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Some Efficient Algorithms for a Class of 
Abstract Optimization Problems 

Arising in Optimal Control 

Abstract-Three abstract optimization problems are  presented 
along with doubly iterative  algorithms for  their numerical solution. 
These algorithms are generalizations of particular  algoritbms 
described by Barr and  Gilbert [19], [Zl] and Fujisawa and Yasuda 
[22]. The supporting theory is fully developed along with proofs 
of convergence. Practical aspects of computations are considered 
and procedures which insure rapid convergence are discussed. 
Two applications to discrete-time optimal control problems are 
described. 

I. INTRODUCTION 

M ANY  computational  procedures  for  optimal control 
problems  have  appeared in the  literature.  The basic 

methods  employed in these  procedures vary widely. They 
include, for example,  gradient  methods in  function  space 
[l], p2], Neldon-Raphson  techniques [3], [4], nonlinear 
programming [SI, [SI, dynamic  programming [7], 
schemes for iterating  on  boundary conditions [SI, [SI, 
and methods  based  on the convexity of the reachable set 
of system  states [10]-[17]. The emphasis in  this  paper is 
on  extending  the  methods of this  last class,  which  will  be 
referred to  as convexity  methods. 

Nost of the convexity  methods are based on  a general 
idea. which  wa.s described first by  Keustadt [10]-[12] and 
later refined by  Eaton [13]. These  methods  as well as 
others [17] may  appear  to be quite different in  their 
approach but  they  can be  viewed in a common  sett,ing 
[14]. In  particular  they involve  determining the smallest 
real  number w* such that 0 E K(w*) \\+here K(w)  is a 
convex set  in Rn parameterized  by  the real number w .  The 
algorithms  are  iterative  procedures  which  lead  to  a 
monot,onica,lly increasing sequence [ai} such that w i  4 w*. 

The  determination of wk+l from WI; corresponds geometri- 
cally to  determining a support  hyperplane of K ( w k )  which 
separates K ( w ~ )  strictly  from  the origin. An assumption 
essential to  the  determination of this  hyperplane  is that 
K(uk)  be  (in  a local sense) strictly convex.  While the 
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Neustadt procedures are known to converge and  are 
numerically  efficient in  the sense that  they reduce an 
infinite-dimensional problem to a finite-dimensional prob- 
lem,  they  tend  to  have poor  convergence rates unless 
rather complex conditioning  procedures are employed 

More  recently  Barr  and Gilbert, [19)-[21] and  Fujisaws 
and Ya.suda, [ 2 2 ]  have  proposed  doubly iterative proce- 
dures  which also can be shown to involve  parameterized 
convex sets.  These  procedures use a projection algorithm 
[which minimizes 11 x 11 on K(wi)] [23]-[25] a.s a  sub- 
algorithm for determining the  separating  hyperplane. 
These  procedures, while retaining  the  advantages of other 
convexity  methods,  eliminate strict convexity  require- 
ments  and allow for rigorous trea,tment of singular  and 
uncont.rollable problems.  Moreover, if sufEiciently sophis- 
ticated projection algorithms  are employed [al l ,  [26], 
convergence rates a.re rapid  and do not seem to  depend on 
problem conditioning. 

It is the purpose of this paper  to  treat  these  latter pro- 
cedures in a  comprehensive and generalized  framework. 
Three  abstract problems ha.ving wide applica.bility are 
formulated,  and  algorithms for their solution are described 
and shown to converge. The  required  theoretical back- 
ground  material  is  presented  as well as  a modified version 
of Barr’s projection algorithm [Xi] which is a  particularly 
eff ect,ive subalgorit,hm. 

This  paper does not emphasize  applications to a wide 
va.riety of optimal  control  problems.  These  mat.ters m i l l  be 
discussed more f u l l y  in  a  subsequent  paper. If t,he algo- 
rithms  are  to be applied it is essential that schemes for 
evalua,t.ing ”contact  functions” of t,he  reachable set  and 
the  terminal  set  be ava.ilable. This  is generally the case if 
the  equations of motion  are  linear in  statme [‘SI and  the 
initial  and  terminal  sets  are  convex.  Rit.hin  these require- 
ments  on  the  optimal control problem it is possible to 
allow t,reatrnent of both discret.e-time and continuous-time 
equations of motion, nonlinearities with  respect  to  the 
vector control variable, and  very  general  terminal condi- 
tions, indices of performance, and cont.rol const,raints. For 
example,  practical  algorithms for all  the problenzs  con- 
sidered in [10]-[17] may be developed. The basic details 
for two discrete-time control problems are worked out  in 
this paper.  Gilbert  and  Harastg [27] consider a minimum- 
fuel impulsive control problem, and include a  description 
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of the resulting  algorithm  along  with  numerical  results for 
problems of order 6. For problems  where the equa.tions of 
mot,ion are nonlinear  in sta.te, good results  have  been 
obta,ined  by  methods of successive linearization.  This work 
is  still  in  progress  and will be  reported at  a la.t.er date. 

The out.line of t,he paper is as follows: Section I1 con- 
tains some notation  and definitions; Sect,ion I11 reviews 
cont,act and  support  functions  and gives some of their 
properties essential t.0 t.he computing  procedures;  Section 
IV treats  a basic quadratic programnling  problem and  the 
project.ion algorit.hm for it.s solution;  Section V gives some 
required t,echnical results on t.he continuity of parameter- 
ized sets; Sections VI-VI11 present  the  algorit,hm for Dhe 
three  abstract problems; finally, in Section IX applica.tions 
to several discret,e-time opt.inla1 control problems are given. 

A reader int.erest.ed in t.he main ideas and  not  the proofs 
may  jump from the second  paragraph  in  Section 111 to 
Sect,ion VI. If a  concrete  interpretration of t,he abstract 
problems  is desired, they  may be  viewed as minimum-time 
regulat.or problems  where K(w)  is the reachable  set a,nd 
w is time.  Xlternative  int,erpret,ations  may be obtained  by 
reading  Section IX concurrently  with  Section VI. 

11. SOME KOTATION AND DEFINITIOKS 

L e t z  = (xJ,.-.,xn), y = (yl,...,yn),z = (z1,-.-,zn) be 
elements  in the space of real n.-tuples Rn and w E R'. The 
following notation  is  employed: (z,y) = ziyi; !I  x I I = 
( z , ~ ) ~ ; ~ ;  W ( Z ; W )  = ( z : / l  z - z ( 1  < W } , W  > 0, the open 
sphere at z with  radius w ;  L y ( x ; w )  = { z : I I  x - I I j  5 01, 
the corresponding closed sphere; S = { z :  j J z J J = I}, the 
surface of t,he unit sphere Lv(O;l); L(x;y) = (P:Z = x + 
m(y - x), - oc < w < cc },x Z y, the line pa.ssing through 
x and y; Q(z;y) = {z:{z,y) = (x,y)),y # 0, the hyper- 
plane  (dimension - n  - 1) through z with norma1 y. If x = 
Ci=lrn Xiyi where yi E Rn,Xi E R1,Xi 2 0 for i = 1,2, - .,,vt. 

and Ci=lrn X i  = 1, trhen x is mid to be  a  convex  combina- 
tion of the vect,ors gl, * -,ym. 

Now let  X,XI,Xz, - - -,X, be sets  in R", H be an m X n 
matrix,  and f be  a funct,ion mapping R" into Rm. Then 
ax denotes t,he boundary of X; the  set -X  = { z : z  = 
-x,x E X} ; x1 - x2 = { z : z  = x1 - x2,x1 E XlJZ E X,} ; 
Ci=lmXi = ( z : z  = Ci=lmzi,5i E X i } ;  HX = ( z : z  = Hx, 
2 E X} ; f ( X )  = { z : z  = f(z),x X];  H' = the  transpose 
of H .  For arbitrary  sets XI, - .,Xm the  product  set XI X 
XZ X - - - X  X m  = ( z : z  = (x1,z2,---,tm),~i E Xi) .  Thecon- 
vex h.dl  of X ,  writt.en co X, is the  intersection of d l  convex 
sets  which  contain X. By the  Ca,ratheodory  theorem [28], 
[29] it is always possible to writ,e co X = { z : z  = convex 
combination of xl, - - - ,xg;x; E X,i = 1, - - , q }  , where q = 
12 + 1. 

111. CONTACT FUNCTIONS AKD SUPPORT FUNCTIOXS 

In this sect,ion several elementary  results for contact 
and  support  functions of compact  sets in Rn are reviewed. 
The  evaluation of these  functions  is  essential to  the com- 
puting  procedures. 

Consider  a set X C Rn which is compact, but  not 
necessarily convex. The funct,ion hx which maps R" into 
R1 such that 

h ( 7 )  = max (2,~) 
2 5  .x 

is called t.he support function of X. Since X is compact, 
1 1 ~ ( r ] )  is  defined for all r]  E Rn. For each 77 E Rn the  set 
S X ( V )  = ( 2 :  { x ~ v )  = hx(~),z E X)  C Rn is n0nempt.y and 
compact.  Elements of Sx(r]) are called contact points. A 
funct.ion sAy which maps Rn int,o X so that, sx (7) SX (7) 
for all 7 Rn is called a contact function. of X. The t,er- 
minology is suggest.ire, since of all  hyperplanes  with  normal 
r]  # 0 t>hat meet X,Q(x;r]) whe.re z is a  contact  point is 
"farthest"  in t,he direction of 77. If for some r]  E R", & ( v )  
contains  more than one cont.act, point,  more  t,han  one 
contact  function of X exists. In  what follows, t.his possible 
lack of uniqueness  causes no difficulty, and sx will denote 
a specific but  arbitrary element of t,he set of all contact 
functions. 

Clearly ? z . ~ ( r ] )  = { s x ( ~ )  ,v)  a,nd sx is bounded. It also 
follows that for 7 # 0: sx(r]) E S X ( ~ ] )  C ax; XX(r]) = 
S~(wr])  ,w > 0; and Q(sx(~) ;~] )  is  the  support  hyperplane 
of X with  outu-ard  normal 7. 

Renark 1: If X is strictly convex, i.e., Sx(7) conta.ins 
only  one  point for each r]  # 0, then SX( - )  is uniquely 
determined  away  from  the origin. 1\Ioreover, it is known 
[30] that sg (7) is cont,inuous at  all r] # 0 and  grad h~ ( r ] )  = 

SX ( V I .  
In spite of the  fact  t,hat X need not be  convex, the 

following theorem  shows  the close relat,ionship of support 
and  contact funct,ions to convexity. 

Theorenz 1 

Let sx and hx be contact  and  support  functions of X, a 
compact  set  in Rn. Then sx and hx are cont.act and  support 
functions of  co X. 

The  theorem follows directly  from  the known fact [29] 
that hg = h c o ~ .  With respect to  the cont,act  function the 
converse of Theorem 1 is  not  true, i.e., seog is not necessarily 
a. cont.act function of X .  

Theorem 1 is  sometimes useful in developing  formulas 
for t,he e v a h t i o n  of contact funct.ions. For example,  a 
contact  function of a convex polyhedron may be evaluated 
by  evaluating a contact  function of its  set of vertices. 

Since the  support  function of a convex set. is convex 
[28],  [29], Theorem 1 implies that  the  support  function 
of any  compact  set  in Rn is convex.  Another property of 
support functions, which  will  be needed in  the sequel, is 
contained  in  the following t,heorem. 

Theorem 2 

Let X be a  compact  set  in R" such that X C iT(0;r). 
Then  the  support  function hx is Lipschitz continuo- on 
Rn with Idpschitz constant P, i.e., I l z X ( 7 )  - l z x ( ~ )  I 5 
r 1 1  r]  - v 1 1  for all 7 and v in R". 
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Proof: Let sx be a  contact  function of X a.nd observe The  constraint  set K in  this  quadratic  programming 
that problem,  in contrast  to  the  qua.dratic programming  prob- 

l e m  usually treated  in  the  literature [31]-[33], need not 
- hx(v )  = - 1 ' )  f (a )  ,v - ') be  by set of functional inequalities. To 

I (sx(11),17 - .> 5 I! sx(rl) 1 ; - I I  rl - v II 
I r1jv - v l l .  

The first inequality follows from the  fact  that 

(x - S ~ ( Y ) , Y )  I 0, for all z E X. 

Reversing the role of q and v completes the proof. 
Remark 2: If X C Rn is compact, it follows directly that 

hx is Lipschitz continuous  on S. 
mhen a  set  is cha.racterized in  certain special ways it is 

possible to utilize the  characterization in the  evaluation 
of the  contact  and  support  functions. As \vi11 be seen, the 
characterizations  considered  in  the  folloning  theorem dl 
have  applications in  the numerical solution of control 
problems. 

Theorem 3 

Assume that X,X1,. . ,XAr  are  compact  sets in Rn a.nd 
that Y = Yl x - X YN where Yr, i = 1,. - , X ,  are com- 
pact  sets  in Rni and ?I = Ci=lN ?xi. Let 2 = Xi ,  
W = Uj=l~v X; ,  and  let H denote an arbitrary m X n 

develop an efficient computational  algorithm  it is required 
only tha.t t,here be  a  known cont.act funct,ion SK of K. This 
requirement  is  satisfed for many  optimal control applica- 
tions (for examples see Section IX a.nd [%I). 

Since K is  compact  and I I z 1 1  is  continuous,  a solution 
z* exists. Moreover l35], the following holds. 

Remark 3: z* is unique; I I z* I I = 0, if and only if 0 E K ;  
for 1 1  I* 1 1  > 0, z* E dK; for 1 1  z* 1 1  > 0 , z  = z*,if andonly 
if x E S K ( - z ) .  

Gilbert [25] describes an a.lgorithm (based on s K ) ,  for 
solving BP, which is of the  Frank  and  Rolfe [31] type. 
When K is a  convex  polyhedron this  algorithm is 1cnon-n 
[%I, [34] to yield very slow convergence (essentially 
I I zk l 2  - I I z* 1 l 2  decreases as k-l for large k )  . When K is 
not  a convex polyhedron,  convergence  may be much faster 
[25], e.g., geometric.  Still,  poor  conditioning of dK in  the 
neighborhood of z* ma.y lead to poor  performance [25], 
[26]. An extension of Gilbert's  procedure, which in certa,in 
forms yields much  more  rapid  convergence,  is the following 
one  due to Ba,rr [30], [all,  [26]. 

Algorithm BP1 
matrix.  Then Let SE ( * )  be an  arbitrary  contact  function of K ,  choose 

The  results of this  theorem  are  straightforward con- 
sequences of the definitions of the  contact  functions  and 
support funct.ions of the  sets involved. When  a  set  is 
characterized as an intersection of compact sets, simple 
formulas like those of Theorem 3 cannot  in  general  be 
obtained. 

IV. BASIC PROBLEM 

The computing  procedures to be developed in the 
sequel  involve on each iteration  an  approximate numerical 
solution of the follo-cving basic problem. 

Basic Problem (BP)  

Given: K a compact,  convex  set  in R n .  Find: a point 
z* E K such that 

a positive integer p ,  and  take x,, E K.  Then  a sequence of 
vectors { z ~ l ] ,  k = 0,1,2, - a ,  is  generated  as follows. 

Step 1 : Select any p vectors y1 ( k )  ,y2 ( k )  , . ,yp(k) in K 
and let  

HI, = Co { y l ( k ) , y z ( k ) , . . . , y p ( k ) , s ~ ( - z ~ ~ ) , 8 , : 1  . 
Step 2 :  Find z ~ + 1  E H;; such that 

I I Zg+1 112 = min 11 z 112. 

Z E  Hk 

Increment k by  one a.nd return  to  Step 1. 
Note  that  the qua.dratic  programming  problem in  Step 2 

is  much  simpler than BP because the  constraint  set HI, is 
the convex h d  of p + 2 known points.  The  problem  can 
be solved  by standard quadra.t.ic programming  techniques 
as is illustrated  by t,he following. Let SK ( -zk) = yfil(k), 
x;: = yp+?(k), and  the ( p  + 2) X ( p  + 2) symmetric 
matrix D = [dij] where dij = {yi(k),yj(k)). Each z E HI,  
has  the  representation 

P+2 

z = X ~ y i ( k )  
i=l 

where 
P ; 2  
cxi= 1, 3320, ( i =  1,2 , . . . ,? ,+2)  . 
b l  

Thus if X = (X~,Z', * *,zP+~), 
p t 2  P+2 

J J  2 JI2 = C X % { y i ( k ) , y j ( k ) )  = @,DX). (1) 
i=l j=1 
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Defining 
p t 2  

X =  ( z : C z i = l ,  ~ ' 2 0 ,  ( i=1 ,2 , . . . ,~+2)1CRp+2 
k l  

( 2 )  

it follows from (1) that  minimbation of 1 1  z I ]*  on H k  is 
equivalent to minimization of (z ,Dz)  on X .  Standard 
quadratic programming  techniques [X], [33] can  be 
applied to the  latter minimization  problem to yield a 
solution z* and  then 

P+2 

z k + l  = X*$(k). (3) 
i=l 

Barr [26] has shown that for k 2 0 a,nd k + rn : 2:; E K ;  
1 1  2:; : I  2 :I ZJ:+I 1 1 ,  XB I j  + 1 1  z* I / ,  and / I  zk I /  = 1 1  zk+l I [  
implies z k  = z*;  2:; + x * .  In  addit,ion, error  bounds  on 
I I z k  - z* [ I  and I I 21; 1 1  - 1 ;  x* [ I  are  amilable as the com- 
putation proceeds. For rapid  convergence it is essential 
t,o select the  points yl (k) , - - ,yp  ( k )  so that 8HI; will  closely 
approximate dK in 6he vicinity of zb+l. This  requires that 
p 2 n and  that  the  points be in  the  vicinity of x* (when 
z* E dK)  . One  procedure \r.hich works well is the following 
special case of Algorithm  BP1,  which  is  a  modification of 
select,ion rule C in [as]. In  [35] this  algorithm  is discussed 
for K a convex polyhedron. 

Algor i t fm BP2 

Let s K (  - ) be an  a.rbitrary  contact  function of K ,  choose 
a positive integer p 2 n, select nonzero 71, - * , q p  E R", 
andta.ltezo E GO I~~(ql),~K(q~),...,~~(q~)].Thengenerate 
{ z ~ + ~ } ,  k = 0,1,2,..., as follows. 

Siep 1: If k = 0, set yi(k) = s K ( q ; )  for i = 1,5,...,p . 
If k > 0, express zk as a convex combination 

P 
Xiyi(k - 1) + Xp+ISK ( -zJ;-l) 

k l  

such that  at  most p scalars  from (XI ,XZ,-  - -,&11 are 
greater  tha,n 0; now let ql,q?,- --,vp;l be the  elements  in 
Rn which  generated  the  contact  points yl(k - 11,. -., 
y p ( k  - I) ,  s ~ ( - z ~ - ~ ) ,  respectively [i.e., yi(k - 1) = 

sK(q i ) ,  i = 1,2,. - - , p ,  and qp+l = -2~s-11; considering  only 
those  conta.ct  points  corresponding to Xi = 0, reject  one 
contact  point for which - 1 1  qi I [ - l f z ~ ( q i )  is a minimum; 
set  the remaining p cont,act points  equal to y~ ( k )  , * ,yp (k) . 
Thus,  by rela.belling the hi and vi, ZJ; = ci=lp Xiyi(k) 
where Ci=p hi  = 1, hi 2 0, and y;(k) = ~ ~ ( q i ) ,  i = 

1,2,--  - , p .  
S tep 2 :  Let 8:; = co { ~ l ( k ) , y 2 ( k ) , . . . , y P ( k ) , s ~ ( - z ~ ~ ) j  . 

Find zk+1 E Bk such that 

of at most p points  from {yl(k - l ) , - . . ,y , (k  - l),  
s K (  -zkPl) 1. This expression will be readily available on 
each iteration if the  quadra.tic  programming  technique 
used for Step 8 yields a solution 

[cf. (3)]  in which x* has a maximum  number of zero 
elemenk. 

Since in  Step 2 of -4lgorit.hm BPI? zh co ( y l ( k ) , -  - a ,  

y p ( k )  1 ,  for all k = 0,1,2, - - -, it follows that Rk in Algo- 
rithm  BP2 equals HI; in Algorithm  BP1. The use of Bk 
reduces by one the dimensionality of the  quadratic pro- 
gramming  problem in  Step 2 .  

I n  Gilbert's a.lgorithm and  other versions of BPI,  & may 
be the convex  combination of a.s many as k c o n k t  points. 
An important  advantage of Algorithm BP2 is t,hat for all k ,  
zk is a known convex combinat.ion of only p contact  points 
of K (see end of Step 1). That is, vectors ql, - e  - ,qp  are 
known  such that 

Increase k by  one and  return  to  Step 1. 
Algorithm BP2  is a specific realization of Algorithm  BP1, 

and  therefore  the  convergence  results  quoted  above also 
apply  here.  The  requirement p 2 n guarantees  the exist- 
ence of the convex  combinat.ion  expression  for zk in t e r m  

where Xi,, Xi = 1, X i  2 0. 
Barr [a61 gives data which indicate that { zk 1 generat,ed 

by A41gorithm BP2 wit.h p = converges  rapidly to z* 
regardless of the  curvature of dK a t  z*. Roughly  speaking, 
the  rate of decrease of 21; 1 1  - 1 1  x* 1 1  is dependent  on n 
alone. The  number of iterations  per decade of decrease, 
aft.er a few init,ial iterations, is approximately 2 for n = 2, 
4 for 11 = 3, 6 for n = 4, 9 for n = 5, and 13 for n = 6. 
This reference also shows that in some cases convergence 
is faster.  For example,  when the range of sK is a finite set 
of points, the sequence { z ~ ; }  generated  by  Algorithm  BP8 
converges in  a finite number of iterations.  Such a. situat.ion 
may a.rise when K is a convex polyhedron (see CP1  in 
Section IX). Taliing p > 72 does  not  seem to offer any 
advantage [26]. 

V. PARAMETERIZED SETS 

The  abst,ract  optimization problem? of the next section 
involve sets which  depend on a. parameter. Conditions for 
t,he continuity of t.hese paramet,erized sets,  and  the relac 
t.ionship to  the  support  function  and  certain  distance 
functions,  are  important  in  the sequel and  are developed 
here. 

Consider first t,he follouing definitions: 

r ( z , X )  = min [ j  z - y 1 1 ,  z E Rn, X C R"iscompact 
YEx 

dl = max T ( x , X ~ )  
zE x1 
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and compact. Then K ( . ) is continuous a t  w Q, if for any 
E > 0, there exists ~ ( E , w )  > 0 such tha,t d ( K ( w ) $ ( W ) )  < E 

when 1 w - (s I < 6 ( E , w ) ,  W E Q. Also, K (  .) is cont,inuous 
on Q if it is continuous for all w Q; K (  e) is uniformly 
continuous  on D if ~ ( E , w )  is  independent. of W ;  K (  . ) is 
Lipschitz continuous  on 0 if there exists CY > 0 such  t.hat 
d(K(w) ,K(W))  < cr J w - (3 1, for all w,W E 9. 

Let h(w,q) = h ~ ( ~ ) ( q )  and s(w,q)  = S K ( ~ ~ ( ~ )  denote 
support and contact  functions of K(w)  . Kote that h ( w , q )  
a.nd s(w,q)  are defined on Q X Rn. 

Theorem 2 shows that for fixed w E 9, k ( w ,  * ) is Lipschitz 
continuous on Rn or on S (Remark 2 ) .  Specifically, if 
K(w)  C S ( O ; r ) ,  r > 0, for all w f 9, then 

] h(w,q) - h ( ~ , i )  i 5 T I /  q - f 1 1 ,  for allq, i E X. (7) 

The following theorem concerns the continuitmy of h ( -,g) 

for k e d  7 E S. 

Theorem 4 

Let K(w)  be a nonempty,  compact convex set, in R'l 
defined for  each w = [ w L , w t ~ ] .  I<( - )  is  continuous on 
s2 if and only if h( * ,q)  is continuous on 8 for  every fixed 
q E s. 

Proof: First assume I<( .) is continuous on 9. Let q be 
an  arbitrary element of S and w,W be arbitraq? element,s of 
8. From (6) d(K(w) ,K(W))  < E implies K(w)  C K(W) + 
N(O;E)  and K(W) C K(w)  + N ( O ; E ) .  These  results yield 
h(w,q)  < h(W,q) + eandh(W,q) < h.(w,q) + e. Fromthese 
inequalities and  the  continuity of K (  a )  

I h ( w , q ) - h ( W , q ) I < ~ ,  f o r a l l & E a ,  ( w - W , ( < t i ( e , w ) .  

(8) 
Thus  the continuity of h ( ,q) on D is established. Kote  that 
the continuity is uniform vi th  respect to 7. Bemuse Q is 
compact it follows [36] that h (. ,T)  is uniformly  continuous 
on Q. 

Kow assume h( .,q) is continuous  on Q for each &xed 
q E S; Le., for  any E > 0, there exists z ( ~ , w , q )  > 0, such 
that I h,(u,q) - h (0,~) I < e when w,i j  E 8, 1 w - ij I < 
6 ( ~ , ~ , q ) .  From (7) and  the  triangle  inequality it. follo\ys 
that 

* 

I h(W,i) - h,(w,q) I < e, W E 9, i E S 

I w - W I < z ( E / 2 ) W , 1 ] ) ,  I( 7 - ?j 1 1  < €121'. (9) 

Thus h( -, 0 )  is continuous on D X S. RIoreover, i t  is 
uniformly continuous on D X S beca.use 0 X S is compact. 
Thus given E > 0 there exists &(e) > 0 such t>hat 

I h(G,f) - k(o,q) I < E ,  w,W E 0 

?I,fES, I w - W ) + I I 7 - i j l I < 6 ( E ) .  (10) 

Suppose that K ( -) is not continuous on 0. It will now be 
shown that  this  leads to  a contradiction. Since K (  a )  is not 

no  nlatt.er what. the choice of a. Kow consider the  set 
6 = {G:d(K(W) ,K(w))  2 e, W # w ,  W E Q ) .  There exists an 
(infinite) sequence ( w i t  contained in fi such tha.t w i  + w.  
If this were not  true  there would exist ci, 0 < 6., such  tha.t 
{ W:O < I w - W 1 < ii, W f Q] C 6. But t.his x-ould imply 
d ( K ( w ) , K ( W ) )  < e for all I w - 0 I < 6, W E S2, which 
contmdicts  (11).  Thus for the sequence ( w i ) ,  d ( K ( w i ) ,  
K ( w ) )  2 E .  This result  leads  directly to  the desired con- 
tradict,ion. It implies either one or  both of the following 
results [see (6) ] : 1) there exists xi f K(wi)  such that 
~(rc i ,K(w) )  2 e ;  '3) there exists xi f K ( w )  such that 
r ( x i , K ( w i ) )  2 E. For result 1) let. si denote t.he point in 
I<(w) which is closest to xi. Then 1 1  x i  - si 1 ;  3 E .  It 
follows from the convexity of K ( w )  that if 

v i  = Ii xi - si  ([- '(xi  - si) 

then qi E S and qi is an (out-mrd)  normal to a support 
hyperplane of K(w)  passing through si .  Thus 

- h ( w , q i )  + h ( w i , q i )  = - (Si,si) + max (qi,z) 
I€ R(Wi) 

2 - (qilsi) + (%,Xi) = [ I  xi - si [I 2 E .  (12) 

Using 2 )  and a  similar  argument, h(w ,v i )  - h(wi ,qi)  2 E. 
Thus for any w i  there exists gi  such  t.hat 

I j i ( ~ , ~ i )  - k ( w i , 7 i )  I 1 E. 

Since (w i ,g i )  C2 X S and i2 X S is  compact, there exists 
a  convergent subsequence { (c&,fji) 1 such that Oi --f w ,  
t i  + 7, a.nd 1 h ( q f j i )  - h(&l$i) 1 2 E .  But  this  contradicts 
(10) and conlpletes the proof. 

Theorem 5 

Let I<(w) be defined as in Theorem 4. K ( 8 )  is Lipschitz 
continuous on D if and only if h ( - ,q) is Lipschitz continuous 
on a for  every fixed g E S. 

The proof is omitted since the arguments  are similar to  
those used in  the proof of Theorem 4. 

Renzadc 4: From  the proof of the t.heorems it is clear 
that if K(w)  C Rn is nonempty,  compact,  and convex on 
fl, the following conditions are  equiwlent: 1) K (  e )  con- 
tinuous  (Llpschitz  continuous) on 9;  2 )  h ( .,q) continuous 
(Lipschitz  continuous)  on fl for any q E S ;  3) h ( -, e )  

cont.inuous (Lipschitz  continuous) on fl X S. 
In  certain  computational  situations it is necessary to 

work n-ith sets K ( w )  which are not, convex. Then  the 
follon-ing theorem  is useful. 

Theorem 6 

Let K(w) be a  nonempty,  compact  set in Rn defined for 
each w E D and  let K ( w )  = coK(w).  Then if K ( . )  is 
continuous  (Lipschitz  continuous) on Q) X( e) is con- 
tinuous  (Lipschitz  continuous) on 9. 
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Prooj: Let h ( w , g )  denote  the  support  function of the 
compact  set ( w )  . Using  arguments similar to those  in  the 
proofs of Theorems 4 a.nd 5, it is clear that  continuity 
(Lipschitz  continuity) of K (  a )  implies continuity  (Lip- 
schitz continuity) of h.( .,?), for all 9 f S. Theorem 1 
implies that h(w ,q )  = h(w,q) , the  support  function of 
R ( w ) .  This  fact  together  with  Theorems 4 and 5 gives the 
desired result. 

Now consider K (0) , a  nonempty,  compact, convex set 
in Rn defined for each w E a, and define 

= min II I I  (13) 
zE K(w) 

{ ( w )  = z E K ( w ) ,  suchthat [ I  z I[ = p ( w )  (14) 

P ( w , q )  = { Z  E Rn: (z,?) = k ( w , q )  1, q # 0. (15) 

Clearly p maps Q into R1 and p maps Q into Rn. Moreover, 
P(w,v) is the  support  hyperplane of K(w)  with  outward 
normal q .  Thus  by  Remark 3, p ( w )  = 0 if and only if 
O E K ( w ) ;  for p ( w )  > 0, { ( w )  f aK(w) ;  for p ( w )  > 0, 
z = { ( w )  ifandonlyifz f P ( w , - z )  nK(w)  = S R ( ~ ) ( - ~ ) .  
Furthermore,  straightforward  a.rguments [20] show that 
the following result holds. 

Theorem 7 
Let K(w)  be a nonempty,  compact,  convex  set in R" 

defined for each w E Q. If R( a) is continuous  (Lipschitz 
continuous) on Q, then p (  .) is continuous  (Lipschitz 
continuous)  on Q. 

VI. ABSTRACT  PROBLEM 1 

In  this section the first of three  abstract problems which 
ha,ve application to wide classes of optimimtion problems 
is  presented. An algorithm for solving the problem  is 
described and conditions for convergence are given. 

The first abstract problem is the following. 

Abstract  Problem 1 (AP1) 

Given: = [ w L , w ~ ] ,  W L  < wU, a compact  interval  in R1; 
K(w)  a nonempty set in Rn defined for  each w E 0 and 
satisfying  assumptions 

A l :  K(w)  compact for each w E 0, 
A2 : K(w)  convex for  each w E 9, 
A3: K (  -) Lipschitz continuous  on 8. 

Find : 
- - min w .  

,€Q,OE K W )  

A solution w* of AP1 may or may  not exist since 0 4 
K(w) ,  for all w E 9, is a. possibility. If 0 E K ( o ) ,  for some 
w E 9, then A1 a,nd A3 imply that w* does exist, i.e., 
0 E K(w*), and 0 4 K ( o ) ,  for all w < w*,w E 9. Moreover 
if o* # uL, 0 E aK(w*). 

In  ma,ny applications of AP1 a contact  function s(w,q) 
of K ( w )  provides t.he only  means of computing  points  in 
K(w) .  Thus  an itera.t,iI-e met.hod must  be  employed, which 
usually means that  an exa,ct solution w* with 0 f K(w*) 
ca.nnot be obt,a.ined. The goal is to find an e-a.pproxima.te 

Fig. 1. Geometric interpretation of Algorithm BPI. 

solution of API: a  pair ( ~ + , z + )  in Q x Rn such that 
w+ 5 w*, z+ E K(w+), a.nd I [  z+ 1 1  < E .  

It should  be  emphasized that if e > 0 is small, this does 
not necessarily imply  tha.t W* - w+ is small. In  most 
applications if w8 - W+ is  large, this mould represent  a 
desirable tradeoff in  the "accuracy" of satisfying 0 E K(w)  
and minimizing w.  

The basic idea of the  algorithm for solving AP1 is indi- 
cated  geometrically in Fig. 1. Suppose 0 4 K(w)  for 
w L  5 w 5 wg; and  it is desired to obtain wk+ l  such that 
wk < O k + l  5 w* and 0 6 K(w)  for wL 5 w < WL+I. The 
first step  is to apply a projection  algorithm  such  as BP2 
to  the minimization of I I x I j on K(wa).  When  a sufficiently 
good approximation to this  subproblem  is  obtained,  say 
zx-, the  hyperplane P ( w k ,  - a ; ) ,  which is  the  support  hyper- 
plane of K ( w k )  having  outward  normal -zk, strictly 
separates K ( w k )  from t.he origin. Thus if w is allowed to 
increase until P(w,-zk) just  touches  the origin, w = 
wk+l > w k .  Clearly u ~ + ~  5 w* because P ( w , - z k )  strictly 
separates K(w)  from the origin for wk 5 w < wk+l. The 
algorithm  obtained  by  repeating  this  process  is  doubly 
iterative,  the  inner loop  involving  a  projection algorit,hm 
such as described in Section ITT and  the  outer loop  pro- 
ducing an increasing sequence ( w k ) ,  which n4l be shown 
to converge  upwards to a*. 

Before  giving the  details of the  algorithm  and  proving 
convergence, some additional  facts  and  notation  are  needed. 
Let w be an element of 9 and s(w,  a )  a specific contact 
funct,ion of K(w)  . Comider 

y(w,ll) = II 9 l l-Y-h(~,-9)),  /L(U,-?) < @ 

= 0, h(w,-?) 2 0. (16) 

Thus y (a, .) is a function  defined  on Rn. Geometrically, 
for w f 9, w < w*, z E K ( w ) ,  the  point y (a , z )z  is  either the 
point L(0;z) n P(w,-z )  or  the origin, depending on 
whether  or  not L(0;z) n P(w, -2) is  on  the line segment 
connecting z and  the origin. This along with  the  functions 
introduced  in (13) and (14) is  shown  in Fig. 2 .  Notice that 
y(w,z)  > 0 implies P ( w , - z )  strictly  separates K(w)  from 
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Fig. 2. Geometric  interpret.ation of functional  notation used 
in -4lgorithm APl .  

the origin. The following theorem  summarizes some 
required  properties of these  functions. 

Theorem 8 

Let, K (  .) satisfy  assumptions A1 a.nd A2. For w f a 
let y(w,  .) be defined by (16) and  let h ( w , . )  denote  the 
support function of K ( w ) .  Then: 1) 0 5 y(w,z) 5 1, z E 
K ( w )  ; 3) (w*,z) = 0, z E I<(w*) ; 3) for w < w*, y (w,z) = 
1 if and only if z = { ( w ) ;  4) for w < W* and x f K ( w ) ,  
I I z  ( 1  y(w,z) 5 p ( w ) ; 5 )  i f w  < w * , z  f K(w),andr(w,z) > 
0, then h ( w ,  -2) = - 1 1  z II2y(w,a) < 0 ;  6) h(w*,q) 2 0, 
?I E R". 

The results of the theorem are geometrically obvious 
a.nd can be proved by modifying arguments used in [%I 
and [26]. 

Remark 5: Given w 6 Q,w 5 w*, Gilbert's algorithm and 
Algorithms BP1  and BP2 generate sequences [ z i ]  such 
that. for i 2 0 and i+ a: 1) zi f K ( w ) ;  2) 1 )  zi I /  2 
1 1  zi+l i l ,  I! zi 1 1  3 1 1  I ( w )  1 1 ,  and I( zi I (  = l i  zi+l ! I  implies 
xi = { ( w ) ;  3) z i + . t ( w ) ;  4) I1 z; I /  y(w,z;> - t p ( w ) ;  5) if 
w < w8,  y(w,z i )  -+ 1. These  results  are  proved  in [25] 
and [?SI. 

Now it is possible t o  consider the procedure for finding 
a.n approximate solut,ion of Ml. 

Algorithm AP1 

Assume 0 E K(w) for some w E 3. L,et E > 0 be given, 
select. 0, 0 < 0 < 1, and  set wo = wL, k = 0. 

Step 1: Let, WI; be such that W L  I w g  I w*. Apply  a pro- 
jection algorit.hm to  the minimization of 1 1  z 1 1  on K ( w g ) .  
At each iteration  determine i I z ~1 and y (wh-,z) . If 1 z I !  I e 
or y (wk,z) 2 0, end  iterations  and  set z = z g .  If 1 1  z 1 1  5 E ,  

the desired result is obtained: (w+,.+) = (wg,z/t).  If [ 1 z I [  > 
e, go to St.ep 2. [Observe that if wk = w* St.ep 2 will not 
be  entered because y (w*,z) = 0, for all z E K(w*) .] 

Step 2: Since y(wk,zg) > 0, it follows from  Theorem 8, 
A3, and  Theorem 4 that there exists w1;+1 E D such that 

> we, h ( ~ r ; + ~ ,  - -a )  = 0, and h ( q - 2 1 ; )  < 0, for w g  5 
w < wl~+l. (Observe 0 3 K(w)  for wL 5 w < W I ; + ~ . )  Deter- 
mine wg+l by a. root finding procedure applied to h (w,  - a )  = 
0. Increase k by one and  return  to  Step 1. 

This  algorithm clearly generates sequences { wI; 1 and { z k }  

where w g  E Q, W L  w g  5 w*, and z g  E K ( w ~ ) .  The follow- 
ing theorem describes more fully the behavior of these 
approximating sequences. 

Tl~eorem 9 

Let K (  a )  &sf>- assumptions Al,  A2, and A3, let a* 
defined in AP1 exist, let, s (w,  .) be an  arbitrary  contact 
function of K ( w ) ,  and consider Algorithm AP1. Then: 1) 
for any e > 0 t.here exists an integer 5 = i(t) 2 0 such 
that / I  z i  ( 1  5 E, 5 w*, z i  f K(wr) ,  and if f > 0, wo < 
w l < . . . < w ~ a n d I ! ~ , 5 I ( > ~ , f o r J i = O , l , . . . , i - l ; 2 ) a . s  
E -+ 0, mi(.) + w* and zi(.j -+ 0. 

f ioof :  If w* = wL, t.hen 6 = 0 and  the proof follows 
trivially  from  Remark 5. Consider w* > wL. If for  some 
finite k ,  WI; = w*, then k = & and again the proof follows 
trivially from Remark 5 .  Kow assume wL 5 wB < W* for 
all k 2 0; Le., wL+l > we for all k 2 0. 

Define 

ZE IJ K:w) 
W L S W < W '  

W,z>Wb 

Not,ing that h(w,-z / JJ  z i i )  = (l/i\ z [ \ ) h ( w , - - z ) , z  f 0, 
the existence of F follows from A3 and  Theorem 5. Since 
h(wo,-zo)  < 0 and h(wl , - zo )  = 0, B > 0. Thus (17) 
implies 

wg+l - wI; 2 [ i / (z  ( 1  zk I i ) ] [ h ( w I : + l ? - ~ p )  - ~ ( u ~ , - z ~ ) ]  

= (l/F) 1 ;  zI; ! I  y (w::,zk) 

2 (11s) 1 ,  zk 1 1  e. (18) 

Part, 1) of t,he theorem  can fail only if for all k 2 0, a )  
< L V ~  ( L ' ~ + ~  < w* and b) zg I [  > e .  But  a) implies w/t-+W _< 

W* and wg+l - wg -+ 0 which by  (18) yields 1 ;  zg I I -+ 0. This 
contradicts  b)  and proves 1). Jloreover, by (13) I I z i ( E )  I I 2 
p ( w ~ ( ~ ) )  and  thus p ( ~ d ( ~ , )  4 0 as E -+ 0. This,  Theorem 7, 
p ( w )  > 0 forwL 5 OJ < a*, and p ( w * )  = 0 imply wk(.> --f w* 
as E + 0, which completes t,he proof of '2). 

Remark 6-Relaxation of A 1 : The boundedncss  require- 
ment  on K ( w )  is considered in  the next, sect,ion. If K ( w )  
is bounded but  not closed, Algorithm AP1 can  be a.pplied 
by replacing K ( w )  by its closure I? (w) . Let  contact a.nd 
support  functions of I?, 3 and E,  be defined, and  let 
satisfy Al .  If K has  a  contact funct.ion s and a. support 
function h it is possible to  set g = s and h = 11.. An E -  

approximate  solution  for AP1 uith I? is  often an accept- 
able approximate  solution for BPI n-ith K.  An application 
of this idea is where i t  is difficult or impossible to  prove 
that, I< is closed and  yet it is feasible to det,ermine s and h. 

Rema.rli 'i-Relmation of A.2: Even if K ( w )  is not convex, 
functions s a.nd h exist so that  the  steps of the  algorithm 
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may  be followed. If this is  done it is clear form  Theorem 1 
that zk E R ( w k )  n-here I I (w)  = co K ( o ) .  Moreover wk + 
3 where &* is t.he smallest w E Q such that 0 E R ( w ) .  

Clearly W* 5 a*. If an *approximate  solution for R ,  
(W+$+), is obtained  such that Z+ E K(&+),  then  this e- 

approximatme  solution  is also an e-a.pproxima,te solution  for 
the nonconvex problem involving K .  There  are applications 
where this  circumstance occurs. If it does not occur 
(W+,Z+) may still lead to  an acceptable  solution of the non- 
convex problem (see  Section IX) . 

Remark 8-Relaxation of &43: In  all applica.tions whic.h 
ha.ve been considered by t,he authors, A3 is sat.isfied. 
Actually  Theorem 9  is  true under weaker smoothness 
condit.ions, e.g., that 

for all wa, W b  t Q, W ,  > O b ,  q E S. By  argument.s  similar 
to those used in  the proof of Theorem 4 this condit,ion also 
implies  t,hat K ( w )  is upper semi-continuous mit.h respect 
to inclusion. This  guarantees  t.hat  the  abstract. problem 
has a  solution if 0 f K(w)  for some w E Q. 

Remark 9 : It is assumed in  the st,a.t,ement of the algorithm 
that 0 K ( w )  for some w 9. In  applications this fa.ct 
may  be difficult or impossible to verify a  priori. Suppose 
t,he  algorithm  is  applied and 0 4 K ( w )  for all w E 9. By 
considering the  steps  in  the proof of Theorem 9 it follows 
&at  for e sufficient.1y small there  is  an int,eger k such t,hat 
k ( w , - z ; )  < 0 for wo 5 w 5 w ~ .  Thus  in  Step 2 it is 
impossible to  deternine wk+l when k = f .  Hence the fa.ilure 
of the algorit.hm t,o continue implies that APl does not 
have a solut,ion. PITote t,hat  APl may have an E-a,pproximate 
solution  even when it does not have  a  solution. Thus if the 
algorit,hm  stops in  the normal way this does not imply that 
APl has  a  solution. 

Remark 10: Suppose Algorithm BP2 is used in Algorithm 
,W1.  Each t,ime Algorithm  AP1 returns t o  Step 1, Mgo- 
rit.hm BP2 is a.pplied to a new BP [minimize !I z I I on 
K ( w e )  rather  than on K(UJ: -~ ) ] .  Initialization of Algo- 
rithm BP2 requires the  stipulation of 91,- . ,vp,  and if 
these  directions are chosen so t,hat SK (or-) (VI) ,  - - - , s K ( ~ ~ )  ( q p )  
are  boundary  points of K ( m )  “near” {(wk), i t  would be 
expected that zk 2 { ( w k )  would be obtained  in  a  small 
number of iterations of Algorithm BP2. Fortuna,t,ely a 
natural good  choice for 71, - - -,vp is availa.ble. On the 
previous  application of Algorit.hm BP2 Ct.0 K ( w k - 1 ) ] ,  Algo- 
rithm  BP2  ends ni th  directions ql, - - , qp  such  t.hat zk-1 = xi=,” x ~ s ~ ( ~ ~ - , ) ( ~ ~ ) !  Xi = 1, x i  2 0, i = l , . - . , p  [see 
(4)]. The directions ql, - - - , q p  are “good” directions  for 
K(wkPl ) .  Since K(wk) and K(w-1) are  not  apt  to differ 
grea.tly, these  directions should also be “good” initializing 
directions for Algorithm BP2 applied t.0 K ( w k ) .  That this 
is indeed t.he case has been confirmed in numerical experi- 
ments [37]. 

Remark 11: For the  determination of wk+1 in  Step 2 of 
Algorithm AP1 i t  is necessary to require Ohat 

h(wk+l,-zk) = 0. 

Sometimes this equat,ion  can be solved analytically (see 
t.he examples in Section IX) .  If it is necessary to use a 
root finding procedure, it would be highly desirable to relax 
t,he requirement h (wkil, - zk) = 0. This  can be done  in the 
following way. Let, 0 < Q < 1 and assume W I ; + ~  is selected 
so that k ( w ,  -zJ:) < 0 forwk 5 w < wL.+l and h(w;:+l,-z~.)  2 
+h(wk, -zk). Then  (18) is repheed by 

and  the results of Theorem 9 a.re unchanged. 
If the  determination of Wk+l is to be made by  evaluating 

h (w, -zk) on  a  grid of points for wk 5 w, it is necessary to  
take  the spacing of grid  points, Awl sufficiently small so 
that h ( w ,  -zJ;) rema.ins negative  between the grid points. 
The bound (17)  permits  such  a spa.cing to be determined : 

Remark 12: In  general 1 1  z k  1 1  does not decrease mono- 
tonically. An illustration is given in Fig.  1. 

Theorem 9 gives no information  on the  rate of con- 
vergence of (wk] and {zk). By introducing a.n additional 
assumption ,44, which assumes tha,t K(w)  sweeps int.0 
the origin sufficiently fast, i t  is possible to prove geomet,ri:: 
convergence of { wk] and { zJ:} .  
A44: There exist w* defined in “1, a t R’! CY > 0, such 

that p(w) 2 a ( w *  - w )  for all w L  5 w 5 w*. 

AU < -T1 1 1  z l I - ’ h ( ~ k , - ~ k ) .  

Observe tha.t if the constant a in A4 is a,vailable, then 
1 1  zk I I 2 p(wJ;)  L. a(w* - w?:) for w L  I wI; 5 w* implies 
that  the stopping  condition I (  zk 1 1  5 E may be chosen t,o 
achieve any desired a.ccuracy of The main consequence 
of  A4 is the following theorem. 

Theorem 10 

Let K (  a )  satisfy  assumptions Al, -43, A3, and A4, and 
consider Algorithm  AP1. If wA < w*, for  all k 2 0, and  the 
stopping  condition I I z k  I j 5 e is not imposed, t.hen geo- 
metric convergence is obt,ained,  i.e., for k 2 0 and k 4 p : 

1) w* - (31; 4 (w* - wL)px-, 0 < p < I 

Letting q = (1 - +)ea/? and AJ; = w* - COB, (20) gives 
Ak - Ak+l 2 qAk m-hich yields 

Theorem 9 implies Ak > 0 a,nd Ak + 0. This and (21) 
yields (1 - q )  > 0. Since q > 0, p = 1 - q satisfies 0 < 
p < 1 which together nith  the definition of AL. proves 1). 
By using (19)  and observing  t,hat w k + l  - WJ; 5 w* - w ~ ;  i 

Since A4 is often difficult t.0 verify directly, the following 
(w* - wL)pJ; ,  2) follows if p = (w* - W L ) D & ~ ( ~  - &)-’. 

theorem is weful. 
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Theorem 11 

Suppose there exist w* defined in AP1, c E R1, c > 0, 
W E 9, W < w*, ?I* E Rn, q* # 0 such t-hat h.(w,q*)/jl S* \ i  5 
-c(w* - w) for all W 5 w 5 w*. Then:  1) A4 is true; 2) 
I* is the (outward)  normal to  a support hyperplane of 
K(w*) passing through the origin. 

Proof: Consider 2) first. From  the condition on h, 
h(w*,$) = mas {z,q*> 5 0. (22) 

2 5  mu*) 

But since z = 0 E K(w*) , (22) yields 

(z,q*) 5 h ( w * , ~ * )  = 0, for all z f K(w*) (23) 

which implies ( z :  {z,q*) = 0) is a support hyperplane of 
K(w") passing through 0. Now consider 1). By the defini- 
tion of A, (z,q*) 5 h(w,q*) for all z E K ( w ) .  Thus for 
W < w < w *  

p ( w )  = min I I z I (  2 min I / z I I  
zE mu) (GV' )$Mu,?*) 

= -h(w,q*)/!I 7)* 2 c(w* - w). (24) 
Now let 

pm = min p(w). 
w&&; 

Clearly pm > 0 and p(w) 2 [pm/ (w*  - WL)] (w* - w) for 
wL 5 w 5 W. Thus  by defining a = min {e, p m / ( w *  - wL) 1,  
A4 results. 

A condition sindar to that in  Theorem 11 has been used 
by Fujisawa and  Yasuda [ 2 2 ]  in  the special context of a 
nlinimum-time optimal  control problem. 

VII. ABSTRACT PROBLEM 2 

Without complicating the Algorithm  for "1 consider- 
ably i t  does not  appear possible to eliminate the require- 
ment that K(w)  be bounded  on a. There  are, however, 
several  situations of practical  interest where the bounded- 
ness requirement  cannot be satisfied. Fortunately,  the most 
important of these  can be treated indirect,ly by considering 
an equivalent problem. The case of concern is  the second 
abst,ract problem. 

Abstract Problem 2 (AP2)  

Given: D = [w~,wL-], W L  < WL-, a  compact interval  in R1; 
for  each w E D 

Xoxv consider the  set function 

K(w)  = H ( w ) R ( w )  (27) 

which maps D into  subsets of Rm. ClearlJ- 

K(w)  = H ( w ) K c ( w ) .  (28) 

From (28) and  the assumptions in AP2 it follows easily 
that K (w) satisfies Al, A.2, and A3. Moreover, if Algorithm 
0 1  is applied to K(w)  it leads to a  solution of AP2.  This 
follom from  Theorem 12. 

Theorem 12 

Consider AP1 with K(w)  C Rm defined by (27) and 
A P 2  with R(w) C Rn defined by ( 2 5 ) .  Then: 1) 0 E K(w)  
if and  only if 0 C IZ(w) ; 2 )  a  solution w* of "1 exists if 
a.nd only if a solution O* of AP2 exist.s; 3) if w* exists, 
w* - - G*. 

Proof: Parts  2)  and 3) follow directly  from 1 ) .  Consider 
1).  The implication  t,hat 0 E K(w)  if 0 E R ( w )  is trivially 
t,rue  from ( 2 7 ) .  Nan: suppose 0 4 a(,) a.nd there exists 
a t  E R ( w )  such  that  H(w)t = 0. Sincet E R ( w ) ,  ( 2 5 )  im- 
plies J = 21 + k where J1 E Kc(w) ,& E L ( w )  . But H (w) Z = 
0 = H ( w ) J l  gives -Zl E L ( w ) .  Then (25) yields 0 = 
El + ( - 21) f I t ( w ) ,  a  contradiction. Thus 0 4 R (0) 

implies 0 6 H ( w ) R ( w )  = K(w) ,  which completes the 

In order to  applyAlgorithmAP1  to K ( w )  = H ( w ) K c ( w )  
it. is necessary to make  evaluations of h ( w , ~ )  and s(w,q).  
These  evaluations  can  be  made in  terms of the da.ta. of AP2 
by using part 2) of Theorem 3. In  particular, 

proof. 

W w , d  = hKC(W)(H'(W)V) (29) 

and a  realization  for the contact  function of K ( w )  is 

S(W,S) = H ( ( J ) S K c ( o )  (H' (U)?) .  (30) 

Another  question  remains to be anslvered. If an E- 

approximate  solution (w+,2+) of APl  is obtained &,h 
K ( w )  = H ( w ) K c ( w ) ,  is there a corresponding Gapprox- 
imate solut,ion (G+,Z+) of 0 2  x-here Z can be made small 
by making E small? To investigate this question  suppose 
that E+, 1 E+ I j 5 E, is obtained by an application of Algo- 
rithm AP1. Then [see (4)] 

P 

z+ = xis(w',qi) 
i=l 

a(,) = Kc(w)  + L ( w )  (25)  where X i  = 1 and Xi 2 0, i = 1,- - - , p .  Because of 
(30) it is clear that 

where K c ( w )  is a  nonempty  set in Rn defined for all w E a . .  
and sa,tisfying assumptions Al, A2, a.nd 8 3 ;  L ( w )  is the 
linea,r subspace of Rn given by 

_ .  

L ( w )  = { z : H ( w ) z  = 0 ) ;  (26) satisfies z E &(LO+) and H (w+) x = z+. Furthermore, 
H(w+) (z + y) = z+ for all y E L ( w + ) .  If y E L ( w + )  can 

H ( w )  is a.n m X n matrix  function, Lipschitz continuous  be chosen so that I I 2+ 1 1  I ~ implies 1 1  + 1 1  where 
on S?; and (to avoid trivialities) ra.& H ( w )  > 0 for all (y , is a fixed constant, then W+ = w+ and z+ = x + 

w E R: rank H ( w )  < n for some w E 0. Find: nill form an rueapproximate solution of APP. 
The  best choice for y satisfies: minimize I I .2: + y I I sub- 

ject  to H ( w + )  (z + y) = z+. The solution of this mini- 
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mization problem can be expressed conveniently bg 
z+ = 5 + y = Ht(w’)zc  (33) 

where H t  (0) denotes the pseudoinverse or’ H ( w )  . Let 

I I  H i ( w )  I I  = max II Ht(w)v I I  
q€s 

denote the norm of Hf ( w )  . Then if 

I I H t ( w )  1 1  I a forallw E 12 (34) 

it is clear that 

1 1  2+ 1 1  5 Q I /  z+ / I  = a€. (35) 

Hence if (34) is satisfied the question is answered affirma- 
tively. Specifically, W+ = w+, = a€, and E+ is given by 
(33) wilth R: E Kc(w+) given by (32) and y E L ( w + )  
given  by (33). 

Condition (34) oft,en may  be verified directly in appli- 
cations.  Alternatively, it is somet,imes possible t.o give 
explicit conditions  on H ( w )  which imply (34). For example, 
if H ( w )  is continuous on D (required  by the hypot.heses of 
AP2)  and  rank, H ( w )  = n z  for all w E 12, then  it is not 
difEcult, to show t.hat  there exists an a > 0 such that (34) 
is satisfied. 

Finally, it should be remarked that one does not always 
ca.re if an e-approxin1at.e solut.ion of AP2 is obta.ined. There 
are applications where it is sufficient to find E+ 5 I? (w+) , 
a+ I W*, such that H(w+)E+ [ I  5 e .  

VIII. ABSTRACT PROBLEM 3 
There  are a number of applicat.ions in which 12 is  a  finite 

set of integers rather  than a  compact  interval  in R1. In  this 
case the sta.tement of the a.bstract  problem and  the algo- 
rithm for its solution are considerably simpler than  in 
Sect,ion VI.  Let I ,  denote  the  integer  set {O,l,..-,q} and 
consider the  third  abstract problem. 

Abstract Problem 3 ( A P 3 )  
Given: Q = IA- ,  where AT is a  positive integer; K(w)  a 

nonenlpty  set  in Rn defined for each w E 12 and satisfying 
assumptions 

A1 : K ( u )  compact, for each w E Q 
A2: K ( w )  convex for  each w E Q. 

Find : 
= min w.  

wEQ, OE R(w) 

The problem may or may  not  have a  solution. If w* 

exists, then 0 E K(w*) and  either w* = 0 or 0 4 K ( w )  
for all w E Iw+l. 

If a  conta.ct  function s(w,.)  of K(w)  is available, let 
y ( w ,  .) be defined by (16) and consider the following. 

Algorithnz A P3 

Let E > 0 be given, select 8, 0 < e < 1, and  set wo = 0, 
k = 0. 

S t .  1: For w?; E D apply Algorithm BP1 or BP2 to  the 
minimization of 1 )  x )I  on K(wk) .  At each iteration deter- 
mine I I z 1 1  and y(wr;,z). If 1 1  z I I i E or -r (wk,z) 2 e, end 

649 

iterations and  set z = zk. If I I z I I 5 E ,  the desired  result  is 
obtained (w+,z+) = ( w p , z k ) .  If 1 I z 1 ;  > e ,  go to  Step 2. 
[Observe that if wk = a*, Step 2 will not be entered 
because y(w* ,z )  = 0, for all x E K(w*).] 

Step 2 :  Since y ( w k , z ~ )  > 0, Theorem 8 implies 

h ( w k , - x k )  < 0. 

Let wk+1 E D be  such that h(w,-zk)  < 0, for w k  I w < Q+I, 

andh(wlc+l,-xlt) 2 0. Ifwk+ldoesnot exist, i.e., h(w,-zr.) < 
0 for wk _< w 5 N, then a  solution u* of AP3 does not 
exist and  the procedure  terminates  (see  Remark 9). If 
wk+l does exist,  determine it, increase k by one, and re- 
turn  to  Step 1. 

This  algorithm  either  indicates that w* does not exist or 
generates an e-approximate solution of AP3. The following 
result is obtained. 

Theorem 13 
Let K (  - ) satisfy  a,ssumptions A1 and A 2 ,  let w* defined 

in AP3 exist, and  let s (w , . )  be an  arbitrary  contact func- 
tion of K(w)  . Then  the Algorithm for llp3 generates  finite 
sequences ( w k )  and { zI;) where w k  E I A r ,  0 I w k  I w*, and 
z k  E K ( w k ) .  Moreover: 1) for any e > 0 there exists a = 

& ( E ) ,  0 _< f I M ,  such that 1 )  xr; 1 )  I e, x i  E K(uL) ,  and if 
t% > 0, wo < w1 < . - a <  w i  and 1 1  21; 1 1  > E ,  fork = 0,1,..*, 
& - 1 ; 3), for e > 0 sufficiently small, mi(,) = w* and 

+ 0 as E + 0. 

Proof: If w* = 0, then ,fi = 0 and  the proof  follows 
trivially  from  Remark 5. If w* > 0, let 

a = min p ( w ) .  
wE I,*-1 

Clearly a > 0. Furthermore, if E is chosen <a, then 
1 )  zI; I)  _< E < a cannot  be satisfied for wh E Iut-l. Thus 

= w*, E < a, a,nd xi(c) -+ 0 as E -+ 0 follows from 
Remark 5. 

It should be observed that Remarks G 9  can  be  extended 
to  the present  situation. Also it is possibIe t,o consider AP2 
when 12 is an integer  set. 

IX. APPLICATION OF ALGORITHM AP1 TO 
DISCRETE-TIME OPTIMAL CONTROL PROBLEMS 

To illustrate the application of Algorithm AP1 to opti- 
mum control problems, two minimum-effort discrete-time 
control  problems are now considered.  Suppose the termi- 
nal state of a  discrete-time dynamica.1 system  is given by 

N-I 

.(u) = + C riu( j> (36) 
i=O 

where x is an n vector and u denotes the control  sequence 
{u(O),u(l),...,u(N - l ) ) , ~ ( j )  E R’,j E IN-1 = { O , l , * . . ,  
N - 1). The peak  amplitude of the control u is  given by 

II u l lm = I u ( j )  I (37) 
iE IN-1 

and  the control  “energy” by 

(38) 
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The two control problems considered are  as follon-s. 
Control Problem 1 ( C P 1 )  (dlinin2un2 Peak 8mplitude 

Control) : Find 11 such that z(u)  = 0 and 1 1  u. i l m  is mini- 
mum. 

Co71frol Problem 2 ( C P 2 )  (llfinin-rum Energy with Peak 
Amplitude Constraint) : Find u such that, z ( u )  = 0, 
1 1  u l iDo I 1,  and 1 1  u is  nunimum. 

A version of CP2  has been described by  Polak  and 
Deparis [17]. His numerical  procedure  makes use of 
parameterized convex sets,  but  is much closer in philos- 
ophy to  t,he Neustadt procedures (see Section I) than  it 
is to  the procedures of this paper. 

Control  problem CP1 can be formulated as APl by 
defining 

K(w) = ( z : x  = N(U),II  u l l m  5 w ) .  (39) 

To a.pply Algorithm AP1 assumptions Al ,  A2, and A3 
must be verified and expressions for h(w,v) and a  contact. 
function  must  be  obtained. It is easy to  verify A1 and AT 
Forming 

N-1 

h,z(u) ) = c (v,r,>u( 3.1 + 0?!4 (40) 
i d  

it is seen that (q,z(u)) = (7,~) is maximized for z E X ( w )  
if u = uw,,, svhere 

u w , v (  j )  = 0 ~m (rj,q> (41) 

(to be specific take sgn a = 0 for a = 0). Thus 
x-1 

s (0 .q )  = x ( l ~ , q ) ,  h , ( w , ~ )  = ( ~ , d )  + w C I (7 ,r j )  1 -  (42) 
j=O 

The  linearity of h in w and  Theorem 5 shows that A3 is 
satisfied. Also it allows wk+l to be obtained  by  a simple 
formula rather  than a root fhding procedure. Thus Algo- 
rithm A P 1  is  applicable. An E-approximate solution 
(w+,z+) of AP1 yields an E-approximate control in  the 
follouing sense: if ql, - - - ,vp are  obtained  such that x+ = 
Ci=1p his(w+,qi), Xi 2 0, Ci=lP hi = 1, then 

P 
u+ = (43) 

gives I I z (u) I I 5 E and I I u+ I I 2 wf 5 w*. These resuts 
follo\r. from z+ = x(&) and ( (  u~+,, ,~ ( I m  = a+. 

i=l 

It is of int,erest to note t,hat 

F = mLx i I  r j  , I .  
E I,v-1 

In  general i t  is not possible to obtain  the q* mentioned in 
Theorem 11 without knowing the solution  CP1. Hon-ever, 
if the rj  span Rn, for j = 0, - . ,X  - I !  the conditions in 
Theorem 11 can  be verified. This f o l l o ~ s  from the  fact  that 
1 1  ij l l -%(w, f )  = - ( w *  - w )  : j  f Cj=o'\'-l I \ f , r j )  \Then 
f is an outward  normal to  a  support.  hyperplane of K(w*) 
passing through  the origin. Thus  it is possible to  take 
v* = ij and c = II 75 11-l Cj&*-' I ( f ,r j )  I. Clearly c # 0 
since ( : , p i )  = 0 for  all j E IN-1 is not possible. Of course 
geometric convergence may  still  take place even if the rj 
do  not  span Rn. 

Fig. 3. R ( w )  for CP2 with n = I, L V  = 1. 

There  are several sf-ays of approaching CP2. One is to 
define 

K(w)  = { z : z  = x(u), 1 1  u l i m  5 I, ( 1  u 5 w } .  (44) 

This  approach  leads to a  numerically feasible realization of 
Algorithm APl. However, the numerical  ewluat.ion of 
h ( w , q )  and a  cont,act  function is rather difficult. 

An alternative approa.ch is the following. Rr i te  z = 
( .2,~~+~)  \\-here z Rn+l, 2 5 Rn, z n f l  f R1 and  define 

K ( w )  = { z : %  = x ( u ) ,  zn+' = 1 )  u I i 2  - w ,  )I u I im 5 I ) .  

(45) 
Let K ( w )  be used to form APl (dimension n + 1 rather 
than ) 2 ) .  Then  it is clear that u is optimal for CP2 if and 
only if I)  11 J j 2  = w*. Unfortunately K ( w )  is not convex 
(see  Fig. 3 which shows K ( w )  for n = 1 and N = 1). 
Thus  it is necessary to follow the suggestion of Remark '7 
and consider AP1 with I? ( w )  = GO K ( w )  taking  the place 
of K(w) .  It will now be shonx  that  this leads t.0 an accept- 
able numerical  procedure for solving CP2. 

Clearly Ic (w)  satisfies A 1  and A?. Moreover it is  not 
difficult to show that. a  conta.ct  function R(w) is 

1 (w,r)) = (.z(217), I 25 I l P  - w )  (46) 

A ( w , s )  = ( ~ , Z ( U ~ ) )  + vn+l  j I  U- I ; ?  - ?In+lw (47) 

and  that 

where q = (4 ,qnf1)  E Rn+l and u, is defined by 

?&)( j )  = -sat ( {+j,rj)/2pn+1) ) q"+' # 0 

= sgn ($,rj) ,  vn+l = 0 . (48) 

The 1inea.rity of ji in w shon-s t,hat A ( w )  satisfies A3 and 
again  a formula for wk+l may be written.  Thus it, is possible 
to apply Algorit.hm AP1. Sxppose an E-approximate solu- 
tion is obtained,  i.e., (W+,Z+) where W+ 5 3 ,  Z+ E R ( W + ) ,  
and :I Z+ 1 1  5 E. 

Xon- i t  d l  be shown tha,t  thu  ea.pprosimate solution 
leads to  an acceptable  solution of  CPB. Suppose ql ,  * ,qp 
have been found  such that Z+ = Ais ($-,vi) , Xi 2 0, 
Ci=>p hi = 1. For 

P 
u+ = X i y i  (49) 

i-1 

it  is c1ea.r that I+ = (x(u+),  &lp hi 1 I uVi 1 l2 - W+) . Since 
I I E+ I I 5 E it  follom  that 

iI x(u+) I[ 5 E (50) 
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and Ci=p Xi I I q, I 5 &+ + E .  But this, the triangle in- 
equa.lit,y, and &* < u* yield 

(50) and (51) show that u+ satisfies the requirements of 
CP2 1vit.h termina.1 a.nd energy  error not greater  than E .  

In  this problem 5 = 1. It is also possible to  apply 
Theorem 11 t,o prove  geometric convergence. Generdiza- 
tions of t,he  terminal  condition z(u)  = 0 in  CP1  and  CP2 
can  be  handled  without  great difficulty. These  and  other 
matters  pertaining to  the way in which numerica.1 calcu- 
lations  can  be  carried  out will be considered in  a  future 
pa.per. 

In  most  applications of CP1  and  CP2, N is significantly 
greater  t,han 11. This shows the advantage of Algorithm 
ilPl as conlpa,red with met.hods in  mathematical pro- 
gramming. Using programming  methods z(u)  = 0 would 
be  t,reated as 11. constraints  on u, and  iterations would be 
made  in the N-dimensional .u-space. With Algorit,hm AP1 
efl’ective use of the  structure of the  equatiom of motion 
is made. This allows t.he calculations to be carried out in 
n-dimensional spa.ce (CP1) or (12 + 1) -dimensional space 
(CP3). Since conlput,er t.ime per it.eration and convergence 
rates  tend  to be  degraded  appreciably by dimensionality, 
computer  time should be greatly  reduced by using hP1. 

X. CONCLUSIONS 

Three  abstract optimization problems have  been pre- 
sent,ed along with  algorithms  for  their  numerical solution. 
When used with  the  BP2  subalgorithm these  algorithms 
a.ppear to be efficient and ha.ve a number of important 
a.dvantages when applied to  the solution of optimal  control 
problem:  their utilization of contact  functions ma.kes it 
possible to solve (infinite dimensional) optimal  control 
problems as finite dimensional problems; their  generality 
admits  t.he  solution of a wide variety of control problems 
involving many  different indices of performance,  terminal 
condit,ions, a.nd equations of motion; the required  hypoth- 
eses are relatively -seak compared to  the  Neustadt proce- 
dures, e.g., i t  is possible to  treat systems  with  singular 
controls;  problem conditioning does not have a strong 
effect on convergence rate;  the algorithms a.re completely 
determinant,, e.g., there  is no need t.o  use empirical proce- 
dures for st.ep size evaluation. Xany of these  advantages 
have been demonstrated conclusively in specific applica- 
tions  not discussed in this paper (e.g. C27-J). 
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A Computer Program for the Synthesis of 
Decoupled Multivari.able Feedback Systems 

Abstract-Recently  Gilbert [6] obtained general solution results 
on the decoupling of multivariable systems by state  feedback. 
This paper presents  a general-purpose  computer  program  which 
carries out  all of the .calculations necessary for reducing these 
results to a  useful  synthesis procedure. The program is described 
in general terms and several  examples of its application  are given. 

I. INTRODUCTION 

D URING the  last few years  there  has been a renewed 
interest  in  the problem of decoupling  multivariable 

systems by  state feedback. While the decoupling problem 
was first posed by  Morgan [7] in 1964, it was not  until 
1967 that a  necessary and sufficient condition  for decou- 
pling was  obtained  by  Falb  and Wolovich [3], [4]. Falb 
and Wolovich also made  definite  contributions to  the syn- 
thesis  problem, but  the complete  structure’ of the solution 
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did  not  appear  until the paper  by  Gilbert [6]. Since the 
general  solution  results  in [6] were proved  by  constructive 
arguments,  they should in principle  form the basis for a 
useful synthesis  procedure. 

The main  purpose of this  paper  is to  show that  this is 
indeed the case. The proofs in [SI are reduced to  an algo- 
rithmic  form  and  are  then mechanized by a  general  purpose 
computer  program which yields all the necessary structural 
results and synthesis data. Computer  mechanization is 
essential because the calculations are unwieldy  for  systems 
of order  greater than three. 

The  paper  is organized as follows. In  Section I1 the 
decoupling problem is stated  and key results of [6] are 
given. Section 111 describes in  a  step-by-step  way the basic 
calculations which must be carried out.  To make the 
presentation  reasonably  easy to follow and  to give some 
insight  into the  arguments used in [6], justifications are 
given when it is easy to  do so; a full understanding of some 
steps  requires reference to [6]. Section IV indicates specific 
features of the  computer  program.  Several design examples 
(including the  control of a  distillation  column)  are given 
in Section V. They  illustrate how the  computer  output is 
used and give some idea of the  potentialities of the syn- 
thesis  procedure.  Concluding  remarks  appear  in  Section 
VI. 
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