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Abstract—We study the problem of verifiable computation
(VC) for RAM programs, where a computationally weak verifier
outsources the execution of a program to a powerful (but
untrusted) prover. Existing efficient implementations of VC
protocols require an expensive preprocessing phase that binds the
parties to a single circuit. (While there are schemes that avoid
preprocessing entirely, their performance remains significantly
worse than constructions with preprocessing.) Thus, a prover and
verifier are forced to choose between two approaches: (1) Allow
verification of arbitrary RAM programs, at the expense of
efficiency, by preprocessing a universal circuit which can handle
all possible instructions during each CPU cycle; or (2) Sacrifice
expressiveness by preprocessing an efficient circuit which is
tailored to the verification of a single specific RAM program.

We present vRAM, a VC system for RAM programs that avoids
both the above drawbacks by having a preprocessing phase that
is entirely circuit-independent (other than an upper bound on
the circuit size). During the proving phase, once the program to
be verified and its inputs are chosen, the circuit-independence
of our construction allows the parties to use a smaller circuit
tailored to verifying the specific program on the chosen inputs,
i.e., without needing to encode all possible instructions in each
cycle. Moreover, our construction is the first with asymptotically
optimal prover overhead; i.e., the work of the prover is a constant
multiplicative factor of the time to execute the program.

Our experimental evaluation demonstrates that vRAM reduces
the prover’s memory consumption by 55–110× and its running
time by 9–30× compared to existing schemes with universal
preprocessing. This allows us to scale to RAM computations with
more than 2 million CPU cycles, a 65× improvement compared to
the state of the art. Finally, vRAM has performance comparable
to (and sometimes better than) the best existing scheme with
program-specific preprocessing despite the fact that the latter can
deploy program-specific optimizations (and has to pay a separate
preprocessing cost for every new program).

I. INTRODUCTION

Protocols for verifiable computation (VC) allow a computa-
tionally weak verifier to outsource the execution of a program
to a powerful but untrusted prover (e.g., a cloud provider)
while being assured that the result was computed correctly.
Somewhat more formally, a verifier V and prover P agree on
a function f and an input x. The prover then sends a result y
to the verifier, together with a proof that y = f (x). There is
a long line of work constructing VC protocols for arbitrary
computations, the most prominent of which rely on suc-
cinct non-interactive arguments of knowledge (SNARKs) [12],
[25]. This has resulted in several implemented systems; see
Section I-C for an overview. While VC protocols without
preprocessing have been recently implemented [7], efficient
VC implementations still rely on a preprocessing phase during

which a trusted party (possibly the verifier) generates a set of
public parameters corresponding to a specific circuit for the
function f . Furthermore, this preprocessing phase is orders of
magnitude slower than evaluating f itself.
Verifying RAM Programs. While circuits can model arbi-
trary programs, most real-world computations are expressed
in terms of random-access memory (RAM) machines. This
is true both in terms of most programmers’ mental model of
computation, as well as in terms of the execution of assembly
code on general-purpose computers. However, since most con-
structions of VC protocols work on computations expressed as
arithmetic circuits, verification of a RAM program P is usually
done by verifying the correct evaluation of an arithmetic circuit
CP that corresponds to the next-instruction function of the
RAM program while checking consistency of memory, etc.
As stated above, most VC implementations require the circuit
to be fixed ahead of time, during a trusted preprocessing phase.
Due to this, previous works for verifying RAM programs can
be roughly divided into two main categories.
1) Program-Specific Preprocessing. If the program P to

be verified is known ahead of time, it is possible to tailor
the circuit CP so as to verify P as efficiently as possible.
While this tailoring is beneficial to the protocol’s overall
performance, it comes at the expense of usability since CP
cannot be used to verify another program P′. Examples of
this approach are Pantry [17] and Buffet [50].

2) Universal Preprocessing. In case the RAM program to
be verified is not known ahead of time, it is possible to
construct a universal circuit CRAM which is capable of
verifying any RAM program that runs for at most T steps.
Examples of this approach include [9], [11].

Both these approaches have significant drawbacks. In the first
case, the verifier cannot change the RAM program P being ver-
ified without re-running the (expensive) preprocessing phase.
This is a major drawback as the preprocessing cost can only
be amortized by running the same program on different inputs.

In the second case, although the preprocessing cost can be
amortized over the evaluation of different programs on differ-
ent inputs, the universal preprocessing used in this approach
imposes large concrete overheads during the proving phase.
This results from the fact that CRAM must be able to emulate
all possible operations at every CPU step in order to handle
arbitrary RAM programs. In contrast, the program-specific
approach benefits from the fact that P is known when CP is
chosen, and so the set of possible instructions at each step is



potentially much smaller.
Two notable exceptions to the above are the works of [7],

[10], which do not need a preprocessing phase tied to a
specific circuit. However, the concrete cost of these systems
remains significantly higher than that of the preprocessing-
based solutions mentioned above. (See Section V-C.)

Thus, in this paper we thus ask the following question:
Is it possible to construct a VC protocol for RAM programs
which has similar (or even better) performance than what is
achievable with program-specific preprocessing, but without
knowing the program during the preprocessing phase?

A. Our Results

We answer the above question in the affirmative by presenting
vRAM, a VC protocol for RAM programs that improves the
performance of previous works both concretely and asymptoti-
cally. In particular, our system achieves performance similar to
(and often better than) state-of-the art systems with program-
specific preprocessing, but without requiring the RAM pro-
gram to be fixed during the preprocessing phase. This allows
a single execution of the preprocessing phase to be used for
verifying arbitrary RAM programs (running for some bounded
number of steps) afterwards.

Our starting point is vSQL [52], a system for verifying SQL
queries on outsourced databases. While not presented as such,
vSQL can be viewed as a VC scheme that has a preprocessing
phase that does not depend on a specific circuit beyond an
upper bound on the circuit’s input size. vRAM relies on two
novel improvements to vSQL:
1) Extending Expressiveness. The vSQL protocol is only

efficient for a specific type of circuits which correspond
to SQL queries. We improve expressiveness by extending
the class of circuits it can efficiently handle. We then show
that the resulting protocol is an argument of knowledge (cf.
Definition 1) with circuit-independent preprocessing.

2) New RAM Reduction. Exploiting circuit-independent pre-
processing, we devise a new RAM-to-circuit reduction that
reduces the concrete size of the circuit to be verified. In
more detail: circuit-independent preprocessing allows the
prover to construct “on the fly” during the proving phase a
circuit that is optimized for a specific input. Thus, for each
step of the RAM program, the produced circuit checks only
the instruction that is actually executed for the given input.

A Linear Time Prover. vRAM is the first verifiable RAM
protocol with asymptotically optimal prover overhead. In
particular, for a RAM program P of size ` running for T steps,
the prover time in vRAM is O(T +`) (asymptotically the same
as simply executing P), whereas previous approaches required
time O((`+T )polylog(T + `)).
Experimental Evaluation. We provide an experimental
evaluation of vRAM’s performance as well as compare vRAM
with state-of-the-art-implementations in both the program-
specific [50] and universal [11] preprocessing setting (cf.
Section V). When verifying RAM programs not known during
the preprocessing phase, we improve the prover’s running time
by 9–30× as compared to prior work [11]. On the other

hand, compared to systems using program-specific preprocess-
ing [50] vRAM achieves very similar prover performance; in
fact, in some cases our prover is faster despite the fact that sys-
tems with program-specific preprocessing can deploy program-
specific optimizations during the preprocessing phase.

We also show that vRAM is much better in terms of
memory consumption, which is currently the main bottleneck
for running large instances of verifiable computation. vRAM
achieves an improvement of 55–110× in terms of memory
consumption compared to [11], which allows us to prove
computations involving more than 2 million CPU cycles with
256GB memory (65× more than [11]). The improvements
achieved by vRAM come at the cost of increased verifier’s
running time and proof size, however these still remain well
within the capabilities of modern machines. In Section V-B we
discuss the practical limitations of our approach and provide
estimations for instances where VC can be applicable.
Architecture Independence. Another advantage of vRAM’s
circuit independent preprocessing is that it can use information
obtained after executing the computation to optimize the RAM
architecture to be used for its verification. Any parameter
of the architecture (number of registers, register width, in-
struction set, etc.) can be tweaked so as to reduce the size
of produced circuit to be verified. Finally, our construction
naturally supports both arithmetic circuits and RAM programs
with a single preprocessing phase, allowing the parties to
selectively choose the optimal representation for a particular
program. Thus, if the computation has a “nice” arithmetic
circuit representation, one may even avoid RAM architecture
entirely. These features can result in further performance
improvements, as we demonstrate in Section V-D.

B. Overview of Our Techniques

As mentioned earlier, our starting point is vSQL [52] which
can be shown to be a VC scheme that efficiently handles
circuits that mostly consist of parallel copies of a single
sub-circuit. While circuits that are constructed from SQL
queries typically have this structure, this is not the case for
circuits constructed via our RAM-to-circuit encoding, since
each program step can perform a different instruction, thus
resulting in a different sub-circuit.

Before describing our results and addressing this issue, we
briefly review vSQL. At a high level, vSQL combines the
interactive proof of [19], [45], [46] (these are based on [28],
and we refer to all of these variants as the CMT protocol in
the paper) with an extractable verifiable polynomial delegation
(VPD) protocol [39]. The CMT protocol can be used to verify
the correct evaluation of a circuit C on an input x, assuming
that in the final step the verifier can evaluate a specific
polynomial px that depends only on x (and not on C). The latter
is done using a VPD protocol, which is the only part of the
construction that requires preprocessing. The VPD protocol is
extractable, which guarantees that the prover “knows” an input
that makes the circuit evaluate to the specified output; this can
be used to support NP computations that use auxiliary input
(provided by the prover).



Improving the CMT Protocol. Athough the original CMT
protocol [19] can handle arbitrary arithmetic circuits, it is
especially efficient for highly regular circuits and in partic-
ular circuits that consist of parallel copies of identical sub-
circuits [45]. In Section IV-A, we show how to modify the
CMT protocol to efficiently handle circuits that consist of
(non-interconnected) parallel copies of different sub-circuits.
At a high level, we achieve this by refactoring the recursive
equation used for the CMT protocol, adding an additional
variable that corresponds to the positionof a sub-circuit in the
larger circuit. In this way, we can efficiently handle varying
wiring patterns across different sub-circuits. This improvement
is crucial for improving the concrete efficiency of our VC
system for RAM programs (since each program step may
perform a different instruction, resulting in entirely different
sub-circuits), and may be of independent interest since it
expands the type of computations that are efficiently supported
by the CMT protocol.
Improving the VPD Protocol. We also present a more
efficient version of the VPD protocol used by vSQL [52].
We do this by augmenting the selectively secure scheme of
Papamanthou et al. [39] to make it both adaptively secure
and extractable (see Section IV-B), by including additional
terms in the proof. As compared to the VPD scheme used in
vSQL, this reduces the prover time for multilinear polynomials
(i.e., multivariate polynomials of degree 1 in each variable)
from quasi-linear to linear in the number of monomials, and
improves concrete efficiency by 2–4×.
New RAM Reduction. Previous RAM-to-circuit reductions
rely on a circuit CRAM that can handle any possible instruction
at any given CPU step. The circuit CRAM is composed of T
copies of a smaller circuit Cexe that can verify all possible
instructions (where the i-th copy of Cexe verifies the i-th
RAM step, and T is a bound on the total number of steps).
As mentioned above, this approach “wastes resources” as
eventually only one instruction will be executed at each step.

In existing constructions that handle arbitrary programs this
waste is unavoidable since CRAM must be fixed during the
preprocessing phase, before it is known which instruction will
occur at each step. However, since our argument system has
circuit-independent preprocessing, we can generate the circuit
CRAM during the proving phase, after the prover executes
program P on input x. This allows us to replace CRAM with a
circuit CP which is constructed on-the-fly by the prover and is
optimized for the execution of P on x. In particular, we “cus-
tomize” the i-th copy of Cexe to only contain the gates needed
to verify the specific instruction executed during the i-th step
of P on input x. While this significantly reduces the size of
the produced circuit, it raises a subtle issue: CP no longer has
a succinct representation and, in the worst case, can only be
described by giving the sequence of T instructions. Applying
an argument system with circuit-independent preprocessing to
such a circuit results in having the verifier’s overhead be Ω(T )
(since he must, at the very least, hold a description of the
circuit) which is as large as evaluating P. In Section III, we
show how this can be avoided via a new reduction in which

the different copies of Cexe are not arranged by their order of
execution, but are instead sorted by instruction type. The result
is that CP can be described by simply listing the multiplicity
of each instruction. Finally, since our protocol has public-coin
verification, we can make it non-interactive in the random
oracle model using the Fiat-Shamir heuristic [22].

C. Related Work

Verifiable computation was formalized in [24], [41], but
research on constructing interactive protocols for verifying
general-purpose computations began much earlier with the
works of Kilian [33] and Micali [38]. While those works have
good asymptotic performance, and follow-up works further
optimized those approaches (e.g., [6], [32]), subsequent imple-
mentations revealed that the concrete costs of those approaches
are prohibitively high for the prover [44].
SNARKs. The next big breakthrough in general-purpose
verifiable computation came with the work of Gennaro et
al. [25] (building upon earlier work by Groth [30]), which
introduced quadratic arithmetic programs (QAPs) and showed
that they can be used to capture the correct evaluation of
an arithmetic program. QAPs have since been the de-facto
tool for constructing efficient succinct arguments of knowledge
(SNARKs) [12], [14] that can be used to verify arbitrary NP
computations. This has led to a long line of research providing
both highly-optimized systems [40], [20], [47], [42], [9], [43],
[35], [18], [23] and significant protocol refinements [36],
[10], [21], [29]. Our solution shares intuition with some of
these works, e.g., [20] also uses the technique of verifying
heterogeneous sub-computations, whereas [47] produces an
arithmetic circuit adapted for the given computation. Even
though all of these works use different technical approaches,
one theme remains common: while the verifier’s performance
is generally excellent, the concrete overhead for the prover (in
terms of running time, memory consumption, etc.) remains
prohibitive. We refer to [51] for a detailed survey.
Verifiable RAM Computation. A series of works [9], [10],
[11], [17], [50], [7] consider the problem of verifying RAM
computations by reducing the verification of a RAM program
to the verification of a circuit. In Section V, we compare the
performance of our system with the most efficient prior work
in this direction [11], [50].

II. PRELIMINARIES

Throughout this paper we use standard notation for arith-
metic circuits and multilinear extensions of polynomials (see
Appendix A). To simplify notation, we implicitly assume
that all field operations take constant time. Thus, whenever
we report asymptotic complexities we omit a factor that is
polylogarithmic in the field/group size.
Bilinear Pairings and Cryptographic Assumptions. We
denote the generation of the bilinear map parameters by
bp = (p,G,GT ,e,g)← BilGen(1λ ), where λ is the security
parameter, G,GT are two groups of order p (with p a λ -bit
prime), g ∈G is a generator, and e : G×G→GT is a bilinear
map. The security of our constructions relies on the q-strong



bilinear Diffie-Hellman assumption [15] and a modified ver-
sion of the q-power knowledge of exponent assumption [30],
[52] (presented formally in Appendix B).

A. Argument Systems and Interactive proofs

Argument Systems. An argument system for an NP rela-
tion R is a protocol that allows a computationally bounded
prover P to convince a verifier V holding input x that
“∃w such that (x;w) ∈ R.” Here, we focus on arguments of
knowledge, i.e., if the prover convinces the verifier then it
must know w. We adopt the definition of [25] which includes
a parameter-generation phase executed by a trusted party.

Definition 1. Let R be an NP relation. A tuple of algorithms
(G,P,V) is an argument for R if the following holds.
• Completeness. For every (x;w) ∈ R and (pk,vk) output by
G(1λ ) it holds that 〈P(pk,w),V(vk)〉(x) = 1.

• Knowledge Soundness. For any PPT prover P∗ there exists
a PPT extractor E which runs on the same randomness as
P∗ such that for any x we have Pr[(pk,vk)← G(1λ );w←
E(pk,x) : 〈P∗(pk),V(vk)〉(x) = 1∧ (x,w) /∈ R]≤ neg(λ ).

We say that (G,P,V) is a succinct argument system if the
running time of V is poly(λ , |x|, log |w|).
Interactive Proofs. An interactive proof [27] is a protocol that
allows a prover P to convince a verifier V that f (x) = y where
f ,x,y are known to both parties. Here soundness is required
even for an unbounded cheating prover.

Definition 2. Let λ be a statistical soundness parameter. A
pair of algorithms (P,V) is an interactive proof for a function
f with soundness ε(λ ) if:
• Completeness. For any f ,x,y such that f (x) = y it holds

that Pr[〈P,V〉( f ,x,y) = 1] = 1.
• Soundness. For any f ,x,y such that f (x) 6= y and any prover
P∗ it holds that Pr[〈P∗,V〉( f ,x,y) = 1]≤ ε(λ ).

B. The CMT Protocol

High-Level Overview. Cormode et al. [19] presented an
efficient interactive proof (the CMT protocol) for arithmetic
circuits. At a high level, the protocol proceeds as follows. Let
C be a depth-d layered arithmetic circuit over a field F. The
protocol starts by having the CMT prover Pcmt claim that the
output wires have value y. Next, the CMT protocol processes
C one layer at a time, from layer 0 (the output gates) to layer d
(the input gates). During the ith round, Pcmt reduces a claim
about the values of C’s wires at layer i to a claim about the
values of C’s wires in layer i+1. The protocol terminates
after d rounds with a claim about the wire values at the input
layer. Since the input x is known to the CMT verifier Vcmt , it
can directly check Pcmt ’s claim. If the check succeeds, Vcmt
accepts y as the output of C(x).
Notation. Before presenting a formal description of the CMT
protocol, we establish some additional notation. We denote
the number of gates in the ith layer of C by Si and we set
si = dlogSie (so si bits suffice to identify each gate is the ith
layer). The evaluation of C on an input x assigns (in the natural
way) a value from F to each gate in C based on its output wire.

For each layer i of C, define the function Vi : {0,1}si → F that
takes as input a gate g ∈ {0,1}si and outputs its value. Note
that the values returned by Vd correspond to the values of the
input layer of C, i.e., x. Finally, for each layer i we define
functions addi, multi that we call C’s wiring predicates. The
function addi : {0,1}si−1+2si → {0,1} takes as input a gate
g1 from layer i− 1 and two gates g2,g3 from layer i and
outputs 1 iff g1 is an addition gate whose input wires are
connected to g2 and g3. The function multi is defined similarly
for multiplication gates. Notice that the value of a gate g at
layer i < d can be computed as a function of the values of the
gates at layer i+ 1, i.e., Vi(g) = ∑u,v∈{0,1}si+1 (addi+1(g,u,v) ·
(Vi+1(u)+Vi+1(v))+multi+1(g,u,v) · (Vi+1(u) ·Vi+1(v))).
Protocol Details. One way for Vcmt to check correctness
of the values at layer i is to check that Vi(g) outputs the
correct value of the g-th gate for every gate g in that layer.
Since Vi(·) is a summation of other values, this can be done
using the sum-check protocol from Appendix C. However, the
soundness guarantee of the sum-check protocol depends on
the size of the underlying field. If C is defined over a small
field (e.g., if C is a boolean circuit) we replace Vi with its
multilinear extension Ṽi defined over a larger field F via

Ṽi(z) = ∑
g∈{0,1}si , u,v∈{0,1}si+1

fi,z(g,u,v) (1)

def
= ∑

g∈{0,1}si , u,v∈{0,1}si+1

β̃i(z,g) ·
(

˜addi+1(g,u,v) ·

(Ṽi+1(u)+Ṽi+1(v))+ ˜multi+1(g,u,v) · (Ṽi+1(u) ·Ṽi+1(v))
)

where ˜addi (resp., ˜multi) is the multilinear extension of addi
(resp., multi) and β̃i is the multilinear extension of the function
that takes si-bit inputs z,g and outputs 1 iff a = b.1

Assume for simplicity that C has a single output wire. The
CMT protocol begins with Pcmt claiming y= Ṽ0(0). Then Pcmt
and Vcmt execute the sum-check protocol, which results in
Vcmt ’s needing to check that Ṽ0(0) = ∑ g∈{0,1}s0

u,v∈{0,1}s1
f0,0(g,u,v). In

turn, this requires the verifier to evaluate Ṽ1 on two random
points q1,q2 ∈ Fs1 . Since the verifier does not have the correct
gate values for layer 1, it asks Pcmt to provide a1 = Ṽ1(q1)
and a2 = Ṽ1(q2). We have thus reduced the claim about the
value of the gate in layer 0 to the validity of two claims about
the gates in layer 1. Finally, in Appendix D, we describe the
way to condense these two claims into a single claim about
the gates in layer 1. Proceeding in this way layer by layer, the
prover and verifier end with a claim about the value of Ṽd ,
which can be checked directly by the verifier who has access
to the input x. In Appendix D we give a full description of the
CMT protocol, and formally state its security and asymptotic
performance guarantees.

C. A Canonical RAM Architecture

In this section we establish notation for a random-access
machine supporting some instruction-set architecture.

1Although using β̃ is not strictly necessary [46], we use it since it improves
efficiency when C is composed of many parallel copies of a smaller circuit C′.



S and S∗∗ t, pc, r1, . . . ,rK , O, flag, auxiliary2

I and I∗∗ line number, opcode, i, j (source registers), k (target register)
A a, t, O, b (denoting memory load or store)

TABLE I
VALUES IN A STATE AND AN INSTRUCTION.

Hardware. We focus on RAM machine computations, where
the machine is parametrized by the number of registers K
and the register width (word size) W . The CPU state consists
of a W -bit program counter (pc) and K general-purpose, W -
bit registers r1, . . . ,rK . Each instruction operates over two
operands (registers) and stores its result in a third register, to
which we shall refer as the destination register. The machine’s
memory is a randomly accessible array of 2W bytes. We also
assume two read-only unidirectional tapes containing W -bit
words. The first tape is used for the program input x, and the
second tape may potentially be used for auxiliary input aux.
Program Execution. A program is a sequence of instructions,
where each instruction has two operands (which are either
register numbers or constants) and stores its result in a third
register called the destination register. A random-access ma-
chine starts executing a program with all registers, its memory,
and the program counter initialized to 0. At each step, the
instruction pointed by the pc is executed. By default, every
instruction increments the pc by one (i.e., pointing to the next
instruction), but an instruction (e.g., jump) can also modify the
pc directly to facilitate arbitrary control flow. The machine’s
inputs are the above-mentioned tapes, accessible via special
read instructions, as well as the initial contents of its memory.
The machine outputs either accept or reject. We say program
P accepts input (x,aux) if the machine running program P
with the specified input terminates with output accept.

Machine State and Instruction Encoding. We define the
notion of machine state as the values of the machine’s registers
pc,r1, · · · ,rK at any point during the program execution. Let
S1, · · · ,ST be a list of the machines states during the execution
of some program P. We augment each state Si to also include
i in it, referring to i as Si’s step number as well as to include
an additional field Oi, referring to it as the instruction’s output
field. An instruction I contains information about what opera-
tion the machine should execute (e.g., addition, multiplication,
etc.), the two source registers ri,r j as well as the target register
rk. For a specific program (which is a sequence of instructions)
P = P1, · · · , P̀ , we augment every instruction Pi to include its
location i (line number) within P. The detailed values in a
state and an instruction used in our implementation is shown in
Table I. We take as our set of available instructions from those
used by TinyRAM [9], [11]. This is an ideal starting point for
our implementation as the universal circuit for the TinyRAM
CPU can be described by a relatively small arithmetic circuit.
Execution Traces. The trace tr = (S1, I1,S2, I2, . . . , IT−1,ST )
of a program P on inputs x,aux is a sequence of CPU states
and instructions, where S1 is the initial state and each Si is
produced by executing instruction Ii−1 on Si−1. A trace tr is

2Auxiliary includes data from the prover for efficient implementation
purposes, i.e., bit-decomposition of the values for computation modulo 232

and bits denoting whether an instruction is jump, memory store or load.

valid for a program P on input x if there is an aux such that
P(x,aux) has trace tr. Similarly, a trace tr of a program P on
input x is accepting if there exists aux such that tr is valid and
we say that P accepts input (x,aux).
A Universal NP Relation for RAM Programs. The follow-
ing NP relation RAM`,n,T captures accepting RAM programs:

Definition 3. For `,n,T ∈ N, relation RAM`,n,T consists of
tuples (P,x;aux) such that: (i) P is a program with ≤ `
instructions, (ii) x is an input of ≤ n words, and (iii) P(x,aux)
accepts in ≤ T steps.

D. Previous Reductions from RAM to Circuit Satisfiability

Before describing our improvements, in this section we present
previous approaches for constructing a circuit that can verify
the execution of RAM programs. More specifically, given a
time bound T , [11] constructs a circuit C such that for any
RAM program P, ∃w : C(P,x;w) = 1 if and only if ∃aux such
that P(x;aux) accepts. Throughout this paper, unless otherwise
noted, we do not distinguish between the program and the
input data, and we let ` be a bound on both the program
length and the input size.

The circuit C takes as input a program P and a witness w
that contains a trace tr = (S1, I1,S2, I2 · · · , IT−1,ST ) and aux. C
then outputs 1 only if S1 is the initial state, ST is an accepting
state, and the following hold at every step i in tr:
1) Correct Instruction Execution. State Si+1 is obtained

from Si after executing instruction Ii.
2) Correct Instruction Fetches. Ii is the instruction in P

pointed to by the program counter (pc) in Si. If i = 1 we
require that pc = 0.

3) Correct Memory Accesses. If Ii is a load instruction
accessing address a then the value loaded is v, where v
is the last value written to address a by some previous
instruction (and v = 0 if Ii is the first load from a.)

In order to verify the above three conditions, the circuit C is
constructed from three sub-circuits Cexe, Cmem, and Croute (cf.
Figure 1(left)), which we explain below.
Ensuring Correct Instruction Execution. To ensure (1),
every triple Si, Ii,Si+1 is given as input to a circuit Cexe which
performs the following two checks. (a) Check that the value
Oi in Si is correctly computed by executing Ii.3 In case Ii is a
memory load instruction, Cexe optimistically assumes that the
loaded value Oi is correct (this will be tested separately when
checking memory accesses). (b) Check that Oi is equal to r j
of Si+1 (or pci+1 in case of jump), all other registers of Si+1
are the same as Si, Si’s step number is indeed i and pci is
equal to the line number of Ii in P (as encoded in Ii).
Ensuring Correct Instruction Fetches. To ensure (2), C
must check that the instruction Ii is fetched from the location
in the program P pointed by pci in state Si (i.e., that Ii
is the pci-th instruction in P). In [11], this is achieved by
storing P in memory and then loading instructions before
they are executed. Formally, a booting sequence B1, . . . ,B` is

3If Ii is a memory instruction, Oi is the loaded or stored value; if Ii is a
jump instruction, Oi is the jump destination.



prepended to the trace tr, with Bi storing the i-th instruction
of P in memory at address i. This results in a new trace
tr = (B1, · · · ,B`,S1, I1,S2, I2 · · · , IT−1,ST ) of length 2T + `.
Each Ii ∈ tr is then viewed as two operations: One is a load
operation fetching an instruction from the memory address
pointed by its line number, and the other is Ii itself. In this way,
the correctness of instruction fetches is reduced to checking
the consistency of the memory stores and loads performed by
Bs and Is, which we describe next.
Ensuring Correct Memory Accesses. To ensure (3), Ben-
Sasson et al. [11] include in w an additional trace tr∗ =
(A1, · · · ,A2T+`) , which is a permuted version of tr where: (a)
all the states in which a memory access is performed are sorted
by the memory address a being accessed (with ties broken by
their step number in tr), and (2) non-memory instructions are
pushed to the end of tr. Notice that Bi and Ii are also sorted,
using the addresses i and the line number respectively. For
two adjacent entries Ai,Ai+1 ∈ tr∗ with outputs Oi,Oi+1, step
numbers ti, ti+1 and accessing addresses ai,ai+1, respectively,
the circuit Cmem checks the following:4

• If ai = ai+1 then ti < ti+1. If Ai+1 is a load instruction, the
loaded value Oi+1 is the same as the value Oi stored or
loaded by Ai.

• If ai 6= ai+1 then ai+1 > ai, and if Ai+1 is a load instruction
then Oi+1 = 0.

Checking Consistency Between tr and tr∗. Finally, C must
ensure that tr∗ is a copy of tr that contains exactly the same
states and instructions, just sorted by their accessed addresses.
Note that the fact that tr∗ is sorted correctly has already been
checked by Cmem. Hence, it remains to ensure that a state
appears in tr∗ if and only if it appears in tr. This can be
done by checking that there exists a permutation π such that
π(tr∗) = tr. To that end, C contains a sub-circuit Croute which
implements a O(T logT ) switching network that routes every
entry in tr to its matching entry in tr∗. The control bits used
for the switching network (which specifies the permutation π)
are provided by the prover and included in w.
Overall Complexity. For a program of size ` running for
T steps, the above reduction yields a circuit C of size T ·
|Cexe|+(2T + `) · |Cmem|+ |Croute|. Since Cexe,Cmem are fixed
for a given architecture (i.e., they are independent of T, `), and
Croute can be implemented using O((T +`) · log(T +`)) gates,
we have |C|= O((T + `) · log(T + `)).

III. OUR INTERACTIVE ARGUMENT FOR RAM PROGRAMS

In this section, we present our argument for verifying the
correct execution of RAM programs. Similar to previous
approaches [9], [10], [11], [17], [50], [7], our argument
for RAM programs will use as a “back-end” an argument
for verifying the correct evaluation of arithmetic circuits.
We thus must somehow reduce the task of verifying RAM
computation to the task of verifying the correct evaluation
of arithmetic circuits. One candidate for such a reduction is

4In case Ai corresponds to B j or I j , the value Oi loaded is the encoding of
the instruction, i.e. the concatenation of the machine operation code and the
source and destination registers.

the construction of [11] (described in Section II-D) which
reduces the verification of RAM programs of T steps to the
task of verifying the correct evaluation of an arithmetic circuit
fo size O(T logT ). However, unlike [11], in this work we
rely on an efficient argument for arithmetic circuits (explained
in detail in Section IV) which is both interactive and has a
circuit-independent preprocessing phase. As we show in this
section, it is possible to leverage these two properties in order
to achieve a “tighter” reduction than the reduction of [11],
resulting in a more efficient argument for RAM programs.
More specifically, having a circuit-independent preprocessing
phase allows us to produce a concretely smaller circuit where
at each step the prover only proves the correct execution
of the instruction that is actually executed by the RAM
program on its specific inputs, as opposed to proving the
correctness of a circuit evaluating all possible instructions.
Next, the interactivity property allows us to replace the routing
network used in [11] for checking trace consistency with
an efficient interactive protocol for randomized polynomial
identity testing. This reduces the prover’s complexity from
O((T + `) log(T + `)) to O(T + `) as well as improves the
prover’s concrete efficiency.

Our final circuit construction is shown in Figure 1(right). As
in Section II-D, we must check correctness of (1) instruction
execution, (2) instruction fetches, and (3) memory accesses.
Next we describe our implementation of these checks.

A. Ensuring Correct Instruction Execution

Let tr = (S1, I1,S2, I2 · · · , IT−1,ST ). Recall that in the reduc-
tion described in Section II-D, the correct execution of tr’s
instructions is checked via a universal Cexe which performs
two sets of tests on every triple Si, Ii,Si+1 ∈ tr. The first
test (a) checks the correctness of Oi (i.e., that performing
Ii on Si results in Oi) while the second test (b) checks
that the values from Si are consistently propagated to Si+1
(including correct pci update and ordering of steps). Notice
that while the second test is relatively simple and identical for
all triples, the majority of Cexe’s gates are actually required
for performing the first test. This is since this part of Cexe is
often implemented by a composition of smaller circuits each
of which can check the execution of a specific instruction,
together with a multiplexer that specifies which instruction
should be checked at this step. In order to optimize the size of
Cexe, while maintaining the succinct representation of the result
circuit C, we split Cexe into two sub-circuits which perform
these two checks independently. For the second check we will
the same circuit for all triples, whereas for the first one we we
will use a circuit that can only verify the logic of the particular
instruction Ii. Below, we describe in detail how these circuits
are implemented.
Ensuring Correct Propagation of Values. We define a
circuit Ctime that takes as input a triple Si, Ii, Si+1, and verifies
that the value of the destination register in Si+1 is equal to
Oi, all other registers in Si+1 remain unchanged, and pci+1
was updated appropriately. Similar to Section II-D, Ctime also
checks that Si’s step number is indeed i and that pci is equal to
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Fig. 1. Circuits for the reductions from RAM programs to circuits from Section II-D (left) and Section III (right). Circuits C f etch and Cperm receive additional
input from the verifier as described in Sections III-B and III-D, respectively.

the alleged location of Ii in P (as encoded in Ii by the prover).
However, unlike Section II-D, we stress that Ctime does not
verify that Oi is the correct output after executing Ii.

Verifying Instruction Execution. Let J be the number
of instruction types supported by the RAM architecture. We
include in the witness w an additional trace tr∗∗ that is the
result of sorting the pairs (Si, Ii) ∈ tr by the instruction type
of Ii. Define a circuit Cval, j which takes as input a pair
(S∗∗i , I∗∗i ) ∈ tr∗∗ and checks that S∗∗i is a valid state for the
instruction I∗∗i of type j (i.e., Oi is correctly computed by
executing I∗∗i on S∗∗i ). In this way, Cval, j is specialized to a
specific instruction type. Moreover, since tr∗∗ is sorted by
instruction type, the copies of Cval, j will also appear in C
sorted by j. In this way, C can be succinctly described by
(k1, . . . ,kJ), where k j (for j = 1, . . . ,J) denotes the number of
times instruction type j appears in trace tr when program P
is executed on input x (where ∑ j k j = T ).

B. Verifying Instruction Fetches

As described above, [11] ensures program consistency by
first storing the program to memory during the machine’s
booting phase. Next, each instruction is sequentially loaded
from memory for execution. These operations are treated the
same as regular memory stores and loads, and are checked by
T + ` copies of Cmem. Here, we explain how the correctness
of these operations can be checked more efficiently assuming
instructions in the program are fixed and known to the verifier
(i.e., if we assume that P does not contain self-modifying code,
similar to [9]).

Unlike the reduction of Section II-D, note that the trace tr
does not include a boot sequence. Instead, we observe that for
each triple Si, Ii,Si+1, the circuit Ctime already checks that pci
is equal to the line number of Ii in P (as encoded in Ii by the
prover). All that remains is to verify that Ii is the instruction in
P with the same line number. Equivalently, let {P1, · · · , P̀ } be
the set of instructions in P where each Pi is augmented to also
contain its line number within P (as defined in Section II-D).
Then we only need to check that the sequence {I1, · · · , IT−1}
is a multiset of {P1, · · · , P̀ } (the multiplicity of some Pi may
be 0 to account for non-executed instructions). To that end,
we add a circuit C f etch that validates this multiset relation
and leverages the interactive property or our scheme from
Section IV. The circuit takes the sequence I1, · · · , IT−1 from
tr and a random value r (provided by the verifier) as input.
C f etch outputs the evaluation of its characteristic polynomial

at point r, i.e., ∏
T−1
i=1 (Ii− r). The verifier also receives from

the prover the multiplicity k j of Pj in {P1, · · · , P̀ }. Thus, he
can compute himself the value ∏

`
j=1(Pj− r)k j def

= ∏
T−1
i=1 (Ii− r)

and test whether it corresponds to the value output by the
circuit. By the Schwartz-Zippel lemma, the probability the
verifier accepts if the two polynomials are not the same (i.e.,
{I1, · · · , IT−1} is not a multiset of {P1, · · · , P̀ }) is negligible.
We stress that this is only secure if we ensure that the prover
commits to the entire witness (including I1, · · · , IT−1) before
seeing r, as is the case in our construction in Section IV. In
this way, we have replaced T +` copies of Cmem with a smaller
circuit C f etch evaluating the characteristic polynomial at a
random value which leads to concrete efficiency improvement.

C. Ensuring Memory Accesses

Similar to Section II-D, in order to verify memory accesses
(ensuring (3)) we include in w a trace tr∗ = (A1, · · · ,AT )
sorted by the memory address being accessed (again with
ties broken by step number and non-memory instructions
located at the end of tr∗). Since the correctness of instruction
fetches is already ensured (as described above), we only sort
the states Si in tr, and the length of tr∗ now becomes T .
For every two adjacent entries Ai,Ai+1 ∈ tr∗ with outputs
Oi,Oi+1, step numbers ti, ti+1 and accessing addresses ai,ai+1,
respectively, the circuit Cmem checks the same two conditions
as in Section II-D. Finally, note that the number of instruction
that actually perform memory operations may be smaller than
T , but we still include T copies of Cmem in C to account for the
worst case. In Appendix E, we show how this can be further
improved to only include αT copies of Cmem, where 0≤α ≤ 1
is the ratio of memory operations in the trace.

D. Checking Consistency Between tr, tr∗ and tr∗∗

Finally, it remains to check that tr∗ and tr∗∗ are indeed
permutations of tr. Previous works [8], [9], [11] achieve this
task by using routing networks, yielding a circuit of size
O((T +`) log(T +`), for a T -step RAM program of size `, and
correspondingly increasing the prover’s asymptotic running
time from linear to quasilinear. Using routing networks to
achieve this would yield a circuit of size O((T +`) log(T +`),
for a T -step RAM program of size `, which would correspond-
ingly increase the prover’s asymptotic running time from linear
to quasilinear. Following the approach of [52], we leverage the
interactive nature of our argument in order to avoid the use
of routing networks, replacing them with a simple interactive



protocol that is similar to the one used above for verifying
instruction fetches. The result is that our prover’s running
time is only O(T + `), i.e., asymptotically the same as simply
evaluating the program.

More specifically, assume the prover holds lists x1, . . . ,xm
and x′1, . . . ,x

′
m and wants to convince the verifier that they are

a permutation of each other. Consider a circuit Cperm that takes
x1, . . . ,xm and x′1, . . . ,x

′
m (provided by the prover) and a random

point r (provided by the verifier) and outputs the result of
∏

m
i=1(xi− r)−∏

m
i=1(x

′
i− r). If the two lists are permutations

of each other the output is always zero, otherwise by the
Schwartz-Zippel lemma it is zero with negligible probabil-
ity.5 Finally, evaluating this polynomial requires O(m) gates.
For our argument, we use two executions of this interactive
protocol, one for the pair tr, tr∗ and one for tr, tr∗∗, in a way
that ensures that C outputs zero only if Cperm outputs zero
both times. From the above analysis, each of these circuits
consists of O(T + `) gates. We stress that it is crucial to have
the prover commit to the two lists ahead of time, in particular
before seeing r, for security purposes. This is enforced by our
argument as P commits to the entire witness w in the first step
of the protocol (cf. Construction 2, Evaluation Phase, Step 1).

We are now ready to state the following result. We defer a
proof to the full version due to space limitations.

Theorem 1. Let ` be a program length parameter, T be
a time bound and let n be an input bound. Assuming that
Construction 1 is an extractable verifiable polynomial del-
egation protocol, then combining the results of Section III
with Construction 2 we obtain an argument system for the
relation RAM`,n,T (as per Definition 3). Moreover, as the sizes
of Ctime,Cval and Cmem are constants which are independent
of n,T, `, the running time of P is O(n+T +`) and that of V
is O(n+`+ poylog(T )). This yields a succinct argument with
polylog(n+ `+T ) rounds of interaction.

IV. AN IMPROVED ARGUMENT FOR ARITHMETIC
CIRCUITS

In this section, we present our modifications to the (implicit)
argument of vSQL [52]. First, we introduce a modified version
of the CMT protocol that can efficiently handle circuits
consisting of parallel copies of different sub-circuits (which
is the format of our circuit, from Section III above). We then
present a VPD scheme with improved efficiency and show
that combining the two yields an argument of knowledge with
circuit-independent preprocessing.

A. Improving The Expressibility of the CMT Protocol

Following [52], we can verify the execution of a RAM pro-
gram by applying the CMT protocol to the RAM-verification

5As a state (e.g., A in tr∗) contains multiple values such as O and t and
we want to ensure they are permuted together, we pack the values before the
check (e.g., for W -bit values (a,b,c), we set x = a× 22W + b× 2W + c). If
the result of a single pack overflows the field, we pack the values multiple
times with respect to the first value. In our implementation, we use a 254-bit
prime field, which allows packing of 7 32-bit numbers. We also use the same
technique to ensure that S∗∗i and I∗∗i in tr∗∗ are permuted together.

circuit C described in Section III. Recall that C contains
T copies of Cmem and Ctime, and k j copies of Cval, j where
∑ j k j = T . Applying the CMT protocol described in Sec-
tion II-B and Appendix D (Theorem 5) to C would thus result
in a prover complexity of O(|C| log |C|). In this section, we
show how to modify the CMT protocol to efficiently handle
circuits that consist of multiple (different) sub-circuits. When
applied to our circuit C, this results in a prover time of
O(|C| logmax{|Cmem|, |Ctime|, |Cvar|}). As the sizes of Cmem,
Ctime, and Cvar are constants which only depend on the specific
RAM architecture, we obtain an asymptotically optimal prover
running time of O(|C|) which is O(T + `).

Let C be a depth-d, size-n, layered arithmetic circuit
consisting of B independent (“parallel”) sub-circuits
C1, · · · ,CB, each of depth at most d′ and size at most n′,
where the outputs of C1, · · · ,Cn are fed into an aggregation
circuit D of depth-d′′ and size n′′. In this section, we show
how to modify the CMT protocol so as to prove statements
about the output of C in time which is linear in the size of
C. Our modified protocol proceeds as follows. We start by
following the standard CMT protocol for the d′′ layers of
sub-circuit D. Next, for the remaining d − d′′ = d′ layers,
we modify things in a similar way to [45] and [46]. Let
Si now denote the maximum number of gates in layer i
across C1, · · · ,CB, and let si = dlogSie. We let Vi again
be a function mapping a gate at level i to its value, but
we now specify a gate g by a pair g1,g2, where g2 ∈ [B]
indicates the sub-circuit in which g lies and g1 ∈ [Si] is the
index of g (at level i) within that sub-circuit. The prover
and verifier then run a CMT-like protocol, but using the
equation Vi(g1,g2) = ∑u1,v1∈{0,1}si+1 (addi+1(g1,u1,v1,g2) ·
(Vi+1(u1,g2) + Vi+1(v1,g2)) + multi+1(g1,u1,v1,g2) ·
(Vi+1(u1,g2) ·Vi+1(v1,g2))).

The equation above still recursively defines Vi in terms
of Vi+1, but takes advantage of the fact that there is no
interconnection between the different sub-circuits. This has
the effect of reducing the number of variables in addi+1 and
multi+1 from 2si+1+si+3dlogBe to 2si+1+si+dlogBe. Next,
we define the multilinear extension of Vi(g1,g2).

Ṽi(z1,z2) = ∑
u1,v1∈{0,1}si+1 ,g2∈{0,1}logdBe

fi,z1,z2(u1,v1,g2) (2)

def
= ∑
u1,v1∈{0,1}si+1 ,g2∈{0,1}dlogBe

β̃i(z2,g2) ·
(

˜addi+1(z1,u1,v1,g2) · (Ṽi+1(u1,g2)

+Ṽi+1(v1,g2))+ ˜multi+1(z1,u1,v1,g2) · (Ṽi+1(u1,g2) ·Ṽi+1(v1,g2))
)
.

The only difference between equation 2 and the equation
used for data-parallel circuits with same sub-circuits in [45],
[46] is that ˜addi+1 and ˜multi+1 take an extra variable g2,
which denotes that the gates and wiring patterns can be
different in each sub-circuit. We further observe that running
the same algorithm for the sumcheck protocol as in [45], [46]
on equation 2 results in the same complexity on the prover,
which is O(BSi logSi+1). In this way, we extend the class of
the circuit efficiently supported by the CMT protocol in [45],



Definition 4. Let F be a finite field, F a family of `-variate polynomials over F, and d a variable-degree parameter.
(KeyGen,Commit,Evaluate,Ver) constitute an extractable VPD scheme for F if:
• Perfect Completeness. For any polynomial f ∈ F it holds that

Pr
[
(pp,vp)← KeyGen(1λ , `,d);com← Commit( f ,pp);(y,π)← Evaluate( f , t,pp) : Ver(com, t,y,π,vp) = acc ∧ y = f (t)

]
= 1.

• Soundness. For any PPT adversary A the following probability is negligible:
Pr
[
(pp,vp)← KeyGen(1λ , `,d);( f ∗, t∗,y∗,π∗)←A(1λ ,pp);com← Commit( f ∗,pp) : Ver(com, t∗,y∗,π∗,vp) = acc ∧ y∗ 6= f ∗(t∗)

]
.

• Extractability. For any PPT adversary A there exists a polynomial-time algorithm E with access to A′s random tape such that for
all benign auxiliary inputs z ∈ {0,1}poly(λ ) the following probability is negligible:
Pr
[
(pp,vp)← KeyGen(1λ , `,d);com∗←A(1λ ,pp,z); f ′← E(1λ ,pp,z) : CheckCom(com∗,vp) = acc ∧ com∗ 6= Commit( f ′,pp)

]
.

Construction 1 (Verifiable Polynomial Delegation). Let F be a prime-order field, and `,d variable and degree parameters such that
O(
(`(d+1)

`d

)
) is poly(λ ). Consider the following protocol for the family F of `-variate polynomials of variable-degree d over F.

1) KeyGen(1λ , `,d): Select uniform α,s1, . . . ,s` ∈ F, run bp← BilGen(1λ ) and compute P = {g∏i∈W si , gα·∏i∈W si}W∈W`,d . The public
parameters are pp= (bp,P,gα ), and the verifier parameters are vp= (bp,gs1 , · · · ,gs` ,gα ). For every f ∈ F we denote by pp f ⊆ pp
the minimal subset of the public parameters pp required to invoke Commit and Evaluate on f .

2) Commit( f ,pp f ): If f 6∈F output null. Else, compute c1 = g f (si,...,s`) and c2 = gα· f (si,...,s`), and output the commitment com= (c1,c2).
3) CheckCom(com,vp): Check whether com is well-formed, i.e., output accept if e(c1,gα ) = e(c2,g) and reject otherwise.
4) Evaluate( f , t,pp f ): On input t = (t1, . . . , t`), compute y = f (t). Next, using Lemma 1 compute the polynomials qi(xi, . . . ,x`) for

i= 1, . . . , `, such that f (x1, . . . ,x`)− f (t1, . . . , t`) =∑
`
i=1 (xi− ti) ·qi(xi, . . . ,x`). Output y and the proof π := {gqi(s1,...,s`),gαqi(s1,...,s`)}`i=1.

5) Ver(com,y, t,π,vp): Parse the proof π as (π1,π
′
1 . . . ,π`,π

′
`). If e(c1/gy,g) ?

= ∏
`
i=1 e(gsi−ti ,πi) and e(c1,gα ) = e(c2,g) and e(πi,gα ) =

e(π ′i ,g) for 1≤ i≤ ` output accept otherwise output reject.

[46] without any overhead on the prover time.6 We analyze
the complexity of the sum-check protocol from equation 2 in
Appendix F. We present the following result.

Theorem 2. Let C : Fn → F be a depth-d layered arith-
metic circuit consisting of B parallel sub-circuits C1, . . . ,CB
connected to an “aggregation” circuit D such that |D| =
O(|C|/ log |C|), and let S = max j{width(C j)}. Executing
the CMT protocol from Construction 3 using Equation 2
and the above described modifications to the sum-check
protocol, yields an interactive proof for C with sound-
ness O(d ·width(C)/|F|). Moreover, P’s running time is
O(|C| logS) and the protocol uses O(d log(width(C))) rounds
of interaction. If ˜addi and ˜multi are computable in time
O(polylog(width(C))) for all the layers of C, then the running
time of the verifier V is O(n+d ·polylog(width(C))).

B. A VPD Scheme with Linear Prover Time

In the last step of the CMT protocol, the verifier Vcmt evaluates
a polynomial Ṽd on a random point rd . Since the number of
terms in Ṽd is equal to the number of input gates of C, this
makes the verifier’s work linear not only in the size of the
input x but also the length of the witness w. In vSQL [52], this
is avoided by using a VPD scheme that allows P to provide
Ṽd(rd) to V together with a succinct proof of its validity. (See
Definition 4 for the definition of a VPD scheme. Our definition
adapts that of [52] by introducing an additional algorithm
CheckCom that checks if a commitment is well-formed.) Here,
we improve the VPD scheme of [52] and present a new scheme
with the same verifier complexity, but with linear prover in the
number of terms of Ṽd (as opposed to quasi-linear).

As our starting point we use the selectively secure VPD

6The complexity of the CMT protocol for circuits composed of identical
sub-circuits has recently been improved to O(BSi +Si logSi) in [49]. Gener-
alizing the technique for different sub-circuits is left as a future work.

scheme of Papamanthou et al. [39]. Unfortunately, selective
security means that the parameters used for the VPD protocol
are computed as a function of the specific point rd on which
the VPD will be executed. This is insufficient for our applica-
tion since VPD’s parameters will be generated once during the
preprocessing phase which happens before the CMT protocol
To overcome this limitation, we modify this scheme to require
the prover to provide additional “extractability” terms as part
of the evaluation proof. Our modified VPD scheme is given as
Construction 1. We define the variable degree of a multivariate
polynomial f be the maximum degree of f in any of its
variables, and useW`,d to denote the collection of all multisets
of {1, . . . , `} for which the multiplicity of any element is
at most d. We formally state the security and asymptotic
performance guarantees of the scheme in Appendix G.

C. Putting it All Together

Finally, we present our argument system with circuit-
independent preprocessing. Our construction combines the
modified CMT protocol from Section IV-A with the VPD
scheme presented in Section IV-B. We refer to the prover
and verifier of the CMT protocol as (Pcmt ,Vcmt), re-
spectively, and to the algorithms of the VPD scheme as
(KeyGen,Commit,Evaluate,Ver). We construct an argument
system (G,P,V) for the satisfiability of arithmetic circuits over
finite fields, where the preprocessing done by G depends on a
bound on the size of the circuit, the size of its input, and the
field over which it is defined, but not the circuit itself.

Let V1+2
cmt be the restriction of the CMT verifier from

Construction 3 which performs Steps 1 and 2 of Vcmt and
outputs (rd ,ad) without performing Step 3. Construction 2 is
a formal description of our argument system. Consider the
following theorem.

Theorem 3. If Construction 1 is am extractable VPD scheme,



Construction 2. Let F be a prime-order field with |F| exponential in λ , and let n, t be input size and circuit size parameters. For
simplicity of exposition we assume that n is a power of 2. Consider the algorithms G,P,V described below.
Preprocessing Phase. G(1λ ,n, t) runs (pp,vp)← KeyGen(1λ ,n,1). The proving key pk is set to be pp and the verification key vk is
set to be vp.
Evaluation Phase. Let C : Fnx+nw → F be a depth-d arithmetic circuit with at most t gates such that nx +nw ≤ n. Moreover, let x ∈ Fnx

and w ∈ Fnw be such that C(x;w) = 1. Assume that nw/nx = 2m−1 for some m ∈ N. Consider the following protocol between P and V .
1) P first commits to the multilinear extension Ṽd of the input layer of C(x;w). That is, P runs c← Commit(Ṽd ,pp) and sends c to V .

Upon receving c, V runs CheckCom(c,vp). If the output is reject, V rejects.
2) V computes the multilinear extension x̃ of the input x, generates a random point r ∈ (Flog(nx)×0log(nw)) and sends r to P . P executes

(a,π)← Evaluate(Ṽd ,r,pp) and sends (a,π) to V . V executes Ver(c,a,r,π,vp). In case Ver outputs reject or a 6= x̃(r), V rejects.
3) V runs V1+2

cmt and P runs Pcmt to verify C(x;w) = 1. If V1+2
cmt rejects at any point, V rejects. Otherwise, let rd ,ad be the final values

returned by V1+2
cmt . At this point, V must verify that Ṽd(rd) = ad .

4) V sends rd to P . Upon receiving rd , P executes Evaluate(Ṽd ,rd ,pp) and obtains (a′d ,π
′) which he sends to V .

5) V upon receiving (a′d ,π
′) executes Ver(c,a′d ,rd ,π

′,vp). In case Ver outputs reject or a′d 6= ad , V rejects. Otherwise, V accepts.

then Construction 2 is an argument system for arithmetic
circuits. When used for a depth-d, layered circuit C con-
sisting of B parallel sub-circuits C1, . . . ,CB whose outputs
feed into a circuit D with |D| ≤ |C|/ log |C| , the running
time of P is O(|C| · logmax j{width(C j)}) and the proto-
col has O(d log(width(C))) rounds. If C has input length
n and is log-space uniform then the running time of V is
O(n+d ·poylog(|C|)). Finally, if d is polylog(|C|), the above
construction is a succinct argument.

V. EXPERIMENTAL EVALUATION

Software and Hardware. We implemented our constructions
(including the RAM reduction, circuit generator, CMT proto-
col, and VPD protocol) in C++. We use the GMP library [3] for
field arithmetic and OpenSSL’s [5] SHA-256 implementation
for hashing. For the bilinear pairing we use the ate-paring
library [1] on a 254-bit elliptic curve.

We run our experiments on an Amazon EC2 m4.2xlarge
machine having 32 GB of RAM and an Intel Xeon E5-2686v4
CPU with eight 2.3 GHz virtual cores. Our implementations
are not parallelized and only use a single CPU core.

A. Comparison with vnTinyRAM and Buffet

In this section, we compare the performance of our system
to existing systems for verifiable RAM. We compare to
Buffet [50], a verifiable RAM system with program-specific
prepossessing (where the parameters generated by the trusted
preprocessing can only be used to verify one specific program
on different inputs) and vnTinyRAM [11], a universal veri-
fiable RAM system (where the parameters generated by the
trusted preprocessing can be used to verify any program up
to some bound on the number of steps). We also measure the
performance of our system against naive unverified execution
of the RAM program. Finally, in Section V-C we also discuss
comparisons to other verifiable RAM systems.
Benchmark. As a benchmark, we evaluate the RAM pro-
grams from [50] (see Table II). Following that work, we
benchmark our system using programs of three types.
1) Circuit Friendly. The function computed by these pro-

grams has a very efficient circuit representation. We use
matrix multiplication as an example.

2) Fixed Memory Access and Instruction Patterns. These
programs do not exploit the full generality of RAM ma-

Benchmark Input Size # of Cycles Native
1: Matrix Mult. n=215 96M 42ms
2: Pointer Chasing n = 16634 50K 22µs
3: Merge Sort n = 512 65K 28µs
4: KMP Search n = 2900,k = 256 30K 13µs
5: Sparse Mat-Vec Mult. n = 1150,k = 2300 27K 12µs

TABLE II
BENCHMARKS IN OUR EXPERIMENTS. WE REPORT THE INPUT SIZE, THE
NUMBER OF CPU CYCLES AND THE NATIVE RUNNING TIME ON VERIFIER

FOR THE INSTANCES WE USED IN TABLE III.

chines, i.e., their memory-access patterns and control flow
do not depend on the program’s inputs. This allows for a
tighter RAM-to-circuit reduction since it can be determined
ahead of time which instruction will be executed at each
time step. Thus, the produced circuit only needs to handle
a specific instruction per cycle. We use pointer chasing and
merge sort as examples of such programs.

3) Input-dependent Memory Access and Instruction Pat-
terns. Such RAM programs use the full generality of
RAM machines since they have input-dependent control
flow and memory-access patterns. In particular, the circuit
generated by the RAM reduction must be able to handle
multiple possible instructions at every step. We use KMP
string matching [34] and CSR sparse matrix-vector multi-
plication [26] as examples of such programs.

Buffet Evaluation Methods. Buffet’s front-end takes a
RAM program and outputs a circuit that verifies its execution
and its back-end uses a circuit-based VC system based on
Pinocchio [40]. We evaluate Buffet using the released code [2].
vnTinyRAM Evaluation Methodology. We evaluate
vnTinyRAM [11] using the code at [4]. As the code that takes
a TinyRAM program and outputs the traces for vnTinyRAM
is not available, we are unable to produce vnTinyRAM traces
corresponding to the execution of any benchmark RAM pro-
gram. Instead, we estimate the cost of vnTinyRAM by running
the prover on traces of appropriate length resulting from
execution random machine instructions. Since the performance
of vnTinyRAM only depends on the total number of CPU
steps and not on the instruction being executed at each step,
this estimate is accurate.7

7A version of vnTinyRAM that removes unnecessary instructions in each
step after running the particular program to be verified was released by Wahby
et al. [50]. However, since the prover in this program-specific version is unable
to handle arbitrary RAM programs, it is not appropriate for our comparison.



Setup Time (min) Prover Time (min) |C| (Millions of gates) Verification Time (ms)
TinyRAM Buffet vRAM TinyRAM Buffet vRAM TinyRAM Buffet vRAM (mult/total) TinyRAM Buffet vRAM

#1 460000∗ 16.6

38.7

290000∗ 14.4 0.65 240000∗ 9.9 9.9 19.8 422∗ 401 26
#2

310∗

20.0 150∗ 11.2 17.3 125∗ 8.6 38.5 150.8 56∗ 69 93
#3 16.1 200∗ 9.6 21.2 164∗ 7.9 36.2 148.3 9∗ 8 91
#4 22.9 90∗ 12.6 9.2 75∗ 10.5 18.2 72.4 15∗ 20 84
#5 20.8 82∗ 11.8 10.2 68∗ 9.4 18.1 74.3 20∗ 15 85

TABLE III
COMPARISON OF THE PERFORMANCE OF VRAM VERSUS BUFFET AND VNTINYRAM (∗ DENOTES SIMULATION DUE TO MEMORY EXHAUSTION).
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Fig. 2. Prover time (left) and memory consumption (right) of our construction
vs vnTinyRAM and Buffet for various number of CPU steps.
Using a Different Back-End for vnTinyRAM and Buffet.
Both Buffet and vnTinyRAM can be re-factored to use the
more recent construction of [31] as their back-end. This would
result in an approximate improvement of 30% in their setup,
prover time and public key size as well as 50% improvement in
their proof and verification key sizes. This would also improve
verification time by 3×, as per the benchmarks of [4].
vRAM Evaluation Methodology. For vRAM, we imple-
mented our own TinyRAM simulator to output the program
traces used by our prover and verifier backend. We then
adapted the assembly code for the programs in the Buffet
benchmark, and ran them in our TinyRAM simulator to
obtain execution traces, which we provided to prover-verifier
backend. In order to measure the cost of our system vs. naive
unverified execution, we estimate the execution time of random
instructions on a single-threaded 2.3 GHz CPU core.
Experimental Results. The results of the comparison are
summarized in Tables II and IV as well as in Figure 2.
We executed each program on the largest input size reported
in [50]. Table II summarizes their input size, number of CPU
cycles and the native running time if executed on the verifier
locally. As vnTinyRAM cannot handle such large parameters,
we estimate its cost by extrapolation, assuming linear growth.
This yields a conservative estimate since the overhead of
vnTinyRAM’s prover grows quasilinearly (rather than linearly)
with the number of RAM instructions. We report setup time,
prover and verifier time, proof size and the size of the circuit
verifying the RAM program. In Figure 2, we show the prover
time and memory consumption of the three systems versus the
number of CPU steps. In vRAM, these are mainly determined
by the number of CPU steps executed by the benchmark, rather
then the specific choice of instructions executed in these steps.
Consequently, we show the performance of pointer chasing
as a representative example, with other programs behaving
similarly. Since Buffet optimizes the circuit generated based
on a particular benchmark program, we report two cases: one is
pointer chasing, which is a fixed-RAM program, and the other
is string search, which is a data dependent RAM program.
Comparison with vnTinyRAM. Both our system and
vnTinyRAM can verify the execution of arbitrary programs
with a single setup. As shown in Table III and Figure 2 (left),
for all benchmarks except matrix multiplication, our system

achieves an approximate 8× improvement in setup time and
9× improvement in prover time compared to vnTinyRAM.
Note that vnTinyRAM is unable to exploit the fact that matrix
multiplication is circuit-friendly, leading to large circuit size,
setup, prover and verifier times. Since our system uses a
preprocessing phase that only depends on the input size and is
otherwise agnostic to the program representation, for circuit-
friendly benchmarks we are able to directly use the program’s
circuit representation and thereby obtain an improvement of
more than 4 orders of magnitude for setup time and 5 orders
of magnitude for proving time compared to vnTinyRAM.8

The speedup obtained by vRAM is due to (1) the better
RAM-to-circuit reduction from Section III; and (2) the faster
argument system from Section IV. To isolate the effect of
(1), in Table III we report the number of gates in the circuits
produced by our reduction. Note that unlike vnTinyRAM and
Buffet, in vRAM all types of gates (numbers reported in the
last column) contribute to the prover time, instead of multipli-
cation gates only.9 Thus, to facilitate the comparison between
vnTinyRAM’s circuit reduction and our circuit reduction, we
also report the number of multiplication gates in the table. As
shown in Table III, the number of multiplication gates in our
system is 3.3–4.5× less than in vnTinyRAM. Regarding (2),
the performance of our argument system is demonstrated in
more detail in Appendix H, where we show that the per-gate
cost of our system is lower than that of QAP-based systems.
Comparison with Buffet. The main advantage of our system
compared to Buffet is that it can support arbitrary programs
with a single setup. As shown in Table III, the setup time for
our system is 38.7 minutes for any program that runs for up
to 65K CPU steps . Although the setup time of Buffet for the
indicated programs is lower, an independent setup would have
to be run for each different program to be verified (and the set
of programs being verified must be known at the time setup is
run). Moreover, we note that Buffet’s setup time would likely
be larger than ours if used for a program running for 65K
CPU steps (which none of the benchmarks do).

Overall, the prover time of our system is comparable to
that of Buffet. On one hand, for programs with fixed mem-
ory access and instruction patterns (such as pointer chasing
and merge sort) Buffet can perform numerous optimizations,
since the instruction to be executed in each CPU step is

8Note that in order to support all the benchmarks in Table III, vnTinyRAM
only needs to execute a single preprocessing phase which is as large as the
largest instance, i.e. matrix multiplication. However, for fair comparison, we
report a separate setup time for the 4 RAM-friendly programs and compare
the performance of our system to this number.

9Both vnTinyRAM and Buffet use the notion of quadratic constraints with
each constraint verifying that the product of the outputs of two unbounded
fan-in gates equals to the output of a third unbounded fan-in add gate.



#1 #2 #3 #4 #5
Proof Size (KB) 4 256 255 236 235

Memory Usage (GB) 3.6 7.6 7.7 3.8 3.8
TABLE IV

PROOF SIZE AND MEMORY USAGE OF VRAM.

pre-determined. This allows Buffet to highly customize the
resulting circuit. Nonetheless, our system is still only around
2× slower than Buffet while avoiding program-dependent
preprocessing. On the other hand, for programs with input-
dependent memory and instruction patterns (such as KMP
string search and sparse matrix-vector multiplication), our
system actually outperforms Buffet, despite the fact that the
latter can optimize the circuit during preprocessing. Moreover,
as mentioned in [50, Section 4.3], if a program has deep
nesting of data dependent loops or complex conditions (e.g.,
a state machine), the compiler of Buffet may have to incur a
significantly higher overhead, since the amount of applicable
optimizations will be limited. However, the performance of
our construction is not adversely affected by such programs
therefore our speedup compared to Buffet can be higher.

Finally, we note that when the program is circuit-friendly,
e.g., matrix multiplication, Buffet can also represent the com-
putation using a circuit. In this case, the circuit is exactly the
same in both systems, and the prover time of our system is
22× faster than Buffet, since our argument system outperforms
Buffet’s Pinocchio-based argument [40].
Memory Consumption. Another advantage of our system
is that it uses much less memory in order to prove the
same statement. As shown in Figure 2 (right), the memory
consumption of our system is 55–110× less than vnTinyRAM,
yielding a two orders of magnitude improvement. The memory
consumption is also 4− 8× less than Buffet. In particular,
on a desktop machine with 32GB of RAM, we can execute
218 CPU steps, while vnTinyRAM can only reach 212 steps,
and Buffet can reach 215 − 216 steps. We also report the
memory consumption for the benchmarks we run in Table IV.
The improvement is largely due to our reliance on the CMT
protocol which imposes a minimal memory overhead for the
non-input part of the circuit. In fact, although the circuit size
is much larger than the input size, the memory usage of our
VPD protocol and the CMT protocol are on the same order.
In addition, in the VPD protocol, the memory is mainly used
for storing the public key, thus the usage is roughly the same
in the setup and the evaluate phase of VPD.
Verification Time and Proof Size. We next compare the
verification time and communication cost of our system with
vnTinyRAM and Buffet, both of which outperform our system.
In particular, the verification time is 9–56ms for vnTinyRAM
and 8–35ms for Buffet (except matrix multiplication). Also,
vnTinyRAM and Buffet inherit a proof size of 288 Bytes from
QAP-based SNARKS. For comparison, the verification time
and the overall communication cost for our construction varies
on different sizes of circuits. As shown in Table III and IV,
the verification time is 84–93ms and the communication is
235–256KB for different programs. However, we believe that
these are very modest quantities for any modern machine.
Proving 2 Million Instructions. To demonstrate the ability of

our construction to handle the task of verifying programs that
run for large amounts of CPU steps, we also ran our system
on an Amazon EC2 m4.16xlarge machine featuring 256GB
of RAM and an Intel Xeon E5-2676v3 CPU with 64 virtual
cores running at 2.4GHz. Using this machine, we executed
our system for programs consisting of 221 instructions. The
reported prover’s time is 51000s, the memory consumption
grows to 252 GB and the total number of gates in the circuit
is 4.8 billion. While these numbers are concretely large, we
stress that, to the best of our knowledge, this is by far the
largest reported successfully performed instance of verifiable
RAM computation. In particular, this instance is about 65×
larger than the largest instance reported in [11] (which was
achieved by using a 256GB solid state drive as additional
memory space). Finally, the reported verification time was less
than 105ms and the total communication cost was 336.5KB.

B. Practical Limitations of vRAM

The obvious reason for the verifier to delegate computations
to a prover is to save on resources such as time or memory
consumption. For this to make sense, it must be the case
that the resources required to verify a program are fewer
than naively executing it. Assuming the verifier runs on a
1GHz machine computing 109 instructions per second, for
QAP-based systems such as vnTinyRAM and Buffet which
offer extremely efficient verification, the verifier’s break-even
point for saving computational power is delegating programs
larger than 10 million TinyRAM instructions. As the verifier’s
performance in our construction are 4−10× worse, the break
even point for vRAM is about 135 million instructions.

However, we argue that a naive computation of the break
even point is an oversimplified performance metric which
hides important practical considerations. First, it assumes that
the verifier’s computational resources are of the same cost
as the prover’s recourses. An example where this is not the
case is where the verifier is manufactured using old-but-trusted
hardware, compared to a newer but untrusted prover (e.g.,
see the setting of [48], [49]). Second, in the case of zero-
knowledge SNARKs, the verifier is unable to perform the
computation by itself, as it involves the prover’s private data.
Thus, the verifier is forced to use the (slower) SNARK in
order to validate the computation’s correctness. While vRAM
does not support zero-knowledge, recent follow up work [53]
shows a zero-knowledge variant of the verifiable computation
protocol presented in Section IV. Moreover, vRAM can also
be used for delegation of data to the prover (e.g., for cloud
storage, while keeping only a hash of the data locally). In this
case, local execution is again impossible for the verifier, unless
he is willing to download all of the data for each computation.

Finally, focusing on break-even-point metric completely
hides the prover’s overhead. In particular, under this metric,
a VC protocol with a break-even point of a single instruction
where the prover takes decades to produce a proof appears to
be much more performent than current VC protocols where the
proof is produced within hours and have a break even point of
millions of instructions. This is especially problematic since



the largest instances supported by the current generation of
VC protocols are still below the protocol’s break-even-point.
As almost all computations performed by modern machines
easily last hundreds of billions of cycles, we argue that it is
also important to consider the ratio between the break-even
point and the largest instance supported by a VC protocol
(given fixed prover recourses). While having a slower verifier
and a larger break-even-point, vRAM offers a much more
efficient prover (both in time and more importantly in memory
consumption) compared to other VC protocols. In particular,
for a prover with 256GB of memory, vRAM can support
computations which are about 63× away from its break-even
point, compared to vnTinyRAM’s 312× and Buffet’s 20–40×
(depending on the program to be verified).

C. Comparison to Other RAM-based VC systems

In this section, we briefly discuss the performance of our
system compared to other RAM-based VC systems.

Pantry and SNARKs for C. Pantry [17] and SNARKs
for C [9] are two VC schemes that predate Buffet and
vnTinyRAM, with their performance subsumed by those sys-
tems (see [50, Figure 10] and [11, Figure 3]).

Exploiting Data Parallel Structure via Bootstrapping.
Geppetto [20] is a VC system that takes a large circuit, splits
it into sub-circuits, and preprocesses each sub-circuit with a
SNARK separately. An additional SNARK is then applied
to aggregate and verify the outputs of all sub-circuits in a
”bootstrapping” step. Though verifiable RAM is not explicitly
considered in [20], the system can be potentially applied to
circuits checking the correctness of a RAM program, such
as ones in Sections II-D and III. Due to the data parallel
structure of these circuits, Geppetto can reduce the setup time
asymptotically (e.g., only one setup for the sub-circuit Cmem,
Ctime etc.). However, it introduces a big concrete overhead for
both setup and prover time because of the bootstrapping phase.
For example, it requires ∼ 30,000-100,000 gates to bootstrap
one small sub-circuit of just 500 gates [20, Section 7.3.1].

Constant or No Preprocessing. Two alternative approaches
for RAM-based VC are suggested in [10], [7] by Ben-Sasson
et al. The first uses composition of elliptic curves to recursively
apply a SNARK in a sequence of T fixed-size circuits, each
of which validates the state of a single previous CPU step,
executes the next CPU step, and outputs the new state. In
this way, the resulting setup time is constant. The second
constructs a RAM-based VC without any preprocessing by
using PCPs. Both these systems incur a very large concrete
overhead on the prover. It takes 35.5 seconds/cycle for the
first system [10, Figure 1], which is about 3000× slower than
ours. For the second one, it takes 0.33 seconds/cycle using 64
threads in parallel [7, Figure 1], which roughly corresponds
to 21.1 seconds/cycle using single thread [7, Section 2]. This
is compared to our single threaded implementation which
achieves 0.015 seconds/cycle. We leave the task of achieving
a speedup for our system via parallelization as future work.
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Fig. 3. Prover time for evaluating memcpy (left), RC4 (right) using vRAM
with (green) and without (blue) the optimizations of Section V-D. For memcpy
we vary the size of the copied memory block and for RC4 we vary the number
of pseudorandom bytes generated.

D. Just-in-Time Architecture

Next, we use the architecture-independent preprocessing
property of our scheme to improve performance for specific
tasks. Common just-in-time compilation methods are used to
optimize the executed code for a specific architecture. The cir-
cuit independent preprocessing feature of our construction al-
lows us to take this approach further and modify the machine’s
architecture in order to better fit a specific program after
executing it, when the program’s exact behavior on its inputs is
known. We illustrate this using two benchmarks from [9], [11].
We stress that since our protocol has architecture-independent
preprocessing we are able to change the architecture without
rerunning the preprocessing phase. In particular, the following
results were achieved with a single preprocessing execution.
In all cases, the verifier’s runtime remained below 150ms.
Improving Performance by Adding Instructions. Fig-
ure 3(left) shows prover’s time for evaluating a program which
copies consecutive blocks of memory from one location to
another (e.g., memcpy). We achieve a 3.6× improvement by
introducing a memory instruction which (1) copies a byte from
memory address A to memory address B and (2) increments A
and B by 1 for the next loop iteration. This reduces the number
of gates in the obtained circuit, thus yielding lower prover
time. In this case, we did not modify any of the machine’s
other parameters (e.g., number of registers and register size).
Improving Performance by Changing Register Sizes. Next,
Figure 3(right) shows prover’s time for evaluating a RC4
pseudorandom generator on a highly specialized architecture.
More specifically, we modified the machine to contain 3 8-bit
registers, a 32-bit address register for memory accesses and
a 32-bit program counter. Each RC4 round was implemented
using 16 instructions operating over the 8-bit registers. Notice
the 2.4× speedup compared to the non-optimized version,
which again results from the overall reduction of necessary
gates in order to generate one pseudorandom byte.
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APPENDIX A
ARITHMETIC CIRCUITS AND MULTILINEAR EXTENSIONS

An arithmetic circuit C is a directed acyclic graph whose
vertices are called gates and whose edges are called wires.
Every in-degree 0 gate in C is labeled by a variable from
a set of variables X = {x1, · · · ,xn} and is referred to as an
input gate. All other gates in C have in-degree 2, are labeled
by elements from {+,×} and referred to as addition and
multiplication gates, respectively. Every gate of out-degree
0 is called an output gate. In the following, we focus only
on layered circuits and we assume that the output gates are
ordered. We say that a circuit is layered if it can be divided
into disjoint sets L1, · · · ,Lk such that every gate of g belongs
to some set Li and all the wires of C connect gates in two
consecutive layers (i.e., between L j and L j+1 for some j). We
write C : Fn → Fk to indicate that C is an arithmetic circuit
with n inputs and k outputs evaluated (as defined in a natural
way) over a field F. We denote by |C| the number of gates in



the circuit C, by widthi(C) the number of gates in the i-the
layer of C and by width(C) the maximum width of C, i.e.,
width(C) = maxi{widthi(C)}.
Polynomial Decomposition. We use the following lemma
when proving properties of our VPD protocol.

Lemma 1 ([39]). Let f : F`→ F be a polynomial of variable
degree d. For all t ∈F` there exist efficiently computable poly-
nomials q1, . . . ,q` such that: f (x)− f (t) = ∑

`
i=1(xi− ti)qi(x)

where ti is the ith element of t.

Multilinear Extensions. For any function V : {0,1}`→ F we
define the multilinear extension, Ṽ : F`→ F, of V as follows:
Ṽ (x1, · · · ,x`) = ∑b∈{0,1}` ∏

`
i=1Xbi(xi)V (b) where bi is the i-th

bit of b, X1(xi) = xi and X0(xi) = 1− xi. Note that Ṽ is the
unique polynomial that has degree at most 1 in each of its
variables that satisfies Ṽ (x) =V (x) for all x ∈ {0,1}`.
Multilinear Extensions of Arrays. An array A =
(a0, · · · ,an−1) where ai ∈ F can be viewed as a function
A : {0,1}logn→ F such that A(i) = ai for all 0≤ i≤ n−1. In
the sequel, we abuse the terminology of multilinear extensions,
by defining (in the natural way) a multilinear extension Ã of an
array A. A useful property of multilinear extensions of arrays is
the ability to efficiently combine them. That is, given 2m arrays
A1, · · · ,A2m of equal length n, the multilinear extensions of the
array corresponding to their concatenation A = A1|| · · · ||A2m

can be evaluated on a point x = (x1, · · · ,xm+logn) as

Ã(x1, · · · ,xm+logn) =
2m−1

∑
i=0

m

∏
j=1
Xi j(x j)Ãi(xm+1, · · · ,xm+logn)

where i j is the j-th bit of i and Xi j(x j) is defined above.

APPENDIX B
CRYPTOGRAPHIC ASSUMPTIONS

Our constructions make use of the following assumptions.

Assumption 1 ([15] (q-Strong Diffie-Hellman)). For any PPT
adversary A, the following probability is negligible:

Pr

 bp← BilGen(1λ );

s R← Z∗p;
σ = (bp,gs, . . . ,gsq

)

: (x,e(g,g)
1

s+x )←A(1λ ,σ)

 .
The following is a direct generalization of Groth’s q-PKE

assumption [30] for multivariate polynomials.

Assumption 2 ((d, `)-Power Knowledge of Exponent [52]).
For any PPT adversary A there is a polynomial-time algorithm
E (running on the same random tape) such that for all benign
auxiliary inputs z ∈ {0,1}poly(λ ) the following probability is
negligible:

Pr



bp← BilGen(1λ );

s1, . . . ,s`,α
R← Z∗p,s0 = 1;

σ1 = {g∏i∈W si}W∈W`,d ;
σ2 = {gα·∏i∈W si}W∈W`,d ;

σ = (bp,σ1,σ2,gα);
G×G 3 (h, h̃)←A(1λ ,σ ,z);
(a0, . . . ,a|W`,d |)←E(1λ ,σ ,z)

:

e(h,gα) = e(h̃,g)
∧

∏
W∈W`,d

gaW ∏i∈W si

6= h


.

In the above, we assume that z comes from a benign
distribution (similar to [20], [29], [23]), in order to avoid
the negative results of [16], [13]. Concretely, our proofs hold
assuming the auxiliary input necessary for extraction comes
from a benign distribution.

To simplify the exposition, we assume symmetric (Type I)
pairings. However, since asymmetric pairings are more effi-
cient in practice, our implementations use a version of our
constructions based on asymmetric pairings; our assumptions
can be re-stated for that setting in a straightforward manner.

APPENDIX C
THE SUM-CHECK PROTOCOL

Introduced in [37], the sum-check protocol allows a prover
P to convince a verifier V that

H = ∑
b1∈{0,1}

∑
b2∈{0,1}

· · · ∑
b`∈{0,1}

g(b1,b2, · · · ,b`)

where g(x1, · · · ,x`) is an `-variate polynomial over some
finite field F. While the direct computation of H will require
V to evaluate g at least 2` times, V’s work can be made
polynomial in ` using the sum-check protocol which we now
describe. Indeed, the protocol proceeds in ` rounds. During
the first round, P sends V the following univariate polynomial
g1(x) = ∑b2,··· ,b`∈{0,1} g(x,b2, · · · ,b`). Next, V checks that the
degree of x in g1 is at most the degree of x1 in g and that
H = g1(0)+ g1(1), rejecting if any of these checks fails. In
case both checks pass, V sends P a uniform challenge r1.
During the i-th round of the protocol, P sends the polynomial
gi(x) = ∑bi+1,··· ,b`∈{0,1} g(r1, · · · ,ri−1,x,bi+1, · · · ,b`). V then
checks that gi−1(ri−1) = gi(0)+gi(1), rejecting otherwise. In
case the check passes, V sends a uniform ri to P , to be
used in the next round. At the final round, V accepts only
if g(r1, · · · ,r`) = g`(r`). Define the degree of each monomial
in g as the sum of the powers of its variables. The total degree
of g is defined as the maximal degree of any of its monomial.

Theorem 4 ([37]). For any `-variate, total-degree-d poly-
nomial g over finite field F, the above-described sum-check
protocol is an interactive proof for the (no-input) function
∑b1,··· ,b`∈{0,1} g(b1, · · · ,b`) with soundness d ·`/|F|. Moreover,
V performs poly(`) arithmetic operations over F and one
evaluation of g on a random point r.

Remark 1. When g is a multilinear polynomial (the degree
of each variable is at most 1, and the total degree is `), the
running time of P in round i of the sum-check protocol is
min{O(m),O(2`−i)}, where m is the total number of distinct
monomials in g [19], [45], [47].

APPENDIX D
FORMAL DESCRIPTION OF THE CMT PROTOCOL

In this section, we describe the final part of the CMT
protocol which condenses to a single evolution per circuit
layer, we present the formal description of the CMT protocol
(in Construction 3), and we state the corresponding theorem.
Condensing to a Single Claim Per Layer. Let γ : F→ Fs1

be the unique line defined by γ(0) = q1 and γ(1) = q2. The



Construction 3 (CMT protocol). Let C : Fn→ F be a depth-d layered arithmetic circuit over a finite field F. Let x ∈ Fn be inputs of
C such that C(x) = 1. In order for the prover Pcmt to convince the verifier Vcmt that C(x) = 1, the protocol proceeds as follows.
1) Both parties set a0 = 1 and r0 = 0. The protocol process as follows.
2) For i = 1, . . . ,d, the protocol proceeds as follows.

a) Pcmt and Vcmt run the sum-check protocol for value ai−1 and polynomial fi−1,ri−1 as per Equation (1). In the last step of the
sum-check protocol, Vsc is supposed to evaluate fi−1,ri−1 at a random point ρi. Psc then provides values (a1,a2) for which it claims
that a1 = Ṽi(q1) and that a2 = Ṽi(q2) where q1,q2 are the last 2si elements of ρi.

b) Let γ : F→ Fsi be the line defined by γ(0) = q1 and γ(1) = q2. Pcmt sends the degree-si polynomial hi(x) = Ṽi(γ(x)). Next, V
verifies that h(0) = a1 and h(1) = a2. In case both check pass, Vcmt chooses uniformly at random r′i ∈ F, sets ai = h(r′i), ri = γ(r′i)
and sends (ri,ai) to Pcmt .

3) V accepts if ad = Ṽd(rd), where Ṽd is the multilinear extension of the polynomial representing the input x.

CMT prover Pcmt sends a degree-s1 polynomial h claimed
to be Ṽ1(γ(·)) (i.e., the restriction of Ṽ1 to the line γ). The
CMT verifier Vcmt then checks that h(0) = a1 and that h(1) =
a2. In case both checks pass, Vcmt picks a random point r1
and initiates a single execution of the sum-check protocol in
order to verify that h(r1) = Ṽ1(γ(r1)). Thus, this condensing
procedure reduces the total number of invocations of the sum-
check protocol was from O(2d) to O(d).

So far, we have assumed that the circuit C has only a single
output value y ∈ {0,1}. Larger outputs can be handled [47]
by having the initial claim made by the prover to be stated
directly about the multilinear extension of the claimed circuit
output. Formally, consider the following theorem regarding the
CMT protocol presented in Construction 3.

Theorem 5 ([28], [19], [47], [45]). Let C :Fn→Fk be a depth-
d layered arithmetic circuit over a finite field F. The protocol
presented in Construction 3 is an interactive proof for the func-
tion computed by C with soundness O(d · logS/|F|), where S is
the maximal number of gates per circuit layer. Moreover, P’s
running time is O(|C| logS) and the protocol uses O(d logS)
rounds of interaction. Finally, if ˜addi and ˜multi are computable
in time O(polylogS) for all the layers of C, then the running
time of the verifier V is O(n+ k+d ·polylogS).

The following remark is particularly useful in case the circuit
C being evaluated has a highly regular repetitive structure.

Remark 2 ([45]). If C can be expressed as a composition of (i)
parallel copies of a layered circuit C′ whose maximum number
of gates at any layer is S′, and (ii) a subsequent “aggregation”
layered circuit C′′ of size O(|C|/ log |C|), the running time of
P is reduced to O(|C| log |S′|).

APPENDIX E
FURTHER REDUCING THE COST OF MEMORY CHECKING

Even after our RAM optimizations from Section III, the
circuit C contains T copies of Cmem. In practice however, it
is almost certain that not every cycle will perform a memory
access. E.g., even for a program that consists of a single for
loop that simply loads a memory location per repetition, the
total percentage of memory accesses is 25% (one instruction
for the memory load, plus three for counter increase, loop
bound check, and jump). Motivated by this, we exploit the
circuit-independent pre-processing of our argument to modify
C so that it only contains αT copies of Cmem where α is the
percentage of general memory accesses over the total steps.

In order to achieve this, we split the witness to two
separate parts. The first contains tr and tr∗∗ sorted by time
and instruction type, and the second contains tr∗. Recall
that after the optimization in Section III, tr∗ only contains
AT+`, · · · ,A2T+`, which is a permutation of S1, · · · ,ST sorted
by accessed memory addresses. Then, by our design, if Ii
is not a memory load/store instruction, we set the accessed
memory address of Si as 0 and all the values in Si as 0s before
sorting. In this way, the first (1−α)T states in AT+`, · · · ,A2T+`

are all zeros (assuming the real memory address starts from
1) and there is no need to check anything for these states,
as they are not memory operations. Because of this layout,
now the prover only includes AT+`+αT , · · · ,A2T+` in tr∗, and
tells the verifier the number of non-memory operations. With
these information, it is sufficient to validate the new tr∗ is a
permutation of non-zero states in tr using CMT on circuit C′,
and the technique is described in [52] for handling circuits that
receive inputs at different levels. With this optimization, we
manage to reduce the number of Cmem further from T to αT ,
which is a significant improvement in practice. However, the
verifier now needs to run two VPD instances (once for each
part of the witness). See [52] for a more detailed explanation.

APPENDIX F
COMPLEXITY OF THE MODIFIED CMT

We now analyze the complexity of the sum-check protocol
of equation 2 in Section IV-A. For the first 2si+1 rounds,
there are at most BSi monomials per round, as there are
at most BSi gates in the i-th layer of the circuit and the
number of non-zero monomials in ˜addi+1 and ˜multi+1 is
bounded by the number of gates. By Remark 1, this takes
O(BSi) arithmetic operations per round, so the complexity for
these rounds is O(BSi logSi+1). For the remaining rounds, by
Remark 1, P’s running time is O(2dlogBe− j) in round 2si+1+ j
( j = 1, . . . ,dlogBe) and the complexity is O(B). Thus, the
complexity is dominated by the first part, i.e., O(BSi logSi+1).

APPENDIX G
ANALYSIS OF OUR NEW VPD SCHEME

Theorem 6. Under Assumptions 1 and 2, Construction 1 is
an extractable VPD scheme. For a variable-degree-d `-variate
polynomial f ∈F containing m monomials, algorithm KeyGen
runs in time O(

(`(d+1)
`d

)
), Commit in time O(m), Evaluate in

time O(`dm), Ver in time O(`) and CheckCom in time O(1). If
d = 1, Evaluate runs in time O(2`). The commitment produced



by Commit consists of O(1) group elements, and the proof
produced by Evaluate consists of O(`) elements of G.

Proof. The completeness requirement immediately follows
from the construction of (KeyGen,Commit,Evaluate,Ver).

We now prove the extractability property. Let A be a PPT
adversary that on input (1λ ,pp), where (pp,vp) is the output
of KeyGen(1λ , `,d), outputs commitment com∗ such that
CheckCom(com∗,vp) accepts. This implies that e(c1,gα) =

e(c2,g) where com∗ def
= (c1,c2). By Assumption 2, there exists

PPT extractor E ′ for A such that upon the same input as A, and
with access to the same random tape, outputs a0, . . . ,a|W`,d | ∈F
such that ∏W∈W`,d

gaW ∏i∈W si = c1, except with negligible
probability. Note that, the coefficients (a0, . . . ,a|W`,d |) can be
encoded as a variable-degree-d, `-variate polynomial that has
ai as its monomial coefficients. We now build extractor E :

1) Upon input (1λ ,pp), E runs E ′ on the same input.
2) E tries to parse the output of E ′ as a0, . . . ,a|W`,d | ∈ F and

aborts if this fails.
3) E outputs f ′, where f ′ ∈ F is the polynomial with coeffi-

cients a0, . . . ,a|W`,d |.

Note that E is PPT as E ′ is PPT and it only performs
polynomially many operations in F. It remains to argue that
f ′ is a valid pre-image of Commit except with negligible
probability. Observe that, if E does not abort, it follows from
the construction of Commit that Commit( f ′,pp)= com, where
com is the output commitment of A. By assumption 2, the
probability that the output E ′ is not a valid set of coefficients
is negligible which concludes the proof.

Next, we prove the soundness property. Let A be a PPT
adversary that wins the soundness game with non-negligible
probability. For i = 1, . . . , ` we define adversary Ai that re-
ceives the same input as A and executes the same code, but
outputs only (πi,π

′
i ) ∈ π∗ (where π∗ is the proof output by

A). Moreover, since A is PPT, all these adversaries are also
PPT. Thus, for i= 1, . . . , `, from Assumption 2 there exists PPT
Ei (running on the same random tape as Ai) which on input
(1λ ,pp) outputs a0,i, . . . ,a|W`,d |,i ∈ F such that the following
holds: If e(πi,gα) = e(π ′i ,g) then ∏W∈W`,d

gaW,i ∏ j∈W s j 6= πi,
except with negligible probability. Note that, the coefficients
(a0,i, . . . ,a|W`,d |,i) for i = 1, . . . , ` can always be encoded as a
variable-degree-d, `-variate polynomial which we denote by
q′i(x) for undefined variable x = (x1, . . . ,x`).

We construct an adversary B that breaks Assumption 1. On
input (1λ , p,G,GT ,e,g,gs,gs2

, . . . ,gs`·d ), B does the following:
Parameter Generation. B implicitly sets s1 = s and for i =
1, . . . , ` he chooses ri ∈ F uniformly at random and sets (also
implicitly) si = s · ri. Then he chooses uniformly at random
a value α ∈ F. Next B needs to generate the terms in P =
{g∏i∈W si , gα·∏i∈W si}W∈W`,d . Since the exponent of each term
is a product of at most ` ·d factors where each factor is one
of the values si = s · ri, it can be written as a polynomial in
s with degree at most ` · d. Therefore, B can compute these
terms from the values g,gs,gs2

, . . . ,gs`·d and α . Finally, B runs
A on input (1λ ,pp), where pp= (p,G,GT ,e,g,gα ,P).

Query Evaluation. Upon receiving ( f ∗, t∗,y∗,π∗) from
A, B first runs Commit( f ∗,pp) to receive com

def
=

(c1,c2) and then runs Ver(com, t∗,y∗,π∗,vp) where vp =

(1λ , p,G,GT ,e,g,gs,gs2
, . . . ,gs`·d ,gα). If Ver rejects, B aborts,

else he runs extractors E1, . . . ,E` (defined above) on the same
input as A and receives polynomials q′1, . . . ,q

′
`. If for the

output of any of the Ei it holds that ∏W∈W`,d
gaW,i ∏ j∈W s j 6= πi,

B aborts. Otherwise, let δ = y∗ − f ∗(t∗) and let Q(x) be
the polynomial over F defined as Q(x) def

= f ∗(x)− f ∗(t∗)−
∑
`
i=1(xi− ti)q′i(x) where t∗ def

= (t1, . . . , t`). B picks τ ∈ F uni-
formly at random. If gτ = g−s, he sets τ← τ+1. He then com-
putes polynomial Q′(x) def

= Q(x)/(τ + x1) and finally outputs
(τ,e(g,g)δ−1·Q′(s1,...,s`)) as a challenge tuple for Assumption 1.

Since s1 = s,s2 = r2 · s, . . . ,s` = r` · s, we have
Q′(s1, . . . ,s`) = Q′′(s) where Q′′ is an efficiently computable
univariate polynomial of degree ` ·d hence e(g,g)−δ ·Q′(s1,...,s`)

is computable from (1λ , p,G,GT ,e,g,gs,gs2
, . . . ,gs`·d ). B

is clearly PPT since all of Ei are PPT and he performs
polynomially many operations in F,G,GT . Next, we analyze
the success probability of B. Recall that, by assumption
A succeeds in violating soundness with probability ε . We
observe that, conditioned on not aborting, B’s output is
always a valid tuple for breaking Assumption 1. Let us argue
why this is true. Since verification succeeds, it holds that
e(c1/gy∗ ,g) = ∏

`
i=1 e(gsi−ti ,πi); since extraction succeeds,

this can be replaced with

e(g,g) f ∗(s1,...,s`)−δ− f ∗(t∗) =
`

∏
i=1

e(gsi−ti ,gq′i(s1,...,s`))

e(g,g)δ = e(g,g) f ∗(s1,...,s`)− f ∗(t∗)
`

∏
i=1

e(gsi−ti ,g−q′i(s1,...,s`))

e(g,g)δ = e(g,g) f ∗(s1,...,s`)− f ∗(t∗)−∑
`
i=1 (si−ti)q′i(s1,...,s`).

By the definition of Q′ it follows that

e(g,g)δ = e(g,g)Q(s1,...,s`)

e(g,g)
δ

τ+s1 = e(g,g)
Q(s1 ,...,s`)

τ+s1 = e(g,g)Q′(s1,...,s`)

e(g,g)
1

τ+s1 = e(g,g)δ−1·Q′(s1,...,s`).

Thus, the final piece in order to conclude the proof is to bound
the probability that B aborts. Note that, conditioned on A
winning, B will only abort if extraction fails which can only
happen with negligible probability neg(λ ). This holds since,
if verification succeeds it must be that e(π ′i ,g) = e(πi,gα) for
i = 1, . . . , ` and in this case, by Assumption 2, extraction for
any of E1, . . . ,E` fails with negligible probability. Since ` is
polynomial in λ it follows that the probability any of them fails
(which by a union bound is at most equal to the sum of each
individual failure probability) is also negligible. Finally, let us
argue that the polynomial division Q(x)/(τ + x1) is always
possible. Recall, that for polynomials defined over finite fields
division is always possible assuming that the divident’s degree
is at least as large as that of the divisor’s. Moreover, the degree
of the quotient is at most that of the divident’s and that of the
remainder is strictly smaller than that of the divisor. Let us



assume for contradiction that Q(x) is a constant polynomial.
Since, e(g,g)δ = e(g,g)Q(s1,...,s`+1) and e(g,g) is a generator
or GT , it must be that Q(x) def

= δ therefore we can write

−δ =
`

∑
i=1

(xi− ti)q′i(x)− f ∗(x)+ f ∗(t∗)

f ∗(x)−δ − f ∗(t∗) =
`

∑
i=1

(xi− ti)q′i(x)

f ∗(x)− y∗ =
`

∑
i=1

(xi− ti)q′i(x)

From the above relation it follows that t∗ is a root of the
polynomial f ′ def

= f ∗(x)− y∗, i.e., f ′(t∗) = 0 which implies
that f ∗(t1, . . . , t`) = y∗. Thus, in this case, y∗ is the correct
evaluation of f ∗ on t∗, i.e., δ = 0 and A did not cheat. In all
other cases, the polynomial division is possible.

From the above analysis it follows that the probability that
B succeeds is at least (1−neg(λ ))ε . By assumption, ε is the
non-negligible probability that A wins the soundness game,
therefore B’s success probability is also non-negligible. This
contradicts Assumption 1 and our proof is complete.
Asymptotic Analysis. The claims for the general polynomial
case follow directly from the analysis of [39]. For d = 1, i.e.,
for multi-linear polynomials, we prove the tighter bound for
the runtime of Evaluate below.

Recall that during Evaluate the prover computes
polynomials qi(xi, . . . ,x`) for i = 1, . . . , `, such that
f (x1, . . . ,x`) = ∑

`
i=1 (xi− ti) · qi(xi, . . . ,x`) + f (t1, . . . , t`)

and proof π = {gqi(si,...,s`),gαqi(si,...,s`)}`i=1. We start by
computing q1(x1, . . . ,x`). Since the degree of every variable
is at most 1, the multi-linear polynomial f can be written
as f (x1, . . . ,x`) = g(x2, . . . ,x`) + x1 · h(x2, . . . ,x`), where
g(x2, . . . ,x`) and h(x2, . . . ,x`) are multi-linear polynomials of
variables x2, . . . ,x`. In this way, f can be decomposed as

f (x1, . . . ,x`) = g(x2, . . . ,x`)+ x1 ·h(x2, . . . ,x`)

= (g(x2, . . . ,x`)+ t1 ·h(x2, . . . ,x`))+(x1− t1)h(x2, . . . ,x`)

= R1(x2, . . . ,x`)+(x1− t1)h(x2, . . . ,x`) .

We set q1(x1, . . . ,x`) = h(x2, . . . ,x`) (which means q1 con-
tains no monomial with x1), and proceed to decompose the
multi-linear polynomial R1(x2, . . . ,x`) with `− 1 variables in
the same way as f to compute q2(x2, . . . ,x`). Regarding the
complexity of this, note that both g(x2, . . . ,x`) and h(x2, . . . ,x`)
contain at most 2`−1 monomials. Therefore, it takes 2`−1

additions and multiplications to compute q1(x1, . . . ,x`) and
R1(x2, . . . ,x`), and 2`−1 exponentiations to generate gq1(s1,...,s`)

and gαq1(s1,...,s`) in the proof, respectively. The exact same
reasoning applies for all of q3, . . . ,q`. At the last step after
computing q`(x`), the remaining constant term is equal to
the answer f (t1, . . . , t`). In general, in the ith step, we are
decomposing Ri−1(xi, . . . ,x`) with `− i + 1 variables in the
same way above to compute qi(xi, . . . ,x`) and Ri(xi+1, . . . ,x`),
and the complexity is O(2`−i). Thus, the total complexity of
computing q1, . . . ,q` is O(2`−1)+O(2`−2)+ . . .= O(2`). The
polynomial evaluation in order to get the answer takes the

Bench VPD CMT Buffet vnTinyRAM
-mark Time/Input Time/Gate Time/Gate Time/Gate

#2 11.32 5.42 77.50 72.20
#3 13.17 6.36 68.34 72.15
#4 13.23 6.18 74.97 72.33
#5 12.90 5.77 72.10 72.37

TABLE V
PER GATE (INPUT) PROVER TIME FOR OUR VPD AND CMT, BUFFET AND

VNTINYRAM FOR THE LAST 4 RAM PROGRAMS IN THE BENCHMARK
(SAME ORDER AND SIZE AS IN TABLE III). TIME REPORTED IN µS.

same time. Each pair πi,π
′
i is computed with two exponenti-

ations, thus the overall running time is O(2`).
APPENDIX H

MICROBENCHMARKS
Verifiable Polynomial Delegation. Table V shows the prover
time of our implementation of the VPD from Section IV-B.
The prover time is about 12µs per input gate, which is about
8× faster than that of [52]. This is due to (i) our improved
VPD construction (amounting to around 2-4×) and (ii) due to
the fact that 85% of the inputs used in our RAM reduction
are field elements that encode single bit values (due to bit
decomposition, register indices and flags), which leads to faster
exponentiation times for the VPD prover.
CMT Protocol. Next, we evaluate the performance of our
CMT protocol. As can be seen in Table V, the average time
required per gate for the CMT prover is about 6µs, which is
about 4× slower than the 1.7µs number reported in [52]. This
is because we implemented our new CMT protocol supporting
circuits with different copies of sub-circuits in Section IV-A,
while the CMT protocol for regular circuits is used in [52].
Both the per-input time for the VPD protocol and the per- gate
time for the CMT protocol are much faster than the per-gate
time for Buffet and vnTinyRAM.
Circuit Generator. Finally, we report the number of gates
required by our reduction to verify a TinyRAM cycle. We
measure this by dividing the total number of gates of the cir-
cuits produced by the experimental evaluation of Section V-A
over the number of TinyRAM steps. For our tested programs
this circuit contained about 2500 gates, 600 of which are
multiplications (for comparison, vnTinyRAM takes roughly
2000 multiplication gates, as reported in [11]. Notice that the
work of [11] only needs to report the number of multiplication
gates while we must report on the total number of gates.


