY CONSTRAINTS

A. Motivation

Drivability is a rather vague term that covers many as-
pects of vehicle performance including acceleration, engine
noise, braking, shifting activity, shift quality [12], and other
behaviors. All of these contribute to consumer perception
of the vehicle, which is crucial in purchasing decisions.
This research addresses the “basic” drivability issues of gear
selection and when to start or stop the internal combustion
engine.

Current academic work in hybrid vehicle optimization
primarily focuses on fuel economy. These tools are somewhat
less useful to industry because of drivability restrictions in
production vehicles, which fuel-optimal controllers usually
violate. If these fuel-optimal controllers are used, drivability
restrictions are typically imposed as a separate step.

In this paper we investigate the usefulness of optimizing
for fuel economy and drivability simultaneously. By includ-
ing these real-world concerns, one can generate controllers
that improve performance and are one step closer to being di-
rectly implementable in production. Specifically, these results
validate the real-world performance of the SPSDP algorithm
and compare it to an industrial controller.

B. Chosen Penalties

In the context of the overall system, two significant
characteristics that are noticeable to the driver are the basic
behaviors of the transmission and engine. These are included
in both vehicle models presented in Section II. To effec-
tively design controllers, qualitative drivability requirements



must be transformed into quantitative restrictions or metrics.
Drivability experts at Ford Motor Company were consulted
to assist in developing numerical drivability criteria. Two
baseline metrics are used to quantify behavior for a particular
trip. The first is Gear Events, the total number of shift events
on a given trip. The second metric is Engine Events, the total
number of engine start and stop events on a trip.

By definition, engine starts and stops are each counted as
an event. Each shift is counted as a gear event, regardless
of the change in gear number. A 1st − 2nd shift is the
same as a 1st − 3rd shift. In this paper, the transmission
is constrained to one step shifts (i.e. 1st − 2nd) to match
the transmission restrictions of the baseline controller. Gear
shifts that occur while in neutral (clutch disengaged) are not
counted. Engaging or disengaging the clutch is not counted
as a gear event, regardless of the gear before or after the
event.

Despite the relative simplicity of these metrics, simulations
have shown that they capture a wide range of vehicle
behavior and are well correlated with more complicated
metrics.

IV. SHORTEST PATH STOCHASTIC DYNAMIC
PROGRAMMING

A. Cost Function

In order to design a controller with acceptable drivability
characteristics, the optimization goal over a given trip of
length T would ideally be defined as

min
∑T

0 Fuel flow

such that (4)∑T
0 GE ≤ GEmax ,

∑T
0 EE ≤ EEmax

where GE and EE are the number of Gear and Engine
Events respectively, and GEmax and EEmax are the maxi-
mum allowable number of events on a cycle.

This constrained optimization incorporates the two major
areas of concern: fuel economy and drivability. Constraints
of this type cannot be incorporated in the Stochastic Dynamic
Programming algorithm used here because the stochastic na-
ture of the optimization cannot directly predict performance
on a given cycle. Instead, the drivability events are included
as penalties, and the weights are adjusted until the outcome
is acceptable and meets the hard constraints.

Controllers based only on fuel economy and drivability
completely drain the battery as they seek to minimize fuel.
An additional cost is added to ensure that the vehicle is
charge sustaining over the cycle. This SOC-based cost only
occurs during the transition to key-off, so it is represented
as a function φSOC(x) of the state x, which includes SOC.
The performance index for a given drive cycle is

J =
T∑
0

Fuel flow + α

T∑
0

GE + β

T∑
0

EE + φSOC(xT ).

(5)
The search for the weighting factors α and β involves

some trial and error, as the mapping from penalty to outcome

is not known a priori. Note that setting α and β to zero
means solving for optimal fuel economy, subject to a charge
sustaining penalty.

Now, to implement the optimization goal of minimizing
(5), a running cost function is prescribed as a function only
of the state x and control input u at the current time

cfull(x, u) = F (x, u)+αIGE(x, u)+βIEE(x, u)+φSOC(x)
(6)

where the function I(x, u) is the indicator function and
shows when a state and control combination produces a Gear
Event or Engine Event. Fuel use is calculated by F (x, u).
The SOC-based cost φSOC(x) still applies only at key-off,
when the systems transitions to the key-off absorbing state.
Many other vehicle behaviors can be optimally controlled by
adding appropriate functions of the form φ(x, u); a typical
example is limiting SOC deviations during operation to
reduce battery wear.

B. Problem Formulation

To determine the optimal control strategy for this vehicle,
the Shortest Path Stochastic Dynamic Programming (SPSDP)
algorithm is used [6], [14]. This method directly generates
a causal controller; characteristics of the future driving
behavior are specified via a Markov chain rather than exact
future knowledge. The system model is formulated as

xk+1 = f(xk, uk, wk),

where uk is a particular control choice in the set of allowable
controls U , xk is the state, and wk is a random variable aris-
ing from the unknown drive cycle. Given this formulation,
the optimal cost V ∗(x) over an infinite horizon is a function
of the state x and satisfies

V ∗(x) = min
u∈U

Ew[c(x, u) + V ∗(f(x, u, w))], (7)

where c(x, u) is the instantaneous cost as a function of
state and control; (6) is a typical example. The optimal
control u∗ is any control that achieves the minimum cost
V ∗(x). This equation represents a compromise between
minimizing the current cost c(x, u) and the expected future
cost V (f(x, u, w)). Note that the cost V (x) is a function
of the state only. This cost is finite for all x if every point
in the state space has a positive probability of eventually
transitioning to an absorbing state that incurs zero cost from
that time onward.

In order to use this method, the driver demand is modeled
as a Markov chain. This “driver” is assigned two states:
current velocity vk and current acceleration ak, which are
included in the full system state x. A probability distribution
is then assigned to the set of accelerations at the next time
step. This means estimating the function

P (ak+1|vk, ak) (8)

for all states vk, ak. This Markov chain captures the uncer-
tainty in the problem, which is represented in (7) by the



random variable w. The specific realization of w determines
ak+1 in (8),

ak+1 = g(vk, ak, wk) (9)

P (ak+1|vk, ak) = P (w : g(vk, ak, wk) = ak+1). (10)

The transition probabilities (8) are estimated from known
drive cycles that represent typical behavior, dubbed the
“design cycles.” The function g represents system dynamics.
The variables vk, ak, and ak+1 are discretized to form a
grid. For each discrete state [vk, ak] there are a variety of
outcomes ak+1. The probability of each outcome ak+1 is
estimated based on its frequency of occurrence during the
design cycle. See [14] for more detail.

In addition to fuel economy, it is desirable to study the
drivability characteristics of the vehicle. The metrics chosen
are gear shifts and engine events as described in Section III.
To track these metrics, two additional states are required: the
Current Gear (0-6) and Engine State (on or off).

Bringing this all together, the full system state vector
x contains five states: one state for the vehicle (Battery
SOC), two states for the stochastic driver (vk, ak), and
two states to study drivability (Current Gear and Engine
State). This formulation is termed the “SPSDP-Drivability”
controller. A summary of system states is shown in Table
IV. The control u contains the three inputs Engine Torque,
EM1 Torque/Speed, and Transmission Gear, as described in
Section II and Table III.

TABLE IV
VEHICLE MODEL STATES

State Units
Battery Charge (SOC) [0-1]

Vehicle Speed m/s
Current Vehicle Acceleration m/s2

Current Transmission Gear Integer 0-6
Current Engine State On or Off

V. DRIVE CYCLE DATA

A major goal of this paper is to demonstrate the real-world
potential of the proposed SPSDP algorithm. Controller per-
formance is often demonstrated on standard test cycles (FTP,
NEDC, US06) for comparison and relevance to government
certification. A common complaint among customers is that
the fuel economy on the window sticker does not match
the actual fuel economy they get in practice. There are two
potential reasons: either the controllers are tuned primarily
for the test cycles, or real-world driving is fundamentally less
fuel-efficient than the test cycles. The real-world data used in
this paper allows a better evaluation of controller robustness
and performance in the “off-cycle” real world.

The drive cycle data used in this paper was collected by
the University of Michigan Transportation Research Institute
(UMTRI) [5]. The “source” data set supplied to us contains
2500 trips made by 87 drivers. Very short trips (less than 3
minutes or 0.5 km) are ignored. We randomly selected two
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Data, Two Subsets, and Two Government Test Cycles.

sets of 100 drive cycles from this group. They are called
“Ensemble 1” and “Ensemble 2.”

To gain some insight into the statistical nature of drive
cycles, we briefly study the characteristics of the drive cycle
distributions. The cumulative distribution functions (CDF) of
trip distance for the source data and both subsets are shown
in Figure 1. The statistics for the two ensemble sets are a
reasonable match for the source data set.

A second statistic is the CDF of vehicle speed, as shown
in Figure 2. This figure is computed by sampling vehicle
velocity every second for the appropriate sets of trips and
taking the CDF of the distribution. Two standard government
test cycles are also shown, the Federal Test Procedure (FTP)
and the New European Drive Cycle (NEDC). This yields
five total curves in the picture: the Source Data, Ensemble
1, Ensemble 2, FTP, and NEDC.

There are three interesting things to notice in this figure.
The first is that the government test cycles seem funda-



mentally different from the real-world data. The real-world
cycles have substantially higher velocities in general. The
second detail is the step-like nature of the NEDC cycle,
which arises because it is completely contrived. The cycle
is composed of perfect ramps to constant speeds and is
obviously specified by hand. Lastly, Ensemble 2 has lower
velocities than Ensemble 1, which affects the fuel economy
results presented in Section VII.

VI. SIMULATION PROCEDURE

To study the effectiveness of this controller design method-
ology, a large number of controllers are simulated on a
set of real-world driving data as discussed in Section V.
Procedurally, this is conducted as follows:

1) A “family” of controllers is designed according to the
methods of Section IV. A family is generated by fixing
the model driving statistics and most parameters, and
sweeping the 2 drivability penalties.

2) For each controller in the family, the controller is
simulated on each of the 100 cycles in a particular
ensemble using the vehicle simulation model.

3) The results for each ensemble set of 100 cycles are
compiled to generate average or cumulative perfor-
mance for that particular controller.

In the end result, each family of controllers contains a
few hundred individual controllers which have each been
simulated on 100 ensemble cycles. Each controller has
average performance metrics (fuel economy and drivability)
representing cumulative performance on the set of ensemble
cycles. Note that studying 100 controllers on 100 cycles each
means 10,000 simulations.

For additional comparison, controllers are simulated on
a government test cycle, in which case there is only one
simulation per controller.

Several results are presented which compare the SPSDP-
based controllers to a baseline controller developed by Ford
for this prototype vehicle. For proprietary reasons, all fuel
economy numbers are normalized to the baseline Ford con-
troller running the FTP cycle. Both controller design methods
(Ford and SPSDP) use the same vehicle simulation model.

These simulations are all causal, so the final SOC is not
guaranteed to exactly match the starting SOC. This could
yield false fuel economy results, so all fuel economy results
are corrected based on the final SOC of the drive cycle. This
is done by estimating the additional fuel required to charge
the battery to its initial SOC, or the potential fuel savings
shown by a final SOC that is higher than the starting level.
This correction is applied according to

∆Fuel = CBatt∆SOC
BSFCmin

ηRegen
max

(11)

where ∆Fuel is the adjustment to the fuel used, CBatt

is the battery capacity, ∆SOC is the difference between
the starting and ending SOC, BSFCmin is the best Brake
Specific Fuel Consumption for the engine, and ηRegen

max is the
best charging efficiency of the electric system.

0 50 100 150
0

50
100
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Engine EventsGear Events

N
or

m
al

iz
ed

 M
pg

Fig. 3. Typical Simulation Results on FTP of a family of controllers on
a 3-D scatterplot. The SPSDP controller family is shown by small blue
dots. The Ford controller is shown as a large green circle. Fuel economy is
normalized to the Ford controller on FTP for all figures. A response surface
is fitted to raw data like these to generate isoclines of constant gear as in
Figures 4-7.

VII. MAIN RESULTS

The main goal of this research is to use the SPSDP method
to tradeoff fuel economy and drivability requirements by
using a class of optimal controllers, and validate the result
against industrial design methods. The three metrics of in-
terest during vehicle driving are the number of Gear Events,
Engine Events, and the total fuel consumption corrected for
SOC. These metrics yield conflicting goals and there is a
distinct tradeoff among them. To study this tradeoff, several
hundred controllers are designed with varying penalties as-
signed to each Gear Event and Engine Event. This creates
one family of controllers as described in Section VI.

After simulation, the resulting data show the tradeoff
between fuel economy and drivability. The typical result is
a 3-D scatterplot of one family of controllers as shown in
Figure 3. Each point represents a single controller driven
on the cycle in question, FTP in this case. For figures like
this one, the controllers are all driven on the same test
cycle. As mentioned in Section VI, these points could also
represent the average performance on a group of cycles. The
combination of these points form a surface in 3-D space that
shows the tradeoff surface for various operating conditions.
This particular figure shows a family of controllers designed
using FTP statistics running the FTP cycle.

These 3-D plots are difficult to interpret in a single figure,
so the shape of the 3-D surface is presented as lines on a
2-D plot. A response surface is fit to the raw data and used
to generate isoclines of constant gear as shown in Figure
4. This plot shows the performance on the Ensemble 1 set
for one family of SPSDP controllers designed on that same
cycle set. Each line in the plot represents a constant number
of Gear Events, while the horizontal and vertical axes show
the number of Engine Events and normalized fuel economy
respectively. The curves represent a large number of possible
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Fig. 4. Fuel Economy and Drivability Metrics shown as isoclines of
constant gear on the Ensemble 1 cycle set. The SPSDP controller family
is designed on the Ensemble 1 set. This figure is generated by fitting a
response surface to raw data like that shown in Figure 3.

controllers, each with different penalty weights. The Ford
controller performance on Ensemble 1 set is still shown as
a large green circle.

Figure 4 shows a distinct “knee” in the curves at 4000
Engine Events in where the fuel economy flattens out at
its maximum. The fuel economy tradeoff is not as severe
for larger numbers of gear events. The remainder of the
figures in this paper compare several families of controllers,
so only one isocline is drawn for each family. Each line still
represents a portion of a 3-D surface like the one in Figure
3.

Simulations are conducted on FTP again in Figure 5
for SPSDP controller families designed on four different
design cycles. This figure fixes the desired number of gear
events at 100, where the tradeoff between fuel economy and
engine events is not as severe. The controllers based on FTP,
Ensemble 1 and Ensemble 2 show similar performance while
the NEDC-based controllers show a noticeable difference.

To study performance in the real world, the controllers are
tested on the set of ensemble cycles. The fuel economy for
the ensemble cycle sets is calculated using the ratio of the
total fuel used on all cycles and the total distance (sum of all
100 cycles). The fuel use is corrected for final SOC for each
individual cycle, before the summation to yield total fuel.
This result approximates the average consumer fuel economy
over about 1000 miles, or 3 tanks of gas.

Figure 6 shows 5 different controller options running the
Ensemble 1 set. The controllers are the same as those in
Figure 5, just running different cycles. As expected, the
controllers based on the ensemble statistics yield the best
performance. The same controller options are simulated on
the Ensemble 2 set as shown in Figure 7. The relatively
slower driving of Ensemble 2 as shown in Figure 2 yields
slightly improved fuel economy compared to Ensemble 1.

In general, the SPSDP design methods are quite robust
to drive cycle variation. They consistently beat an indus-
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Fig. 5. Fuel Economy and Drivability Metrics on the FTP Cycle for
5 controller options. Controller familes are designed with statistics from
FTP, NEDC, Ensemble 1, and Ensemble 2. All fuel economy figures are
normalized to the Ford Controller performance on FTP, shown as a large
green dot. The controllers are the same as those shown in Figures 6 and 7.

trial controller both on a government test cycle and real-
world cycles. The FTP and ensemble cycles show significant
differences both in terms of fuel economy and the relative
performance of different controllers, confirming the statisti-
cal differences noted in Figure 2. Regardless of the design
statistics used, real-world driving does not approach the fuel
economy on FTP, which has a normalized fuel economy of
1.0.

The Ford controller uses 12,328 Gear Events on the
Ensemble 1 set. These results depend on the exact definitions
used for gear and engine events. In this work, any gear shifts
that occur while the clutch is disengaged (including engine
start and shutdown) are not counted as an event and incur
no cost. The SPSDP-based controllers have this definition in
mind when they are designed, but the Ford controller does
not. The Ford controller uses a shifting strategy that does not
directly account for the metrics used here.

VIII. CONCLUSIONS

The energy management controller for a hybrid vehicle
is a major factor in the vehicle’s overall performance.
This paper studies controllers generated using Shortest Path
Stochastic Dynamic Programming (SPSDP) and evaluates
their performance and robustness on real-world drive cycles
using a highly accurate simulation model. The SPSDP-based
controllers use a statistical description of expected driving
behavior to minimize a cost function that is a weighted
sum of consumed fuel and drivability penalties, such as shift
events and engine on-off events. By varying the weights, a
control designer can systematically trade off fuel economy
and drivability. These tradeoffs are optimal for given driving
statistics. The performance of the SPSDP-based controllers
was compared against an industrial-quality controller pro-
vided by Ford Motor Company that was designed by a team
of engineers over several years.
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Fig. 6. Fuel Economy and Drivability Metrics on the Ensemble 1 set for
the Ford Controller and controller familes are designed with statistics from
FTP, NEDC, Ensemble 1, and Ensemble 2. Fuel Economy, Gear Events,
and Engine Events are cumulative for the whole cycle set, approximately
1000 miles. The controllers are the same as those shown in Figures 5 and
7. Results normalized to the Ford Controller on FTP (Fig. 5).

The SPSDP-based controllers deliver 2-3% performance
improvement over the industrial controller on real world driv-
ing patterns, with even more improvement on a government
test cycle. Moreover, the SPSDP design procedure can be
highly automated. For example, for a fixed vehicle model and
set of drive cycle statistics, one hundred SPSDP controllers
representing various combinations of fuel consumption and
weighted drivability penalties can be designed on the Uni-
versity of Michigan computing grid in four hours.

From an academic standpoint, these results are significant
because they validate SPSDP as a reasonable design method
and by extension lend credibility to other methods in the
literature. Comparisons between industrial and academic
controllers are quite rare. From an industrial perspective, this
method has additional benefits. The speed and ease with
which SPSDP controllers can be designed may result in
significant labor savings, faster overall development time,
or the ability to evaluate more hardware design tradeoffs
in the prototyping phase. With the ability to generate opti-
mal tradeoff curves among competing performance metrics,
such as drivability and fuel economy as studied here, the
manufacturer gains additional insight into the operating point
selection process.

This analysis shows that Shortest Path Stochastic Dynamic
Programming is a viable method for designing real-world
controllers. The controllers can be implemented directly
with little manual adjustment, and generate performance
exceeding the current industrial state of the art.
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