
Density of States Derivation 
 

The density of states gives the number of allowed electron (or hole) states per volume at a 

given energy.  It can be derived from basic quantum mechanics. 

 

Electron Wavefunction 

 

The position of an electron is described by a wavefunction  zyx ,, .  The probability of 

finding the electron at a specific point (x,y,z) is given by  2
,, zyx , where total 

probability   dxdydzzyx
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,, is normalized to one. 

Particle in a Box 

The electrons at the bottom of a conduction band (and holes at the top of the valence 

band) behave approximately like free particles (with an effective mass) trapped in a box. 

We will consider here conduction band electrons, but the result for holes is similar. For 

our parabolic conduction band: 
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For electrons in a rectangular volume Lx by Ly by Lz with an infinite confining potential 

((U(x,y,z)=0 inside the box and ∞ outside), the electron wavefunction  must go to zero 

on the boundaries, and takes the form of a harmonic function within the region.  The 

wavefunction solution is: 

 

       , , sin sin sinx y zx y z k x k y k z     (1) 

 



and xk , yk , and zk are the wavevectors for an electron in the x, y, and z directions. The 

real wavefunction in a solid is more complex and periodic (with the crystal lattice), but 

this is a good approximation for the parabolic regions near the band edges. 

 

 
First 4 particle in a box wavefunctions across the x direction. 

Orthogonal directions are analogous. 

 

Enforcing the boundary conditions: At x, y, or z = 0, the sine functions go to zero.  At the 

opposite boundaries of the rectangular region,   0sin xxLk ,   0sin yyLk , and 

  0sin zzLk for the x, y, and z directions. The allowed wavevectors satisfy: 

 

x x xk L n , y y yk L n , z z zk L n , for zyx nnn ,,  integers  (2) 

 

 

K Space 

 

The allowed states can be plotted as a grid of points in k space, a 3-D visualization of the 

directions of electron wavevectors.  Allowed states are separated by , ,/ x y zL in the 3 

directions in k space. 

 

The k space volume taken up by each allowed state is 
3 / x y zL L L .  The reciprocal is the 

state density in k space (# of states per volume in k space), 3/V   where V is the volume 

of the semiconductor (in real space).  

 

The number of states available for a given magnitude of wavevector |k| is found by 

constructing a spherical shell of radius |k| and thickness dk.  The volume of this spherical 

shell in k space is dkk 24 . 



 
Allowed wavevector states in k space form a lattice. 

A spherical shell gives the number of allowed states at a specific radius |k|. 

 

The number of k states within the spherical shell, g(k)dk, is (approximately) the k space 

volume times the k space state density: 
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Each k state can hold 2 electrons (of opposite spins), so the number of electron states is: 
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Finally, there is a relatively subtle issue. Wavefunctions that differ only in sign are 

indistinguishable. Hence we should count only the positive nx, ny, nz states to avoid 

multiply counting the same quantum state. Thus, we divide (4a) by 1/8 to get the result: 
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This is an expression for the number of unique electron states available at a given |k| over 

a range dk.  We need an expression in terms of energy rather than wavevector k.  We 

proceed from the relationships between wavevector, momentum p, and energy E: 
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with *m  as the effective mass.  Rewriting, and noting that the energy of carriers in the 

conduction band is given with respect to the conduction band edge energy Ec: 
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Differentiating: 
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Combining (6) and (7a): 
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Plugging (6) and (7) into (4b): 
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    (8) 

 

Dividing through by V, the number of electron states in the conduction band per unit 

volume over an energy range dE is: 
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This is equivalent to the density of the states given without derivation in the textbook. 

 

 
3-D density of states, which are filled in order of increasing energy. 

 

Dimensionality 

 

The derivation above is for a 3 dimensional semiconductor volume.  What happens if the 

semiconductor region is very thin and effectively 2 dimensional?   

 

Confining the electron in the x-y plane, the wavevector z component kz =0.  The allowed 

states in k space becomes a 2 dimensional lattice of kx and ky values, spaced ,/ x yL apart.  

The 2-D k space area taken up by each state is 
2 / x yL L .  The number of states per area 

in k space is 2/A  with A as the real-space area of the thin semiconductor. 



 

The number of states available at a given |k| is found using an annular region of radius |k| 

and thickness dk rather than the spherical shell from the 3-D case. There is a factor of ¼ 

due to the equivalent nature of the +/- states (just as there was 1/8 in the 3D case).  The 

area is kdk .  The number of k space states is: 
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Converting to energy using (7b): 
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Cleaning up and dividing through by area, the density of states per area at an energy E 

over a range dE is: 
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Unlike the 3-D case, this expression is independent of energy E! 

 

In a real structure (which is not perfectly 2-D), there are finite energy ranges over which 

the energy independence holds (the derivation holds for each single, well separated 

possible value of kz).  The resulting density of states for a quantum well is a staircase, as 

below in red. 

 

Further restriction of the semiconductor dimensionality to 1-D (quantum wire) and 0-D 

(quantum dot) results in more and more confined density of states functions. 

 

 
Density of states for 0-D through 3-D regions. 

 

Low dimensional and confining nanostructures have lots of applications controlling 

carriers in semiconductor devices. 


