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Some Efficient Algorithms for a Class of
Abstract Optimization Problems
Arising 1in Optimal Control
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Abstract—Three abstract optimization problems are presented
along with doubly iterative algorithms for their numerical solution.
These algorithms are generalizations of particular algorithms
described by Barr and Gilbert [19], [21] and Fujisawa and Yasuda
[22]. The supporting theory is fully developed along with proofs
of convergence, Practical aspects of computations are considered
and procedures which insure rapid comnvergence are discussed.
Two applications to discrete-time optimal control problems are
described.

I. INTRODUCTION

ANY computational procedures for optimal control
problems have appeared in the literature. The basic
methods employed in these procedures vary widely. They
include, for example, gradient methods in function space
[17, [2], Newton-Raphson techniques [3], [4], nonlinear
programming [5], [6], dynamie programming [7],
schemes for iterating on boundary conditions [8], [9],
and methods based on the convexity of the reachable set
of system states [10]-[17]. The emphasis in this paper is
on extending the methods of this last class, which will be
referred to as convexity methods.

Most of the convexity methods are based on a general
idea which was described first by Neustadt [10]-[12] and
later refined by Eaton [13]. These methods as well as
others [177] may appear to be quite different in their
approach but they can be viewed in a common setting
[147. In particular they involve determining the smallest
real number »* such that 0 € K(w*) where K(w) is a
convex set in B* parameterized by the real number «. The
algorithms are iterative procedures which lead to a
monotonically increasing sequence {w;} such that w; — w*.
The determination of wi.y from wy corresponds geometri-
cally to determining a support hyperplane of K (w:) which
separates K (w;) strictly from the origin. An assumption
essential to the determination of this hyperplane is that
K(w;) be (in a local sense) strictly convex. While the
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Neustadt procedures are known to converge and are
numerically efficient in the sense that they reduce an
infinite-dimensional problem to a finite-dimensional prob-
lem, they tend to have poor convergence rates unless
rather complex conditioning procedures are employed
[14], [157, [18].

More recently Barr and Gilbert [197-[21] and Fujisawa
and Yasuda [22] have proposed doubly iterative proce-
dures which also can be shown to involve parameterized
convex sets. These procedures use a projection algorithm
[which minimizes || 2]] on K(w;)] [23]-[25] as a sub-
algorithm for defermining the separating hyperplane.
These procedures, while retaining the advantages of other
convexity methods, eliminate striet convexity require-
ments and allow for rigorous treatment of singular and
uncontrollable problems. Moreover, if sufficiently sophis-
ticated projection algorithms are employed [217, [26],
convergence rates are rapid and do not seem to depend on
problem conditioning.

It is the purpose of this paper to treat these latter pro-
cedures in a comprehensive and generalized framework.
Three abstract problems having wide applicability are
formulated, and algorithms for their solution are deseribed
and shown to converge. The required theoretical back-
ground material is presented as well as a modified version
of Barr’s projection algorithm [267] which is a particularly
effective subalgorithm.

This paper does not emphasize applications to a wide
variety of optimal control problems. These matters will be
discussed more fully in a subsequent paper. If the algo-
rithms are to be applied it is essential that schemes for
evaluating “contact functions” of the reachable set and
the terminal set be available. This is generally the case if
the equations of motion are linear in state [257] and the
initial and terminal sets are convex. Within these require-
ments on the optimal control problem it is possible to
allow treatment of both discrete-time and continuous-time
equations of motion, nonlinearities with respect to the
vector control variable, and very general terminal condi-
tions, indices of performance, and control eonstraints. For
example, practical algorithms for all the problems con-
sidered in [10]-[17] may be developed. The basic details
for two discrete-time control problems are worked out in
this paper. Gilbert and Harasty [27] consider 2 minimum-
fuel impulsive control problem, and include a description
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of the resulting algorithm along with numerical results for
problems of order 6. For problems where the equations of
motion are nonlinear in state, good results have been
obtained by methods of successive linearization. This work
is still in progress and will be reported at a later date.

The outline of the paper is as follows: Section II con-
tains some notation and definitions; Section III reviews
contact and support functions and gives some of their
properties essential to the computing procedures; Section
IV treats a basic quadratic programming problem and the
projection algorithm for its solution; Section V gives some
required technical results on the continuity of parameter-
ized sets; Sections VI-VIII present the algorithms for the
three abstract problems; finally, in Section IX applications
to several discrete-time optimal control problems are given.

A reader interested in the main ideas and not the proofs
may jump from the second paragraph in Section III to
Section VI. If a concrete interpretation of the abstract
problems is desired, they may be viewed as minimum-time
regulator problems where K (w) is the reachable set and
w 1s time. Alternative interpretations may be obtained by
reading Section IX concurrently with Section VI.

I1. Some NoTaTIOoN AND DEFINITIONS

Letz = (at,---27),y = (y,-- '7yn)) z = (&-- ')Zn) be
elements in the space of real n-tuples R* and w € R. The
following notation is employed: (x,y) = > " z%% || 2| =
{z,2)4?; N(zw) = {2:]|]z — 2| < v}, 0 > 0, the open
sphere at x with radius w; N (zj0) = {z:]/z — z|| £ »},
the corresponding closed sphere; S = {z:j| z || = 1}, the
surface of the unit sphere ¥ (0;1); L(z;y) = {z:z2 =z +
w(y —z),—*« <w< =}z 7#y, the line passing through
z and y; Q(z3y) = {2:{z,y) = {x,y)},y # 0, the hyper-
plane (dimension n — 1) through z with normal y. If z =
Z{:l"' NiYi where Yi € R",)\;' S R1,>\i > 0fors = 1,2,¢¢cm
and > .4™X; = 1, then 2z is said to be a convex combina-
tion of the vectors yi,+ * *,¥n.

Now let X,X;,Xs,+++, X, be setsin B*, Hbeanm X n
matrix, and f be a function mapping B* into R~ Then
38X denotes the boundary of X; the set —X = {z:2 =
—2,2 € X}; Xi— Xo= {212 =01 — 2s,11 € X1,2: € Xo};
Zi=1mXi = {Z:Z = Zi=1"" xix; € Xi}; HX = {Z:Z = Hz,
z € X};f(X) = {z:z2 = f(x),2z € X}; H' = the transpose
of H. For arbitrary sets Xy,++,X,, the product set X: X
Xy XX X, = {z:2 = (x1,%9,* * *,%m),T: € X;}. The con-
vex hull of X, written co X, is the intersection of all convex
sets which contain X. By the Caratheodory theorem [287],
[29] it is always possible to write co X = {z:z = convex
combination of @y,+++,2,2: € X,0 = 1,-++,q}, where ¢ =

n—+ 1.

III. CoxTacT FuxcTIONS AXD SUPPORT FUNCTIONS

In this section several elementary results for contact
and support functions of compact sets in £” are reviewed.
The evaluation of these functions is essential to the com-
puting procedures.

641

Consider a set X C R» which is compact, but not
necessarily convex. The function Ax which maps R* into
R! such that

hx(n) = max (zn)

£X

is called the support function of X. Since X is compact,
hx(n) is defined for all 5 € R*. For each 4 € R* the set
Sx(n) = {z:{xm) = hx(n),x € X} C R*is nonempty and
compact. Elements of Sx(y) are ecalled contact points. A
function sy which maps £~ into X so that sx(n) € Sx(z)
for all  C R» is called a contact function of X. The ter-
minology is suggestive, sinee of all hyperplanes with normal
n 7% 0 that meet X,Q(z;n) where z is a contact point is
“farthest’”” in the direction of 4. If for some 4 € RB*, Sx(%)
contains more than one contact point, more than one
contact function of X exists. In what follows, this possible
lack of uniqueness causes no difficulty, and sx will denote
a specific but arbitrary element of the set of all contact
functions.

Clearly hx(n) = {sx(4),7) and sx is bounded. It also
follows that for 5 = 0: sx(y) € Sx(n) C 3X; Sx(n) =
Sx{wn),w > 0; and Q{sx(n);n) is the support hyperplane
of X with outward normal 7.

Remark 1: If X is strictly convex, i.e., Sx(n) contains
only one point for each n 5 0, then sx(-) is uniquely
determined away from the origin. Moreover, it is known
[307] that sx () is continuous at all 7 = 0 and grad Ax(y) =
sx (7).

In spite of the fact that X need not be convex, the
following theorem shows the close relationship of support
and contact functions to convexity.

Theorem 1

Let sx and hx be contact and support functions of X, a
compact set in B Then sx and Ax are contact and support
functions of co X.

The theorem follows directly from the known fact [29]
that iy = hex. With respect to the contact function the
converse of Theorem 1 is not true, i.e., scox is not necessarily
a contact function of X.

Theorem 1 is sometimes useful in developing formulas
for the evaluation of contact functions. For example, a
contact function of a convex polyhedron may be evaluated
by evaluating a contact function of its set of vertices.

Since the support function of a convex set is convex
[28], [29], Theorem 1 implies that the support function
of any compact set in B* is convex. Another property of
support functions, which will be needed in the sequel, is
contained in the following theorem.

Theorem 2

Let X be a compact set in R* such that X C & (0;r).
Then the support function ix is Lipschitz continuous on
R* with Iipschitz constant », ie., | Ax(n) — hx(y) | <
r||n — » || for all g and » in B=.
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Proof: Let sx be a contact function of X and observe
that

hx(n) — hx(v) = {(sx(n) — sx(¥)p) + (sx(m)m — »)
<Asx(mm — ) < lsx(n) i+l 9 — v |l
Srilfn—vIl
The first inequality follows from the fact that
{x —sx(»),») <0, forall z¢ X.

Reversing the role of y and » completes the proof.

Remark 2: If X C R*is compact, it follows directly that
hx is Lipschitz continuous on S.

When a set is characterized in certain special ways it is
possible to utilize the characierization in the evaluation
of the contaet and support functions. As will be seen, the
characterizations considered in the following theorem will
have applications in the numerical solution of control
problems.

Theorem 3

Assume that X,X;,-++, Xy are compact sets in R* and
that Y = ¥; X+++X Yy where Y, 2 = 1,-++,N, are com-
pact sets in B% and n = X,V n. Let Z = >, 4¥ X,
W =,V X,, and let H denote an arbitrary m X n
matrix. Then

1) hx(n) = hx(—n), —sx(—n) is a contact function
of —X

2) hyx(n) = hx(H'y), Hsx(H’y) is a contact function
of HX

3) hz(n) = 2, hx, (1), 2ia¥ sx.(n) is a contact
function of Z

4) hy(n) = 220 by, (n:), (Svi(m), +,8vy(nw)) is a
contact function of Y, where 5; € B, ¢ = 1,+++,N,
a'ndﬂ = (7717"'7771\7) € £

5) hw(n) = hx;(n),s¢;(n) is a contact function of W,
where the integer 7, 1 < 7 < N, issuch that hx;(y) =
max {hXx(n)’hX‘.’ (77)" ° ')hX_N‘(n) }'

The results of this theorem are straightforward con-
sequences of the definitions of the contact funetions and
support functions of the sets involved. When a set is
characterized as an infersection of compact sets, simple
formulas like those of Theorem 3 cannot in general be
obtained.

IV. Basic ProBLEM

The computing procedures to be developed in the
sequel involve on each iteration an approximate numerical
solution of the following basie problem.

Basic Problem (BP)

Given: K a compact, convex set in B~ Find: a point
z* € K such that

|l 2*[]* = min || 2 [
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The constraint set K in this quadratic programming
problem, in contrast to the quadratic programming prob-
lems usually treated in the literature [317-[33], need not
be specified by some set of functional inequalities. To
develop an efficient computational algorithm it is required
only that there be a known contact function sg of K. This
requirement is satisfied for many optimal control applica-
tions (for examples see Section IX and [257]).

Sinee K is compact and || z || is continuous, a solution
z* exists. Moreover [25], the following holds.

Remark 3: 2* is unique; || 2* || = 0, ifand only if 0 € K;
for || 2% || > 0, 2* € 8K ; for || 2% || > 0,2 = z* if and only
if 2 € Sg(—2).

Gilbert [25] describes an algorithm (based on sg), for
solving BP, which is of the Frank and Wolfe [317] type.
When K is a convex polyhedron this algorithm is known
[257, [34] to yield very slow convergence (essentially
Il 2 |2 — || 2* ||? decreases as k! for large k). When K is
not a convex polyhedron, convergence may be much faster
[257, e.g., geometric. Still, poor conditioning of 8K in the
neighborhood of 2* may lead to poor performance [257],
[26]. An extension of Gilbert’s procedure, which in certain
forms yields much more rapid convergence, is the following
one due to Barr [207, [21], [26].

Algorithm BP1

Let sg(+) be an arbitrary contact function of K, choose
a positive integer p, and take z; € K. Then a sequence of
vectors {zx1}, & = 0,1,2,+ -+, is generated as follows.

Step 1: Select any p vectors y1(k),yz (&), »«,yp(k) in K
and let

H, =co {yl(k)yy2(k)7' - '7yp(k)’SK(_31:)7zk}'
Step 2: Find 2,41 € H,, such that

[ asa I* = i [ 2 .
2E Hy
Increment k& by one and return to Step 1.

Note that the quadratic programming problem in Step 2
is much simpler than BP because the constraint set Hy is
the convex hull of p -+ 2 known points. The problem can
be solved by standard quadratic programming techniques
as is illustrated by the following. Let sx(—z2:) = yppa (),
2 = Yop2(k), and the (p+ 2) X (p + 2) symmetric
matrix D = [d;] where d;; = {y:(k),y;(k)). Each z € H,
has the representation

24+2
z = 2 ziy(k)
=1

where
P42
>xt=1, z¢>20, (2=12-+,pF 2).
=1
Thus if z = (2L, ««»,271?),
2 p+2
[lz]]* = Zl Zl aiwi{y:(k),y;(k)) = @,Dz). (1)
i=1 j=
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Defining

12
X={$:in=1: xiZO; (i=112;"'7p+2)}CRp+2
i=1
(2)
it follows from (1) that minimization of || 2 ||? on H} is
equivalent to minimization of (z,Dz) on X. Standard
quadratic programming techniques [327], [33] can be
applied to the latter minimization problem to yield a
solution z* and then

2
Z = 2 a*y(k). (3)
i1

Barr [267] has shown that fork > 0and k — «:2, € K;

lew!| = Dzl lesli—ll2# ], and !z l| = || 2es I
implies 2z = 2%; 2y — 2*. In addition, error bounds on
||z — 2* 1] and || 2: || — |} % || are available as the com-

putation proceeds. For rapid convergence it is essential
to select the points 41 (k),« -+, y,(k) so that 6H; will closely
approximate 0K in the vieinity of z,y1. This requires that
p > n and that the points be in the vicinity of 2* (when
z* € 9K). One procedure which works well is the following
special case of Algorithm BP1, which is a modification of
selection rule €' in [267]. In [35] this algorithm is discussed
for K a convex polyhedron.

Algorithm BP2

Let sx(+) be an arbitrary contact function of K, choose
a positive integer p > n, select nonzero m,+++,n, € B?,
and take zo € co {sx(m),sx(n2),"* *,8x (1,) }. Then generate
{zra}, £ = 0,1,2,+++, as follows.

Step 1: If k = 0, set y:(k) = sg(n:) for i = 1,2,+«+.p.
If & > 0, express z; as a convex combination

?

2 Ayl — 1) + Mppase (—26-1)

i=1
such that at most p scalars from {A;Ae <+, Ay} are
greater than 0; now let 41,79, +,mp:1 be the elements in
R” which generated the contact points y(k — 1),---,
yolk — 1), sg(—zwa), respectively [ie., y:(k—1) =
sg(n:),t = 1,2,-++,p, and np41 = —2—1]; considering only
those contact points corresponding to \; = 0, reject one
contact point for which —|| ;|| "z (%;) is a minimum;
set the remaining p contact points equal to 41 (&), +,y, (k).
Thus, by relabelling the A; and %;, 2z = 2 :m? Ay (k)
where Zi=1p Ar = 1, Ad 2 0, and y,(k) = SK(ni), 1=
1,2,-++,p.

SlfeP 2: Lgt Hk = €O {yl(k)7y2(k);' * ':y:a(k')st(_'Zk) }

Tind 2541 € H}, such that

s [ = min || 2 .
2€Hy
Increase & by one and return to Step 1.

Algorithm BP2 is a specific realization of Algorithm BP1,
and therefore the convergence results quoted above also
apply here. The requirement p > n guarantees the exist-
ence of the convex combination expression for z; in terms

643

of at most p points from {y(k — 1),++-,yo(k — 1),
sg(—25-1)}. This expression will be readily available on
each iteration if the quadratic programming technique
used for Step 2 yields a solution

o+l

Zpa = 2, 2%y (k)

i=1

[ef. (3)] in which z* has a maximum number of zero
elements.

Since in Step 2 of Algorithm BP2 z; € co {y(k),---,
yp(k)}, for all k& = 0,1,2,---, it follows that H; in Algo-
rithm BP2 equals H; in Algorithm BP1. The use of H;
reduces by one the dimensionality of the quadratic pro-
gramming problem in Step 2.

In Gilbert’s algorithm and other versions of BP1, 2z, may
be the convex combination of as many as k contact points.
An important advantage of Algorithm BP2 is that for all &,
Z is a known convex combination of only p contact points
of K (see end of Step 1). That is, vectors »;,+++,n, are
known such that

ya
2 = 20 Nise(m:) 4)
i=1
where Z{___lp )\.,' = 1, As 2 0.

Barr [26] gives data which indicate that {2} generated
by Algorithm BP2 with p = n converges rapidly to 2z*
regardless of the curvature of 3K at z*. Roughly speaking,
the rate of decrease of ||z || — || 2* || is dependent on n
alone. The number of iterations per decade of decrease,
after a few initial iterations, is approximately 2 for n = 2,
4forn=23 6forn=4,9forn =235, and 13 for n = 6.
This reference also shows that in some cases convergence
is faster. For example, when the range of sx is a finite set
of points, the sequence {z:} generated by Algorithm BP2
converges in a finite number of iterations. Such a situation
may arise when K is a eonvex polyhedron (see CPl in
Section IX). Taking p > n does not seem to offer any
advantage [267].

V. PARAMETERIZED SETS

The abstract optimization problems of the next section
involve sets which depend on a parameter. Conditions for
the continuity of these parameterized sets, and the rela-
tionship to the support function and certain distance
functions, are important in the sequel and are developed
here.

Consider first the following definitions:

r(,X) =min ||z —y||, € R* X C Rriscompact
y€EX
(3)
d(X1,X:) = max {dy,ds}, Xi, X, C Rrarecompact
(6)
d; = max r(z,Xz)
€ Xy
dz = max r(y,X1).
yEXe
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The function d(X1,X>) is & Hausdorff metric for compact,
sets in B™.

Now let Q@ = [wr0p], vz < oy, be a compact interval
in B! For each w € Q, let the set K (w) C B*be nonempty
and compact. Then K () is continuousat « € @, if for any
e > 0, there exists 8 (gw) > 0such that d({K (w),K(@)) < e
when |w — & | < 8(ew), @ € Q. Also, K(+) is continuous
on Q if it is continuous for all w € Q; K(-) is uniformly
continuous on @ if §(¢w) is independent of w; K(+) is
Lipschitz continuous on Q if there exists & > 0 such that
(K (w),K(@)) L a|w—3a], forall w,o € Q.

Let h(wm) = hgw(n) and s(w,) = sgw(n) denote
support and contact functions of K(w). Note that A{w,n)
and s(w,n) are defined on @ X R*.

Theorem 2 shows that for fixed w € @, h(w,+) is Lipschitz
continuous on R* or on 8 (Remark 2). Specifically, if
K(w) CA ), r>0,forall w € Q, then

]h(wm) - h(wyﬁ) i <r || n—1 ”7 for all 1, (7)

The following theorem concerns the continuity of 2(-,n)
for fixed 3 € S.

7€ 8.

Theorem 4

Let K(w) be a nonempty, compact convex set in R*
defined for each w € @ = [wr,wr]. K(-) is continuous on
Q if and only if A(-,5) is continuous on { for every fixed
7 € 8.

Proof: First assume K(-) is continuous on Q. Let 5 be
an arbitrary element of S and w,& be arbitrary elements of
Q. From (6) d(K(w),K(2)) < ¢implies K(w) C K{&) +
N (D) and K(&) C K(w) + N(0;). These results yield
h(wm) < h(&m) -+ eand h{@,n) < h(w,n) -+ e From these
inequalities and the continuity of K(+)

[A(wy) —h(0y) | <e forallac @, |o—a| < 8(ew).

(8)

Thus the continuity of 2(+,7) on @ is established. Note that
the continuity is uniform with respect to ». Beeause  is
compaet it follows [36] that A(-,1) is uniformly continucus
on £.

Now assume £(-,n) is continuous on @ for each fixed
7 € 8; i.e., for any ¢ > 0, there exists 3(e,w,n) > 0, such
that | h(wy) — k(@) | <e when w0 €8, |o—a| <
3(ew,n). From (7) and the triangle inequality it follows
that

| 2(&,5) — h(wm) | < 7€ 8
o — 6| <3(e/2wm), ||lo—7ill <e2.

@€ Q,
(9)

Thus h(-,+) is continuous on £ X 8. Moreover, it is
uniformly continuous on & X 8 because @ X § is compact.
Thus given ¢ > 0 there exists §(¢) > 0 such that

lh(‘;’;ﬁ) - h(wﬂ)) l < €
17€ 8, lo—al+|ln—dll <é(e.

w0 €Q
(10)

Suppose that K (+) is not continuous on . It will now be
shown that this leads to a contradiction. Since K (-) is not
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continuous there exists @ € Q and € > 0 such that
d(K(@),K(w)) < e

cannot hold forallo € , 0 < |w —~ & <a (11)

no matter what the choice of a. Now consider the set
0 = {0:d(K(),K(w)) > ¢d 7w, € . There exists an
(infinite) sequence {w;} contained in & such that w; — w.
If this were not true there would exist &, 0 < &, such that
(@0 <|w—al<a o€ CQ Butthis would imply
d(K(w),K(@)) <€ for all |0 —&| <4, @ €, which
contradicts (11). Thus for the sequence {w;}, d(K(w;),
K(w)) 2 e This result leads directly to the desired con-
tradiction. It implies either one or both of the following
results [see (6)7]: 1) there exists x; € K(w;) such that
r(z,K(w)) > ¢; 2) there exists 2, ¢ K{(w) such that
r{x,K(w;)) = e For result 1) let s; denote the point in
K(w) which is closest to z;. Then |[2; — 8| > e It
follows from the convexity of K («) that if

n = ]l i — 8 H“l(:ci — 8;)
then #; € S and 7; is an (outward) normal to a support
hyperplane of K(w) passing through s;. Thus

‘—h(wmi) + h(wi;ﬂi) = _(771',31') + max (771'7-T>
=€ K(w;)

> —{asy) + (or) = |[o: — s ] 2 e (12)

Using 2) and a similar argument, A(w,n:) — Aw;n:) > e
Thus for any w; there exists 5; such that

| h(w,m:) — h(wgn:) | 2 e

Since (win:) € @ X S and € X 8 is compact, there exists
a convergent subsequence {(&:;#:)} such that &;— w,
#:—n,and | h(w,%:) — h(&5%:) | 2 e But this contradicts
(10) and completes the proof.

Theorem 5

Let K(w) be defined as in Theorem 4. K (+) is Lipschitz
continuous on @ if and only if £ (-,») is Lipschitz continuous
on Q for every fixed 4y € S.

The proof is omitted since the arguments are similar to
those used in the proof of Theorem 4.

Remark 4: From the proof of the theorems it is clear
that if K(w) C R"is nonempty, compact, and convex on
Q, the following conditions are equivalent: 1) K(-) con-
tinuous (Lipschitz continuous) on Q; 2) h(«,7) continuous
(Lipschitz continuous) on 2 for any 3 € S; 3) A(-,+)
continuous (Lipschitz continuous) on @ X S.

In certain computational situations it is necessary to
work with sets K(w) which are not convex. Then the
following theorem is useful.

Theorem 6

Let K(w) be a nonempty, compact set in B* defined for
each w € @ and let K(w) = co K{w). Then if K(-) is
continuous (Lipschitz continuous) on @, K(-) is con-
tinuous (Lipschitz continuous) on Q.
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Proof: Let h(w,n) denote the support function of the
compact set K (v). Using arguments similar to those in the
proofs of Theorems 4 and 5, it is clear that continuity
(Lipschitz continuity) of K(-) implies continuity (Lip-
schitz continuity) of h(-,y), for all y € 8. Theorem 1
implies that A(w,) = h(wm), the support function of
K (w). This fact together with Theorems 4 and 5 gives the
desired result.

Now consider K (w), a nonempty, compact, convex set
in B* defined for each « € Q, and define

p(w) = min [[z]| (13)

2€ K()
f(w) =2¢€ K(w), suchthat||z[| = p(0) (14)
P(wm) = {z € R*:{zm) = hlom)}, 2 7#0. (15)

Clearly p maps Q into B! and { maps @ into RB*. Moreover,
P(w,m) is the support hyperplane of K () with outward
normal n. Thus by Remark 3, p(w) = 0 if and only if
0€ K(w); for p(e) >0, {(w) € 0K(w); for p(w) >0,
z = {(w)ifandonlyifz € P(w,—2) N K(w) = Sxw (—2).
Furthermore, straightforward arguments [20] show that
the following result holds.

Theorem 7

Let K(w) be a nonempty, compact, convex set in R*
defined for each w € Q. If K(-) is continuous (Lipschitz
continuous) on £, then p(-) is continuous (Lipschitz
continuous) on Q.

VI. AsTrACT PROBLEM 1

In this section the first of three abstract problems which
have application to wide classes of optimization problems
is presented. An algorithm for solving the problem is
described and conditions for convergence are given.

The first abstract problem is the following.

Absiract Problem 1 (AP1)

Given: @ = [wr,0r], wz < wy, & compact interval in R*;
K(w») a nonempty set in R» defined for each w € @ and
satisfying assumptions

Al: K{w) compact for each w € Q,
A2: K{w) convex for each o € Q,
A3: K(-) Lipschitz continuous on 2.

Find:

*®

w” = II'].in .

wEQOE Kiw)

A solution «* of APl may or may not exist since 0 ¢
K(w), for all w € Q, is a possibility. If 0 € K (w), for some
w € Q, then Al and A3 imply that «* does exist, ie.,
0¢ K(w*),and 0 § K{(w), for all v < w*,w € Q. Moreover
if w* £ wr, 0 € 9K (w*).

In many applications of AP1 a contact function s(w,)
of K (w) provides the only means of computing points in
K (w). Thus an iterative method must be employed, which
usually means that an exact solution w* with 0 £ K (w*)
cannot be obtained. The goal is to find an e-approximate
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Fig. 1. Geometric interpretation of Algorithm AP1.

solution of AP1: a pair (wtzt) in @ X R* such that
wt < w¥ 2t € K(oh), and || 2t ]| <e

It should be emphasized that if ¢ > 0 is small, this does
not necessarily imply that o* — ot is small. In most
applications if w* — w* is large, this would represent a
desirable tradeoff in the “accuracy’ of satisfying 0 € K(w)
and minimizing w.

The basic idea of the algorithm for solving AP1 is indi-
cated geometrically in Fig. 1. Suppose 0 ¢ K(w) for
wr, < w < w; and it is desired to obtain w1 such that
wp < e L w* and 04 K(w) for wp < w < wppn. The
first step is to apply a projection algorithm such as BP2
to the minimization of || z || on K (). When a sufficiently
good approximation to this subproblem is obtained, say
2, the hyperplane P (wy, —2:), which is the support hyper-
plane of K(w:) having outward normal —z, strictly
separates K (w;) from the origin. Thus if w is allowed to
inecrease until P(w,—z;) just touches the origin, o =
wpp1 > wp. Clearly wi < w* because P(w,—z;) strictly
separates K(w) from the origin for wz < o < w1, The
algorithm obtained by repeating this process is doubly
iterative, the inner loop involving a projection algorithm
such as described in Section IV and the outer loop pro-
ducing an increasing sequence {w}, which will be shown
to converge upwards to w*.

Before giving the details of the algorithm and proving
convergence, some additional facts and notation are needed.
Let  be an element of @ and s(w,+) a specific contact
function of K(w). Consider

Y(wﬂ?) = “ n H"Z("‘h(w;—ﬂ)):
=0,

h(wy—n) < ¢

h(w,—n) 2 0. (16)

Thus ¥(w,*) is a function defined on R*. Geometrically,
forw € Q, 0 < w* 2z € K(w),the point vy (w,2)z is either the
point L(0;z) N P(w,—z) or the origin, depending on
whether or not L(0;2) N P(w,—z) is on the line segment
connecting 2 and the origin. This along with the functions
introduced in (13) and (14) is shown in Fig. 2. Notice that
v(w,2) > 0 implies P(w,—2) strictly separates K (w) from
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0 (Origin)

Fig. 2. Geometric interpretation of functional notation used
in Algorithm AP1.

the origin. The following theorem summarizes some
required properties of these functions.

Theoren 8

Let K(-) satisfy assumptions Al and A2. For w £ Q
let v(w,+) be defined by (16) and let A(w,») denote the
support function of K (w). Then: 1) 0 < y(w,2) <1, 2 ¢
K(w);2) v(u*2) = 0,2 € K(0¥);3) forw < o*, y{w,2) =
1 if and only if 2 = {(v); 4) for v < o™ and 2 € K(w),
“ 2 H ’Y(w,Z) < P(OO) ;5) ifo < w¥ 2z € K(‘-’J)?and'Y(w)z) >
0, then h(w,~2) = —Hzl|2y(w,z) <0; 6) h(w*n) 20,
7 € R~

The results of the theorem are geometrically obvious
and can be proved by modifying arguments used in [25]
and [26].

Remark 5: Given w € Qo < o* Gilbert’s algorithm and
Algorithms BP1 and BP2 generate sequences {z;} such
that for ¢ >0 and 7— =: 1) 2, € K(w); 2) ||z:]i >
Wzesiil, Haell =Ml 8() [l, and |[2:]] = [{za!| implies
2i={(w); 3) zi—>¢(w); 4) [zl v(w2:) = plw); 5) if
w < 0¥, v(w,2;) — 1. These results are proved in [25]
and [26].

Now it is possible to consider the procedure for finding
an e-approximate solution of AP1.

Algorithm AP1

Assume 0 £ K(w) for some w € Q. Let ¢ > 0 be given,
select 8,0 < 9 < 1, and set wp = wz, & = 0.

Step 1: Let wi be such that oz, < w; < w*. Apply a pro-
jection algorithm to the minimization of || z || on K (ws).
At each iteration determine {| z || and v(or,z). I {2 ]| < e
or v(ws,z) > 8, end iterations and set z = 2. If || 2 ]! < ¢,
the desired result is obtained: (wt,zt) = (ws2z:). If |l 2 || >
e, 20 to Step 2. [Observe that if wr = w* Step 2 will not
be entered because v (w*z) = 0, for all 2 € K(w*).]

Step 2: Since v{ws,zx) > 0, it follows from Theorem &,
A3, and Theorem 4 that there exists wgy1 € @ such that
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Vg1 > Wy h(‘-°l.-+1,“21.-) =0, and h(w,—Z;;) < 0, for w; <
w < wipa. (Observe 0 4 K(w) for wz < @ < wir.) Deter-
mine w1 by a root finding procedure applied to o (w,—2;) =
0. Increase & by one and return to Step 1.

This algorithm clearly generates sequences {w;} and {2}
where w; € @, wr < wr < ¥, and 2z € K(w). The follow-
ing theorem describes more fully the behavior of these
approximating sequences.

Theorem 9

Let K(-) satisfy assumptions Al, A2, and A3, let w*
defined in AP1 exist, let s(w,+) be an arbitrary contact
function of K(w), and consider Algorithm AP1. Then: 1)
for any e > 0 there exists an integer £ = £(e) > 0 such
that || 27 || < e wi < w¥ 2 € K(wf), and if E>0, w <
wp <--+<wjand ||z || > ¢ for k = 0,1,-++,k — 1; 2) as
€ — 0, wiy — o* and 27y — 0.

Proof: If w* = wy, then £ = 0 and the proof follows
trivially from Remark 5. Consider o* > wz. If for some
finite &, wx = w*, then & = % and again the proof follows
trivially from Remark 5. Now assume op < wp < o* for
all k > 0;ie., wpp > o forall & > 0.

Define
ay ™ ¢ - Why —
5= sup h{we,—2) — h( b. 2) a7
wawp© 2 (we — ws) ” z [I’
Wg >Wh
26\ J K{w)
wr fw<lwt

Noting that Aw,—2z/|| 21} = (/|| 2| h(e,—2),2 #0,
the existence of 7 follows from A3 and Theorem 5. Since
hlwy,—2) <0 and h(w,—2) =0, > 0. Thus (17)
implies

wirr — o = [1/F || 2 1) 10 (g, —26) — A(ws,—2:) ]
= (1/7) |; 2 |7 (ws22)
= (1/7) liz || 6. (18)

Part 1) of the theorem can fail only if for all £ > 0, a)
< wp wp < 0¥ and b) {| 2. ]| > e. But a) implies o, — & <
o* and wry1 — wx — 0 which by (18) vields |z || — 0. This
contradicts b) and proves 1). Moreover, by (13) || zie || =
p(wie) and thus p(wie) — 0 as e — 0. This, Theorem 7,
plw) > Oforwr € o < o¥ and p(w*) = Gimply wi — ¥
as e — 0, which completes the proof of 2).

Remark 6—Relaxation of A1: The boundedness require-
ment on K(w) is considered in the next section. If K(w)
is bounded but not closed, Algorithm AP1 can be applied
by replacing K (w) by its closure K («). Let contact and
support functions of K, § and %, be defined, and let K
satisfy Al. If K has a contact function s and a support
function A it is possible to set § = s and A = h. An -
approximate solution for AP1 with K is often an accept-
able approximate solution for AP1 with K. An application
of this idea is where it is difficult or impossible to prove
that K is closed and yet it is feasible to determine s and A.

Remark 7—Relaxation of A2: Even if K (w) is not convex,
functions s and % exist so that the steps of the algorithm
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may be followed. If this is done it is clear form Theorem 1
that z; € K(w) where K(w) = co K(w). Moreover w;, —
&% where &* is the smallest » € Q such that 0 € K(w).
Clearly &* < w* If an eapproximate solution for K,
(&*,2%), is obtained such that z+ ¢ K(&t), then this &
approximate solution is also an e-approximate solution for
the nonconvex problem involving K. There are applications
where this circumstance occurs. If it does not occur
(&+,2T) may still lead to an acceptable solution of the non-
convex problem (see Section IX).

Remark 8—Relazation of A3: In all applications which
have been considered by the authors, A3 is satisfied.
Actually Theorem 9 is true under weaker smoothness
conditions, e.g., that

[h(wan) — Alwpn) }/ (0e — @) <7 < o0

for all wa, op € Q, we > wp, 1 € S. By arguments similar
to those used in the proof of Theorem 4 this condition also
implies that K (w) is upper semi-continuous with respect
to inclusion. This guarantees that the abstract problem
has a solution if 0 € K (w) for some w € Q.

Remark 9: 1t is assumed in the statement of the algorithm
that 0 € K (o) for some w € Q. In applications this fact
may be difficult or impossible to verify a priori. Suppose
the algorithm is applied and 0 § K(w) for all w £ Q. By
considering the steps in the proof of Theorem 9 it follows
that for e sufficiently small there is an integer & such that
h(w,—zz) <0 for wi €< @ L wr. Thus in Step 2 it is
impossible to determine w4y when k = k. Hence the failure
of the algorithm to continue implies that AP1 does not
have a solution. Note that A1 may have an e-approximate
solution even when it does not have a solution. Thus if the
algorithm stops in the normal way this does not imply that
AP1 has a solution.

Remark 10: Suppose Algorithm BP2 is used in Algorithm
AP1. Each time Algorithm AP1 returns to Step 1, Algo-
rithm BP2 is applied to a new BP [minimize ||z !| on
K{(w;) rather than on K (wz—)]. Initialization of Algo-
rithm BP2 requires the stipulation of #1,+++,7,, and if
these directions are chosen so that sk ww (1) * *s8xwn (1)
are boundary points of K (wx) “near” {(wg), it would be
expected that 2 = {(w:) would be obtained in a small
number of iterations of Algorithm BP2. Fortunately a
natural good choice for #1,--+,, is available. On the
previous application of Algorithm BP2 [to K (wx-1) ], Algo-
rithm BP2 ends with directions 4y, « +,, sueh that z,_, =
> ict? NiSK = (11)s 2P he = 1,2, 2 0,7 = 1,-++,p [see
(4)]. The directions 7;,+++,7, are “good” directions for
K(wi_1). Since K(w;) and K{(wz—) are not apt to differ
greatly, these directions should also be “good” initializing
directions for Algorithm BP2 applied to K (w:). That this
is indeed the case has been confirmed in numerical experi-
ments [27].

Remark 11: For the determination of wii1 in Step 2 of
Algorithm AP1 it is necessary to require that

h (wk+1, —Zk) = 0.
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Sometimes this equation can be solved analytically (see
the examples in Section IX). If it is necessary to use a
root finding proeedure, it would be highly desirable to relax
the requirement 4 (wry1,—2;) = 0. This can be done in the
following way. Let 0 < ¢ < 1 and assume wiyy is selected
so that h(w,—2z:) < 0forwe < w < werr and A(wppr, —2) 2
¢h (wr,—2:). Then (18) is replaced by

wipr — wp 2 [(1—¢)/ (]2 ) IL—F (e, —2)]
>[A—¢)/5]|l2|0

and the results of Theorem 9 are unchanged.

If the determination of wy; is to be made by evaluating
h(w,—2) on a grid of points for w; < o, 1t is necessary to
take the spacing of grid points, Aw, sufficiently small so
that A(w,—z;) remains negative between the grid points.
The bound (17) permits such a spacing to be determined:
Aw < =771 2 ||7 R (wr, —2).

Remark 12: In general || 2, || does not decrease mono-
tonically. An illustration is given in Fig. 1.

Theorem 9 gives no information on the rate of con-
vergence of {wr} and {2:}. By introducing an additional
assumption A4, which assumes that K(w) sweeps into
the origin sufficiently fast, it is possible to prove geometris
convergence of {wz} and {z}.

A4: There exist w* defined in AP1, « € R, « > 0, such

that p(w) > a(w* — @) for all vy, < 0 < w*,

(19)

Observe that if the constant « in A4 is available, then
[z || = olwr) 2 alew* —w) for wr < wr < 0¥ implies
that the stopping condition || z; || £ ¢ may be chosen to
achieve any desired aceuracy of w;. The main consequence
of A4 is the following theorem.

Theorem 10

Let K (-) satisfy assumptions Al, A2, A3, and A4, and
consider Algorithm AP1. If w, < w¥, forallk > 0, and the
stopping condition || zx || < e is not imposed, then geo-
metric convergence is obtained, i.e., fork > 0and k — =»:

1) o* —w < (0% — wr)uk,

2) lla || < g,

Proof: From A4, || 2z: || > p(ws), and (19)
e — wr > [(1 — ¢)/510a(w* — wp).

Letting ¢ = (1 — ¢)8a/7 and A, = o* — wr, (20) gives
A — Agq > gAx which yields

O<uxl
g >0.

(20)

(21)

Theorem 9 implies A > 0 and A; — 0. This and (21)
yields (1 — ¢) > 0. Since ¢ > 0, p = 1 — ¢ satisfies 0 <
% < 1 which together with the definition of A; proves 1).
By using (19) and observing that w1 — wr < 0¥ — o <
(w* — wr)uk, 2) follows if 8 = (* — wr)?07 (1 — @)L

Since A4 is often difficult to verify directly, the following
theorem is useful.

(1 — @) > gy
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Theorem 11

Suppose there exist »* defined in AP1, ¢ € R, ¢ > 0,
&€ Qa < o¥r* € R 9* # Osuch that A(w,n*) /il 9] £
—c¢(w* — w) for all @ < w < w* Then: 1) A4 is true; 2
7* is the (outward) normal to a support hyperplane of
K (w*) passing through the origin.

Progf: Consider 2) first. From the condition on 7,
h(ew*n*) = max {z7*) < 0. (22)
£ Kiw*)

But sinee z = 0 € K{(w*), (22) yields

(z,7%) < h(w*n®) =0, forallz € K(o*)  (23)
which implies {z:{z,n*) = 0} is a support hyperplane of
K (w*) passing through 0. Now consider 1). By the defini-
tion of &, {z7%) < h(w,n*) for all 2 € K(w). Thus for
o < o< e*
p{w) min
(an* )Sh(wn*)

—h(@n*) /[ 7* || Z e(o* — w).

min [z >
2€ R(w)

(24)
Now let
min  p{w).

Pm =
wr<wlw
Clearly g, > 0 and p(w) 2> [pn/ (0™ — wz) J(e* — w) for
oz < w < &. Thus by defining @ = min {¢, pn/ (w* — wz) },
A4 results.
A condition similar to that in Theorem 11 has been used
by Fujisawa and Yasuda [22] in the special context of a
minimum-time optimal control problem.

VII. ABsTRACT PROBLEM 2

Without complicating the Algorithm for AP1 consider-
ably it does not appear possible to eliminate the require-
ment that K (w) be bounded on €. There are, however,
several situations of practical interest where the bounded-
ness requirement cannot be satisfied. Fortunately, the most
important of these can be treated indireetly by considering
an equivalent problem. The case of concern is the second
abstract problem.

Abstract Problem 2 (AP2)

Given: @ = [wr,wr ], wr < wr, a compact interval in RY;
foreach w € @

K (0) = Ke(w) + L(w) (25)
where K¢(w) is a nonempty set in R* defined for all w € @
and satisfying assumptions Al, A2, and A3; L(w) is the
linear subspace of B* given by

L(w) = {z:H(w)z = 0}; (26)

H(w) is an m X n matrix function, Lipschitz continuous
on ©; and (to avoid trivialities) rank H(w) > 0 for all
w € Q, rank H{w) < n for some & € Q. Find:

o* = mn o
w€Q, 0€K(w)
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Now consider the set function
K(w) = Hw)K(w) (27)
which maps @ into subsets of B». Clearly

K(w) = H(w)K¢(w). (28)

From (28) and the assumptions in AP2 it follows easily
that K (w) satisfies A1, A2, and A3. Moreover, if Algorithm
AP1 is applied to K (w) it leads to a solution of AP2. This
follows from Theorem 12.

Theorem 12

Consider AP1 with K(w) C R™ defined by (27) and
AP2 with K(w) C R~ defined by (25). Then: 1) 0 € K(w)
if and only if 0 € K(w); 2) a solution »* of AP1 exists if
and only if a solution &* of AP2 exists; 3) if w* exists,
w¥ = &*

Proof: Parts 2) and 3) follow directly from 1). Consider
1). The implication that 0 € K(w) if 0 € K(w) is trivially
true from (27). Now suppose 0 § K(w) and there exists
a2 € R(w) such that H ()2 = 0.Since z € K (w), (25) im-
pliesZ = & + Z where 3 € K¢(w),% € L(w). But H(w)2=
0 = H(w)g gives —# € L(w). Then (25) yields 0 =
s+ (—2) € K(w), a contradiction. Thus 0 ¢ K(v)
implies 0 ¢ H(w)K(w) = K(w), which completes the
proof.

In order to apply Algorithm AP1 to K (w) = H (w) K¢(w)
it is neecessary to make evaluations of 2(w,7) and s(w,s).
These evaluations ean be made in terms of the data of AP2
by using part 2) of Theorem 3. In particular,

h(w777) = hKc(w) (HI (w)ﬂ)
and a realization for the contact function of K(w) is
S(wm) = H(w)SKc(w) (H'(w)’?)-

Another question remains to be answered. If an e
approximate solution (w%,2*t) of API is obtained with
K(w) = H(w)Kc(w), is there a corresponding é-approx-
imate solution (&*,z+) of AP2 where & can be made small
by making e small? To investigate this question suppose
that zt, || 2% || < ¢ isobtained by an application of Algo-
rithm AP1. Then [see (4)]

(29)

(30)

D
gt = 20 As(wtym:)

i=1

(31)

where > ;4 X; =1 and \; >0, 2 = 1,+++,p. Because of
(30) it is clear that

b4
&= 2 MSkoh (H' (0F)n:) (32)

=1
satisfies 2 € Ke¢(ot) and H(wt)x = z+. Furthermore,
H{(eN(z+y) =zt forall y € L{ew™). It y £ L(wY) can
be chosen so that || 2+ || < eimplies || 2 + y || < ae where
e > 0 is a fixed constant, then ot = wtand 2t =z + g

will form an ae-approximate solution of AP2.

The best choice for y satisfies: minimize || z 4+ y || sub-
ject to H(w") (x + y) = z+. The solution of this mini-
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mization problem can be expressed conveniently by

gt =a+y = Hi(o")z" (33)

where H}(w) denotes the pseudoinverse of H (). Let
| Hi (@) || = max || Hf () ||
7€8

denote the norm of Hj(w). Then if

Hf(w) || £« forallw € Q (34)

1t 1s clear that

25| < afjzt|] = ae (35)

Hence if (34) is satisfied the question is answered affirma-
tively. Specifically, o+ = w*, € = a¢, and 2+ is given by
(83) with z € Ke(wt) given by (32) and y € L{wt)
given by (33).

Condition (34) often may be verified directly in appli-
cations. Alternatively, it is sometimes possible to give
explicit conditions on H (w) whichimply (34). For example,
if H(w) is continuous on £ (required by the hypotheses of
AP2) and rank, H(w) = m for all w € @, then it is not
difficult to show that there exists an & > 0 such that (34)
is satisfied.

Finally, it should be remarked that one does not always
care if an e-approximate solution of AP2 is obtained. There
are applications where it is sufficient to find z+ € K (wt),
ot £ 0% such that || H (oM 2t || L e

VIII. ABsTract PROBLEM 3

There are a number of applications in which @ is a finite
set, of integers rather than a compact interval in R In this
case the statement of the abstract problem and the algo-
rithm for its solution are considerably simpler than in
Section VI. Let I, denote the integer set {0,1,+--,g} and
consider the third abstract problem.

Abstract Problem 3(AP3)

Given: @ = Iy, where N is a positive integer; K(v) a
nonempty set in R* defined for each w € € and satisfying
assumptions

Al: K(w) compact for each w € Q
A2: K(w) convex for each w € Q.
Find:

*

w* = min .

€D, 0€ K(w)

The problem may or may not have a solution. If »*
exists, then 0 € K(0*) and either o* =0 or 0 4 K(w)
forall w € Toe.

If a contact function s(w,+) of K(w) is available, let
v(w,*) be defined by (16) and consider the following.

Algorithm AP3

Let ¢ > 0 be given, select 8,0 < 6 < 1, and set wp, = 0,
k=0

Step 1: For w; € Q apply Algorithm BP1 or BP2 to the
minimization of || 2 || on K(w;:). At each iteration deter-
mine || z]| and y(ws2). If || 2]] < € or v(w2) > 6, end
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iterations and set z = 2. If || 2 || < ¢, the desired result is
obtained (wh,zt) = (wr,zs). If || 2]} > ¢ g0 to Step 2.
[Observe that if w; = w* Step 2 will not be entered
because y(w*,2) = 0, for all z € K(w*).]

Step 2: Since v (wg,2:) > 0, Theorem 8 implies

h (wk, — Zk) < 0.

Let wpy1 € Q be such that A(w,—2z:) <0, for wp < o < wrq,
and A (wry1,—2) 2> 0. If wzyy doesnot exist, ie., h(w,—z) <
0 for w; < w < N, then a solution «* of AP3 does not
exist and the procedure terminates (see Remark 9). If
wiry1 does exist, determine it, inerease k& by one, and re-
turn to Step 1.

This algorithm either indicates that «* does not exist or
generates an e-approximate solution of AP3. The following
result is obtained.

Theorem 13

Let K(+) satisfy assumptions Al and A2, let * defined
in AP3 exist, and let s{(w,*) be an arbitrary contact func-
tion of K (w). Then the Algorithm for AP3 generates finite
sequences jwy} and {z} where w; € Iy, 0 < o < 0¥, and
2zx € K (w). Moreover: 1) for any e > 0 there exists & =
E(e), 0 < f < N, such that || z¢ || < ¢ 2 € K(wi), and if
E>0,w <oy <+++<awpand | z:]] >¢ fork=0,1,---,
E—1; 2), for e > 0 sufficiently small, wiy = w* and
2 —0ase— 0.

Proof: If w* = 0, then & = 0 and the proof follows
trivially from Remark 5. If w* > 0, let

min p(w).
wE I, 1

o =

Clearly « > 0. Furthermore, if ¢ is chosen <e, then
||z i| < e < a cannot be satisfied for w; € I,+—. Thus
wig = 0¥, e <, and Ziy —0 as e— 0 follows from
Remark 5.

It should be observed that Remarks 6-9 can be extended
to the present situation. Also it is possible to eonsider AP2
when  is an integer set.

IX. AprLIcATION OF ALGORITHEM AP1 TO
DiscreTE-TME OprriMar CONTROL PROBLEMS

To illustrate the application of Algorithm API to opti-
mum contro} problems, two minimum-effort diserete-time
control problems are now considered. Suppose the termi-
nal state of a discrete-time dynamical system is given by

N-1
z(u) =d+ X ru(f) (36)
=0
where z is an n vector and u denotes the control sequence
{u(O),u(l),- - '1u(N - 1) },U(j) € Rl:j €Iy = {0;17' )
N — 1}. The peak amplitude of the control » is given by

[} % |l = max [u(J) | (37)
€I
and the control “energy’” by
N—1 1/2
lulle = (E @) - (3%)
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The two control problems considered are as follows.

Control Problem 1 (CP1) (Minimum Peak Amplitude
Control) : Find u such that z(u) = 0 and |} u ||, is mini-
mum.

Control Problem 2 (CP2) (Minimum Energy with Peak
Amplitude Constraint): Find « such that z(u) =0,
| % liw < 1, and || u {ly is minimum.

A version of CP2 has been described by Polak and
Deparis [17]. His numerical procedure makes use of
parameterized convex sets, but is much closer in philos-
ophy to the Neustadt procedures (see Section I) than it
is to the procedures of this paper.

Control problem CP1 can be formulated as AP1 by
defining

K(w) = {222 = x(w),|| u [|o < o} (39)

To apply Algorithm API1 assumptions Al, A2, and A3
must be verified and expressions for 2 (w,7) and a contact
function must be obtained. It is easy fo verify Al and A2.
Forming

N—1

(na(w)) = 2 @rou(y) + ad) (40)

=0
it is seen that (n,2(u)) = (3,2} is maximized for z € K (v)
if 4 = ., where

Uan(J) = wsgn {rym) (41)
{to be specific take sgn « = 0 for « = 0). Thus
N1
s(wn) = 2(Uen); hlom) = (nd) + o X | )] (42)
=0

The linearity of 4 in v and Theorem 5 shows that A3 is
satisfied. Also it allows wi1 t0 be obtained by a simple
formula rather than a root finding procedure. Thus Algo-
rithm APl is applicable. An eapproximate solution
(wrzt) of APl yields an eapproximate control in the
following sense: if nq,«-«,7, are obtained such that z* =
Zi=1p ,\,--S(w*,m), A >0, Z,'=1p A: = 1, then

P
yt = Z Nl s

=1

(43)

gives || z(u) || £ e and [| ut || £ ot < o*. These resuits
follow from z* = x{u*) and || Us* w; || = @
It is of interest to note that

7 = max || 75 ]
J€In-1

In general it is not possible to obtain the n* mentioned in
Theorem 11 without knowing the solution CP1. However,
if the r; span R», for j = 0,--+,N — 1, the conditions in
Theorem 11 can be verified. This follows from the fact that
7 PR(ed) = —(o* —w) 1717 2™ | ¢y} | when
7 is an outward normal to a support hyperplane of K («*)
passing through the origin. Thus it is possible to take
p¥ =4 and ¢ = |l § 7 2™t i)l Clearly ¢ # 0
sinee (f,7;) = 0 for all j € Iy_1 is not possible. Of course
geometric convergence may still take place even if the r;
do not span E".
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K(0)

N7

\_]\K(w), w>0

—o————

Fig. 3. K(w)for CP2 withn =1, N = 1.

There are several ways of approaching CP2. One is {o
define

Kw) = fzizz=2@)lulles L Llull Lo}, (44)

This approach leads to a numerieally feasible realization of
Algorithm AP1. However, the numerical evaluation of
h(w,m) and a contact funetion is rather difficult.

An alternative approach is the following. Write z =
(2,27+1) where z € R*™, 2 € R, z»" £ R! and define
K(w) = {222 = z(u), 2" = ||ulip — o, || ulle < 1},

(45)
Let K{w) be used to form AP1 (dimension n 4 1 rather
than n). Then it is clear that « is optimal for CP2 if and
only if || # |l = «*. Unfortunately K(») is not convex
(see Fig. 3 which shows K(w) for n =1 and N = 1).
Thus it is necessary to follow the suggestion of Remark 7
and consider AP1 with K(w) = co K(w) taking the place
of K(w). It will now be shown that this leads to an aceept-
able numerical procedure for solving CP2.

Clearly K (w) satisfies Al and A2. Moreover it is not
difficult to show that a contact function K (w) is

§(wm) = (2(w), |uy il — @) (46)
and that
h{wm) = (B,2(un)) + 77 | 1 [l2 — 07 (47)
where 7 = (4,77*!) € E*! and u, is defined by
uy(J) = —sat ({fr;)/297F), 71 £ 0
= sgn (4,73), = 0.  (48)

The linearity of % in w shows that K () satisfies A3 and
again a formula for w.; may be written. Thus it is possible
to apply Algorithm APL. Suppose an e-approximate solu-
tion is obtained, i.e., (&t,2*) where o+ < &%, 2t € K(ah),
and || 27 || L e

Now it will be shown that this e-approximate solution
leads to an acceptable solution of CP2. Suppose m,«* 1,
have been found such that 2+ = > .47 A§(at,m:), A > 0,
> P A = 1. For

?
ut =3 Ny,

i=1

it is clear that 2+ = (a(u™), 3m? Mo | Uy |
[| 2+ ]| £ e it follows that

[z@h) [[<e

(49)

2 — @t). Since

(50)
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and Yim? M || uy, ||2 < @t 4 e But this, the triangle in-
equality, and @* < ¥ yield

2 »
[at e = 22 Nt [le <30 N || e Lo
=1 =1

Sat 4+ e < ow¥+¢ (81)
(50) and (51) show that u* satisfies the requirements of
CP2 with terminal and energy error not greater than e.

In this problem 7 = 1. It is also possible to apply
Theorem 11 to prove gecmetric convergence. Generaliza-
tions of the terminal condition 2(u) = 0 in CP1and CP2
can be handled without great difficulty. These and other
matters pertaining to the way in which numerical calcu-
lations can be carried out will be considered in a future
paper.

In most applications of CP1 and CP2, N is significantly
greater than n. This shows the advantage of Algorithm
AP1 as compared with methods in mathematical pro-
gramming. Using programming methods z(x) = 0 would
be treated as n constraints on u, and iterations would be
made in the N-dimensional u-space. With Algorithm AP1
effective use of the structure of the equations of motion
is made. This allows the calculations to be carried out in
n-dimensional space (CP1) or (n + 1)-dimensional space
(CP2). Since computer time per iteration and convergence
rates tend to be degraded appreciably by dimensionality,
computer time should be greatly reduced by using AP1.

X. CoxcLusioNs

Three abstract optimization problems have been pre-
sented along with algorithms for their numerical solution.
When used with the BP2 subalgorithm these algorithms
appear to be efficient and have a number of important
advantages when applied to the solution of optimal control
problems: their utilization of contact functions makes it
possible to solve (infinite dimensional) optimal control
problems as finite dimensional problems; their generality
admits the solution of a wide variety of control problems
involving many different indiees of performance, terminal
conditions, and equations of motion; the required hypoth-
eses are relatively weak compared to the Neustadt proce-
dures, e.g., it is possible to treat systems with singular
controls; problem conditioning does not have a strong
effect on convergence rate; the algorithms are completely
determinant, e.g., there is no need to use empirical proce-
dures for step size evaluation. Many of these advantages
have been demonstrated conclusively in specific applica-
tions not discussed in this paper (e.g. [277).
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A Computer Program for the Synthesis of
Decoupled Multivariable Feedback Systems

ELMER G. GILBERT, MEMBER, 1EEE, sAND JOHN R. PIVNICHNY, MEMBER, IEEE

Abstract—Recently Gilbert [6] obtained general solution results
on the decoupling of multivariable systems by state feedback.
This paper presents a general-purpose computer program which
carries out all of the calculations necessary for reducing these
results to a useful synthesis procedure. The program is described
in general terms and several examples of its application are given.

I. INTRODUCTION

URING the last few years there has been a renewed
interest in the problem of decoupling multivariable
systems by state feedback. While the decoupling problem
was first posed by Morgan [7] in 1964, it was not until
1967 that a necessary and sufficient condition for decou-
pling was obtained by Falb and Wolovich [3], [4]. Falb
and Wolovich also made definite contributions to the syn-
thesis problem, but the complete structure of the solution
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did not appear until the paper by Gilbert [67]. Since the
general solution results in [6] were proved by constructive
arguments, they should in principle form the basis for a
useful synthesis procedure.

The main purpose of this paper is to show that this is
indeed the case. The proofs in [6] are reduced to an algo-
rithmic form and are then mechanized by a general purpose
computer program which yields all the necessary structural
results and synthesis data. Computer mechanization is
essential because the calculations are unwieldy for systems
of order greater than three.

The paper is organized as follows. In Section II the
decoupling problem is stated and key results of [67] are
given. Section I1I describes in a step-by-step way the basic
calculations which must be carried out. To make the
presentation reasonably easy to follow and to give some
insight into the arguments used in [6], justifications are
given when it is easy to do so; a full understanding of some
steps requires reference to [ 6. Seetion IV indicates specific
features of the computer program. Several design examples
(including the control of a distillation column) are given
in Section V. They illustrate how the computer output is
used and give some idea of the potentialities of the syn-

thesis procedure. Concluding remarks appear in Section
VI
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