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THE DECOUPLING OF MULTIVARIABLE SYSTEMS
BY STATE FEEDBACK*

ELMER G. GILBERT,"

1. Introduction. The objective of this paper is to develop a comprehensive
theory for the decoupling of multivariable systems by state feedback. We begin
by giving a preliminary formulation of the decoupling problem, discussing certain
aspects of its solution, reviewing previous research, and indicating the contribu-
tions of this paper.

Consider the linear dynamical system with input u, output y, and state x"

dx
Ax + Bu(t),

dt
(1.1)

y(t) Cx.

Here is time, u(t) and y(t) are real m-vectors, x is a real n-vector, and A, B and C
are real, constant matrices of appropriate size. Often one is interested in applying
feedback control in order to implement certain control objectives. For example,
one might use the control law u ;’FY + CV, where v(t), a real m-vector, is the
input to the closed-loop system and ’F and 5t are linear operators. With suitable
assumptions on initial conditions this leads to y #cV, where c is a linear
operator which represents the closed-loop system. A common control objective
is to "decouple" the closed-loop system by making c be diagonal, i.e., causing
y %v, 1, ..., m, where Yi and v are respectively the ith components of y
and v. Early efforts in this direction relied on transfer-function descriptions for
F and 5 and were characterized by a lack of rigor and of solid results. In this
paper we consider control laws of the form originally proposed by Morgan [1]"

(1.2) u(t) Fx + Gv(t),

where F and G are real, constant matrices of appropriate size. This control law
(state feedback) admits a precise problem formulation and is of real interest in
applications.

The desire to decouple raises four questions" (a) Is decoupling possible?
(b) What is the class of control laws which decouple? (c) What is the class of de-
coupled closed-loop systems? (d) What is the correspondence between elements
of the classes mentioned in (b) and (c)? These four questions constitute the de-
coupling problem as it is treated in this paper.

Partial answers to the decoupling problem have been obtained. Morgan [1]
gave a sufficient condition for decoupling (CB nonsingular) and under this con-
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dition defined a rather restrictive class of control laws which decouple. These
results were extended somewhat by Rekasius [2]. More recently Falb and Wolovich
[3] gave necessary and sufficient conditions for decoupling, thus answering
question (a). They also described a (restricted) class ofcontrol laws which decouple,
which subsumes the classes introduced in [1] and [2]. Still more recently they
obtained necessary and sufficient conditions on F and G for decoupling [4].
While this answers question (b), their conditions are in a cumbersome algebraic
form which makes them difficult to apply when n is large. For several simple
examples they have also characterized the class of decoupled closed-loop systems.

This paper extends the results outlined above to obtain more or less complete
answers to questions (a), (b), (c) and (d). In addition the method of attack makes
clearer the general nature of the decoupling problem and should lead to the
solution of other interesting problems in nonlinear control and optimal control.

The paper is organized as follows. In 2 we introduce notation, give a precise
problem formulation, and state some important formulas. In 3 it is shown that
certain closed-loop-system properties are invariant with respect to F. These
invariants lead naturally to necessary conditions for decoupling and an important
matrix discovered by Falb and Wolovich [3]. The general approach to the de-
coupling problem is to treat an equivalent problem of simple structure. The re-
quired equivalence is introduced in 4, along with the notion of an integrator
decoupled system. The material in 3 and 4 yields an alternate proofofa theorem
of Falb and Wolovich, which appears in 5. Section 6 establishes a canonical form
for integrator-decoupled systems which is the key to the main results, which are
summarized in the theorems of 7. In 8 we discuss briefly the significance of the
main results.

2. Problem formulation and basic formulas. Matrices, which we generally
denote by capital letters, have real elements unless explicit dependence on the
complex variable s is indicated. The notation A will denote a partitioning
of the matrix A into matrices or elements. We use In for the n n identity matrix,
Ei for the ith row of In, and 0 for the number zero or any null matrix.

An m-input, m-output, n-th order system S is the triple {A, B, C}, where A, B, C
are respectively matrices of size n n, n m, m n. Although it is not really
essential, we shall assume as is usual in the literature that m _< n. The transfer
function of S is

(2.1) n(s) C(l,s- A)-’B.
Clearly H(s) is an m x tn rational matrix in the complex variable s. If s is interpreted
as the Laplace transform variable, the relation of H(s) to the Laplace transform
solution of (1.1) is obvious.

In a similar way we introduce notation appropriate to the description of the
closed-loop system arising from (1.2). A control law is the pair {F, G}, where the
matrices F, G are respectively m x n, m x m. We say S(F, G)= {A + BF, BG, C}
is the system S with the control law {F, G}. The transfer function of S(F, G) is

(2.2) U(s, F, G)= C(l,s- A BF)-’BG.
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DEFINITION 1. The system S(F, G) is decoupled if H(-, F, G) is diagonal and
nonsingular.

This definition of decoupling is equivalent to the one given by Falb and
Wolovich. By using it we give precise meaning to the questions raised in 1.

The following formulas and notation are basic to our subsequent develop-
ments. By extending the well-known expansion for (I,s A)- x, cf. [5, pp. 82-85],
to (l.s A BF)-, we have

(2.3) H(s, F, G) q(s, F)- ’(CBs"- + CR,(F)Bs"-2 + + CRn- (F)B)G,

where

(2.4)

(2.5)

q(s, F) s q l(F)s"-’ q,(F) det (I,,s A BF),

Ro(F) I,,, Ri(F) (a + BF)Ri_,(F) qi(F)ln, 1,’", n 1.

Alternatively (2.5) may be replaced by

Ro(F) I,,,

Rx(F) (A + BF) q(F)I,,,

(2.6) R2(F) (A + BF)2- ql(F)(A + BF)- q2(F)l,,,

R,_ (V) (A + BF)"-1 q(F)(a + BF)"-2 q,_ (F)I,.

We adapt the above formulas to S by writing H(s)= H(s, O, Ira) and using the
notations q(s) q(s, 0), qi qi(O), R Ri(O).

Occasionally it will be necessary to work with several systems concurrently,
say S and S. In these cases the notation developed above is extended in the obvious
way, e.g., g/(s, F) det (l,s A BF).

3. F-invariants. In this section we study properties of S(F, G) which are not
affected by changes in F.

DEFINITION 2. An F-invariant of S is any property of S(F, G) which for any
fixed G does not depend on F.

Denote the ith row of H(., F, G) by Hi(., F, G) and define the integer di(F, G)
and the 1 m row matrix Oi(F, G) as follows" if Hi(., F, G) O, di(F, G) n 1
and Di(F, G)- 0; if H (.,F, G)4: O, di(F, G) is the integer j such that
lims_ s+ Hi(s, F, G) is nonzero and finite and Oi(F, G) lims_ s+ Hi(s, F, G).
From (2.3) it is clear that 0 _< di(F, G) <_ n 1.

PROPOSITION 1. For 1, ..., m, di(F, G) and Di(F, G) are F-invariants of S.
In particular" Di(F, G)- DiG and, for G nonsingular, di(F, G)- di, where
di di(O, Ira) and Di Di(O, Ira).

Proof Let Ci be the ith row of C. From (2.3) and (2.6) with F 0, G Ira,
it follows that

(3.1) D CiAd’B
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and

;0, CiB O,
(3.2) di

j, CiB O,

where j is the largest integer from {1,-.., n- 1} such that CiAB 0 for
k =0,1,...,j- 1. Then by (2.6), CR(F)B 0, k =0,1,-..,di- and
CR,(F)B Di. From this the proposition is true by (2.3).

In engineering terms Proposition says that certain "high frequency" gain
properties ofthe closed-loop system are F-invariants. Falb and Wolovich introduce

d and D (which they call B’) via (3.1) and (3.2). However, they do not bring up
the notion of invariance or attach physical meaning to these quantities. For future
use we form the m m matrix

D
(3.3) D= .’-

D

The general question of F-invariants will not be developed here, although
additional invariants are known. For instance, it is possible to prove the following.

PROPOSITION 2. Let h(s) q(s) det H(s). Then h(s) is a polynomial in s ofdegree
not greater than n rn and

h(s, F, G) q(s, F) det H(s, F, G) h(s) det G.

4. Integrator decoupled systems and control law equivalence. The key to
the solution of the decoupling problem is a canonical representation of integrator
decoupled systems. In this section integrator decoupled systems are defined and
it is shown how they are related to the decoupling problem.

DEFINITION 3. S {A, B, C} is integrator decoupled (ID) if D F, where 1-" is
diagonal and nonsingular, and CiAa‘ + O, 1,..., m.

Denote the diagonal elements of F by ]: 1, "’", ]:,,. Then we have the following
result.

PROPOSITION 3. If S is ID, then H(. is diagonal and has diagonal elements

hi(s ]:iS-a,-1, 1,’’’, m.

Proof Write

(4.1) Hi(s q(s)- l(CiBsn- ft. CiR1Bs.- 2 + at CIR,_ 1B).

Application of CiAa’B Di 7iEi, CiAkB 0 for k # di and (2.6) with F 0
then gives

(4.2) Hi(s) q(s)- l(sn- 1-di qls"-2-a, q,,_ l_di)]:iEi"

Now from the Cayley-Hamilton theorem CiA"+JB qlCiA"+J-IB
-q,CiAJB 0, where j is any nonnegative integer. Taking j 0 and using
CiAkB 0, we see that k # d and CiAa’B # 0 imply q.-a, 0. Similarly, by
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Stakingj 1,-..,di, we have q,-a,+l, q, 0. Thus q(s) s" ql

q,-a,- sa’ + and by (4.2) the proof is complete.
By Proposition 3 the transfer properties of an ID system are such that the ith

output is the (di + 1)-fold integral of the ith input. This justifies the terminology,
integrator decoupled. The example

i:
0 01 I1 01 I: 1A= 0 0 B= 0 0 C= 0

0
0 0 0

shows that the converse of Proposition 3 is not true.
To establish the connection between ID systems and the decoupling problem

we introduce the following definition.
DEHNITION 4. S-= {A, B, C} and , {/, , C} are control law equivalent

(CLE) if a one-to-one correspondence between F, G} and {iv, C,} can be established
such that, for this correspondence, H(., F, G) H(., F, G).

Remark 1. If the decoupling problem has been solved for S, it has been solved
for S.

Remark 2. Control law equivalence is transitive, i.e., if S and S are CLE and
S and S are CLE, then S and S are CLE.

PROPOSITION 4. Consider the system S {A, B, C}, where D is nonsingular.
Let A* denote the m n matrix

C1Aa’+ 11(4.3) A*

CmAd,,, + lJ
Then the systems S and S(-D-1A*, D-1) are CLE. Furthermore is ID and
ai di, Di El for 1, -.-, m.

Proof The one-to-one correspondence between {F, G} and {F, },
DF + A*= F and DG G, proves the CLE property since then A + BF
A + BF, BG BG and C C. The last part of the proposition follows by

direct calculation of ai, Ci3a’+l and Oi.

5. Necessary and sufficient conditions for decoupling. From the results of
3 and 4 we obtain by different means the theorem of Falb and Wolovich [3].

THEOREM 1. S can be decoupled if and only if D is nonsingular. If {F, G} de-
couples S(F, G), G D- 1A, where the m x m matrix A is diagonal and nonsingular.

Proof If H(., F, G) is decoupled, then Hi(., F, G) hi(., F, G)Ei, where
hi(., F, G) - 0. This together with Proposition 1 implies DiG 2iEi, 1, ..., m.
The numbers 21, ..., 2m are all nonzero. Suppose to the contrary. Then for some i,

DiG 0. But if H(., F, G) is to be nonsingular, G must be nonsingular. This
implies D 0 and di n- 1, and from (3.1), (3.2), (2.6) and (2.3) we obtain
Hi(.,F, G)= 0, which contradicts the nonsingularity of H(.,F,G). From
DiG 2iEi, )i :/: O, 1,..., m, we have DG A diag(21, ..., 2m), A non-
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singular, which proves the necessary conditions. Sufficiency follows from Pro-
positions 3 and 4 and the control law {-D-1A*,D-}.

Falb and Wolovich [3] prove Theorem by manipulating some rather
involved algebraic expressions. Besides being simpler, our proof has the advantage
that it makes clear that the necessary conditions have their origin in the F-invariants
of Proposition 1. The matrix A* was used also by Falb and Wolovich in their
sufficiency proof.

Since the nonsingularity of D plays such an important role in the decoupling
problem, it deserves some special comment. It is easy to see that det H(. ---0
implies det D 0. In this case we say S has strong inherent coupling and it is
obvious that no control law can effect decoupling. If det D # 0, we say S has no
inherent coupling. If det D 0 and det H(.) 4: 0, we say S has weak inherent
coupling. Systems which have weak inherent coupling cannot be decoupled by
state feedback, but other control laws can achieve decoupling. We shall not pursue
this issue in depth here, but the following indicates one path which can be taken.

The system S {A, B, C},
0 0 0 0 0

1 0 0 0 0 0 [1 011A= B= C-- D=
0 0 0 0 0 0 0 0

0 0 ,0 0

has weak inherent coupling because det H(. :/: 0. We now form a new system
{,/, (} which is related to S in the following way"

A= U= C=[C 0],

where A, B, K, K2 are respectively n, n m, m m, m matrices. may

be interpreted as the dynamical system (state I], input (t)) arising from

the interconnection of (1.1) and
dff

A + B(t),
dt

(5.1)
u(t) Ka(t) + K2"Y.

Thus (5.1) acts as a precompensator for (1.1). If we choose h and

[0], =[0 1], gt _1 -1 K

it is easily verified that has no inherent coupling /= Ilo-1 .Ingeneral

it is always possible to precompensate a system S which has weak inherent coupling
so as to obtain a system with no inherent coupling. The development which
shows this is tedious but straightforward.
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6. Canonically decoupled systems. If in (1.1) we change the coordinate
system by writing Tx, where T is a nonsingular matrix, we obtain a new
system $ {, B, C} {TAT-1, TB, CT-1}. This motivates what follows.

DEFINITION 5. S and are similar if there exists a nonsingular n n matrix
T such that TA AT, TB B and C CT.

Remark 3. If S and S are similar, q(-) ?/(. and H(. H(. ). Thus D D
and di di, 1,..., m. Furthermore if S is ID, S is ID.

Remark 4. Similar systems are CLE. This is a consequence of the correspond-
enceF=FTandG G.

When S and S satisfy the conditions in Definition 5 we shall use the termino-
logy that Tcarries S into S.

For a canonically decoupled system (to be defined shortly) the decoupling
problem has a particularly simple form. The main result of this section (Theorem 2)
is to show that every ID system is similar to a canonically decoupled system. By
Remarks 2 and 4 and Proposition 4, this means that if S can be decoupled
(det D : 0) it is possible to find a canonically decoupled system which is CLE to S.
Thus by Remark the treatment of the decoupling problem for S is simplified.

DEFINITION 6. S {A,B, C} is canonically decoupled (CD)if the following
conditions are satisfied"

(i) The matrices A, B and C have the partitioned form"

o o oA1 0

0 A2 0

0 0 0

A A A
_0 0 0

bi
0

B

0

_0

Cl 0

0 c2C=

0 0

where Pi => di + 1, i-- 1,-..

0

b2

,m.

0

0

0

0

0

A A is Pi X Pi,

A is Pm+l Pi,

A7 is Pi Pro+ 2,

bi is Pi 1,

b is Pm+l 1,

ci is p,

"islCi Pm + 2,
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(ii) For/= 1,... m the matrices Ai, bi and c have the partitioned form"

0 Yi is ri x (di + 1),

i is r ri,
Yi ()i

0

bi i

;i[
i2

iri
_l

c,=[ 0 0],
where r Pi di.

(iii) For i= 1,..-,m the Pi column matrices bi, Ab,...,AV’-bi are
linearly independent.

(iv) Let p =p. If p,,+ :/= 0 and the n-row
is such that rlv+,’", rlv+v are not all zero, then the row matrix function
rl(1,s A)- B has at least two nonzero elements.

To proceed we need some additional notation and terminology. Let
denote the n-dimensional space of n element row matrices. For i= 1,.-., m
define

(6.1) i {rllri;rlAJBk =0 for k 1,...,m, k 4 and j=0,-..,n- 1},
where Bi is the ith column of B. According to accepted practice we say S A,B, C}
is controllable if the nm columns AJBk,j 0,..., n 1, k 1,..., m, span the
n-dimensional linear space of n columns.

LEMMA 1. Assume S {A, B, C} is ID and controllable. Thenfor 1, ., m
the following conditions are satisfied"

(i) .i is a row invariant subspace ofA, i.e., rl fffi implies rlA
(ii) 2i 2j {0} forj 1,..., m,j 4: i;
(iii) Ci, CiA, CAd’ are linearly independent elements of2i.
Proof To prove (i) we need only to show that r/ 2i implies rlA"B 0 for

k 1, ..., m, k- i. But this follows from the Cayley-Hamilton theorem
A(A"= q +... + q,1,) and the definition of 2. Assume r/ 2j for

4: j. Then from the definition of 2i and j it is apparent that rlAJBk 0 for
j 0,..., n- 1, k 1,..., m. By the controllability of S this implies q--0
and (ii) is true. From (3.1) and Definition 3, CiAn’=/: 0 and CiAa’+k= 0 for
k 1, 2, Now assume DoCi nt- p 1CiA + + Dd,CiAd’ 0, where Po, ,
are scalars. Postmultiply this equation by An‘ and obtain poCiAd’= 0 which
implies Po--0. By multiplying by successively lower powers of A we obtain
Po,t)x,’", tn =0, which implies Ci, ..., CiAd’ are linearly independent.
From (3.1) and Definition 3 it follows that CiAJB 0 for j >__ O, j =/: di and
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CiACI’B TiEi These conditions show that CiA .i, where j is any nonnegative
integer Thus (iii) is proved.

Because of Lemma 1 there exists a linear space 22,, / 22 such that the direct
sum 221 222 22,,/ 22. We adopt the notation

(6.2) Pi =dim22i, 1,.-.,m+ 1, P Pi.
i=1

Clearly Pro+x--n--p is uniquely defined by S although 22m+1 is not (unless
Pm+l 0). Moreover from part (iii) of Lemma it is clear that Pi >_- di + I,

1, ..., m. Now we can state the following lemma.
LEMMA 2. Assume S {A, B, C} is ID, controllable, and Pm+l

and write rl _n_+ll i, where ie 22ifor 1,..., m + 1. lf m+ O, then there
exist at least two integersfrom the set 1, ..., m}, say q and r, such that qAgBq 0
for at least onej {0,..., n 1} and qAJBr 4: O for at least onej {0,..., n 1).

Proof If qAJBk 0 for all j 0,..-, n and k 1, ..., m, the control-
lability of S would imply r/ 0. Thus there is at least one integer from 1, ..., m},
say q, such that rlAJBq :/: 0 for all j 0, ..., n 1. If q were the only such integer
then r/e 22q. But this would imply ,,+ 0 and thus the lemma is proved.

PROPOSITION 5. Assume S is ID and controllable. Then S is similar to a CD
system S, where )i Pi, 1,’’", m + 1 and ,,+ 2 O.

Proof We use the results of Lemmas and 2 and in Definition 6 replace S
by S. First we form the matrix

(6.3) Q =:

LQ+,j
where the rows of the Pi n matrix Qi are a basis for 22i" Because of the definition
of Q1, "’", Q,, + 1, the rows of Q, which we denote by q’, -.-, q,*, are a basis for 22.
If we define A by AQ QA, the elements of the ith row of are the components
of q’{A with respect to the basis q], ..., q,*. Using this and part (i) of Lemma 1,
we see that A has the structure of Definition 6, part (i). To be more specific define

Ci

(6.4) Qi

CiA

CiAcl

where q*,,..., q, are any rows which extend Ci, CiA,... CiAct’ to form a basis
for 22. This, together with CgAd’+l --0, gives 2g the structure of Definition 6,
part (ii). Moreover, d and/i Pi.
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Now define B QB. Using (6.3), (6.4), and the definition of i gives B the
structure of Definition 6, part (i). The further structure indicated in part (ii)
follows from (6.4) and the fact that CiAa’Bi 7i. Define C-" by C ’Q. Then
(6.3) and (6.4) give C the structure of Definition 6, parts (i) and (ii).

From the foregoing it is obvious that Q carries S into S. It remains to show that
parts (iii) and (iv) of Definition 6 are true for S. Suppose that (iii) is not true. Then
from the form of 2 and B indicated in (i), the columns JBk,j 0,’’’, n 1,
k 1, m, do not span the n-dimensional column space. Because 2JBk QAJBk
this implies S is not controllable. This contradiction proves that (iii) holds for S.
To prove that satisfies part (iv) of Definition 6 we note that

7(l,,s A)- B gl(lns )- 1B,

where r/ F/Q. By the definition of Q, r/satisfies the condition ,,
+ 0 (see Lemma

2 for notation) if and only if Flp+ 1, "’", fl, are not all zero. Thus we need only to
show that rl(I,s A)- 1B has at least two nonzero elements if ,,+ :# 0. Using

rl(l,,s A)- 1B q(s)(s"- ltlB + sn-2rlR1Bk + + fiR,,_ 1Bk),

we easily see that if rlAJBk =/: 0 for at least one j e {0,-.-, n- 1}, then
rl(l,,s- A)-1B s O. Since the kth element of rl(l,s- A)-iB is rl(l,s- A)-IB,,
Lemma 2 gives the desired result.

Proposition 5 requires S to be controllable. To remove this restriction we
need the following lemma.

LEMMA 3. For the n-th order system S {A, B, C} let nc dina cg, where
is the subspace spanned by the mn columns AJBk,j 0,..., n 1, k 1,..-, m.
Then S is similar to rS , , }, where

(i)

A
A

B B is nc x m,

C=[C C"], Cism x n,

(ii) S= {A, B, C} is controllable,

(iii) if S is ID, S is ID and F F.

A is nc x nc,
A" is nc x (n- n),
AUis(n- n) x (n- nc),

C" is rn x (n n),

Proof Parts (i) and (ii) are well known [6], [7] and may be established by
taking the first nc columns of a nonsingular matrix L to be a basis for oK. Then
T1 L-1 carries S into ,. Part (iii) follows from Remark 3 and direct calculation
of (ia’/ and I-’iTai+ in terms ofAc, B and C.

The steps required to construct a CD representation of an ID system can now
be summarized. Let S be an nth order ID system. Apply Lemma 3 obtaining c
and thence a matrix T1 which carries S into . Since S is ID and controllable,
Proposition 5 is applicable with S taking the role of S in Proposition 5. The matrix
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Q which appears in the proof of Proposition 5 will in this case be nc no. Define
/m + 2 1’/ nc and

Z2

Then direct calculation shows that T2 carries S into the CD system S, where
/3i dim, 1,..-, m + 1. Thus TT carries S into and we have a con-
structive proof of the promised result.

THEOREM 2. Every ID system is similar to a CD system.

7. Principal results. In this section we characterize the solution of the de-
coupling problem for CD systems and then by means of Theorem 2 extend these
results to general systems.

THEOREM 3. If S is CD, the control law {F, G} decouples S ifand only if

01 0 0 0 0 OUl

F= 0 02 0 0 00U2

o o o Om 0 0",,

where Oi is Pi and 07 is Pro+ 2, and

G diag(21, 2m), 2i : O, i= 1,...,m.

Proof Sufficiency follows by substitution which shows H(., F, G) is diagonal.
In fact, the ith diagonal element of H(s, F, G) is given by

(7.1) hi(s F, G) ci(lpis A biOi)- biTi/],i"

The necessity of G diag (21, ..., 2m) and 2i 0 is an obvious consequence of
Theorem 1. To prove the necessity of the condition on F we write

(7.2) H(s, F, G) H(s)(lm -F(I,s A)- ’B)- G,

an identity which is derived by straightforward manipulation of the two obvious
identities: (l,s A)- 1(1, BF(I,s A)- 1)- 1B (l,s A BF)- 1B and
(I,- BF(l,s- A)-1)B B(lm- F(1,s- A)-1B). Since H(. is diagonal, (7.2)
implies F(1,s- A)-1B must be diagonal if S(F, G) is to be decoupled. By par-
titioning F into rows and using Definition 6, this leads to the required conditions
on F.

THEOREM 4. Assume S is CD and the control law {F, G} has theform indicated
in Theorem 3. Then:

Oi(S)Ti/i
(i) hi(s F, G) 1,..., m,

Ji(S, O’i)

where zi(s) sr’ Oil Sri- Oir and

[li(S, O’i) sPi O’il spi- (ipi, O" O’ipi a/l];
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(ii) i(s) det (lr,s
(iii) 0 (0" T(,i)Vi, where V is a Pi x Pi nonsingular matrix which depends

only on Ai and hi, and the x Pi matrix ni 0... 0 ir,
(iv) q(s, F) cz,+ (s),,+ 2(s) Fl i(s, ai) where i(s) det (Ip.s Ai)i=1

i=m+ 1, m + 2.
Proof. From (7.1) it is apparent that hi(., F, G) may be interpreted as the

transfer function of the system Si(Oi,/i), where S {Ai, hi, ci}. Since S is a con-
trollable single-input, single-output system, the theory developed by Bass and
others (see, e.g., Morgan [8], [9) may be applied. We summarize this theory in the
following lemma.

LEMMA 4. Assume S {A,b,c} is single-input, single-output, order n and
controllable. Then the transferfunction of S(O, 2) has theform

o(s)
H(s, O, )

O(s, )

where co(s) is a polynomial of degree n or less and gg(s, a) s" as"
-a. Let a [a,,... a, n [q... qx and define tke matrix K [1 k,,,
where the columns lq R,,_ ib, 1, ..., n. Then K is nonsingular and OK a n.

Except for the form of (s), application of Lemma 4 to S proves part (i) of the
theorem. From the form of Ai it is clear that qi(s)- det (IpA-
det (Ir,s i) Sd’+ lZi(S) sP’ eilS

p’-
(XiriSpi-ri, where we have used

the notation of (ii). Letting Vi correspond to K-1 of Lemma 4 verifies (iii). The
remaining part of (i) follows by noting that

hii(s, O, 1) (1)i(s)O l(s, 0) (oi(s)(sdi- li(s))- is-di- 1.

Part (iv) is obtained by observing that l,s A BF W(s) can be written

W [wlx W12
0 W22J

where W22--lp aS- Am+ 2. Thus q(s,F,G)= det Wll det W22. Finally, W
is quasi-triangular and is easily expanded to give

det WI1 det (lp.,+,s A,,+ 2) [I Oi(s, ai).
i=1

THEOREM 5. Assume S {A,B, C} can be decoupled. If {F, G} decouples S,
the diagonal elements of H(., F, G) have the form given in part (i) of Theorem 4
where the integers Pi and ri and the polynomials i(s) are uniquely determined by S,
and 7i 1, i= 1,..., m. Furthermore, q(s, F) has the form given in part (iv) of
Theorem 4, where 5,,+ (s) and era+ 2(S) are polynomials of degree p,,+ and p,,+ 2

uniquely determined by S. The class ofcontrol laws which decouple S can be charac-
terized by G and F , where f# is an m-dimensional linear space and is a

(im=i Pi + mpm+z)-dimensional linear manifold. More specifically, there exist

matrices Gi, J],’", jip,, i= 1,..., m, and an (mpm+z)-dimensional linear space
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which are uniquely determined by S, such that

(7.3) G 2G,
i=1

Pi

(7.4) F -D-1A* nt- Z ((7ik- 7Cik)Jik -1- F",
i-lk=l

where F" e ,", rcik= ik, k 1, ri, and rti O, k r + 1, Pi.
Proof The form of H(-, F, G) follows immediately from the CLE property

between S and a CD system (Proposition 4 and Theorem 2) and Theorem 4.
The one-to-one control law correspondence associated with this CLE property
yields

(7.5) G D- A,

and

A diag(21, 2,,),

0 0 0 0 0 0]
/

(7.6) F U-

0 0 0 0

where T and T2 are the nonsingular matrices which arise in the proof of Theorem
2. Results (7.3) and (7.4) are a direct consequence of (7.5) and (7.6), Theorem 3
and Theorem 4. Substitution of(7.6)into det (1,s A BF)leads to the expression
for q(s, F).

8. Discussion. Theorem 5 establishes all the data needed for the design of
a decoupled multivariable system. The class of decoupled systems is given and
convenient formulas for computing F and G for an arbitrarily specified decoupled
system within the class exist. The general approach for obtaining the data for these
formulas (Pi, ri, %, rtij, A*, D, Gi, J) should be clear from the foregoing develop-
ments. But for nontrivial cases of S, hand calculations are not practical. For this
reason a computer program is now being written. Given A, B and C, it will generate
all the necessary data. This program, along with some example applications, will
be reported in a subsequent paper.

It is also possible to determine stability and decide when decoupling by
output feedback [4] is possible. We say the system S(F, G) is stable if q(s, F) is
Hurwitz, i.e., all roots of q(s, F) 0 have negative real parts. Clearly the design
ofa stable decoupled system is impossible if either ,, + l(s) or ,, + 2(s) is not Hurwitz.
If both ,,+ (s) and am+ 2(s) are Hurwitz, S(F, G) can be made stable by appropriate
choice of al, ..., a,,. Using the design formulas of Falb and Wolovich 3], we see
that the stability question is more critical. It can be shown that these formulas
lead to

2i
i= 1,--.,m.hi(s F, G)

sdi + .31_ mi 1Sdi ._ 1_ mi(d + 1)
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Thus S(F, G) can be stable if and only if the 0i(s), 1,..., m + 2, are Hurwitz.
We say S is decoupled by output feedback if there exists a pair of m x m

matrices {K, G} such that S(KC, G) is decoupled. The motivation for decoupling
by output feedback is clear since it corresponds to replacing (1.2) by

u(t) Iy(t) +
If K, G} is to output decouple S, KC must have the form of F in Theorem 5. This
means it may not be possible to output decouple S even if D is nonsingular. If
{K, G} output decouples S, linear constraint equations on al,-.., a,, may be
imposed. The details of the analysis which gives these results are straightforward
and are therefore omitted.

Still other questions arise: what is the effect of parameter variations and
disturbance inputs, what should be done if D is singular or ,,+ l(s) and m+ 2(S)
are not Hurwitz, can dynamic estimators of x be used to supply x when only y is
available, how are constraints on control effort imposed, what happens when (1.2)
is replaced by a sampled-data version, what form does the theory take if S is time
varying, can the ai be chosen by solving an optimization problem for S, what is
the effect of using nonlinear feedback on the system S. Some of these questions
will be explored in later papers.
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for the opportunity to inspect early drafts of their papers. Many interesting
numerical examples of multivariable systems were supplied by B. S. Morgan.
These helped develop insight which lead to the main results.

REFERENCES

[1] B. S. MORGAN, JR., The synthesis of linear multivariable systems by state variable feedback, Proc.
1964 JACC, Stanford, California, pp. 468-472.

[2] Z.V. REKASIUS, Decoupling ofmultivariable systems by means ofstatefeedback, Proc. Third Allerton
Conference on Circuit and System Theory, Monticello, Illinois, 1965, pp. 439-448.

[3] P. L. F,LB ,ND W. A. WOLOVICn, On the decoupling ofmultivariable systems, Proc. 1967 JACC,
Philadelphia, Pennsylvania, pp. 791-796.

[4] ---, Decoupling in the design ofmultivariable control systems, IEEE Trans. Automatic Control,
AC-12 (1967), pp. 651-659.

[5] F. R. GANTMACHER, The Theory of Matrices I, Chelsea, New York, 1959.
[6] R. E. KAIMAN, Canonical structure of linear dynamical systems, Proc. Nat. Acad. Sci. U.S.A.,

48 (1962), pp. 596-600.
[7] L. A. ZADEH AND C. A. DESOER, Linear System Theory, McGraw-Hill, New York, 1963.
[8] B. S. MORGAN, JR., The Synthesis of Single Variable Systems by State Variable Feedback, Proc.

First Allerton Conference on Circuit and System Theory, University of Illinois, 1963, pp.
509-520.

[9] --, Sensitivity analysis and synthesis ofmultivariable systems, IEEE Trans. Automatic Control,
AC-I1 (1966), pp. 506-512.


