
FLUSH+RELOAD: a High Resolution, Low Noise,
L3 Cache Side-Channel Attack

Yuval Yarom Katrina Falkner
The University of Adelaide

Abstract

Sharing memory pages between non-trusting processes
is a common method of reducing the memory footprint
of multi-tenanted systems. In this paper we demon-
strate that, due to a weakness in the Intel X86 processors,
page sharing exposes processes to information leaks. We
present FLUSH+RELOAD, a cache side-channel attack
technique that exploits this weakness to monitor access
to memory lines in shared pages. Unlike previous cache
side-channel attacks, FLUSH+RELOAD targets the Last-
Level Cache (i.e. L3 on processors with three cache lev-
els). Consequently, the attack program and the victim do
not need to share the execution core.

We demonstrate the efficacy of the FLUSH+RELOAD
attack by using it to extract the private encryption keys
from a victim program running GnuPG 1.4.13. We tested
the attack both between two unrelated processes in a sin-
gle operating system and between processes running in
separate virtual machines. On average, the attack is able
to recover 96.7% of the bits of the secret key by observ-
ing a single signature or decryption round.

1 Introduction

To reduce the memory footprint of a system, the system
software shares identical memory pages between pro-
cesses running on the system. Such sharing can be based
on the source of the page, as is the case in shared li-
braries [13, 26, 42]. Alternatively, the sharing can be
based on actively searching and coalescing identical con-
tents [6, 55]. To maintain the isolation between non-
trusting processes, the system relies on hardware mecha-
nisms that enforce read only or copy-on-write [13, 40]
semantics for shared pages. While the processor en-
sures that processes cannot change the contents of shared
memory pages, it sometimes fails to block other forms of
inter-process interference.

One form of interference through shared pages results

from the shared use of the processor cache. When a pro-
cess accesses a shared page in memory, the contents of
the accessed memory location is cached. Gullasch et
al. [29] describes a side channel attack technique that
utilises this cache behaviour to extract information on
access to shared memory pages. The technique uses the
processor’s clflush instruction to evict the monitored
memory locations from the cache, and then tests whether
the data in these locations is back in the cache after al-
lowing the victim program to execute a small number of
instructions.

We observe that the clflush instruction evicts the
memory line from all the cache levels, including from
the shared Last-Level-Cache (LLC). Based on this ob-
servation we design the FLUSH+RELOAD attack—an ex-
tension of the Gullasch et al. attack. Unlike the original
attack, FLUSH+RELOAD is a cross-core attack, allowing
the spy and the victim to execute in parallel on differ-
ent execution cores. FLUSH+RELOAD further extends
the Gullasch et al. attack by adapting it to a virtualised
environment, allowing cross-VM attacks.

Two properties of the FLUSH+RELOAD attack make
it more powerful, and hence more dangerous, than prior
micro-architectural side-channel attacks. The first is that
the attack identifies access to specific memory lines,
whereas most prior attacks identify access to larger
classes of locations, such as specific cache sets. Con-
sequently, FLUSH+RELOAD has a high fidelity, does not
suffer from false positives and does not require additional
processing for detecting access. While the Gullasch et al.
attack also identifies access to specific memory lines, the
attack frequently interrupts the victim process and as a
result also suffers from false positives.

The second advantage of the FLUSH+RELOAD attack
is that it focuses on the LLC, which is the cache level
furthest from the processors cores (i.e., L2 in proces-
sors with two cache levels and L3 in processors with
three). The LLC is shared by multiple cores on the
same processor die. While some prior attacks do use the

LLC [47, 60], all of these attacks have a very low res-
olution and cannot, therefore, attain the fine granularity
required, for example, for cryptanalysis.

To demonstrate the power of FLUSH+RELOAD we use
it to mount an attack on the RSA [48] implementation of
GnuPG [27]. We test the attack in two different scenar-
ios. In the same-OS scenario both the spy and the victim
execute as processes in the same operating system. In
the cross-VM scenario, the spy and the victim execute
in separate, co-located virtual machines. Both scenarios
were tested in a local lab settings on otherwise idle ma-
chines.

By observing a single signing or decryption round, the
attack extracts 98.7% of the bits on average in the same-
OS scenario and 96.7% in the cross-VM scenario, with a
worst case of 95% and 90%, respectively.

The rest of this paper is organised as follows. The next
section presents background information on page shar-
ing, cache architecture and the RSA encryption. Sec-
tion 3 describes the FLUSH+RELOAD technique, fol-
lowed by a description of our attack on GnuPG in Sec-
tion 4. Mitigation techniques are presented in Section 5,
and the related work in Section 6.

2 Preliminaries

2.1 Page Sharing
Sharing memory between processes can serve two dif-
ferent aims. It can be used as an inter-process com-
munication mechanisms between two co-operating pro-
cesses and it can be used for reducing memory footprint
by avoiding replicated copies of identical contents. This
paper focuses on the latter use.

When using content-aware sharing, identical pages
are identified by the disk location the contents of the
page is loaded from. This is the traditional form of
sharing in an operating system, which is used for shar-
ing the text segment of executable files between pro-
cesses executing it and when using shared libraries [26].
Context-aware sharing has been suggested in early op-
erating systems, such as Multics [42] and TENEX [13],
and is implemented in all current major operating sys-
tems. This approach has also been suggested within the
context of virtualisation hypervisors, such as Disco [15]
and Satori [39].

Content-based page sharing, also called memory de-
duplication, is a more aggressive form of page sharing.
When using de-duplication, the system scans the active
memory, identifying and coalescing unrelated pages with
identical contents. De-duplication is implemented in the
VMware ESX [54, 55] and PowerVM [17] hypervisors,
and has also been implemented in Linux [6] and in Win-
dows [33].

As memory pages can be shared between non co-
operating processes, the system must protect the contents
of the pages to prevent malicious processes from modify-
ing the shared contents. To achieve this, the system maps
shared pages as copy-on-write [13, 40]. Read operations
on copy-on-write pages are permitted whereas write op-
erations cause a CPU trap. The system software, which
gains control of the CPU during the trap, copies the con-
tents of the shared page, maps the copied page into the
address space of the writing process and resumes the pro-
cess.

While copy-on-write protects shared pages from mod-
ifications, it is not fully transparent. The delay intro-
duced when modifying a shared page can be detected by
processes, leading to a potential information leak attack.
Such attacks have been implemented within virtualised
environments for creating covert channels [58], for OS
fingerprinting [44] and for detection of applications and
data in other guests [49].

2.2 Cache Architecture

In addition to sharing memory pages, processes run-
ning on the same processor share the processor caches.
Processor caches bridge the gap between the processing
speed of modern processors and the data retrieval speed
of the memory. Caches are small banks of fast memory
in which the processor stores values of recently accessed
memory cells. Due to locality of reference, recently used
values tend to be used again. Retrieving these values
from the cache saves time and reduces the pressure on
the main memory.

Modern processors employ a cache hierarchy consist-
ing of multiple caches. For example, the cache hierarchy
of the Core i5-3470 processor, shown in Fig. 1, consists
of three cache levels: L1, L2 and L3.

32 KB

L1 Inst

32 KB

L1 Data

L2 256KB

Core 2

32 KB

L1 Inst

32 KB

L1 Data

L2 256KB

Core 3

L3 Unified − 6MB

32 KB

L1 Inst

32 KB

L1 Data

Core 0

L2 256KB

32 KB

L1 Inst

32 KB

L1 Data

L2 256KB

Core 1

Figure 1: Intel Ivy Bridge Cache Architecture

The Core i5-3470 processor has four processing units
called cores. Each core has a 64KB L1 cache, divided
into a 32KB data cache and a 32KB instruction cache.
Each core also has a 256KB L2 cache. The four cores

2

share a 6MB L3 cache, also known as the Last-Level
Cache, or LLC.

The unit of memory in a cache is a line which contains
a fixed number of bytes. A cache consists of multiple
cache sets each of which stores a fixed number of cache
lines. The number of cache lines in a set is the cache
associativity. Each memory line can be cached in any of
the cache lines of a single cache set. The size of cache
lines in the Core i5-3470 processor is 64 bytes. The L1
and L2 caches are 8-way associative and the L3 cache is
12-way associative.

An important feature of the LLC in modern Intel pro-
cessors is that it is an inclusive cache. That is, the LLC
contains copies of all of the data stored in the lower cache
levels. Consequently, flushing or evicting data from the
LLC also remove said data from all other cache levels of
the processor. Our attack exploits this cache behaviour.

Retrieving data from memory or from cache levels
closer to memory takes longer than retrieving it from
cache levels closer to the core. This difference in tim-
ing has been exploited for side-channel attacks. Side-
channel attacks target information that an implementa-
tion of an algorithm leaks through its interaction with
its environment. To exploit the timing difference, an at-
tacker sets the cache to a known state prior to a victim
operation. It can, then, use one of two methods to de-
duce information on the victim’s operation [43]. The
first method is measuring the time it takes for the vic-
tim to execute the operation. As this time depends on
the state of the cache when the victim starts the opera-
tion, the attacker can deduce the cache sets accessed by
the victim and, therefore, learn information on the vic-
tim [5, 9, 57]. The second approach is for the attacker to
measure the time it takes for the attacker to access data
after the victim’s operation. This time is dependent on
the cache state prior to the victim operation as well as
on the changes the victim operation caused in the cache
state [1, 2, 4, 14, 19, 47, 61].

Most prior work on cache side-channel attacks relies
on the victim and spy executing within the same process-
ing core. One reason for that is that many of the attacks
suggested require the victim to be stopped while the spy
performs the attack. To that aim, the attack is combined
with an attack on the scheduler that allows the spy pro-
cess to interrupt and block the victim.

Another reason for attacking within the same core is
that the attacks focus on the L1 cache level, which is not
shared between cores. The large size of the LLC hin-
ders attacks both because setting it to a known state takes
longer than with smaller caches and because the virtual
memory used by the operating system masks the map-
ping of memory addresses to cache sets. Furthermore,
as most of the memory activity occurs at the L1 cache
level, less information can be extracted from LLC activ-

ity. Some prior works do use the LLC as an information
leak channel [46,47,60]. However, due to the cache size,
these channels have a low bandwidth.

We now proceed to describe the RSA encryption.

2.3 RSA
RSA [48] is a public-key cryptographic system that sup-
ports encryption and signing. Generating an encryption
system requires the following steps:

• Randomly selecting two prime numbers p and q and
calculating n = pq.

• Choosing a public exponent e. GnuPG uses e =
65537.

• Calculating a private exponent d≡ e−1 (mod (p−
1)(q−1)).

The generated encryption system consists of:

• The public key is the pair (n,e).

• The private key is the triple (p,q,d).

• The encrypting function is E(m) = me mod n.

• The decrypting function is D(c) = cd mod n.

CRT-RSA is a common optimisation for the imple-
mentation of the decryption function. It splits the se-
cret key d into two parts dp = d mod (p− 1) and dq =
d mod (q−1), computes two parts of the message: mp =
cdp mod p and mq = cdq mod q. m is then computed
from mp and mq using Garner’s formula [25]:

h = (mp−mq)(q−1 mod p) mod p
m = mq +hq

To compute the encryption and decryption func-
tions, GnuPG versions before 4.1.14 and the related
libgcrypt before version 1.5.3 use the square-and-
multiply exponentiation algorithm [28]. Square-and-
multiply computes x = be mod m by scanning the bits
of the binary representation of the exponent e. Given a
binary representation of e as 2n−1en−1 + · · ·20e0, square-
and-multiply calculates a sequence of intermediate val-
ues xn−1, . . . ,x0 such that xi = bbe/2ic mod m using the
formula xi−1 = xi

2bei−1 . Figure 2 shows a pseudo-code
implementation of square-and-multiply.

As can be seen from the implementation, computing
the exponent consists of sequence of Square and Mul-
tiply operations, each followed by a Modulo Reduce.
This sequence corresponds directly with the bits of the
exponent. Each occurrence of Square-Reduce-Multiply-
Reduce within the sequence corresponds to a bit whose
value is 1. Occurrences of Square-Reduce that are not

3

1 function exponent(b, e, m)
2 begin
3 x← 1
4 for i← |e|−1 downto 0 do
5 x← x2

6 x← x mod m
7 if (ei = 1) then
8 x← xb
9 x← x mod m

10 endif
11 done
12 return x
13 end

Figure 2: Exponentiation by Square-and-Multiply

followed by a Multiply correspond to bits whose values
are 0. Consequently, a spy process that can trace the ex-
ecution of the square-and-multiply exponentiation algo-
rithm can recover the exponent.

As GnuPG uses the CRT-RSA optimisation, the spy
process can only hope to extract dp and dq. However, for
an arbitrary message m, (m−medp) is a multiple of p.
Hence, knowing dp (and, symmetrically, dq) is sufficient
for factoring n and breaking the encryption [16].

3 The FLUSH+RELOAD Technique

The FLUSH+RELOAD technique is a variant of
PRIME+PROBE [51] that relies on sharing pages between
the spy and the victim processes. With shared pages, the
spy can ensure that a specific memory line is evicted from
the whole cache hierarchy. The spy uses this to monitor
access to the memory line. The attack is a variation of
the technique suggested by Gullasch et al. [29], which in-
clude adaptations for use in multi-core and in virtualised
environments.

A round of attack consists of three phases. During the
first phase, the monitored memory line is flushed from
the cache hierarchy. The spy, then, waits to allow the
victim time to access the memory line before the third
phase. In the third phase, the spy reloads the memory
line, measuring the time to load it. If during the wait
phase the victim accesses the memory line, the line will
be available in the cache and the reload operation will
take a short time. If, on the other hand, the victim has
not accessed the memory line, the line will need to be
brought from memory and the reload will take signifi-
cantly longer. Figure 3 (A) and (B) show the timing of
the attack phases without and with victim access.

As shown in Fig. 3 (C), the victim access can overlap
the reload phase of the spy. In such a case, the victim ac-
cess will not trigger a cache fill. Instead, the victim will
use the cached data from the reload phase. Consequently,
the spy will miss the access.

Attacker

(A)
Victim

Attacker

(B)
Victim

Attacker

(C)
Victim

Attacker

(D)
Victim

Attacker

(E)
Victim

Attacker

Access Something else

Victim

Wait ReloadFlush

Figure 3: Timing of FLUSH+RELOAD. (A) No Victim
Access (B) With Victim Access (C) Victim Access Over-
lap (D) Partial Overlap (E) Multiple Victim Accesses

A similar scenario is when the reload operation par-
tially overlaps the victim access. In this case, depicted
in Fig. 3 (D), the reload phase starts while the victim is
waiting for the data. The reload benefits from the vic-
tim access and terminates faster than if the data has to be
loaded from memory. However, the timing may still be
longer than a load from the cache.

As the victim access is independent of the execution of
the spy process code, increasing the wait period reduces
the probability of missing the access due to an overlap.
On the other hand, increasing the wait period reduces the
granularity of the attack.

One way to improve the resolution of the attack with-
out increasing the error rate is to target memory accesses
that occur frequently, such as a loop body. The attack
will not be able to discern between separate accesses,
but, as Fig. 3 (E) shows, the likelihood of missing the
loop is small.

Several processor optimisations may result in false
positives due to speculative memory accesses issued by
the victim’s processor [34]. These optimisations include
data prefetching to exploit spatial locality and specula-
tive execution [52]. When analysing the attack results,
the attacker must be aware of these optimisations and de-
velop strategies to filter them.

Our implementation of the attack is in Figure 4. The
code measures the time to read the data at a memory ad-
dress and then evicts the memory line from the cache.
This measurement is implemented by the inline assem-
bly code within the asm command.

The assembly code takes one input, the address, which
is stored in register %ecx. (Line 16.) It returns the time
to read this address in the register %eax which is stored

4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Probe Time (cycles)

From Memory
From L1 Cache

Figure 5: Distribution of Load Times.

1 int probe(char *adrs) {

2 volatile unsigned long time;

3

4 asm __volatile__ (

5 " mfence \n"

6 " lfence \n"

7 " rdtsc \n"

8 " lfence \n"

9 " movl %%eax, %%esi \n"

10 " movl (%1), %%eax \n"

11 " lfence \n"

12 " rdtsc \n"

13 " subl %%esi, %%eax \n"

14 " clflush 0(%1) \n"

15 : "=a" (time)

16 : "c" (adrs)

17 : "%esi", "%edx");

18 return time < threshold;

19 }

Figure 4: Code for the FLUSH+RELOAD Technique

in the variable time. (Line 15.)
Line 10 reads 4 bytes from the memory address in

%ecx, i.e. the address pointed by adrs. To measure the
time it takes to perform this read, we use the processor’s
time stamp counter.

The rdtsc instruction in line 7 reads the 64-bit
counter, returning the low 32 bits of the counter in %eax

and the high 32 bits in %edx. As the times we measure
are short, we treat it as a 32 bit counter, ignoring the 32
most significant bits in %edx. Line 9 copies the counter
to %esi.

After reading the memory, the time stamp counter is
read again. (Line 12.) Line 13 subtracts the value of the
counter before the memory read from the value after the
read, leaving the result in the output register %eax.

The crux of the technique is the ability to evict specific
memory lines from the cache. This is the function of the
clflush instruction in line 14. The clflush instruc-
tion evicts the specific memory line from all the cache
hierarchy, including the L1 and L2 caches of all cores.
Evicting the line from all cores ensures that the next time
the victim accesses the memory line it will be loaded into
L3.

The purpose of the mfence and lfence instructions in
lines 5, 6, 8 and 11 is to serialise the instruction stream.
The processor may execute instructions in parallel or out
of order. Without serialisation, instructions surrounding
the measured code segment may be executed within that
segment.

The lfence instruction performs partial serialisation.
It ensures that load instructions preceding it have com-
pleted before it is executed and that no instruction fol-
lowing it executes before the lfence instruction. The
mfence instruction orders all memory access, fence in-
structions and the clflush instruction. It is not, how-
ever, ordered with respect to other instructions and is,
therefore, not sufficient to ensure ordering.

Intel recommends using the serialising instruction
cpuid for that purpose [45]. However, in virtualised en-
vironments the hypervisor emulates the cpuid instruc-
tion. This software emulation takes too long (over 1,000
cycles) to provide the fine granularity required for the at-
tack.

Line 18 compares the time difference between the
two rdtsc instructions against a predetermined thresh-
old. Loads shorter than the threshold are presumed to
be served from the cache, indicating that another process
has accessed the memory line since it was last flushed

5

from the cache. Loads longer than the threshold are pre-
sumed to be served from the memory, indicating no ac-
cess to the memory line.

The threshold used in the attack is system dependent.
To find the threshold for our test systems, we used the
measurement code of the probe in Listing 4 to measure
load times from memory and from the L1 cache level.
(To measure the L1 times we removed the clflush in-
struction in line 14.) The results of 100,000 measure-
ments of each on an HP Elite 8300 with an i5-3470 pro-
cessor, running CentOS 6.5 are presented in Figure 5.

Virtually all loads from the L1 cache measure 44 cy-
cles. (Note that this measure includes an overhead for the
rdtsc and the fence instructions and is, therefore, much
longer than a single load instruction.) Loads from mem-
ory show less constant timing. Over 98% of those take
between 270 and 290 cycles. The rest are mostly spread
around 880 cycles with about 200 loads measured 1140–
1175 cycles. No loads from memory measured less than
200 cycles.

The timings of load operations depend on both the sys-
tem architecture and the software environment. For ex-
ample, on a Dell PowerEdge T420 with Xeon E5-2430
processors, loads from L1 take between 33 and 43 cy-
cles and loads from memory take around 230 cycles. On
the same architecture, within a KVM [37] guest, about
0.02% of the loads from memory take over 6,000 cycles.
We believe these are caused by hypervisor activity.

The L1 measurements underestimate the probe time
for data that the victim accesses. In an attack, data the
victim accesses is read from the L3 cache. Intel docu-
mentation [34] states that the difference is between 22
and 39 cycles. Based on the measurement results and the
Intel documentation we set the threshold to 120 cycles.

To use the FLUSH+RELOAD technique the spy and the
victim processes need to share both the cache hierarchy
and memory pages. In a non-virtualised environment, to
share the cache hierarchy, the attacker needs the ability
to execute software on the victim machine. The attacker,
however, does not need elevated privileges on the vic-
tim machine. For a virtualised environment, the attacker
needs access to a guest co-located on the same host as
the victim guest. Techniques for achieving co-location
are described by Ristenpart et al. [47]. Identifying the
OS and software version in co-resident guests has been
dealt with in past research [44, 49].

For sharing memory pages in system that use content-
aware sharing, the attacker needs read access to the at-
tacked executable or shared libraries. In systems that
support de-duplication the attacker needs access to a
copy of the attacked files. De-duplication will coalesce
pages from these copies with pages from the attacked
files.

4 Attacking GnuPG

In this section we describe how we use the FLUSH+RE-
LOAD technique to extract the components of the private
key from the GnuPG implementation of RSA.

We tested the attack on two hardware platforms: an
HP Elite 8300, which features an Intel Core i5-3470 pro-
cessor and 8GB DDR3-1600 memory and a Dell Pow-
erEdge T420, with two Xeon E5-2430 processors and
32GB DDR3-1333 memory. On each hardware platform
we experimented with two scenarios. The same-OS sce-
nario tests the attack between two unrelated processes in
the same operating system while the cross-VM scenario
demonstrates that the attack works across the virtual ma-
chine isolation boundary in virtualised environments.

The same-OS tests use CentOS 6.5 Linux running on
the hardware. The spy and the victim execute as two
processes within that system. To achieve sharing, the spy
mmaps the victim’s executable file into the spy’s virtual
address space. As the Linux loader maps executable files
into the process when executing them, the spy and the
victim share the memory image of the mapped file. On
the Dell machine we set the CPU affinity of the processes
to ensure that both the victim and the spy execute on the
same physical processor. We do let the processes float
between the cores of the processor.

For the cross-VM scenario we used two different hy-
pervisors: VMware ESXi 5.1 on the HP machine and
Centos 6.5 with KVM on the Dell machine. In each hy-
pervisor we created two virtual machines, one for the
victim and the other for the spy. The virtual machines
run CentOS 6.5 Linux. In this scenario, the spy mmaps a
copy of the victim’s executable file. Sharing is achieved
through the page de-duplication mechanisms of the hy-
pervisors. As in the same-OS scenario, on the Dell ma-
chine we set the CPU affinity of the virtual machines to
ensure execution on the same physical processor.

When a pages is shared, all of the page entries in the
virtual address spaces of the sharing processes map to the
same physical page. As the LLC is physically tagged, en-
tries in the cache depend only on the physical address of
the shared page with no dependency on the virtual ad-
dresses in which the page is mapped. Consequently, we
do not need to take care of the virtual to physical address
mapping and the attack is oblivious to some diversifica-
tion techniques, such as Address Space Layout Random-
ization (ASLR) [50].

The approach we take is to trace the execution of
the victim program. For that, the spy program ap-
plies the FLUSH+RELOAD technique to memory loca-
tions within the victim’s code segment. This, effec-
tively, places probes within the victim program that are
triggered whenever the victim executes the code in the
probed memory lines. Tracing the execution allows the

6

 0

 100

 200

 300

 400

 500

 3900 3910 3920 3930 3940 3950 3960 3970 3980 3990 4000

P
ro

b
e

 T
im

e
 (

c
y
c
le

s
)

Time Slot Number

Threshold

Square
Multiply
Modulo

Missed slots

Figure 6: Time measurements of probes

spy program to infer the internal state of the victim pro-
gram.

To implement the trace, the spy program divides time
into fixed slots of 2,500 cycles each. In each slot it probes
one memory line of the code of each of the square, mul-
tiply and modulo reduce calculations. To increase the
chance of a probe capturing the access, we selected mem-
ory lines that are executed frequently during the calcu-
lation. Furthermore, to reduce the effect of speculative
execution, we avoided memory lines near the beginning
of the respective functions. After probing the memory
lines, the spy program flushes the lines from the cache
and busy waits to the end of the time slot.

We used the default build of the gpg program, which
includes optimisation at -O2 level and which leaves the
debugging symbols in the executable. We use the debug-
ging symbols to facilitate the mapping of source code
lines to memory addresses. In most distributions, the
GnuPG executable is stripped and does not include these
symbols. Attacks against stripped executables would re-
quire some reverse engineering [20] to recover this map-
ping. As the debugging symbols are not loaded in run
time, these do not affect the victim’s performance.

Measurement times for 100 time slots of the GnuPG
signing with a 2,048 bit key are displayed in Figure 6. In
each time slot, the spy flushes and then measures the time
to read the memory lines in the Square, Multiply and Re-
duce functions. Measurements under the threshold indi-
cate victim access to the respective memory lines. The
exponentiations for signing takes a total of 15,690 slots
or about 18ms. The CRT components used for exponen-
tiation are 1,022 and 1,023 bits long.

Figure 7 is an enlarged view of the boxed section

 40

 50

 60

 70

 80

 3917 3918 3919 3920 3921 3922 3923 3924 3925

P
ro

b
e
 T

im
e
 (

c
y
c
le

s
)

Time Slot Number

Square MultiplyReduce Reduce

Speculative Execution

Figure 7: Section of Fig. 6

in Fig. 6. As the displayed area is below the thresh-
old, the diagram only displays the memory lines that
were retrieved from the cache, showing the activity of
the GnuPG encryption. The steps of the exponentia-
tion are clearly visible in the diagram. For example, be-
tween time slots 3,917 and 3,919 the victim was calcu-
lating a square, Time slots 3,919–3,921 are for modulo
reduce calculation, multiplication in slots 3,922–3,923,
and another modulo reduce in 3,923–3,925. A sequence
of Square-Reduce-Multiply-Reduce indicates that during
these time slots the victim was processing a set bit.

Figure 7 also demonstrates the effects of speculative
execution. To improve performance, the processors tries
to predict future behaviour of the program. When pre-
dicting the behaviour of the test of the bit value (Line 7
in Fig. 2), the processor does not know the value of the
bit. Instead of waiting for the value to be calculated, the
processor speculates that the bit might be clear and starts
bringing memory lines required for the square calcula-
tion into the cache. As a result, cache lines that are part
of the square calculation in Line 5 are brought into the
cache, and are captured by the spy.

We have witnessed speculative execution on both the

7

HP and the Dell machines. Moving the probes to cache
lines closer to the end of the probed functions eliminates
the effects of speculative execution on the HP machine.
However, speculative execution is still evident on the
Dell machine.

By recognising sequences of operations, an attacker
can recover the bits of the exponent. Sequences of
Square-Reduce-Multiply-Reduce indicate a set bit. Se-
quences of Square-Reduce which are not followed by
Multiply indicate a clear bit. For example, in Fig. 6, be-
tween time slots 3,903 and 3,906 the calculated sequence
is Square-Reduce, which is followed by a Square, indi-
cating that in these time slots the victim was processing
a clear bit.

Continuing throughout Fig. 6 we find that the bit se-
quence processed in this sample is 0110011010011. Ta-
ble 1 shows the time slots corresponding to each bit.

Table 1: Time Slots for Bit Sequence
Seq. Time Slots Value
1 3,903–3,906 0
2 3,907–3,916 1
3 3,917–3,926 1
4 3,927–3,931 0
5 3,932–3,935 0
6 3,936–3,945 1
7 3,946–3,955 1

Seq. Time Slots Value
8 3,956–3,960 0
9 3,961–3,969 1
10 3,970–3,974 0
11 3,975–3,979 0
12 3,980–3,988 1
13 3,989–3,998 1

System activity may cause the spy to miss time slots.
The spy identifies missed time slot by noting jumps in
the cycle counter. For example, In the run used for gen-
erating Fig. 6, the spy missed time slots 3,983 and 3,984.
In this instance, the missed bits were not enough to hide
the information on the bit processed during these time
slots. However, if more slots are missed, data on bits of
the private key exponent will be lost resulting in capture
errors.

To measure the prevalence of capture errors, we used
our spy program to observe and capture 1,000 signatures
on each of the test configurations. We used a single in-
vocation of a spy program to capture all the signatures
in each system configuration. The GnuPG victim was
executed from a shell in another window. Except for en-
suring that the spy executes while running the signatures,
the executions of the spy and of GnuPG are not synchro-
nised.

For each observed signature, the spy outputs a text line
representing the observed probes in each time slot. We
used a shell script to parse this output and compared the
results against the ground truth. The results are sum-
marised in Table 2 and in Fig. 8. (For clarity, we trim
Fig. 8 at 30% and 100 erroneous bits. A total of 15 sam-
ples have capture errors of more than 100 bits and the
probability of no errors for the HP-CentOS configuration
is 33%.)

Table 2: Statistics on Bit Errors in Capture
Hardware HP Elite 8300 Dell PowerEdge T420
Software CentOS VMware CentOS KVM
Average 1.41 26.55 25.12 66.12
Median 1 25 24 65
Max 15 196 96 190

0%

5%

10%

15%

20%

25%

30%

 0 20 40 60 80 100

Lost Bits

HP-CentOS
HP-VMware

Dell-CentOS
Dell-KVM

Figure 8: Distribution of Bit Errors in Capture

The shell script overestimates the number of errors.
For example, due to the missing time slots, the script
does not identify bit 12 in Table 1. We have manually
inspected a few samples of capture output and estimate
that manual inspection can reduce the number of errors
by 25%-50%. Yet, the use of an automated script allows
us to examine a large number of results.

On the HP machine we observe better results and sig-
nificantly less noise than on the Dell machine. We be-
lieve this to be a consequence of the more advanced op-
timisations of the Xeon processor of the Dell machine.
On each machine, results for the same-OS configuration
are better than those for the cross-VM attack due to the
added processing of the virtualisation layer.

Even accounting for the better results expected from
manual inspection, the number of errors may be too big
for a naı̈ve brute force attack. Several strategies can be
used to reduce the search space and to recover the pri-
vate key. One such strategy is to rely on the nature of
CRT-RSA exponentiation. As discussed in Section 2.3,
an attacker only needs to recover one of the CRT com-
ponents to break the encryption. By attacking the CRT
component that has less errors, the attacker can reduce
the search space to a more manageable size. Table 3 and
Fig. 9 show the distribution of erroneous bits in the bet-
ter captured CRT component in each signature. As these
demonstrate, the search space is significantly reduced.

Several algorithms have been suggested for recover-
ing the RSA exponent from partial information on the
exponent bits [30, 31, 46]. These algorithms require be-
tween 27% and 70% of the bits of the exponent to re-
cover the system key. While our attack reveals over 90%
of the bits, it does not always recover the positions of

8

Table 3: Statistics on Bit Errors in the Better Captured
CRT Component

Hardware HP Elite 8300 Dell PowerEdge T420
Software CentOS VMware CentOS KVM
Average 0.20 11.75 7.11 28.66
Median 0 12 6 28
Max 4 68 26 47

0%

5%

10%

15%

20%

25%

30%

 0 20 40 60 80 100

Lost Bits

HP-CentOS
HP-VMware

Dell-CentOS
Dell-KVM

Figure 9: Distribution of Bit Errors in the Better Cap-
tured CRT Component

these bits. E.g. when a sequence of about 10 time slots
is missed, this sequence can cover either one set bit or
two clear bits. The attacker cannot, therefore, determine
the bit positions of the following bits. Further research
is required to determine whether these algorithms can be
adapted to the data our attack recovers.

Another approach for recovering the key is to combine
data from multiple signatures. As the positions of errors
in each capture are independent, there is a small likeli-
hood that any two captures will have errors in the same
bit positions. To test this approach we manually merged
the output of several pairs of observations of the spy un-
der the Dell cross-VM scenario. When merging random
pairs, we had at most a one bit error in the merged results.
When merging the worst capture for the Dell cross-VM
scenario with a random capture, the merged results had
six bit errors, all of them in one of the CRT components
and all have been identified during the process as poten-
tial errors. We, therefore, conclude that by observing two
signatures, the attacker can recover the private key.

While the attack is very effective in recovering expo-
nent bits, it does have some limitations. For the attack to
work, the spy and the victim must execute on the same
physical processor. For our testing, we set the proces-
sor affinity on the multi-processor system. However, in
a real attack scenario the attack depends on the system
scheduler.

When performing the tests, the spy and the victim
were the only load on the system. Such a scenario is not
representative of a real system where multiple processes
are running. We expect such load to create noise that will

affect the quality of capture. Furthermore, for a load that
includes multiple parallel instances of GnuPG, the spy
will be unable to distinguish between memory access of
each instance and will be unable to recover any data.

Another limitation is the length of the secret key. On
the Dell machine, probing three memory locations takes
about 2,200 cycles. Hence, the attack cannot work with
time slots shorter than that. With shorter key lengths,
time slots of 2,200 cycles or more do not provide enough
resolution to trace the victim. Consequently, recovering
the private key is more difficult with shorter keys, sup-
porting the results of Walter [56].

5 Mitigation Techniques

The attack presented here is a real, immediate threat to
computer security. It, therefore, raises the very pertinent
question of countermeasures. The FLUSH+RELOAD at-
tack relies on a combination of four factors for its opera-
tion: data flow from sensitive data to memory access pat-
terns, memory sharing between the spy and the victim,
accurate, high-resolution time measurements and the un-
fettered use of the clflush instruction. Preventing any
of these blocks the attack.

The lack of permission checks for using the clflush
instruction is a weakness of the X86 architecture. Conse-
quently, the most complete solution to the problem is to
limit the power of the clflush instruction. The main use
of the clflush instruction is to enforce memory coher-
ence, e.g. when using devices that do not support mem-
ory coherence [34]. Another potential use of the instruc-
tion is to control the use of the cache for improving pro-
gram performance, e.g. by flushing lines that the program
knows it will not require. However, we are not aware of
any actual use of the instruction for this purpose.

As the first use is, clearly, a system function and the
second is based on the assumption that no other pro-
cess has access to the data, we suggest restricting the
use of clflush to memory pages to which the process
has write access and to memory pages to which the sys-
tem allows clflush access. This access control could be
implemented by adding memory types that restrict flush
access to the PAT (Page Attribute Table) [35, chap. 11].

The ARM architecture [7] also includes instructions to
evict cache lines. However, these instructions can only
be used when the processor is in an elevated privilege
mode. As such, the ARM architecture does not allow
user process to selectively evict memory lines and the
FLUSH+RELOAD is not applicable in this architecture.

Our attack seems not to work on contemporary AMD
processors, such as the A10-6800K and Opteron 6348.
The code in Fig. 5 returns the same result with and
without the clflush instruction. Replacing the second

9

rdtsc instruction (Line 12) with the similar rdtscp in-
struction fixes this issue, however, two problems prevent
the use of the technique. The first problem is that data
seems to linger in the cache for some time after being
evicted. The second problem is that the attack does not
capture accesses from other processes. A possible ex-
planation for this behaviour is that the AMD caches are
non-inclusive, i.e. data in L1 does not need to also be in
L2 or L3, as is the case with the Intel caches. Conse-
quently, evicting data from the LLC does not, necessar-
ily, evicts it from the L1 caches of other cores. Processes
executing on other cores can access data in the L1 cache
without triggering a load from memory to the LLC. The
attack does work on older AMD processors, such as the
Opteron 2212.

Hardware based countermeasures, such as those de-
scribed above cannot provide an immediate solution to
the problem. They will take time to develop and will not
protect existing hardware. Consequently, for immediate
mitigation of the attack, software-based solutions are re-
quired.

Another possible solution is preventing sharing be-
tween the spy and the victim. Preventing page shar-
ing between processes provides protection against the
FLUSH+RELOAD attack. However, this approach goes
against the trend of increased sharing in operating sys-
tems and virtualisation hypervisors. Completely elim-
inating page sharing would significantly increase the
memory requirements of modern operating systems and
is, therefore, unlikely to be a feasible solution. As a
partial solution, it may be possible to avoid sharing of
sensitive code by changing the program loader. Another
partial solution is disabling page de-duplication, which
prevents using the FLUSH+RELOAD attack between co-
hosted guests in a virtualised system. This approach is
recommended for public compute clouds which offer the
implied promise that guests cannot interfere with each
other.

Software diversification [24] is a collection of tech-
niques that permute the locations of objects within the
address spaces of processes. While most of these tech-
niques were originally developed as a protection against
memory corruption attacks, some of them can be used to
prevent sharing and, consequently, to mitigate the FLU-
SH+RELOAD attack. More specifically, in virtualised en-
vironments, static reordering of code and data [12,24,36]
can be used to create unique copies of programs in each
virtual machines. As these copies are not available out-
side the specific virtual machine, pages of the program
are not de-duplicated and sharing is prevented. Diversi-
fying the program at run time [22] can prevent sharing of
the program text even when the attacker has access to the
binary file. As discussed above, the FLUSH+RELOAD
technique is oblivious to the virtual to physical address

mapping. Consequently, diversification techniques that
rely on permuting the virtual address mapping of code
pages, such as [50, 59], do not provide any protection
against the attack.

FLUSH+RELOAD, like other side-channel attacks, re-
lies on the availability of a high-resolution clock. Re-
ducing the resolution of the clock or introducing noise to
clock measurement [32, 53] can be an used as a counter-
measure against the attack. The main limitation of this
approach is that the attacker can use other methods for
generating high resolution clocks. Examples include us-
ing data from the network or running a ‘clock’ process in
a separate execution core.

Irrespective of the measures described above, cryp-
tographic software should be protected against the at-
tack. Following our disclosure [18, 38], the GnuPG
team released GnuPG version 1.4.14 and libgcrypt

version 1.5.3. These mitigate the attack using the
square-and-multiply-always [21] algorithm, shown in
Listing 10. The algorithm executes the square and the
multiply steps for each bit, but ignores the result of the
multiply step for bits of value 0.

function exponent(b, e, m)
begin
x← 1
for i← |e|−1 downto 0 do

x← x2

x← x mod m
x′← xb
x′← x′ mod m
if (ei = 1) then

x = x′

endif
done
return x

end

Figure 10: Exponentiation by Square-and-Multiply-
Always

When introducing instructions with no effect, care
should be taken to prevent the compiler from optimising
these away. In the case of the GnuPG fix, the optimiser
cannot know that the added addition does not have side-
effects. With the possibility of side-effects, the optimiser
takes a conservative approach and invokes the function.

The implementation still contains a small section of
code that depends on the value of the bit, which could,
theoretically, be exploited by a cache side-channel at-
tack. However, due to speculative execution, the proces-
sor is likely to access the section irrespective of the value
of the bit. Furthermore, as this section is short and is
smaller than a cache line, it is likely to fit within the same
cache line as the preceding or following code. Hence,
we believe that this implementation protects against the
FLUSH+RELOAD attack.

10

This fix, however, does not protect against other forms
of side-channel attack. In particular, the code is likely
to be vulnerable to Branch Prediction Analysis [3]. Fur-
thermore, as access patterns to data depend on the values
of the exponent bits, the code is likely to be vulnerable to
PRIME+PROBE attacks [51,61]. Like FLUSH+RELOAD,
these side-channel attacks rely on data flow from secret
exponent bits to memory access patterns. These attacks
can be prevented by using constant time exponentiation,
where the sequence of instructions and memory locations
accessed are fixed and do not depend on the value of the
exponent bits. Techniques for constant time computa-
tion have been explored in the NaCl cryptographic li-
brary [10]. The pattern of accesses to memory lines of
the OpenSSL [41] implementation of RSA exponentia-
tion is not dependent on secret exponent bits. Conse-
quently, even though the implementation is not constant
time [11], it is not vulnerable to our attack.

Constant time computation is not, however, a panacea
for the problem of side-channel attacks. FLUSH+RE-
LOAD can be applied no extract secret data from non
cryptographic software. For such software, the perfor-
mance costs of constant-time computation are unreason-
able, hence other solutions are required.

6 Related Work

Several works have pointed out that page sharing exposes
guests to information leakage, which can be exploited
for implementing covert channels [58], OS fingerprint-
ing [44] and for detecting applications and data in other
guests [49]. These works exploit the copy-on-write fea-
ture of page sharing. Copy-on-write introduces a sig-
nificant delay when a page is copied. Hence, by timing
write operations on pages, a spy can deduce the existence
of pages with identical contents in other guests. As page
de-duplication is a slow process, all these attacks have a
very low resolution.

Using a cache side-channel to trace the execution of
a program is not a new idea [1, 2, 4, 14, 19, 29, 61]. In
all of these attacks, the victim and the spy must share
the execution core, either by using hyper-threading or by
interleaving the execution of the victim and the spy on
the same core.

Gullasch et al. [29] describes an attack on AES which
traces the victim’s access to the S-Boxes. Our work
builds on the attack technique presented by Gullasch et
al. and extends it in two ways. Gullasch et al. only ap-
plies the attack on a time-shared core and does not ex-
ploit the eviction from a shared LLC. Our attack exposes
the use of a shared LLC and demonstrates that the tech-
nique can be used across cores. Additionally, Gullasch
et al. uses the cpuid instruction to synchronise the in-
struction stream whereas we use fence instructions. In

virtualised environments, the cpuid is emulated in soft-
ware and this emulation takes over 1,000 cycles. With
two cpuid instructions in each probe, the Gullasch et al.
probe spans over 2,500 cycles. As our attack requires
three probes within 2,500 cycles, the resolution of the
Gullasch et al. code is is not high enough for implement-
ing our cross-VM attack.

The attack in Zhang et al. [61] specifically targets
virtualised environments, extracting the private ElGa-
mal [23] key of a GnuPG decryption executing in another
guest. The attack depends on a weakness in the scheduler
of the Xen hypervisor [8]. The granularity of the attack
is one probe in 50,000 cycles, limiting the minimum size
of victim key that can be captured. The modulus in the
paper is 4,096 bits long. The attack has low signal to
noise ratio, and requires the use of filtering. Even with
this filtering and the large modulus, the attack requires
six hours of constant decryption to recover the key.

Weiß et al. [57] also describes cache timing attack in
a virtualised environment. The attack is an adaptation
of Bernstein’s attack [9] that relies on the short constant
communication time between domains in the L4 kernel.

7 Conclusions

In this paper we describe the FLUSH+RELOAD tech-
nique and how we use it to extract GnuPG private keys
across multiple processor cores and across virtual ma-
chine boundaries.

It is hard to overstate the severity of the attack, both in
virtualised and in non-virtualised environments. GnuPG
is a very popular cryptographic package. It is used as the
cryptography module of many open-source projects and
is used, for example, for email, file and communication
encryption. Hence, vulnerable versions of GnuPG are
not safe for multi-tenant systems or for any system that
may run untrusted code.

While significant, the attack on GnuPG is only a
demonstration of the power of the FLUSH+RELOAD
technique. The technique is generic and can be used to
monitor other software. It can be used to devise other
types of attacks on cryptographic software. It can also
be used against other types of software. For example, it
could be used to collect statistical data on network traffic
by monitoring network handling code or it could monitor
keyboard drivers to collect keystroke timing information.

Hence, while the GnuPG team has fixed the vulner-
ability in their software, their fix does not address the
broader threat exposed by this paper.

The FLUSH+RELOAD technique exploits the lack of
restrictions on the use of the clflush instruction. Not
restricting the use of the instruction is a security weak-
ness of the Intel implementation of the X86 architecture.
This enables processes to interact using read-only pages.

11

Addressing this weakness requires a hardware fix, which,
unless implemented as a microcode update, will not be
applicable to existing hardware.

Preventing page sharing also blocks the FLUSH+RE-
LOAD technique. Given the strength of the attack, we
believe that the memory saved by sharing pages in a vir-
tualised environment does not justify the breach in the
isolation between guests. We, therefore, recommend that
memory de-duplication be switched off.

Acknowledgments

We would like to thank the anonymous reviewers and
our shepherd, Thomas Ristenpart, for their valuable com-
ments and support.

This research was performed under contract to the
Defence Science and Technology Organisation (DSTO)
Maritime Division, Australia.

References
[1] ACIIÇMEZ, O. Yet another microarchitectural attack: exploiting

I-Cache. In Proceedings of the ACM Workshop on Computer Se-
curity Architecture (Fairfax, Virginia, United States, November
2007), P. Ning and V. Atluri, Eds., pp. 11–18.

[2] ACIIÇMEZ, O., BRUMLEY, B. B., AND GRABHER, P. New re-
sults on instruction cache attacks. In Proceedings of the Work-
shop on Cryptographic Hardware and Embedded Systems (Santa
Barbara, California, United States, April 2010), S. Mangard and
F.-X. Standaert, Eds., pp. 110–124.

[3] ACIIÇMEZ, O., KOÇ, Ç. K., AND SEIFERT, J.-P. On the power
of simple branch prediction analysis. In Proceedings of the Sec-
ond ACM Symposium on Information, Computer and Communi-
cation Security (Singapore, March 2007), pp. 312–320.

[4] ACIIÇMEZ, O., AND SCHINDLER, W. A vulnerability in RSA
implementations due to instruction cache analysis and its demon-
stration on OpenSSL. In Proceedings of the Cryptographers’
Track at the RSA Conference (San Francisco, California, United
States, April 2008), T. Malkin, Ed., pp. 256–273.

[5] ACIIÇMEZ, O., SCHINDLER, W., AND KOÇ, Ç. K. Cache based
remote timing attacks on the AES. In Proceedings of the Cryptog-
raphers’ Track at the RSA Conference (San Francisco, California,
United States, February 2007), M. Abe, Ed., pp. 271–286.

[6] ARCANGELI, A., EIDUS, I., AND WRIGHT, C. Increasing mem-
ory density by using KSM. In Proceedings of the Linux Sympo-
sium (Montreal, Quebec, Canada, July 2009), pp. 19–28.

[7] ARM Architecture Reference Manual, ARMv7-A and ARMv7-
R ed., 2012.

[8] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art or virtualization. In Proceedings
of the Ninteenth ACM Symposium on Operating Systems Princi-
ples (Bolton Landing, New York, United States, October 2003),
M. L. Scott and L. L. Peterson, Eds., ACM, pp. 164–177.

[9] BERNSTEIN, D. J. Cache-timing attacks on AES. http:

//cr.yp.to/antiforgery/cachetiming-20050414.pdf,
April 2005.

[10] BERNSTEIN, D. J., LANGE, T., AND SCHWABE, P. The se-
curity impact of a new cryptographic library. In Proceedings of
the Second International Conference on Cryptology and Informa-
tion Security in Latin America (Santiago, Chile, October 2012),
A. Hevia and G. Neven, Eds., pp. 159–176.

[11] BERNSTEIN, D. J., AND SCHWABE, P. A word of warning.
CHES 2013 Rump Session, August 2013.

[12] BHATKAR, S., DUVARNEY, D. C., AND SEKAR, R. Address
obfuscation: an efficient approach to combat a broad range of
memory error exploits. In Proceedings of the USENIX Secu-
rity Symposium (Washington, DC, United States, August 2003),
pp. 105–120.

[13] BOBROW, D. G., BURCHFIEL, J. D., MURPHY, D. L., AND
TOMLINSON, R. S. TENEX, a paged time sharing system for
the PDP-10. Communications of the ACM 5, 3 (March 1972),
135–143.

[14] BRUMLEY, B. B., AND HAKALA, R. M. Cache-timing template
attacks. In Advances in Cryptology - ASIACRYPT 2009 (2009),
M. Matsui, Ed., vol. 5912 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 667–684.

[15] BUGNION, E., DEVINE, S., GOVIL, K., AND ROSENBLUM,
M. Disco: Running commodity operating systems on scalable
multiprocessors. ACM Transactions on Computer Systems 15, 4
(November 1997), 412–447.

[16] CAMPAGNA, M., AND SETHI, A. Key recovery method for CRT
implementation of RSA. Report 2004/147, IACR Cryptology
ePrint Archive, 2004.

[17] CERON, R., FOLCO, R., LEITAO, B., AND TSUBAMOTO, H.
Power Systems Memory Deduplication. IBM, September 2012.

[18] CERT vulnerability note vu#976534: L3 cpu shared cache ar-
chitecture is susceptible to a Flush+Reload side-channel attack.
http://www.kb.cert.org/vuls/id/976534, October 2013.

[19] CHEN, C., WANG, T., KOU, Y., CHEN, X., AND LI, X. Im-
provement of trace-driven I-Cache timing attack on the RSA al-
gorithm. The Journal of Systems and Software 86, 1 (2013), 100–
107.

[20] CIPRESSO, T., AND STAMP, M. Software reverse engineer-
ing. In Handbook of Information and Communication Secu-
rity, P. Stavroulakis and M. Stamp, Eds. Springer, 2010, ch. 31,
pp. 659–696.

[21] CORON, J.-S. Resistence against differential power analysis for
elliptic curve cryptosystems. In Proceedings of the Workshop
on Cryptographic Hardware and Embedded Systems (Worces-
ter, Massachusetts, United States, August 1999), Ç. K. Koç and
C. Paar, Eds., pp. 292–302.

[22] CURTSINGER, C., AND BERGER, E. D. STABILIZER: Statisti-
cally sound performance evaluation. In Proceedings of the 18th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Houston, Texas, United
States, March 2013), pp. 219–228.

[23] ELGAMAL, T. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Transactions on In-
formation Theory 31, 4 (July 1985), 469–472.

[24] FORREST, S., SOMAYAJI, A., AND ACKLEY, D. H. Building
diverse computer systems. In Proceedings of the Sixth Workshop
on Hot Topics in Operating Systems (Cape Code, Massachusetts,
United States, May 1997), pp. 67–72.

[25] GARNER, H. L. The residue number system. IRE Transactions
on Electronic Computers EC-8, 2 (June 1959), 140–147.

[26] GINGELL, R. A., LEE, M., DANG, X. T., AND WEEKS, M. S.
Shared libraries in SunOS. In USENIX Conference Proceedings
(Phoenix, Arizona, United States, Summer 1987), pp. 131–145.

12

[27] GNU Privacy Guard. http://www.gnupg.org, 2013.

[28] GORDON, D. M. A survey of fast exponentiation methods. Jour-
nal of Algorithms 27, 1 (April 1998), 129–146.

[29] GULLASCH, D., BANGERTER, E., AND KRENN, S. Cache
games — bringing access-based cache attacks on AES to prac-
tice. In Proceedings of the IEEE Symposium on Security and
Privacy (Oakland, California, United States, may 2011), pp. 490–
595.

[30] HENINGER, N., AND SHACHAM, H. Reconstructing RSA
private keys from random key bits. In Proceedings of the
29th Annual International Cryptology Conference (CRYPTO
2009) (Santa Barbara, California, United States, August 2009),
S. Halevi, Ed., pp. 1–17.

[31] HERMANN, M., AND MAY, A. Solving linear equations modulo
divisors: On factoring given any bits. In Advances in Cryptol-
ogy - ASIACRYPT 2008 (Melbourne, Australia, December 2008),
vol. 5350 of Lecture Notes in Computer Science, pp. 406–424.

[32] HU, W.-M. Reducing timing channels with fuzzy time. In Pro-
ceedings of the IEEE Symposium on Security and Privacy (Oak-
land, California, United States, May 1991), pp. 8–20.

[33] HUFFMAN, C. Memory combining in Windows
8 and Windows Server 2012. http://blogs.

technet.com/b/clinth/archive/2012/11/29/

memory-combining-in-windows-8-and-windows-server-2012.

aspx, November 2012.

[34] INTEL CORPORATION. Intel 64 and IA-32 Architecture Opti-
mization Reference Manual, April 2012.

[35] INTEL CORPORATION. Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual Volume 3A: System Programming
Guide, Part 1, March 2013.

[36] KIL, C., JUN, J., BOOKHOLT, C., XU, J., AND NING, P. Ad-
dress space layout permutation (aslp): Towards fine-grained ran-
domization of commodity software. In Proceedings of the An-
nual Computer Security Applications Conference (Miami Beach,
Florida, United States, December 2006), pp. 339–348.

[37] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND
LIGUORI, A. kvm: the Linux virtual machine monitor. In Pro-
ceedings of the Linux Symposium (Ottawa, Ontario, Canada, June
2007), vol. one, pp. 225–230.

[38] KOCH, W. GnuPG 1.4.14 released. http://lists.gnupg.

org/pipermail/gnupg-announce/2013q3/000330.html,
July 2013.

[39] MIŁOŚ, G., MURRAY, D. G., HAND, S., AND FETTERMAN,
M. A. Satori: Enlightened page sharing. In Proceedings of the
2009 USENIX Annual Technical Conference (San Diego, Califor-
nia, United States, June 2009).

[40] MURPHY, D. L. Storage organization and mamagement in
TENEX. In Proceedings of the Fall Joint Computer Conference,
AFIPS’72, Part I (Anaheim, California, United States, December
1972), pp. 23–32.

[41] OPENSSL. http://www.openssl.org.

[42] ORGANICK, E. I. The Multics System: An Examination of Its
Structure. The MIT Press, 1972.

[43] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache attacks
and countermeasures: the case of AES. http://www.cs.tau.

ac.il/~tromer/papers/cache.pdf, November 2005.

[44] OWENS, R., AND WANG, W. Non-interactive OS fingerprint-
ing through memory de-duplication technique in virtual ma-
chines. In Proceedings of the 30th IEEE International Per-
formance Computing and Communicatons Conference (Orlando,
Florida, United States, November 2011), S. Zhong, D. Dou, and
Y. Wang, Eds., IEEE, pp. 1–8.

[45] PAOLONI, G. How to Benchmark Code Execution Times on Intel
IA-32 and IA-64 Instruction Set Architectures. Intel Corporation,
September 2010.

[46] PERCIVAL, C. Cache missing for fun and profit. http://www.
daemonology.net/papers/htt.pdf, 2005.

[47] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,
S. Hey, you, get off my cloud: Exploring information leakage
in third-party compute clouds. In Proceedings of the 16th ACM
Conference on Computer and Communication Security (Chicago,
Illinois, United States, November 2009), E. Al-Shaer, S. Jha, and
A. D. Keromytis, Eds., pp. 199–212.

[48] RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A method for
obtaining digital signatures and public-key cryptosystems. Com-
munications of the ACM 21, 2 (February 1978), 120–126.

[49] SUZAKI, K., IIJIMA, K., YAGI, T., AND ARTHO, C. Mem-
ory deduplication as a threat to the guest. In Proceedings of the
2011 European Workshop on System Security (Salzburg, Austria,
2011).

[50] The PaX project. http://pax.grsecurity.net/.

[51] TROMER, E., OSVIK, D. A., AND SHAMIR, A. Efficient cache
attacks in AES, and countermeasures. Journal of Cryptology 23,
2 (January 2010), 37–71.

[52] UHT, A. K., AND SINDAGI, V. Disjoint eager execution: An
optimal form of speculative execution. In Proceedings of the
28th International Symposium on Microarchitecture (Ann Arbor,
Michigan, United States, November 1995), pp. 313–325.

[53] VATTIKONDA, B. C., DAS, S., AND SHACHAM, H. Eliminating
fine grained timers in Xen. In Proceedings of the ACM Workshop
on Cloud Computing Security (Chicago, Illinois, United States,
October 2011), C. Cachin and T. Ristenpart, Eds., pp. 41–46.

[54] VMWARE INC. Understanding Memory Resource Management
in VMware ESX Server. Palo Alto, California, United States,
2009.

[55] WALDSPURGER, C. A. Memory resource management in
VMware ESX Server. In Proceedings of the Fifth Symposium
on Operating Systems Design and Implementation (Boston, Mas-
sachusetts, United States, December 2002), D. E. Culler and
P. Druschel, Eds., pp. 181–194.

[56] WALTER, C. D. Longer keys may facilitate side channel attacks.
In Selected Areas in Cryptography (2004), M. Matsui and R. J.
Zuccherato, Eds., vol. 3006 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 42–57.

[57] WEISS, M., HEINZ, B., AND STUMPF, F. A cache timing attack
on AES in virtualization environments. In Proceedings of the
16th International Conference on Financial Cryptography and
Data Security (Bonaire, February 2012), A. D. Keromytis, Ed.

[58] XIAO, J., XU, Z., HUANG, H., AND WANG, H. A covert chan-
nel construction in virtualized environments. In Proceedings of
the 19th ACM Conference on Computer and Communication Se-
curity (Raleigh, North Carolina, United States, October 2012),
T. Yu, G. Danezis, and V. D. Gligor, Eds., pp. 1040–1042.

[59] XU, J., KALBARCZYK, Z., AND IYER, R. K. Transparent run-
time randomization for security. In Proceedings of the 22nd Inter-
national Symposium on Reliable Distributed Systems (Florence,
Italy, October 2003), pp. 260–269.

[60] XU, Y., BAILEY, M., JAHANIAN, F., JOSHI, K., HILTUNEN,
M., AND SCHLICHTING, R. An exploration of L2 cache covert
channels in virtualized environments. In Proceedings of the
ACM Workshop on Cloud Computing Security (Chicago, Illinois,
United States, October 2011), C. Cachin and T. Ristenpart, Eds.,
pp. 29–40.

13

[61] ZHANG, Y., JULES, A., REITER, M. K., AND RISTENPART, T.
Cross-VM side channels and their use to extract private keys. In
Proceedings of the 19th ACM Conference on Computer and Com-
munication Security (Raleigh, North Carolina, United States, Oc-
tober 2012), T. Yu, G. Danezis, and V. D. Gligor, Eds., pp. 305–
316.

14

