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This paper considers the characterization and computation of invariant sets for
discrete-time, time-invariant, linear systems with disturbance inputs whose values are
confined to a specified compact set but are otherwise unknown. The emphasis is on
determining maximal disturbance-invariant sets X that belong to a specified subset I'
of the state space. Such d-invariant sets have important applications in control
problems where there are pointwise-in-time state constraints of the form x(f) € I'. One
purpose of the paper is to unite and extend in a rigorous way disparate results from
the prior literature. In addition there are entirely new results. Specific contributions
include: exploitation of the Pontryagin set difference to clarify conceptual matters and
simplify mathematical developments, special properties of maximal invariant sets and
conditions for their finite determination, algorithms for generating concrete represen-
tations of maximal invariant sets, practical computational questions, extension of the
main results to general Lyapunov stable systems, applications of the computational
techniques to the bounding of state and output response. Results on Lyapunov stable
systems are applied to the implementation of a logic-based, nonlinear multimode
regulator. For plants with disturbance inputs and state-control constraints it enlarges
the constraint-admissible domain of attraction. Numerical examples illustrate the
various theoretical and computational results.
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318 I. KOLMANOVSKY AND E.G. GILBERT

1 INTRODUCTION

Consider the linear, time-invariant, discrete-time system

x(t+ 1) = Ax(t) + Bw(z), (1.1)

y(t) = Cx(t) + Dw(2), (1.2)

where 1€Z", the set of non-negative integers; x(f) €R”, w(f) € R™,
y(®) €eR?; A, B,C, D are real matrices of appropriate dimension. Let
W CR™ and use the notation weW to represent disturbance
sequences {w(t)e W: t€ Z"}.

A set X C R” is positively-invariant under the disturbance flow of
(1.1) or, more simply, d-invariant if 4¢+ By € X for all ¢ € X and
1 € W. Invariant sets are of special interest because they characterize
the evolution of the system for all possible we W. Invariant sets
have, of course, played an important role in the theory of linear
systems. See, for example, [38,45]. In most of this theory w(z) belongs
to a linear space. Only in the last decade has there been increased
interest in the case examined here where W is bounded.

In particular, we are interested in characterizing the extent of
possible motions of (1.1), (1.2). For example, given a set I C R", what
initial conditions x(0) assure x(f) €T for all 1€ Z". The connection
to d-invariant sets is clear. If X is d-invariant and X CTI', then
x(0) el implies x(¢) €T for all € Z". How are such I'-constrained
d-invariant sets obtained? Our response to this question revolves
about three closely connected topics:

I. Conditions on sets X that imply they are d-invariant.
II. Properties of the maximal d-invariant subset of I".
III. Algorithms for constructing concrete representations of d-
invariant sets.

We have strong motivations in pursuing these topics in the context
of (1.1), (1.2). In engineering applications the validity of linear system
models is often limited more by the presence of “hard” constraints,
such as pointwise-in-time limits on acceleration and range of
mechanical displacements, than on their inaccuracy in representing
the dynamics of nonlinear systems. Since hard constraints take the



DISTURBANCE INVARIANT SETS 319

form x(¢) €T", d-invariant subsets of I" have a close relationship with
control-system analysis and synthesis and controller implementation.
These relationships have little practical value unless the invariant sets
have concrete, computable representations. Hence our interest in
topic III and in discrete-time systems. Beyond its obvious inherent
interest, topic II is closely connected to topic III. It turns out that
maximal d-invariant sets lend themselves naturally to algorithmic
determination.

Our treatment of hard constraints is based on output constraints
of the form yeY={y(f)€ Y: t€Z*} where Y CR” is bounded. The
set of all initial conditions which cause this constraint to be met is
called the maximal output admissible set. It is denoted by
Oy (A4,B,C,D,W,Y), or simply O,, when the arguments are clear
from context. To be explicit

Oy = {x(0) € R": y(t) € YVt € Z" and Vw € W}, (1.3)
where
y(2) = Cx(0) + Dw(0), =0,
t—1
= CA'x(0)+ > CA"FDBw(k) + Dw(r), t>1. (14)
k=0
Clearly,

x(0) € One = x(1) = Ax(0) + Bw(0) € O Yw(0) € W. (1.5

Thus, O, is d-invariant. The constraint on the output imposes,
implicitly, a constraint on the state of the form x(¢) € I" where

I'={¢peR" Cop+DypcYVpe W} (1.6)

Hence it is feasible to eliminate (1.2) and Y from further considera-
tion. There are good reasons for not doing so. Physically-based
constraints are often on just a few system variables and it may be
possible to take advantage of the resulting algebraic structure, for
example, to improve algorithmic efficiency. Note also that state
constraints x(f) €' can be treated in the context of O, by setting
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C=1,and Y=T. Since O, contains all initial conditions that imply
x(f)€T, t€Z", it follows that O is the maximal d-invariant subset
of T.

Recursion and finite determination play a critical role in the
characterization of maximal output admissible sets. Let

0, ={x(0)eR™ (k)€Y k=0,...,tandVweW}. (1.7)

From (1.2), (1.6) and (1.7) it is easy to verify that

0o =T,
O ={pER" Cé+ DY, Ap+ B € O, Vo) € W}
={pel: Ap+Bpc O, Vhe W}, teZ. (1.8)

If there exists a € Z" such that O, = O, we say that O is finitely
determined. Thus, finite determination is crucial in the development
of algorithms for the construction of maximal d-invariant sets.

Since the literature on invariant sets is large, we limit our review of
it to a sampling of the works on discrete-time linear systems that are
most closely connected with the topics treated in this paper.
Additional papers may be found in the cited references. The
disturbance free case, W= {0}, has been studied extensively. Obvious
examples of invariant sets are the invariant subspaces of 4 and
sublevel sets of quadratic Lyapunov functions. A variety of condi-
tions has been given [6,7,44] which guarantee that a specified
polyhedral set X CR" is positively invariant. Gilbert and Tan [19]
considered the maximal positively invariant set belonging to
I'={xeR" CxeY}, ie., O,(4,0,C,0,{0},Y) in our present nota-
tion. They investigate properties of O, and show that under reason-
able conditions it is finitely-determined and has simple, easily
computed characterizations. They and Kolmanovsky have used the
characterizations to develop a variety of nonlinear feedback con-
trollers which enforce pointwise-in-time constraints and enlarge the
set of initial conditions and/or inputs over which constraints are
satisfied [19-22,42,43]. For systems with disturbance inputs, the
earliest literature goes back to the set-valued control theory of
Glover, Schweppe, Bertsekas and Rhodes [4,5,23,40]. Basic develop-
ments in these works underlie many of the developments which have
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occurred since. Concepts most closely connected with this paper are
elliptical bounds [23,40] and the largest strongly reachable set [4].
More recently, Blanchini and others consider a variety of situations
in which polyhedral sets are d-invariant [8—11,17]. Issues related to
maximal d-invariant sets and recursions can be found in [3,5,10—
12,30,42]. Finite determination is addressed in [10,12,30]. Applica-
tions of maximal d-invariant sets to controller design and implemen-
tation are considered in [22,31].

This paper is more narrowly focused than most of the preceding
papers, centered as it is, on the characterization and computation of
constrained d-invariant sets for the system (1.1),(1.2). Thus, it is
possible for us to pull together and develop more elegantly a wide
variety of disparate results from the prior literature, often extending
them by obtaining stronger conclusions under weaker hypotheses.
Entirely new results are obtained also. The emphasis on algorithmic
techniques is unique and important. If d-invariant sets are to reach
their full potential in practical applications, computational tools will
be needed.

A key ingredient in our effort to clarify conceptual issues and
simplify mathematical derivations is the set operation of Minkowski
subtraction or P-subtraction. Suppose U, V' CR". Then the P-differ-
ence U minus V is:

UnV={zeR": z+veUVveV} (1.9)

The prefix P acknowledges Pontryagin [35] who appears to be the
first person who have used the difference in control theory. The
difference appeared much earlier, at least as far back as 1948, in the
Brunn—Minkowski theory of mixed volumes (see [25,39] for details).
Other early references pertaining to its explicit or implicit use in
control theory include: [4,5,15,23,27]. More lengthy investigations of
the P-difference and its properties can be found in [16,25,26,
32,36,39]. The recursion (1.8) illustrates the notational advantage of
the P-difference. Let BW denote the image of W under the mapping
B. Then,

01 ={p€T: Ap € O, ~ BW}. (1.10)

The paper is organized as follows. Section 2 presents a comprehen-
sive summary of results on P-subtraction. Most of them have
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appeared previously, while some are new (e.g., Theorem 2.5) or
stated under weaker conditions. For completeness short proofs are
given. Section 3 addresses topic I. It is mostly a reprise of the
conditions stated in the literature, using to advantage properties of
P-subtraction. The set, F, of states ultimately reachable from x(0) =0
is d-invariant and minimal over the class of closed d-invariant sets.
Not surprisingly, it appears throughout the paper. It and d-invariant
families of ellipsoidal sets are discussed in Section 4. Basic properties
of O, are derived in Section 5. There is overlap with earlier results
on maximal invariant sets, but our assumptions are generally weaker
and are based on Y rather than I'. For example, it is not necessary to
assume that Y is polyhedral or convex or that 4 is asymptoti-
cally stable. Algorithms for generating O, are treated in Section 6.
Conditions for finite determination are given and computational
details are discussed at length. The important case where Y is poly-
hedral is emphasized. It is shown in Theorem 6.3 that increasingly
accurate polyhedral approximations to nonpolyhedral Y generate
increasingly accurate approximations of O,. Finite determination
depends on the assumption that 4 is asymptotically stable. In Section
7 it is shown that accurate approximations of O, can be computed if
A is only Lyapunov stable. The results hold under weaker conditions
than were stated in [19] for the disturbance-free case. It is of interest
to determine O,, when it is parametrized by a constant input added
to right sides of (1.1),(1.2). This question is also considered in
Section 7. The paper concludes with two sections on applications of
the preceding results. Section 8 describes in general terms algorithmic
methods for solving two problems: the determination of sets which
approximate and bound F; the determination of bounds on the
induced norm of L: I’} — F_, the input—output operator associated
with (1.1),(1.2). Section 9 considers a variant of the nonlinear,
multimode regulator proposed in [31]. It uses the results of Section 7
to define a regulator that enlarges the constraint-admissible domain
of attraction.

We conclude this section with notations, a review of some well-
known results [37,39] and basic assumptions on problem data. The
vector x € R” is interpreted as a column matrix with elements x'. Its
p-norm is |x|, The superscript T indicates matrix transpose. The
interior, closure, convex hull and the extreme points of a set are
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denoted respectively by int, cl, co and ex. The empty set is 0;
B'={xeR™ |x|,<1}. Let U,VCR", a,€eR and G,HCR"*",
The image of U under G is GU. Scalar multiplication and Minkowski
summation are defined by aU={au: uc U} and U+V={u+v:
ue U, ve V'}. These operations allow formation of weighted sums of
sets without regard to the ordering and association of terms in the
sums. However, the association of scalar and matrix multipliers is
greatly restricted. The equality aU+ BU=(a+ [)U is not generally
valid; it does hold if U is convex and «,(3 > 0. Even when U is
convex it is generally not true that GU+ HU=(G+ H)U. The set U
is symmetric if U=(—1)U=—U. If U and V are (bounded) [closed]
{convex}, then U+ V is (bounded) [closed] {convex}.
The support function of U, evaluated at n € R", is
hy(n) = supn'u. (1.11)
uel

The domain, Ky CR”, on which the support function is defined is a
convex cone with vertex at the origin; specifically, for n ¢ Ky, nu is
unbounded from above on U. If U is bounded, Ky;=R". Suppose U is
closed and convex. Then U= {u: n u < hy(n), n € Ky}, the intersection
of its supporting half spaces; moreover, VC U if and only if
hy(n) < hy(n) for all n € K. Testing the inclusion V' C U is much easier
when U is the polyhedron,

U={u:silu<r, i=1,...,N}. (1.12)

Then VcCU if and only if hy(s;))<r;, i=1,...,N. For a >0,
ueR", peR™ Gy e Ky, the following identities are easily confirmed:
hy(n) = heou(m), hu(am) = ahy(M), hyy + vM) =n"u+hy(n), hy 4 () =
hy(m) +hy(), hgu(p)=hy(G* ). Furthermore, if U is compact it
follows that coU = co(exU) and hy(n) = hexu ().

In what follows it is necessary to both characterize and numerically
evaluate support functions. In many situations this can be done using
the preceding identities and simple observations such as: U= {u:
u"P'u<1}y, P=P">0 implies hy(n) = /n"Pn; U= {u: lul, <1},
1 <p<ooimplies hy(n) = |n], p ' +q¢ ' =1; U=cofuz i=1, ... ,N}
implies hy(n)=maxn'w;, i=1,...,N; when U is the polyhedron
(1.12) hy(n) is the solution of the linear program (LP), maximize 1’ u
subject to sTu <r;, i=1,...,N.
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Finally, it is assumed hereafter that the problem data, 4, B,C, Y, W
satisfy the following assumptions:

(A1) Both W and Y are compact and contain the origin,
(A2) The pair (C, 4) is observable.

While these restrictions are a bit stronger than what is needed for a
few of our results they are quite natural and simplify the presenta-
tion. In fact, (A2) is not really restrictive since the constraint y(f) € Y,
t€Z", acts only on the “observable coordinates” of (1.1)—(1.2) and
O, is determined entirely by the observable coordinates (the precise
details are essentially the same as those described in [19].

2 THE PONTRYAGIN DIFFERENCE

Basic properties of the P-difference are summarized in the following
theorem. They have appeared in one form or another in the
literature. See, for example, [25,36,39].

THEOREM 2.1 Let U,V CR" and assume that U~V #0. Then the
Sfollowing results hold. () U~V=[),ep(U={v}). () (U~V)+
VcU. (ii) 0€V implies U~V CU. (iv) U= {u}+aU,V={v}+
aV and a €R implies U~V ={ii— 7} +a(U~ V). (v) V=V +V;
implies U~V=(U~V)~Vy,=(U~Vy)~V,. (vi U= UU,
implies U~V=U~V)N\(Uy~V). (i) V=VUV, implies
U~V=U~V)NU~Vy). (viii) If GER™™" has rank n, then
GU~GV= GWU~YV). (ix) If U,V are symmetric, U~V is sym-
metric. (X) If U is (bounded) [closed] {convex}, U~V is (bounded)
[closed] {convex}. (xi) If U,V are symmetric and convex, then
Ocu~V. (xii) If U is convex, then U~V =Ur coV. (xiil)) V= co{v,
i=1,...,N} implies U~V=)i=1.... v (U~{w}). &iv) If V is
compact, then U~V = U~exV.

Proof Results (1)—(ix) are easy consequences of the definition of
U~ V. The boundness result in (x) follows from (ii); closure and
convexity follow from (i). By (ix) and (x), the assumptions in (xi)
imply that U~V is symmetric and convex; thus z€ U~V implies
—z€ U~V and {24 (—2)=0€ U~ V. Consider (xii). Let ze U~ V,
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v;e V and o; € R satisfy «; > 0, Ya;=1. Then, z+v;€ U and, by the
convexity of U, z+oa;v;C U. Property (xiii) follows immediately
from (i) and (xii). Similarly, (xiv) follows from (xii) and because for
V compact, coV = co(ex(V)).

On occasion, it will be convenient to write U~ (V;+
Vot -+ V) =U~V~Vy~ --- ~Vy, a notation which by (v) is
unambiguous.

It should be emphasized that the P-difference is not an additive
inverse; i.e., in general, (U~ V) + V# U. The equality may fail even
if U and V are compact and convex. Consider the example: U= {u:
lu| oo <1}, V={v: |v], <1} CR? It follows that U~ V'={z: |z|o <1}
and (U~V)+V is the unit square with “rounded” corners. Thus
(U~V)+ V#£U. It turns out, however, that if U and V are convex
and compact and there exists a convex set W such that U=V + W,
then W=U~ V. There is an obvious special case of this result.
Suppose Z is compact and convex and 0 <ap<ay. Then, ayZ~
ayZ =(ay—ap)”Z.

Remark 2.1 Using this last result it is possible to obtain set
inclusions which bound U~ V. Suppose U is compact and convex
and o yUCVCaU where 0<a;<ay<1. Then, (1-ap)U=U~
aUCcU~VCU~aU=(1—-a;)U. In the above example, o) =
(2v2)7', ap=(2)7" and the resulting inclusions form a reasonably
tight bounding pair. There is an obvious, general application. If o
and «, are both small, then U~ V= U and the inclusion describes
precisely the nature of the approximation. Similarly, under the
assumption that U is compact and convex, oV CUCa,V, 1<
aj < ay, implies (o — N)VCU~VC(ap—1DV.

It is also possible to characterize U~V in terms of the support
functions of U and V [39].

THEOREM 2.2 Suppose U is compact and convex and U~V #{.
Then: (i) hy(n) and hy(n) are defined for all n € R”; (ii)

U~V={zeR"n"z<hyn) — hy(n) ¥n € R"}. (2.1)

Proof Since U~ V#( there exists z€R” such that {z}+VCU.
Thus, both U and V are compact and their support functions are
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defined for all neR”. Now consider (ii). Suppose z€ U~ V. Since
{z}+VC U 1 z+hy(n) <hy(n) for all neR". Now suppose z € R" is
such that 7"z+hy(n) <hy(n) for all n€R”. Then, hyy+ V()=
hizyvcoerv(m) <hy(n) for all neR” For compact convex sets
U;, U, CR" it is known [37] that Ay, (1) < hy,(n) for all n € R” implies
U, C U,. Thus, {z}+V C{z}+co(c/V)CU and the proof of (ii) is
complete.

The characterization in (2.1) represents U ~ V as the intersection of
an infinite number of half spaces. It is tempting to conclude that
hy~ y=hy— hy, but this conjecture is not true. Consider the example
which precedes Remark 2.1. Clearly, hy.y(n)=%|n|+#hy(n) -
hy(n) = |n|1 —1|n|. It does follow from (2.1) that

hy~v(n) < hy(n) — hy(n). (2.2)

We now turn to characterizations of U~ V that are concrete in the
sense that it is possible to test computationally whether or not a
point z belongs to U~ V. Here Theorem 2.1 provides some
assistance. Results (iv) and (viii) allow U and V to be mapped into
potentially more useful forms. Specifically, if GeR"*™ is non-
singular, U=G(U-{a}) and V=GV -{v}) give U~V=
G Y (U~ V)+{ui—a}. If V is a polytope characterized as in result
(xiii) and it is possible to test for u € U, then z€ U~ V if and only if
z+v;eU for i=1,...,N. When U is a polyhedron, U~V is a
polyhedron. Moreover, when U is expressed as an intersection of half
spaces, U~ V is easily determined from the support function of V.
This result was first mentioned in the control literature [4,23] in 1971
where it is attributed to [27]. Remarkably, the result does not seem to
appear in earlier mathematical literature. Closely related results
concerning supporting half spaces do appear, so the absence of the
specific result must be attributed to a lack of interest in constructive
methods.

THEOREM 2.3 Suppose U is a polyhedron,
U={zeR:sfz<r, i=1,...,N}, (2.3)

where s;€R", 5;#0, and r;eR,i=1,...,N. Assume hy(s;) is defined
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fori=1, ... ,N. Then,
U~nV={zeR":sz<ri—hy(s), i=1,...,N}. (2.4)

Proof The result (2.4) is valid if N=1 since then by result (i) of
Theorem 2.1, U~ V= cp{z: s{(z+Vv) <n}={z:s]z+hy(s;) <
r1}. Recursive application of result (vi) in Theorem 2.1 proves (2.4)
for N> 1.

Remark 2.2 1If hy(s;) is not defined (sTv is unbounded from above
on V) for some i=1, ... ,N, then U~ V is empty. If Ay (s;) is defined
for i=1,...,N it is still possible that U~ V=(. In this case
emptyness can be checked by the usual linear programming test for
feasibility: maximize o over those (z,a)cR""! which satisfy
stz+a<r —hy(s), i=1,...,N; U~V#Q if and only if
max o > 0.

Remark 2.3 Suppose (2.3) is a nonredundant characterization of U,
i.e., the removal of any one of the N inequalities changes U. It is still
possible that (2.4) is a redundant characterization of U~ V. Redun-
dant inequalities can be sequentially eliminated by applying linear
programming. For example, if maxslz < r; —hyp(s;) for all z such
that s'z <r;—hy(s;), i=2,...,N, the first inequality may be
removed.

Remark 2.4 1t is not assumed that either U or V is bounded.
Moreover, (2.4) can be applied numerically to a wide class of V. It is
only necessary to have a procedure for computing the 4, (s,); see, for
instance, the next to the last paragraph in Section 1.

The simplicity of ellipsoidal sets makes them particularly attractive
in applications. Suppose U= {u: u"P~'u< 1}, P=P" > 0. If V is the
polytope, V=co{v;,, i=1,...,N} the characterization of U~V is
immediate: ze U~V if and only if (z—v)"P'z—v)<1,
i=1,...,N. Not surprisingly, U~V is neither smooth nor an
ellipsoid. There are algorithmic methods, see, e.g. [13], for construct-
ing the ellipsoid of maximal volume which is contained in an
intersection of ellipsoids. While such an internal approximation of
U~ V has the advantage of simplicity, it may fail to capture much of
the total volume of U~ V.
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If V is an image of an ellipsoid, V=BWCR", W={w:
wIR Iw< 1}CR™, R= RT >0, things remain complex; U~V is
neither ellipsoidal nor smooth and it defies an explicit characteriza-
tion. This complexity motivated early control researchers [4,5,23] to
exploit inner ellipsoidal bounds for U~ V. The following theorem
characterizes a family of such bounds.

THEOREM 2.4 Suppose U and V are characterized as above. Let
G € R" ™™ be a nonsingular matrix that simultaneously diagonalizes P and
BRB": GPG" =1,  GBRB'G" = A = diag[\;] where \; > Ay >--->
N>0 and if I<n, Njp1=--=X,=0. If \i>1, then U~V=0.
Assume \ < 1and0 <y <1— .. If Q CR" ™" satisfies

0< Q" =0 < (P~ BRE) = 8(1), (2.5)

then

Z={z2"Qz<1}c{z"® ' (y)z< 1} =Z*(y) cU~ V.
(2.6)

Nothing is gained by considering values of y which do not satisfy:

I—vVA <v<1=V (2.7)

Specifically, Z*(v) C Z*(1 — /X)) for 0<~y<1—+/A and if
L=V <1=M, Z*() c Z (1 =V A) for 1 = /A <y < 1= A1

Proof The inclusion ZC U~V is equivalent to GZC G(U~ V)=
GU~GV. Since GU~ GV is compact and convex it follows from
(2.2) that ZC U~V if hgz(n) <hgu~cv(n) < hgu(n) — hey(n) for all
neR", or, equivalently, /nTGQGTn < +/nTn—+/nTAn for all
neR”. Suppose \; >0 and GU~ GV #{. Then there exists n such
that hgy.gr(n) <0, which implies 0 ¢ GU~ GV. This contradicts
(xi) of Theorem 2.1. Let vy, v5,v3>0. Then it is easy to show that a
sufficient condition for /vy < /1, — /v3 is: vy <y(vo—1/(1 —y)v3),
where v satisfies 0 <y<1. Thus, the desired inclusion holds if
GOG" < ©(y) = diagl6i(y)], where 6,(y)=~(1—X\/(1—7)). Since
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G 'O(y)G T=®(y) this condition is equivalent to (2.5). Thus,
hz(n) < hz-(1)(n) for all neR" and (2.6) is proved. The 6;(y) have a
simple geometric interpretation; they are the half lengths of the
principal axes of the ellipsoid {x: x'®@!(y)x <1}. Clearly, 6;(y)>0
for 0<y<1—=MX; and 0;(7)<0 for 1 —-X;<vy<1. Hence, O(y)>0
requires v < 1 — A;. The functions 6;(y) are concave and for 0 <~y <1
satisfy the conditions: 6;(7)<©;,1(y), max;,(y) = 0:(1 —V/\;) =
(1- \/X)z. It is easy to deduce from these properties and Z*(y) = {z:
2'GTO 7' (7)Gz < 1} that the restriction (2.7) holds.

Remark 2.5 The theorem is stronger than the one in [23] in that it
adds the restriction (2.7) and does not require that V' is an ellipsoid
with a nonempty interior. Sometimes [4,5], (2.5) is stated with no
restrictions on «y except 0 <~y < 1.

Remark 2.6 The equality Z = Z*(v) occurs if and only if Q = ®(y).
The choice of v affects the lengths of the principal axes of the
ellipsoid Z* () but not their direction. This property may help to
determine the value of -y so that (2.6) best meets the needs of a given
criterion of inner approximation.

Remark 2.7 There is no guarantee that any one of the inner
ellipsoidal bounds provided by v € [l — /A, min{l — /A,, 1 — A }]
will be tight. The complexity of U~ V' may simply not admit a good
ellipsoidal approximation.

We conclude this section by considering approximations of U and
V' and their role in computing approximations to U~ V. To show
that arbitrarily accurate approximations can be obtained by suffi-
ciently accurate approximations of U and V, it is necessary to show
that the P-difference is continuous in U and V. Recall that distance
between a pair of compact sets X,YCR”" is measured by the
Hausdorff metric

p(X,Y) = max{e, e}, e =inf{e: X C Y+ eB"},
e =inf{e: Y C X+ eB"}. (2.8)
A sequence of compact sets X; converges to X when p(X;, X) — 0.

THEOREM 2.5 Suppose UCR", U*CR" and VCR" VKcCR",
keZ", are nonempty compact sets satisfying: UcC U+ c Ur, UF - U
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as k—oo; VECVEY eV, VE—V as k—oo. If U~V is nonempty,
then US ~ VE S U~V as k— oo.

Proof If zeU~V, then z+V*cU* for all keZ". Hence,
z€ M2 (UF ~ V*). If z€ U~ V* for all k but z¢ U~ V then there
exists v€ V such that z+v¢ U. Thus, there exists e>0 and veV
such that (z4v+eB")(YU=0. Hence, (z+v+$B") (U +5B") # 0.
Let k€ Z" be sufficiently large so that U C U + $B" and there exists
v € V¥ such that v, € v +§B”. But then z+ v, ¢ UF, which contra-
dicts z€ U*~ V*. To complete the proof observe that U~ V¥ is a
decreasing sequence of compact sets. Hence, (\oo,(U* ~ V¥) =
limy_o UF ~ V¥ (see [39], p. 48).

It is well known that compact convex sets may be approximated to
an arbitrary degree of accuracy by compact convex polyhedra [39]
and in certain situations constructive procedures are available. Thus,
Theorem 2.5 can be applied to polyhedral approximations of U~ V
when U is compact and convex and V' has approximations which
permit the evaluation of its support function. While Theorem 2.5
shows that arbitrarily accurate polyhedral approximations of U~V
are possible, it does not provide quantitative measures for the
accuracy of such approximations.

If it is possible to evaluate the support functions of U and V,
quantitative measures can be determined. Since the support function
of V is known it is only necessary to approximate U. Let
U ={u stTu<r,i=1,...,N} C U be an inner polyhedral approx-
imation of U. Then U C {u: sTu < hy(s;),i=1,...,N} = Ut. The
accuracy of the approximation of U increases as N increases and the
differences Ay (s;) — r; > 0 become small. By (2.2) and the definition of
P-difference, U™~V = {u: s,-Tu <r—hy(s),i=1,...,NtcU~VC
Ut ~ V= {uw sl <hy(s) — hy(s;),i=1,...,N}. From these inclu-
sions it can be seen that U ~VCcU~VCa(U ~V), where
a=max{(hy(s;) — hy(s))/(ri—hp(s)): i=1, ... ,N}. Clearly, a — 1 >0
becomes small as hy(s) —r;, i=1, ..., N.

3 TESTS FOR d-INVARIANCE

Much of the literature on invariant sets concerns tests for d-invariance,
i.e., given a specified set X C R” determine necessary and/or sufficient
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conditions for AX + BW C X. In this section we review many of these
results and show how they may be obtained almost immediately from
the properties of the P-difference. It is assumed that 0€ X. This
simplifies notational complexity and is consistent with the assumption
Oew.

Suppose X is a polyhedron characterized by an intersection of
half spaces. Since 0€X, it can be written as X = {x: s;rx <1,
i=1,...,N}. Invariance is equivalent to AX C X~ BW. Thus, by
Theorem 2.3, d-invariance of X is equivalent to

AXC Z={z sfz<1—hw(B%s;), i=1,...,N}. (3.1)

Since 0€AX, a necessary condition for d-invariance is that
hW(BTs[)gl, i=1,...,N. There is no special requirement on W
other than the indicated evaluations of its support function can be
made. If, in addition, X is compact and its vertices {x;: j=1, ..., M}
are known, (3.1) is satisfied if and only if Ax;€ Z, j=1, ... ,M. This
is the necessary and sufficient condition for d-invariance of Blanchini
[9,11]. While it can be easily applied numerically, it is inconvenient in
applications because the vertices are generally not known and it is
difficult to compute them from the half space characterization.
Alternatively, (3.1) can be written as

stAx <1 —hy(B's;) forallxe X, i=1,....,N. (32)

These inequalities can be tested numerically by solving N linear
programming problems: maximize s} 4x on X. Multiplier necessary
conditions for these linear programs form still another set of
necessary and sufficient conditions for d-invariance [10,11]. However,
the linear programming approach to (3.2) is a much simpler
numerical test for d-invariance.

Invariance is also equivalent to BWC X~ AX. This gives
BW C {x: s]x <1 —hy(ATs;),i=1,...,N}, which in turn can be
written as

WC W ={w:sIBw<1—hy(d"s), i=1,...,N}. (3.3)

This i1s the necessary and sufficient condition for d-invariance
obtained by De Santis [17]. It provides additional insight because W*
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is the largest disturbance set for which X is d-invariant. Since W* is
a polyhedron, a condition equivalent to (3.3) is

hw(B's)) <1 —hx(A%s), i=1,...,N. (3.4)

It is nothing more than a restatement of the linear programming
approach to (3.2).

Now suppose X is the ellipsoid X={x: x"P"'x<1}, P=P">0.
The condition AX C X~ BW is difficult to apply because X~ BW
does not have simple numerical characterization. If W is the ellipsoid
W={w: wTR™'w<1}, R=R">0, it is possible to apply Theorem
2.4 and obtain a sufficient condition for d-invariance: AX C {z:
z'®!(y)z<1}. Evaluating the support functions on both sides of
this inclusion yields an equivalent condition: APAT < ®(y). Let
Aii=1, ... ,n, be determined by the simultaneous diagonalizations,
GPG'=1, and GBRB'G" =diag[\], and X\ > N\, If A\ >1,
X~BW=( and X is not d-invariant. Assume \; <1. If for some
yell,

P—~'APAT — (1 —~)"'BRB" = § >0, (3.5)

where T={y: 0<y<1-=A,1 =y <v<1-+A\}, then X is
d-invariant. A similar development, starting with BWC X~ AX,
also gives (3.5); however, y€Il where II={y: A\ <y<]l1,
\/)\__n << \//\Tl} and the ); are determined by the simultaneous
diagonalizations, GPGT = I, and GAPA"G" = diag[\)] and \; > iy ;.
If \} >1, X~AX=0. Thus, the two approaches differ only in the
intervals of v over which S > 0 needs to be tested. In fact, v needs
only be considered in IT(II. It is easy to confirm that A\ <y < 1
implies P—~ 'APA">0 and 0 <y < )\ implies P—~ 'APAT <0.
These are conditions which might be expected from the theory of the
discrete-time Lyapunov equation [38] with v~ />4 playing the role of
the usual asymptotically stable matrix. Blanchini [11] states (3.5) as a
sufficient condition for d-invariance with v € (0,1) and S=0. This is
a much weaker sufficient condition with respect to the choices of
both v and S.

Necessary and sufficient conditions for the d-invariance of the
ellipsoid X can also be derived. Unlike the sufficiency results in the
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prior literature, they take the form of nonlinear programming
problems. Obviously, the definition of invariance is equivalent to

xer/%?v)e(WF(x, w)=F" <1, (3.6)
where F(x, w)=(Ax+ Bw)"P~'(4x+ Bw). Since W is compact, the
solution of the optimization problem exists and must satisfy appro-
priate necessary conditions. For example, if W= {w: w R 'w<1},
R=R">0, the Karush—Kuhn—Tucker conditions are valid necessary
conditions. There are practical difficulties in applying them. Because
the optimization problem is nonconvex, they are complex and have
multiple solutions, all of which must be evaluated. If W=co{w;
i=1,...,N}, (3.6) is replaced by N conditions:

max Fi(x)=F'<1, i=1,...,N, (3.7)

xeX

where F;(x)=(Ax + Bw;)"P~'(4x 4 Bw;). Each of these optimization
problems is much simpler than (3.6). By introducing a change of
variables the corresponding necessary conditions may be reduced to
the problem of finding roots of an equation ¢(\) =0 where ¢: R - R
is given by a simple formula. While there are multiple roots, they
appear pairwise in known subintervals so that they can be computed
quickly by Newton’s method. Details will appear elsewhere.

4 TWO IMPORTANT d-INVARIANT SETS

Suppose A4 is asymptotically stable. Then, since W is compact, it is
intuitively obvious that there exist bounded d-invariant sets. We
substantiate this statement in two ways: by describing specific
procedures for constructing ellipsoidal families of such sets and by
observing the connections between reachable sets and “minimal” d-
invariant sets.

Consider first the situation where W is the ellipsoid described in the
preceding section. It has been noted that (3.5) is similar in form to a
discrete-time Lyapunov equation. Since A is asymptotically stable it
has a spectral radius p < 1. Clearly, u? <~ if and only if v~ '24 is
asymptotically stable. Thus [38], for all > <~y <1 and $>0, (3.5) has
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an unique solution, P > 0, which is easily computed. The corresponding
ellipsoidal sets X form a d-invariant family parametrized by € (1%,1)
and S. While the characterization of the parametrization is not simple,
it is obvious that for sufficiently large S, X covers any bounded subset
in R". Conversely, for S>0 small, the sets X are relatively small. In
fact, if the pair (4, B) is controllable it is possible to take S =0. Then,
(3.5) still has a solution (see [38], p. 473) P >0, parametrized by
u? <~y < 1, which describes a family of “smallest” elliposidal sets X.

The preceding constructive procedure applies also to general
disturbance sets. Obtain an ellipsoidal bound for W: say W C {w:
wIR™'w< 1}, R>0. Then, by the definition of d-invariance, ellipsoi-
dal sets X generated by (3.5) are d-invariant.

Consider the action of the disturbance input on system (1.1). The
set of all states reachable at ¢, starting from x(0) =0, is

F, = {x(t): x(t) = iA("k“l)Bw(k), wew}, t>1.  (41)
k=0

In set-theoretic notation,

Fy = {0},
t—1
Fo=> ABW, 1>1, (4.2)
k=0
and
F[+] :AF[+BW, t€Z+ (43)
Obviously,
0€F,CFy VteZ'. (4.4)

The sequence of sets {F,: t € Z*} has well-known properties which are
summarized in the following theorem. For completeness we include a
proof.

THEOREM 4.1 Assume A is asymptotically stable. Then there exists a
compact set, FCR", with the following properties: (i)

0€EF,CF VteZ', (4.5)
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(i) F,— F, i.e., for every € >0 there exists t € Z*such that FC F,+ eB".
(i) F is d-invariant.

Proof Since 0€ W and W is compact, 0 € F, and F, is compact.
Recall that with the Hausdorff metric p the family of compact sets in
R" forms a complete metric space ([2], p. 164). Furthermore, the
compactness of W and the asymptotic stability of A4 imply the
existence of >0 and 0<A<1 such that for all t€Z*, A'‘BWC
pN'B". This and F,,;=F,+ A'BW imply p(F,,,F,)<u)\. Hence,
{F,: t€Z"%} is Cauchy and F,, t— oo, has a limit F. This proves (i)
and (ii). Letting t— oo in (4.3) proves F=AF+ BW which shows
that F is d-invariant.

Remark 4.1 Results (i) and (ii), together with the asymptotic
stability of 4, imply that F is the limit set for all the trajectories of
(1.1). In particular, F is the smallest closed set in R” that has the
following property: given any £ >0 and any € >0 there exists f € Z*
such that for all x(0)e¢B” and for all we W it follows that
x(f)EF+eB" forall t > 7.

Remark 4.2 Since F is a Minkowski sum of infinitely many terms, it
is generally impossible to obtain an explicit characterization of it.
There is an exception. Suppose there exist k€ Z" and 0 <a < 1 such
that 4“B=aB. Then it is easy to confirm that F=(1—a)”!
(BW + ABW + --- + A*BW).

COROLLARY 4.2 Suppose A is asymptotically stable. Then, over the
class of closed d-invariant sets, F is minimal, i.e., if X is any closed d-
invariant set, then F C X.

Proof Since X is d-invariant and 0 € W, x(0) € X implies 4°x(0) € X
for all t€Z". Thus, 4°x(0) — 0 and X closed imply 0 € X. By the d-
invariance of X, x(0)=0 implies x(¢) € X for all t€Z" and we W.
Hence, (4.1) shows F,C X, for all t€Z". Minimality follows
immediately from Theorem 4.1 and closure of X.

A simple example illustrates the preceding results.

Example 4.1 Letn=2,m=1, p=2, W=[-0.231,0.231] and

el
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FIGURE 1 Sets X35, Xo.5, X065, Xo.8 and Fs in Example 4.1. The vertices of the set
Fs are designated by the small circles.

Figure 1 displays the ellipsoidal sets, X.,, generated by (3.5) for five
values of € [u? 1)=[0.25,1] with S=0. The objective is to obtain
simply defined bounding sets for the very complex set F. The
intersection of the five ellipsoids, X, is also d-invariant, so F C X.
Note X = Xo.5() Xo.5() Xos so that X; 35 adds nothing. In fact, X is
quite reasonably approximated by Xj¢s alone. Clearly, F is trapped
between upper and lower bounds X and Fs.

5 THE MAXIMAL d-INVARIANT SET, O,

We now return to the characterization of d-invariant sets which are
maximal under output constraints. The characterization of O, given
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by (1.4) and (1.7) can be rewritten in terms of P-differences. Let
Yo=Y~ DW, Y,=Y~DWn~---~CA7'BW, t>1.(51)
Then,
O, ={x(0) e R": CA’x(0) e Y,, 7=0,...,t} (5.2)
These expressions lead to the recursions:

Y1 =Y, ~ CA'BW, Yo=Y~ DW, (5.3)

O =0, {p €R": CA™'p € Y},

O)y=T= {qb Co € Yo}. (5.4)
From (1.3),
ezt

Key properties of these sets are collected together in the following
two theorems.

THEOREM 5.1 Suppose O,# 0. Then Y,# 0 and the following conclu-
sions hold: (1) Y, ., CY,, O, CO,. (ii) Y, is compact. (i) If t >
n—1, O, is compact. (iv) If Y is convex, Y, and O, are convex. (V) If Y
and W are symmetric, Y, and O, are symmetric. (vi) If Y and W are
symmetric and convex, 0€ Y, and 0 € O,.

Proof The first part of (i) follows from 0 € W, (5.3) and result (iii)
of Theorem 2.1. The second part is obvious from (5.4). Results (ii)
and (iv)—(vi) are obvious consequences of (Al), (5.1), (5.2) and
Theorem 2.1. Let H=[CT(CA)T---(CA" H|TeR”*"; by (A2), H
has rank n. Thus, H"=(H"H) '"H" e R"*" exists. It follows from
(5.2) that O,_=H"(Yyx Yy x---x Y,_,). This, (ii) and O,C O,_,,
t>n—1, imply (iii).

THEOREM 5.2 Suppose Oo#0. Then: (i) AO, C Oy (i) O is
compact and O,— O, (iii) If Y is convex, then O, is convex. (iv) If
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W.,Y are symmetric, then Oy, is symmetric. (V) If W, Y are symmetric
and convex, then 0€ O. (Vi) If A is asymptotically stable, then
0€ Oy. (vii)) For all a€R, O, (4,B,C,D,aW,aY)=a0.(4,B,C,
D,W,Y). (viii) Suppose TeR"™" is nonsingular. Then,
Os(A,B,C,D, W,Y)=TO. (T AT, T'B,CT,D, W, Y).

Proof Result (i) follows from 0€ W. Results (iii)—(v) are direct
consequences of Theorem 5.1. Theorem 4.1 and Corollary 4.2 imply
(vi). Statements (vii) and (viii) are straightforward algebraic con-
sequences of (1.3). and (1.4). Result (ii) follows from (5.5) and the
fact that O,, t€ Z", t > n— 1, is a nonincreasing sequence of compact
sets (see [39], p. 48).

Remark 5.1 Suppose Y is convex. Then by (5.3), part (iv) of
Theorem 5.1 and part (xii) of Theorem 2.1, it follows that there is no
change in Y, and O, if W is replaced by coW. Thus, O, is unchanged
if W is changed to coW. Similarly, by part (xiv) of Theorem 2.1, O,
is unchanged if W is replaced by exW. If exW contains only a few
points this result, together with part (i) of Theorem 2.1, may be
computationally advantageous in (5.3).

Remark 5.2 Suppose A is asymptotically stable. Then by Corollary
42, O, #0 implies FCO,CT. Conversely, FCI' implies the
existence of at least one d-invariant set in I'. Thus, O, #0 if and
only if FCT.

Example 5.1 Letn=p=2 m=1, W=[-1,+1], Y=6-1,+1]* and

o[58l et} ol

The parameter 6 >0 allows the size of Y to be scaled. Since
A’B=81B, Remark 4.2 applies and F=(1—.81)""(BW+ ABW), a
rectangle with its corners at =+((1.9)"',10) and =+(10,(1.9)"").
Clearly, I'=Yy,=Y. By Remark 5.2, O, #0 if and only if 6 > 10.
From Y, =Y~BW=(6-1)Y, Oy=T=Y, and 0O;=0,{¢:
Ap e Yy} it follows, for 6 > 10, that Y=0,=0,=0,. If §>10,
there are infinitely many d-invariant sets X which satisfy FC X C O.
Suppose, for instance that §=20. Then [—a,a] is d-invariant and
FC[—a,a]’ C Oy for all a€[10,20].
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Remark 5.3 1In general, F is a proper subset of O, even when F
and T' contain common boundary points. This happens in the
example when =10 and Y is the smallest output set such that

O #0.

6 ALGORITHMIC DETERMINATION OF O,

Suppose O, 1=0,. Then, by (1.10), O;, .= 0, and O, = O,. This
observation is the basis for the following conceptual algorithm:

ALGORITHM 6.1 Given A,B,C,D, W, Y.

Step I: Set t=0 and Oy=T={xeR" Cxe Y~DW}. If Oy=0, set
Oo.=0, t* =0 and stop.

Step 2: Determine Y, by (5.3). If Y, =0, set O, =0, t* =t+1
and stop.

Step 3: Determine O, by (5.4). If O,,1=0, set Oo=0, t* =1+1
and stop.

Step 4: If O, =0, set O,,=O0,, t* =t and stop.

Step 5. Replace ¢ by ¢+ 1 and return to Step 2.

Remark 6.1 1If Y and W are symmetric and convex the algorithm is
simplified significantly: in Step 1 the test Oqg=0 is replaced by
0 ¢ Oy, in Step 2 the test Y, ;=0 is replaced by the test 0¢ Y, |, in
Step 3 it is only necessary to determine O, by (5.4). The first and
second simplifications follow directly from part (vi) of Theorem 5.1.
The third simplification follows because 0 € O, and 0€ Y, ; imply
0 € O, which in turn implies O, | # 0.

The algorithm stops if and only if O is finitely determined. If it
does stop, t* is the least ¢ for which O, = O,.

Remark 6.2 1f O, is empty it is finitely determined. Assume to the
contrary that O,#( for all t€Z*. Then, as the intersection of a
nonincreasing infinite sequence of nonempty compact sets, O, is
nonempty ([2,39]).

To adequately address finite determination when O, #(), and
other important issues, it is necessary to consider the behavior of Y,
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as t — oo. Define

Yoo = () Ve (6.1)

D

T

0

Several properties of Y, and their proofs are analogous to those of
Oq.

THEOREM 6.1 Suppose Y, #0. Then Y., has the same properties as
O has in parts (1)—(v) of Theorem 5.2.

It is possible to say much more when A is asymptotically stable.
We begin with the following theorem.

THEOREM 6.2 Assume A is asymptotically stable. Then: (1) Yoo =
Y~(DW+CF). (i) Oy #0 if and only if 0 € Y.

Proof Clearly, Y,=Y~(DW+ CF,). Result (i) follows immediately
from Theorcms 2.5 and 4.1. From part (vi) of Theorem 5.2, O, # 0
implies 0 € O,; by (5.2) it then follows that 0 € Y, for all t€ Z" and
0€ Y. From (5.2) it also follows that 0 € Y, implies 0 € Y, for all
t€Z"; hence, 0 € O, and Oy, # (0.

Remark 6.3 When A4 is asymptotically stable the algorithmic
simplifications of Remark 6.1 are obtained without special assump-
tions on Y and W. This is an obvious consequence of Theorems 5.2
and 6.2: O, # 0 implies 0 € Y, and 0 € O,.

To guarantee finite determination of O, when O, #0 the
condition 0 € Y, must be strengthened.

Theorem 6.3 Assume A is asymptotically stable and 0 € intY .. Then
Oy, is finitely determined.

Proof By part (iii) of Theorem 5.1, O,_; is compact. Since CA" — 0
as t—oo and 0€intY,, it follows that CA**'0,_, c Y., for some
integer k, which we can choose to satisfy k > n. Because O, C O,,_,
CA* 10, C Yoo C Yy This result, and (5.2) imply O C O ;.
Thus, Ok+ 1= 0/( = Ooo

In the disturbance free case, where W= {0} and Y., =Y, Theorem
6.2 agrees with Theorem 4.1 in [19]. As in [19], it is also possible to
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make progress when A4 is only Lyapunov stable. Details are treated
in the next section. Blanchini [10] gives a special version of Theorem
6.3 when the constraint y(¢)€ Y is replaced by x(f)eI’ and T is
bounded and polyhedral; his conditions corresponding to 0 € intY,
involve the convergence of an infinite sum whose terms depend on
evaluating hy. About the same time, and independently, Tan [42]
proved Theorem 6.3 for the special case when Y is bounded and
polyhedral. While support functions played a crucial role in his
proof, the assumption 0 € intY,, appeared explicitly in his statement
of the theorem.

If A is asymptotically stable, O, can fail to be finitely determined
only if 0€ Y., and 0¢ intY,. Under these conditions on Y., the
issue of finite determination remains in doubt. This uncertainty is
illustrated by the following example.

Example 6.1 let n=m=p=1, W=[-1,+1], Y=[-1,+1] and
A=B=C=D=1 It can be verified that

Yt — [_2—1—1 , 2—1—1]'

Hence, Y,,={0} and intY,,=0. Since Og=0;=[-1,+1], Oy is
finitely determined.

Example 6.2 Letn=2, m=p=1, W=4§[-1,+1], Y=[-1,+1] and

a0 1 3 3
A—[O Az], B_H, C=[1 1], D=0.

It can be verified that

Y, = [~o(1).0(0), a(t):1—5<1:23+1:§z>. 62)

Assume A\; =31, A\, =3, § = 7. Then (6.2) shows Y,,={0}. Moreover,
the set {x: CA'x€ Y,} CR? is an infinite strip bounded by the lines
@)'x" +()'x* = £ o(f). By inspecting the intersection of these strips it
can be seen that O, is not finitely determined.

Remark 6.4 Fortunately, the situation, 0 € Y, 0 ¢ intY, is rare. If
it does occur it can be circumvented by an arbitrary small enlarge-
ment of Y. Suppose A is asymptotically stable. By part (i) of
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Theorem 6.2 and the definition of P-subtraction 0€intY,, is
equivalent to DWW+ CFCintY and 0€Y, is equivalent to
DW+ CFC Y. Hence, if O, is not finitely determined it becomes so
if Y is replaced by Y+ e8°, where € > 0.

To make Algorithm 6.1 practical it is necessary to have numerical
procedures for carrying out the recursions (5.3) and (5.4) and for
testing the conditions Y,=0, O,=0 and O,, = 0,. If Y is a polytope
and Ay can be evaluated numerically this is easily done: Let Y be
defined by

Y={yeR: Sy<r}, (6.3)

where Y is compact and

S:[s1~~sM]T€RMx1’, r=[r1~~-rM]T€RM, F>0, i=1,...,M.
(6.4)

The components of r are non-negative because 0 € Y. It follows from
Theorem 2.3 that
Y, ={yeR: Sy <r}, (6.5)
where the components of r, are determined by the recursions
rh =7+ — hy(DTs;),
P =1 —hp((CA'B)'s), i=1,...,M. (6.6)

Since 0 € W, hy(n) > 0 for all neR™. Thus the elements of r, are
monotonic: ri,, <r for all reZ*,i=1,...,M. If Y, #0, then
r—rl >0and Yo={yeR” Sy<ry}.

The recursion (5.4) becomes

O0,={¢eR" H¢<g}, HeR"™" g ecR", (6.7)
where
H() = SC’ 80 = Fo,

H g
Ht+l:[ ' ], gr+l=[ t], Nr:M(t+l)-

Fet1

(6.8)
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We state the resulting algorithm, taking advantage of Remarks 6.1
and 6.3.

ALGORITHM 6.2 Given A4, B,C, D, W, Y with Y defined by (6.3) and
(6.4). Suppose either W is symmetric and convex and Y is symmetric
or A is asymptotically stable.

Step I: Set t=0. Compute ro by (6.6). If ro > 0 continue. Otherwise
set * =0 and O, =0.

Step 2: Compute r, . by (6.6). If r,,; > 0 continue. Otherwise set
t*=t+1and O, =0.

Step 3: Compute H,, ; and g, by (6.8).

Step 4: Using H,, g, H; 1,8, determine if 0,=0, ;. If 0,# 0,
continue. If 0,=0, . set t* =t and O,,=O,.

Step 5: Replace ¢ by 1+ 1 and return to Step 2.

Step 4 is by far the most complex operation in the algorithm. It is
implemented by linear programming. The process is made more
efficient by eliminating redundant scalar inequalities which may
appear in the definition of O, ;. This is carried out each time H, is
updated to H, ;. The elimination begins by checking the first, added
scalar inequality, sTCA1¢ <rl, |, for redundancy. This is done by
solving the linear program: maximize siCA'"'¢ subject to
H. 1¢ < giy1, where H, ¢ < g, is obtained by removing the
(N,+Dth row of H,,; and the (N,+1)th element of g, If
maxs] CA"'¢ <rl,, the inequality is redundant and is eliminated
by setting H41 = Hyy1 and g1 = g1 If maxs] CA™ ¢ > rl,,, the
inequality must be kept and H,, and g,,; remain unchanged. The
testing and the potential removal of the remaining inequalities
proceeds similarly. At the end, N,y = N, + M — M,, where M, is the
number of redundant inequalities. Typically, N, produced in this way
1s much smaller than (¢++1)M. The procedure for eliminating
redundancies also implements Step 4 of Algorithm 4.1: O,, =0, if
and only if all the added inequalities are redundant (M, = M).

Remark 6.5 1t is also possible to develop, along similar lines, a
numerical procedure for determining O, which is based on recursion
(1.10) (see [10,11]). This approach is usually much more expensive
because it requires the computation of O,~ BW, which involves N,
inequalities in R” rather than the M inequalities in R” defined by (6.6).
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Because of the computational expense associated with Steps 3 and
4 it is often helpful to determine whether or not O, is empty before
these steps are implemented. This can be done by applying (6.6)
independently and allowing ¢ to become large. Since the recursions
(6.6) are quite simple the computational expense is not great. We
formalize this idea in the following remark.

Remark 6.6 Suppose A is asymptotically stable. If \ < 0 for any
i=1,...,M it follows that O,,=0. To show that O, is nonempty
and finitely determined requires an estimate of E,";’:thw((CAkB)Ts,-).
Let v >0 be chosen so that W C~yB". Then 0 < hy(n) <~v|n|, for all
n€R™. Suppose further that 0 <u <1 is the spectral radius of A.
Then it is computationally easy to determine constants (;>0,
i=1,..., M, such that [(CA'B)"s;|,<(p' for all t€Z*. Combining
these results shows that Z,‘zo:,hW((CAkB)Tsi) <!, where
ol =~G(1—p) 't -0 as t—oo. Defining Y/ = {y e R’: S, <
r. — o} it follows that Y] C Y. Thus, a sufficient condition for O,
to be nonempty and finitely determined is r,—o,>0. Suppose
0€intY,. Then 0 <r,, <r, and there exists a ¢ such that r,— o, >0.

Expressions (6.3)—(6.8) still apply when Y and W are not sym-
metric and A4 is not asymptotically stable. However, it is necessary to
go back to the steps of Algorithm 6.1 and test Y, ;=0 and O, =0
by solving an appropriate linear programming problem, such as the
one described in Remark 2.2.

If Y is not polyhedral it is not clear how to proceed numerically.
Perhaps the best approach is to approximate Y by a polyhedral set
Y* and use O, (A,B,C,D, W, Yk) as an approximation of
Ou(A4,B,C,D, W, Y). When Y is compact and convex this approach
has a mathematically rigorous basis. Then [39] there exists a sequence
of polytopes Y*, keZ*, such that Y*>Y*"'5Y and Y¥— Y. The
application of the Y* to the approximation of O is established in
the following theorem. For each ¢ let the sets Y*, Y Ok O be
defined for (4, B,C,D, W, Yk) in the same way as Y, Y., O, O, are
defined for (4, B,C,D, W, Y).

THEOREM 6.3  Suppose Y is compact, A is asymptotically stable and
OcintYs. Let {YXeR’, keZ"} be a sequence of compact sets such
that YSS Y'Y and Y* — Y. Then there exists 1€ Z" such that for each
kezZ*, Ok = Ok # 0, OF is compact and O — O.
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Proof By Theorem 2.5, Y*¥ — Y, as k—oo for all t€Z". By
Theorems 5.1 and 6.2 O,k is nonempty and compact for all t > n—1;
since O, C OF+! c OF, this implies that for all # > n — 1 there exists a
compact set Of such that O, C O} and O — O} as k—oo. Let
X € O}; then by (5.2) CA'x € Y*, 7=0,...,¢, for all ke Z". Since
Y* — Y., this implies CA"x € Y., 7=0,...,t, and O; = O,. Because
0% | is compact and O€intY,, there exists /€Z* such that
CA10% | C Y. Since Yo, C YK c Y2, 0,1 c OF |, c O? | for all
keZ*, the inclusions CA*'0F | c Y& CcA'*'0, ,C Y, hold for
all k€Z". Hence, following the proof of Theorem 6.3, OC',‘o = OF,
O, =0, forall keZ".

Remark 6.7 We have assumed that W is specified. The theorem is
also valid if W is represented by a sequence of approximating
compact sets: {W*: kezZty, wrcwr*'c wforallkeZ*.

Remark 6.8 While the notational details are rather complex, the
idea described in the last paragraph of Section II can be used to
determine a measure of how accurately O approximates O.,. It is
necessary to have an inner approximation of Y, Y- C Y, on which
Y is based.

We conclude this section with two numerical examples which
illustrate the application of Algorithm 6.2.

Example 6.3 Let A and B be defined as in Example 4.1. Set
W=6-1,4+1], Y=[-1,+ 1> (M =4), C=1, and D=B. Table I and
Fig. 2 show the results for several values of the disturbance
amplitude 6. Redundant inequalities are removed in Step 4; thus N,
is considerably smaller than (¢* + 1)M. As expected, O, gets smaller
as 6 increases. There is a transition value for 6,0.23076969230 <
6* <0.23076969231, such that O, #0 for 0<§<6* and O, =0 for
6>6*. The case f is not shown in Fig. 2 because it is close in

TABLE I Results for Example 6.3

Case a b c d e f g

1) 0 0.05 0.15 0.2 0.2307  0.23076969230 0.23076969231
* 1 1 2 2 4 11 19

N 6 6 4 6 10 4 Oy =10
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FIGURE 2 The dependence of O, on é in Example 6.3 for cases a, b, ¢, d and e of
Table 1.

appearance to case e: the four sides of O,, which are most visible
move in slightly and the six inequalities which are active at the upper
right and lower left corners of O, are dropped. The set Fs for case e
is designated by the dashed lines. Its closeness to the corresponding
O indicates Fs is close to F for 6 =~ 6*.

Example 6.4 The system is an inverted pendulum on a cart where the
available control force applied to the cart is limited and there is sensor
noise. Linearizing Lagrange’s equations about the upper vertical
position of the pendulum and zero position of the cart gives [33]

x! 0 1 0 0 x! 0
afe) oo -z of[e). [ 4],
dr| X3 00 0 1 x3 0 ’

x4 0 0 (M+m)g 0 x4 _ L

Mi
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where x' = is the displacement of the cart in meters, x> = §, xX=0is
the angle of the pendulum in radians, x* = 6, u is the control force
applied to the cart in newtons, m is the mass of the pendulum in
kilograms, M is the mass of the cart in kilograms, /is the length of the
pendulum in meters and g is the acceleration due to gravity. The values
of the parameters are m= M =0.5, /=1.4 and g=10. The open loop
eigenvalues are 0, 0, 3.7796 and —3.7796. A discrete-time model of the
system, x(7+ 1) = A,x(t) + B,u(t), t € Z*, is obtained by sampling the
state at 17 and by generating the control force with a zero order hold.
The sample period is 7=0.1 s. The feedback controller has the form

u(t) = K(x(t) + dw(?)), (6.9)

where w(t) € W is the sensor noise and u(?) saturates for |u(z)| > 1/2.
Saturation can be avoided by requiring that u(¢) € Y€[—1/2,1/2]. The
closed loop system is represented in the form (1.1)—(1.2) by setting
y(O)=u(t), A=A4,+ B,K, B=B,K®, C=K, D=K®. An LQR design
yields K=[0.5451,1.8357,27.2815,8.6552] and closed loop eigen-
values: 0.4611, 0.9553, 0.8210 +0.0257i.

For sufficiently small measurement noise and initial conditions
saturation is avoided and the system is stable in the sense that state
of the pendulum tends to the set F, described in Section 3. If
saturation is reached the instability of the open-open loop plant may
take over and the pendulum may diverge from its near vertical
position. Initial conditions belonging to O, are safe in the sense that
they belong to a domain of attraction, a set of initial conditions that
yield state trajectories which are attracted to F for all we W.

We assume that only the angle measurements are noisy. Specifi-
cally, ®=[0,0, 1,0]T and W=4¢[—1,1]. The maximal output admis-
sible sets were computed for several levels of sensor noise: §=0,
0.001, 0.003, 0.00475, 0.0048. The corresponding values of ¢* were:
27, 27, 28, 39 and 153. Except for §=0.0048, O.,#{. Thus, stable
operation is guaranteed for 6 <0.00475. Cross sections of the sets
O, by the plane 5(0) = $(0) =0 are shown in Fig. 3(a). They show
initial angles and initial angular rates for which saturation never
occurs provided that s(0) = $(0) = 0. Cross sections of the sets O,
by the plane 0(0) = 9(0) = 0 are shown in Fig. 3(b).
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FIGURE 3 Cross sections of O, for measurement noise on pendulum angle. Noise
level §=0,0.001,0.003,0.00475. (a) 6(0), 6(0) cross section for s(0) = 5(0) =0. (b)
5(0), $(0) cross section for 6(0) = 6(0) = 0.
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7 FINITE DETERMINATION AND LYAPUNOV STABLE 4

As simple examples in the disturbance-free case show [19], O, is,
typically, not finitely determined when A4 is Lyapunov stable but not
asymptotically stable. In this section we demonstrate that, under
appropriate assumptions, there exists a finitely-determined inner
approximation of O, by another maximal output admissible set
which is computed for a system obtained from the original system by
introducing additional constrained output variables. In this respect
the results that follow are similar to those presented in [19]. However,
the details are considerably more complex because they apply to
more general, Lyapunov stable 4 and to systems with disturbance
inputs. The new results have applications to systems with constant
inputs or conservative dynamics. Also, they play a crucial role in
developing nonlinear controllers for systems with state and control
constraints such as the reference governor [20-22] and multimode
controllers [31]. We conclude this section by discussing systems with
constant inputs and giving a numerical example. An application to
multimode control is described in the next section.
Specifically, we are concerned with system (1.1)—(1.2) for the case

Az[“{; QS] B:[;’S], c=[c. Csl, ()

where 4; € R?*?" has simple eigenvalues that all lie on the unit circle,
As € R?*% is asymptotically stable, Bg € R?*™ (Cp e RF*?, Cs €
R7*% and ¢, + g, = n. Clearly, the indicated partitioning of A4 is always
possible by a suitable choice of state space coordinates. In fact, it is
always possible to choose coordinates that make A4, real and
orthogonal. Results for O, in different coordinate systems can be
obtained by using part (viii) of Theorem 5.2. It is assumed that the
disturbance w(#) does not influence the “neutrally stable states”
associated with A4;. This is a natural assumption. Otherwise, these
states diverge and, with Y compact, O, is empty. The special structure
of B also implies F={0} x FS, where F’=13,_,AXBsW and
FS — FS in the same way as F, — F in Theorem 4.1. Correspondingly,
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Y41 = Y, ~ CsABsW, and

Os = Ono(A4,B,C,D, W, Y) = {x = [x} x}]" € R0 Cr A\ x;
+ CsAg.XS €Y, Vte Z+}. (7.2)

With the exception of part (vi) of Theorem 5.2, the results of Section 5
remain in effect. In addition, O, has a special structure.

THEOREM 7.1 Suppose 0 € Y. Define
Ly = {XL e R7: CLAZLXL € Y Vte Z+}. (73)

Then (i) Lo is compact and 0 € Log; (ii) Loo X FS C O C Loo x R%.

Proof Part (i) is an obvious consequence of (7.3), the observability
of (A;,Cyr) and the compactness of Y. Suppose that the right
inclusion in (i) is not satisfied. Then there exists x = [x] xg]Te O
such that x; ¢ L... Thus, y(f) = CpA}x, + CsdAlxs € Y, for all
teZ" and there exists 7 € Z* such that j = Cp 4% x, ¢ Y. Since A,
has simple roots on the unit circle, Poincare’s recurrence theorem [1]
implies the existence of an infinite subset TCZ" such that
lim, o ser Crd7x, =y. By the asymptotic stability of Ag,
lim,—00 7 ¥(2) = J, where y(1)€Y,D Y, for all teT. Since Y, is
compact and Y, — Y, this implies y € Y., which is a contradiction.
Now suppose x; € Lo.. Then by (7.2) and (7.3), = [xF 07] "€ O..
With x(0) = X it follows by the definition of O, that the solution of
(1.1) satisfies x(f) = [x](¢) xE(t)]Te O for all teZ*, x, € L,, and
w € W. Hence, Ly, X FS C Oy for all 1€ Z". The left inclusion of (ii)
is apparent from Theorem 4.1 and the compactness of O

The geometry of the situation is displayed in Fig. 4. O is
contained in the cylinder set L., x R% and, because L, X F SC Oy,
O #0. To obtain a finitely determined approximation of O, we
intersect O, with a somewhat smaller cylinder whose base, L', is a
proper subset of L.. See O in Fig. 4. The intersection is
implemented by introducing the system 4, B, C, D, W, Y where

~ (1, 0 ) .
C_[CL Cs]’ D_{D], Y=L'xY. (7.4)
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FIGURE 4 Sets in Theorems 7.1 and 7.2.

The associated maximal output admissible set is:

Ooo = Oso(A,B,C,D, W, Y)
={x=[x] xg]Te R?*%: xp € L', CrA)xp
+ CsA‘tng €Y, Vte Z+}. (75)

THEOREM 7.2  Assume 0 €intY .. Let Y' CR” be a compact set which
satisfies the following conditions: intY'#0, 0€intY’, Y' CintY.
Define

L'={x, eR": CA\x, € Y VieZ}. (7.6)
Then (i) L' is compact and 0€intL’'; (ii) There exists ¢>0 such

that L' x (FS +eB%) C Oy = (L' X R2) (| Ouo; (iii) O is finitely
determined.
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Proof  Result (i) is an obvious consequence of the assumptions on
Y’ and the observability of C;, A;. The set equality in (ii) follows
from (7.2) and (7.5). Consider the left inclusion. Since Y., and Y’ are
compact and Y’ CintY,, there exists an €' >0 such that
Y'+€'B” C Yo Let €>0 be chosen so that CsA(eB”) C €B” for all
te€Z"*. Suppose x, (0)€L’ and x5(0) € FS+eB”? and let x(1)=
[xs(®" x.()™]" denote the solution of (1.1) with 4, B, C defined by
(7.1). By (7.5), the left inclusion is proved if it can be shown that: (a)
xp(t)e L' for all t€Z™, (b) y(¢)=Dw(t)+ Crx.(t) + Csxs() € Y for
all w(t)e W and t€Z*. Requirement (a) follows from x(0)eL’,
x1(f)= A'x1(0) and (7.6). From x5(0) € FS 4 ¢B% and the Ag invari-
ance of F5, Csxs(t) € CsFS+¢B’. Hence, y(t)c DW+ Y'+
CsFS5+€B’ C DW + Yo + CsFS for all teZ*. By Theorem 6.2,
Yoo =Y ~(DW + CsF®). This and part (i) of Theorem 2.1 complete
the verification of (b). Now consider (iii). Clearly, O, is compact.
Let 7 € Z* be chosen so that CsAixs € ¢B’ for all ¢ > 7 and for all
xs such that [x] x—g]T € Oy.Then by (7.5, (7.6) and
Y'+¢'B° C Y, C Y, it follows that Oy, = O;.

While the main contribution of the theorem is finite determination,
the left inclusion of (ii) is also of interest; it is stronger with respect
to xg then the corresponding inclusion in part (ii) of Theorem 7.1.
See Fig. 4. The stronger inclusion is crucial in the reference governor
applications [21,22]. As expected the approximation O = O
improves as Y’ more closely approximates Y. This statement can be
made precise. Let L= {xL eR": CpAlx, CYVt=0,...,q; — 1};
since C§, Ag is observable and Y is compact, Y is compact.

THEOREM 7.3 Suppose the assumptions of Theorem 1.2 are satisfied and
Y’ is convex. Let o' and & be positive constants such that o'B’C Y’
and L C aBY. Then Y' C Yo, C Y' + eB? implies Ou C On C O +
ea/o'B".

Proof Since Y’ is convex and Y, C Y'+ (¢/a’)Y’, Yo C (1+
(e/a”)Y'. It follows that L, C(1+(¢/a’)L'. By Y' C Y, C Y, L' C

L caB”. Thus, L., C L'+ (eq/d/)B". This, Oy = (Lo X R?)N
Oy and Oy, = (L' x R”) (N O« complete the proof.

The bound, p(O, (500) <ea/a’, on the Hausdorff distance
between O, and O is tightened by choosing o' as large as possible
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and e and & as small as possible, subject to the stated conditions. The
key parameter is ¢; if Y is convex then Y, is convex and in principle
it can be made as small as desired as in the disturbance-free case
(W=1{0}) [19]. There is generally a tradeoff between approximation
accuracy and simplicity: both ¢* and the complexity of O tend to
increase as Y’ — Y.

Usually, Y., does not have an explicit representation. Thus it is
necessary to base the choice of Y’ on Y, for some sufficiently large z.
When Y is convex this can be done so that O, approximates O, to
a specified level of accuracy. We now sketch the details when Y is a
polytope. Recall the notations and results of Remark 6.6, substituting
As, Bs, Cs for A, B, C. Suppose it has been determined for some ¢
that r,—0,>0. Then 0€intY,CintY, and r,— 0, <rs. Let 0 <a <1
be specified. Since o, — 0 and r,— r, as t — oo, there exists a 7 such
that o7 < ar;. Let r'eR satisfy 0< (1 —a)ro < (1 —a)ri<r <
ri— 07 <ro and define Y ={yeR’. Sy<r’}. Then, 0€intY’'C
intYo and Y'CYoC(1—a) 'Y, Thus, L'CL,C (1—a) 'L
This, Y,C (1 —a)~'Y, for all rt€ Z*, (7.5) and Theorem 7.2 show that
Ou C Oy C (1- a)_IONOO. Let x be chosen so that O, C kB”". Then
Os C Ou C O + a(l — a)kB" and Os — Oo as a— 0.

The algorithmic determination of O, cannot proceed unless L'
has a concrete representation. If 4, is cyclic, i.e., A¥X = 4; for some
keZ", there is no problem: L' = {x;,€R": CAix; €Y' t=
0,1,...,k—1}. The simplest case 4, = I, is mentioned in [22]. If 4,
is noncyclic, L’ is itself not finitely determined. Even so, it is often
possible to obtain simple, explicit representation for L’. A general
discussion would be lengthy, so instead we demonstrate the main
ideas with several examples where Y’ is a polytope.

Suppose without loss of generality the state space coordinates have
been chosen so that 4; is block diagonal where the blocks have the
form [1], [-1]eR"'* ! or

cosf sinf
¥(0) = [—sine Cose], 0<b<m. (7.7)

Ay is noncyclic if and only if it has at least one “¥” block with 6/27
irrational. For Y'={yeR’: sly<r/, i=1,....M}, L' =", L
where L) ={z€R¥: efd'z<1VieZ"} and ¢ = (r/) ' Cls. To
eliminate trivialities it is assumed that e; # 0.
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Consider first the case where g, =2 and A4, = ¥(f) is noncyclic.
Obviously, ef A4} = pi[cos(t0 + 0;) sin(26 + 0;)], where p,= |e;|». Thus,
L} is the intersection of infinitely many half spaces, whose boundary
lines are tangent to the disk B*> and assume essentially all angular
orientations. It follows that L;=p;/'B’ and L' =p.. B’ where
Pmax=max{p; i=1,...,M}. The set ¥ = L' x Y, which determines
O, is not polyhedral, as it is when A; is cyclic. For computational
purposes this suggests approximating L' by a polyhedron, L' C L.
Since L' is a disk, L” is a polygon and the construction of the
approximation is easy.

Although the details are more varied and complex, similar
developments apply when g; > 2. Suppose ¢; =3 and

A= [(l) \11(()9)]'

Then depending on e! and p; =/(e?)* + (¢2)* there are three

subcases: (a) p;=0; (b) e! =0; (c) e! #0, p;#0. The corresponding
expressions for L) are: (a) {z: e!z' < 1}, a halfspace; (b) R x p;"'B?,
a circular cylinder; (c) {z: V()P + (B3 <p'(1 - e}z‘)}, a cone of
revolution about the z' axis which has its vertex at zT= [(e!) ' 00]
and “opens” toward the origin. It is not possible, as it was with
g1=2, to obtain a simple representation for L’; up to M of the L
may be active in (¥, L!. The geometric simplicity of the L, do allow
easy construction of polyhedral approximations L C L!, which in
turn provide a polyhedral approximation, L"” = ﬂf‘il L!'cL.
For a final example, assume g, =4,

A= [*012 w(()l)]’

The upper block in A4, is cyclic while ¥(1) is noncyclic. It is
easy to confirm that L} = {z: |z; + z3| + /(3)* + (z4)> < 1}, L) =

z: |21 — zo| + /(23 24+ (z4)?> < 1}. While L and L, are unbounded
1 2
L' = L} (N L), is compact.
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We now apply the theorems to the following system

z(t+ 1) = Asz(t) + Bsw(t) + Byu,

y(t) = Csz(t) + Cyu, (7.8)

where z(f) € R?%, the pair Cgs, Ag is observable, Ag is asymptotically
stable, w(r)e W and u € R? is constant. Subject to the constraint
y() € Y, we wish to determine the corresponding maximal invariant
set: OZ (u) = {z(0) € R®: y(t) € Y V¢t € Z* and Vw € W}. This can
be done in the context of Sections 5 and 6 by defining x(7) =
2(t) — (I, — As) 'Byu and replacing Y by Y — {Cs(1,, — As) ' x
Byu}. However, the computation of OZ (1) must then be repeated
for each constant u.

An alternative approach is to form the augmented, Lyapunov

stable system
5 allio] o]0

and determine 04 C R", n= g, + g, for this system. Since u(¢) = u(0)
for all t€Z", it follows that OZ (u) = {z € R®: [uT z"]" € 04}, a
“u-section” of 04

By introducing the coordinate change

u 1, 0 ]
= Tx, T: - s 7.10
[Z] [(qu —As)"'By I, (7.10)

(7.9) takes the form of (1.1), (1.2) where 4, B, C are given by (7.1)
with

Ap=1,, Cp=Cy+Cs(l, —A4s) "By, (7.11)

and D=0. Hence, the characterizations of O, and 000 described
above apply. Moreover,

) ) I 0
ot =10, O'=T"'0, T :[ U ]
00 o0 o0 ®© (I, — 4s) "By I,

(7.12)



356 I. KOLMANOVSKY AND E.G. GILBERT

The geometry of these transformations is simple. Figure 5 shows how
O and O, are mapped into 04 and O4. Note that OZ (u) #0
implies F5(u) = FS + {(I,, — As) "' Byu} C OZ (u). The finitely deter-
mined computation of OAgo may be carried out entirely in terms of the
u, z coordinates:

e I, 01[07([Z o ,
ot -o([h 1S5 &lemesr). o

Also from Theorem 7.2

0%, = (L' x R®) () OL. (7.14)

Thus, 0% (u) = 02 = {z € R®: [u" 2")" € 04} for all ue L'.

1
'
I
1
.
'

{u} x O&(u)

L xR92

{u} x FS(u)

L'xRpY2

FIGURE 5 Sets 04 and O .
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Since C, is the static gain from u to z and A, = I,,, L' has a nice
interpretation. It is the set of u that produce equilibrium outputs
belonging to Y’. The determination of a suitable Y’ proceeds exactly
as described in two paragraphs following the proof of Theorem 7.3.
It depends only on Y, A, Bs, Cs.

A technicality has been neglected in the preceding analysis. System
(7.9) may violate basic assumption (A2); with Cg, A5 observable (7.9)
is observable if and only if rankC; =¢q;. If rankC; < ¢; nothing is
affected except the boundness of L. Certainly, if L’ is compact, the
system data in (7.13) satisfy both (A1) and (A2) and OZ (u) = O% (u)
forallue L’.

The computation and characterization of OZ (u) is particularly
attractive when Y is polyhedral. Because of the special structure of
(7.9) it is easy to confirm that O4 # 0 if and only if 0 € O4. Thus,
Remark 6.3 holds and Algorithm 6.2 applies to the determination of
O4. 1t stops in a finite number of steps and if O4 # @ it produces
HY c RV AZ c RV, 7 eRY such that O4 = {[u" "] e
R" HYu+ H?z <#}. Thus, for all uecL', O%(u)= 0%(u) =
{z e R®: HZz <i— HYu}.

Example 7.1 The system (7.8) models an inverted pendulum,
6 —60 =7, where 7 is an equivalent applied torque (dc motor
armature current) supplied by a zero order hold with a sample period
of 0.1. The pendulum is stabilized by the feedback law
7(0.12) = —k10(0.1¢) — k20(0.1¢) + w(z) + (k; — 1)u. Here, u is a con-
stant input that specifies the equilibrium value of 6 and w(?) is a
torque disturbance, unknown except that it belongs to
W=[-0.1,0.1]. The state z(f) is defined by z'(1)=6(0.1¢) and
z2(t) = 6(0.1¢). Controller saturation occurs when |7(0.17)| >2. The
gains k| and k, are selected so that the continuous time closed-loop
system has a damping ratio of 0.5 and a natural frequency of
wp=2.5 ky=2.5%, ky=2.5. Because the pendulum is open-loop
unstable, loss of stability is likely if for some 7, 7(0.1¢) ¢ [-2,2]. With
the constraint y(f)=7(0.1/)€ Y=[-2,2], the sets OZ (u) define
domains of attraction to the equilibrium angles # =u. Their determi-
nation begins with the computation of Og‘o. Computing Y, for
large ¢ shows that Y, =[—1.78,1.78]. Setting Y’ =[-1.608,1.608]
gives L' =[—1.608,1.608]. Algorithni 6.2, when applied to the data
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in (7.13), terminates with ¢* =19 and O% defined by 42 non-
redundant linear inequalities. Corresponding O% (u) sections along
with ellipsoidal outer approximations of FS=F5(0) are shown in
Figs. 6-8. Not surprisingly, the size of the OZ (u) decreases as
|u| becomes closer to 1.78, the approximate value of |u| at which
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FIGURE 6 Sets O%(u) in Example 7.1 for u=-0.3,-0.15,0,0.15,0.3. Smaller
sets are ellipsoidal outer approximations of F*5.
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FIGURE 7 Comparison between the elhpsonddl outer approxnmatxon of FS
(y=0.886 and S=0) used in Fig. 6 and an inner approximation of FS given by F3,.
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FIGURE 8 Sets OZ(u) in Example 7.1 for u=—1.59,—1.55,—1.45,1.45,1.5,1.55,
1.59 and 0.1k, k=—-14,...,14.

0% (u) becomes empty. The number of nonredundant linear inequal-
ities required to define OZ (u) increases as |u| increases. This increase
in complexity illustrates the disadvantage of increasing the size of
L’ so that it closely approximates L., =[—1.78,1.78]; Ogo becomes
more complicated and the time required for its computation
increases.

8 RESPONSE BOUNDING

It is of interest for asymptotically stable linear systems to characterize
in a concrete way the state deviations generated by bounded inputs
weW. While F defines the set of all possible deviations, it defies
explicit characterization and must therefore be replaced by suitable
approximations. Ellipsoidal outer bounds for F can be generated by
(3.5), as has been noted in Example 4.1. However, (3.5) provides no
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information on the accuracy of bounds. If a polyhedral inner bound
is known, such as F,, procedures are available for constructing
approximations and estimating their accuracy.

Let Ff = {x e R": pfx<g¢;, i=1,...,N*} C F be the polyhedral
inner bound. It must, of course, be compact; assume further that
0 € intF}. Suppose Fj D F is a compact outer bound. Then, F} C
FC Fjc{xeR" plx< hgz(pi), i=1,...,N*} Ca*F}, where a* =
max{hpg(pi)/qi: i=1,...,N*} > 1. Clearly, a* —1 measures the
approximation error for both the inner and outer bound.

Suppose Fj is ellipsoidal, confirmed to be an outer bound by using
(3.5), (3.6) or some other procedure. Then there is a formula for
hr:(p:) and the evaluation of a* is trivial. If Fy is the intersection of
several ellipsoids the computation of «* is more complex but still
possible: hp:(p;) is obtained by solving a convex programming
problem — minimize p]x subject to quadratic constraints on x. Thus,
ellipsoidal bounds can be determined for complex systems, using
computed values of a* to judge the choices of v and/or the number
of intersecting ellipsoids. In Example 4.1 the single ellipsoid corre-
sponds to v =0.65 and o* =1.45. In Fig. 7, F} = Fy; gives a* =1.54.

Another bounding approach is to define Fj = aF; and choose
a=a" by minimizing « subject to F C aF;. This can be done
algorithmically by testing ' C aF} and using bisection on «. The test
for FC aF} is based on Remark 5.2: FC oF} if and only if
Ox(A, B, 1,,0, W,aF}) # 0. For each «, Algorithm 6.2 determines
whether or not O, # (). The scheme works well, although the number
of steps in Algorithm 6.2 and their complexity tend to increase as «
approaches o*. Applied to Example 4.1 with F; = F5 and « initially
satisfying 1<a<1.2, applications of Algorithm 6.2 give
1.0354 <a* <1.0364. Thus, Fy is only about 3.6 percent larger than
Fy. While this error measure is much smaller than the one obtained
for the best ellipsoid, the ellipsoid has a computationally simpler
representation.

Effectiveness of above procedures depends on the availability of
polyhedral inner bounds which are fairly good approximations of F.
Difficulties can occur in using F; ~ F;. If W is ellipsoidal and m > 1,
F, is neither ellipsoidal nor polyhedral and there is no completely
satisfying way of generating good polyhedral approximations. The
most obvious approach is to replace W by an inner polyhedral
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approximation. When W is polyhedral there exists, in principle, an
algorithm for generating the linear inequalities that define F,. It
involves computing the Minkowski sum of polyhedra by using
Fourier elimination to project polyhedral sets on linear subspaces.
(see [28,29]). Unfortunately, computational complexity grows rapidly
with ¢ and n. Certainly, these and other computational issues need
further investigation.

There are connections between the O, and the computation of
operator norms for the input—output response of linear systems. We
sketch the main ideas omitting some of the technical and computa-
tional details.

Let |-|™ and |-|°" denote, respectively, general norms on R” and
R?. For bounded input and output sequences, w € [ and y € [2,
the corresponding infinity norms are defined by ||w||g; = sup{|w(t)|™
teZ'} and |y =sup{ly(t)|®": r€Z}. Let L:I" 12
denote the input—output map of (1.1) and (1.2) with x(0)=0. Its
induced norm is [|£]| = {sup{[[£.]|°": [w|™ < 1} = max{|0]°*: 6 €
CF + DW } where W= {¢pcR™: || ™ < 1}.

Bounds on F, such as those discussed above, determine bounds on
|I£]]. Specifically,

max{|Cx + Dy|°": x € F},||™ < 1}
<[]l < max{|Cx + Dy[™: x € Fy, [yl <1}, (8.1)

For typical norms these bounds can be computed by formulas or by
algorithmic optimization.

The upper bound provided by (3.5) is of particular interest because
of its simplicity. Let P, be the solution of (3.5) with S=0, p be the
spectral radius of 4 and Fj = {x: XTP;'x < 1}. Then for D=0,
[Y]" = /YTR 1, |0]°"=|0], and p?<y<l1, it follows that
[I£]l < max{|0],: 0 € CF§}. Since hcry(n) = /0" CP,C'n, CFj =
{6: 67(CP,C")"'9 < 1}. Thus, ||£|| <inf{\/omax(7): p? <~ <1}
where o, () 1s the maximum eigenvalue of CPWCT. Several
techniques have been used to derive this bound and similar bounds
for continuous-time systems (see, for example [13,24,34,41]). We
prefer the preceding development because of its close, geometric
connection with Theorem 2.4.
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Alternatively, ||£|| may be bounded without bounding F. The key
result is contained in the following theorem, which is not difficult to
prove.

THEOREM 8.1 Let §Y={0€R": |0|°"' <6} and 0%, = O.(4,B,C, D,
W,8Y). Then O, =0 for all 0 <5< ||L|| and O%, # O for all 6 > ||L]|.

Results in Section 6 imply that O’ is finitely determined, except
possibly at §=||£||. Thus, in principle, Algorithm 6.1 provides,
through bisection on §, a means for obtaining precise upper and
lower bounds on ||£||. If |-|°* is either |-|o, or ||, §Y is polyhedral
and the advantages of Algorithm 6.2 may be exploited. Since the
number of the algorithmic steps and their complexity tends to grow
as & nears ||L||, it is more efficient to use Algorithm 6.1 or 6.2
sparingly to find values of § such that § > ||£||. Values of § < ||£|| are
obtained with much less computational expense by testing
Y =6Y ~ DW ~ Y} _o CA*BW = (). Since Y® — Y°, the accuracy of
the bound increases as ¢ increases. This approach reduces to the more
usual formulas for computing convergent lower bounds on || £|| [18].

Remark 8.1 The set O% has another important function; it leads to
a bound on |[|y[|°" that applies when x(0)#0. Assume A4,B is
controllable and define X = Ol Since W and ||£||Y are compact,
symmetric, convex and contain the origin in their interiors, it follows
from Theorem 5.2 and 0 € intF that X has the same properties. Thus,
the Minkowski distance functional |x|™=inf{\: A>0, x€\X}
defines a norm on R” and X={xcR™ |x|”<1}. From the
definition of 0%, it is clear that ||y||2"" <||£|| holds not just for all
]|w||g:) <1 and x(0)=0 but for all w and x(0) such that |x(0)|™ <1
and {|wl|g:3 < 1. Using the positive homogeneity of the norms,

Iyllss" < max{[£] - wli, 1x(0)]*}, (8.2)

for all we /7 and x(0)€R". In fact, there is no tighter bound on
[¥/|%" which applies for all w € /” and x(0)€R". Bisection gives
only approximate results and there is no guarantee that O£l is
finitely determined. Thus, it is generally impossible to compute ||L||

and |x|". However, using bisection it is possible to obtain § where
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§—||£]| >0 is small. Thus, § and p(x) =inf{\: A >0, x € A0%_}
are close upper approximations of ||£|| and |x|".

9 A MULTIMODE CONTROLLER

Conflicting requirements often arise in the design of regulators for
systems which are subject to hard constraints on state and control
variables. Fast response and good disturbance rejection demand high
loop gain, but high gain in turn reduces the extent of the constraint-
admissible domain of attraction. Multimode regulators that exploit
logic-based controller switching, have been proposed as a means for
resolving this conflict [31,42,43]. An indexed family of controllers is
designed with ascending loop gains. For each controller there is a
maximal invariant set which defines a constraint-admissible domain
of attraction. The switching logic chooses the highest level controller
whose invariant set contains the current state. Under appropriate
nesting conditions on the invariant sets, the highest gain controller is
ultimately selected. Further, stable operation is achieved for any
initial state in the union of a// the invariant sets.

Here, an alternative plan for generating the family of controllers is
considered. Loop gain is fixed and the controllers are determined by
a selection of constant input biases. While the general ideas of [31]
still apply, the resulting conditions and treatment of controller
ordering is quite different. See [14] for closely related ideas and a
complex application in robotics. In the approach considered here,
results from Section 7 ease the design process and simplify the
implementation of the switching logic.

Let (7.8) model the closed-loop regulator system with disturbance
input w(f)€ W, constraints y(f)€ Y and bias input u. Related,
pertinent notations are defined in Section 7. With u=0 the desired
regulation takes place in a neigborhood of z(¢) =0, i.e., z(¢) tends to
F® Tt is assumed that O4 #@ so that the sections OZ(u)=
{zeR®: [u" Z"]" € O4} are nonempty and can be computed for
values of win L’.

The family of controllers is defined by u=u,€ L', i€ J, where J is
a finite index set and ;=0 for i=iy€ J. For z € | J;. , O% (u;), define
I(z) = {i € J: z € O%(u;)}. The controller choice at time ¢, i(), is
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required to satisfy the constraint i(¢) € I(z(¢f)); d-invariance of
OZ (ujy) then implies z(z+ 1) € O% (uy,)) and y(1+1)€ Y. Thus,
2(0) € Uy O% (u;) guarantees that y(1)€ Y for all rt€ Z*.

The switching logic chooses a specific i(r) € I(z(¢)) in such a way
that i(¢) ultimately equals i;. The required nesting conditions are
based on an obvious generalization of Remark 4.1. Given any € >0
there exists a 7> 0 such that for all 7€ Z" and for all z(¢) € 0% (u) it
follows that z(r+7) € FS(u) 4+ eB%. Suppose F5(u;) C intOZ (u;).
Then, within a fixed time 7; any state in 0§O(u,~) will arrive in
OZ (uj). The required nesting condition simply states that for every
i€ J there exists a chain of such linking relations (called prepares
relations in [14]) which leads from OZ (u;) to OZ (up).

Since there may be many chains leading from OZ (u;) to OZ (up),
there may be many acceptable strategies for choosing i(¢) € I(z(¢)).
The following strategy is based on chains of minimum length and
emphasizes, therefore, rapid decrease of i(r). Let N(i) denote the
minimum length of all chains leading from O% () to OZ(uy) and
define M (z) =min{N(j): j€ I(z)}. Pick i(z) so that it satisfies

i(0) = i(t—1) if M(z(t)) = M(z(t — 1)),
i(t) € {j: j € 1(z(1)), N(j) = M(z(1))} if M(z(1)) # M(z(1 - 1)).
(9.1)

Then for all z(0) € J;.; 0% (u;), the sequence {i(z): t€Z"} is
nonincreasing. Moreover, if z(0)¢ OZ (o) there exists a o€ Z" such
that N(i(1)) >0 for t<7 and N(i(¢))=N(ip)=0 for all ¢ > ¢,
Downward jumps in i(f) may exceed one, since OZ (u;) () O% (u;) # ()
is possible when OZ (u;) is not linked to OZ ().

If Y is polyhedral the implementation of the switching logic is
particularly simple. Using the notations in Section 7, I(z)=
{ieJ: Hz <#}, where # =#— HVu. Thus, testing for iclI(z)
is easy. When the nesting structures are relatively simple it is
often possible to determine a formula for N(j), thus speeding
evaluation of M(z).

The system in Example 7.1 illustrates the preceding ideas. Figure 6
shows pairs of OZ (u;) and ellipsoidal outer approximations of F*(u,)
for u_,=-0.3, u_;=-0.15, ug=0, u;=0.15, u,=0.3. The condi-
tions, FS(u;) C O% (us41) for i=—2, —1, and FS(u;) C O% (u;y) for
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i=2,1 are satisfied and meet the requirement that each OZ (u;) is
chained to O% (up). Spacing between the u; can be increased some-
what at the possible expense of having z(7) stay longer in each set.
Many transitions in i(f) are possible; for example, i(f)=—2 and
0% (u_2) ﬂOoo(uj)Z # 0, for j=—1,0, 1,2, imply the existence of four
outcomes, i(t+1)=-2,—1,0,1. Outcome i(t+ 1) =2 is excluded by
(9.1); if this outcome were possible, cycling between i=2 and i= -2
might occur. The minimal chain length is N(i)= |i|. By increasing
the number of elements in J from 5, |J;. ; O% (u;) can be extended to
cover more of area described by Fig. 8. The nesting pattern and other
results remain the same although spacing of u; must be closer for
larger |u;|. Since the number of active inequalities required to define
OZ (u;) increases with |u;|, the determination of I(z) becomes more
complex. In any case, it is clear that multimode control significantly
enlarges the safe domain of attraction.

Generalizations of the multimode approach are possible. For
systems where the chaining structures are simple, such as in the
preceding example, u can be allowed to take on all values in L’.
Specifically, u(¢f) is determined by minimizing |u| subject to
HYu < — H?z(1). Using results from the theory of reference
governors [22] it can be shown there exists a #, € Z* such that for all
z(0) € Uy 1y O% (u), {|u()|: t€ Z*} is nonincreasing and u(7) =0 for
all ¢+ > t,. Alternatively, a family of controllers may be formed by
selecting both input biases and loop gains. This increases the variety
of constraint-admissible invariant sets and possibilities for linking
them in more ways.
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