Fairness and Ethics in Al

David Fouhey, EECS 442 Winter 2023
https://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/
(but most of the slides taken from Justin Johnson's Fairness
lecture from our last joint offering in W2021)

Disclaimers

- This lecture goes beyond Computer Vision
- I'm not an expert at this but I think it's really important
- I'm not part of any marginalized group
- We can only begin to scratch the surface in one lecture
- There are generally more problems than solutions

Additional Resources

Timnit Gebru and Emily Denton, CVPR 2020 Tutorial on FATE/CV
https://sites.google.com/view/fatecv-tutorial/home?authuser=0
Kate Crawford, "The Trouble with Bias", NeurIPS 2017 Keynote
https://www.youtube.com/watch?v=fMym BKWQzk
Solon Barocas, Moritz Hardt, Arvind Narayanan, "Fairness and machine learning", https://fairmlbook.org/

ACM Conference on Fairness, Accountability, and Transparency
https://facctconference.org/

Why do we build ML systems?

Automate decision making, so machines can make decision instead of people.

Ideal: Automated decisions can be cheaper, more accurate, more impartial, improve our lives

Reality: If we aren't careful, automated decisions can encode bias, harm people, make lives worse

Case Study: COMPAS

1. Person commits a crime, is arrested
2. COMPAS software predicts the chance that the person will commit another crime in the future (recidivism)
3. Recidivism scores impact criminal sentences: if a person is likely to commit another crime, shouldn't they get a longer sentence?

Real system that has been used in New York, Wisconsin, California, Florida, etc

Case Study: COMPAS

2016 ProPublica article analyzed COMPAS scores for >7000 people arrested in Broward county, Florida

Question: How many of these people ended up committing new crimes within 2 years?

Error Metrics

	Prediction: Low Risk	Prediction: High Risk
Outcome: No Recidivism	True Negative (TN)	False Positive (FP)
Outcome: Recidivated	False Negative (FN)	True Positive (TP)

Error Metrics: Error Rate

Error Metrics: False Positive Rate

False Positive Rate $=\frac{F P}{F P+T N}$ How often were non-offenders

Error Metrics: False Negative Rate

	Prediction: Low Risk	Prediction: High Risk
Outcome: No Recidivism	True Negative (TN)	False Positive (FP)
Outcome: Recidivated	False Negative (FN)	True Positive (TP)
Error Rate $=\frac{F P+F N}{T N+F P+F N+T P}$	How often is the prediction wrong?	

False Positive Rate $=\frac{F P}{F P+T N} \begin{aligned} & \text { How often were non-offenders } \\ & \text { predicted to reoffend? }\end{aligned}$
False Negative Rate $=\frac{F N}{F N+T P} \quad \begin{aligned} & \text { How often were offenders } \\ & \text { predicted not to reoffend? }\end{aligned}$

Error Metrics: Different Stakeholders

	Prediction: Low Risk	Prediction: High Risk
Outcome: No Recidivism	True Negative (TN)	False Positive (FP)
Outcome: Recidivated	False Negative (FN)	True Positive (TP)

Error Rate $=\frac{F P+F N}{T N+F P+F N+T P}$ How often is the prediction wrong?
Defendants care about this

False Positive Rate $=\frac{F P}{F P+T N} \begin{aligned} & \text { How often were non-offenders } \\ & \text { predicted to reoffend? }\end{aligned}$
False Negative Rate $=\frac{F N}{F N+T P} \quad \begin{aligned} & \text { How often were offenders } \\ & \text { predicted not to reoffend? }\end{aligned}$

Error Metrics: Different Stakeholders

	Prediction: Low Risk	Prediction: High Risk
Outcome: No Recidivism	True Negative (TN)	False Positive (FP)
Outcome: Recidivated	False Negative (FN)	True Positive (TP)
Error Rate $=\frac{F P+F N}{T N+F P+F N+T P}$	How often is the prediction wrong?	

Defendants care about this

False Positive Rate $=\frac{F P}{F P+T N} \begin{aligned} & \text { How often were non-offenders } \\ & \text { predicted to reoffend? }\end{aligned}$

Judges care about this

False Negative Rate $=\frac{F N}{F N+T P} \quad \begin{aligned} & \text { How often were offenders } \\ & \text { predicted not to reoffend? }\end{aligned}$

Case Study: COMPAS

	Prediction: Low Risk	Prediction: High Risk
Outcome: No Recidivism	2681 (TN)	1282 (FP)
Outcome: Recidivated	1216 (FN)	(TP)

Error Rate $=\frac{F P+F N}{T N+F P+F N+T P} \approx 34.6 \%$
False Positive Rate $=\frac{F P}{F P+T N} \approx 32.4 \%$
False Negative Rate $=\frac{F N}{F N+T P} \approx 37.4 \%$

Case Study: COMPAS

Black Defendants	Prediction: Low Risk	Prediction: High Risk
Outcome: No Recidivism	990 (TN)	805 (FP)
Outcome: Recidivated	532	1369 (FN)

White Defendants	Prediction: Low Risk	Prediction: High Risk
Outcome: No Recidivism	1139 (TN)	349 (FP)
Outcome: Recidivated	461	505
(FN)	(TP)	

Case Study: COMPAS

Black Defendants	Prediction: Low Risk	Prediction: High Risk
Outcome: No Recidivism	990 (TN)	805 (FP)
Outcome: Recidivated	532 (FN)	1369 (TP)

Error Rate $\approx 36.2 \%$

White Defendants	Prediction: Low Risk	Prediction: High Risk
Outcome: No Recidivism	1139 (TN)	349 (FP)
Outcome: Recidivated	461	505

Error Rate $\approx 33.0 \%$

Roughly similar error rates between white and black defendants

Case Study: COMPAS

Black Defendants	Prediction: Low Risk	Prediction: High Risk
Outcome: No Recidivism	990 (TN)	805 (FP)
Outcome: Recidivated	532 (FN)	1369 (TP)

Error Rate $\approx 36.2 \%$
False Positive Rate $\approx 44.9 \%$

White Defendants	Prediction: Low Risk	Prediction: High Risk
Outcome: No Recidivism	1139 (TN)	349 (FP)
Outcome: Recidivated	461	505
(FN)	(TP)	

Error Rate $\approx 33.0 \%$
False Positive Rate $\approx 23.5 \%$

Black defendants have 1.9x higher False Positive Rate!

Case Study: COMPAS

Black Defendants	Prediction: Low Risk	Prediction: High Risk
Outcome: No Recidivism	990 (TN)	805 (FP)
Outcome: Recidivated	532 (FN)	1369 (TP)

Error Rate $\approx 36.2 \%$
False Positive Rate $\approx 44.9 \%$
False Negative Rate $\approx 28.0 \%$

Error Rate $\approx 33.0 \%$

False Positive Rate $\approx 23.5 \%$ White defendants have 1.7x higher False Negative Rate

Case Study: COMPAS

Black Defendants	Prediction: Low Risk	Prediction: High Risk
Outcome: No Recidivism	990 (TN)	805 (FP)
Outcome: Recidivated	532	1369 (FN)

White Defendants	Prediction: Low Risk	Prediction: High Risk
Outcome: No Recidivism	1139 (TN)	349 (FP)
Outcome: Recidivated	461	505
(FN)	(TP)	

Surprising fact: COMPAS gives very different outcomes for white vs black defendants, but it does not use race as an input to the algorithm!

No Fairness Through Unawareness

Even if a sensitive feature (e.g. race) is not an input to the algorithm, other features (e.g. zip code) may correlate with the sensitive feature

In Practice

In Practice

Neural networks love taking shortcuts! Are there shortcuts in our data?

			AHRF	MIMIC-CXR	
Task	\% pos	AUROC (95\% CI)	\% pos	AUROC (95\% CI)	
Age	55	$0.72(0.66-0.78)$	57	$0.90(0.89-0.91)$	
Sex	40	$0.96(0.94-0.98)$	46	$1.00(1.00-1.00)$	
BMI	44	$0.91(0.88-0.94)$	-	-	
Race	9	$0.66(0.54-0.79)$	-	-	
Pacemaker	9	$0.97(0.91-1.00)$	-	-	
Insurance	-	-	9	$0.70(0.67-0.72)$	
Marital	-	-	44	$0.65(0.63-0.66)$	

Do I want to get diagnosed by an AI? Stay tuned.

In Practice

Why might this be an issue for medical diagnosis?

Formalizing Fairness

Y : Target variable (e.g. recidivism)
R : Classifier response (e.g. predicted recidivism)
A : Sensitive attribute (e.g. race)

Formalizing Fairness

Y : Target variable (e.g. recidivism)
R : Classifier response (e.g. predicted recidivism)
A : Sensitive attribute (e.g. race)

Fairness Definition 1: Independence

The classifier response is independent (as a random variable) from the sensitive attribute

$$
P(R, A)=P(R) P(A)
$$

Formalizing Fairness

Y : Target variable (e.g. recidivism)
R : Classifier response (e.g. predicted recidivism)
A : Sensitive attribute (e.g. race)

Fairness Definition 1: Independence

The classifier response is independent (as a random variable) from the sensitive attribute

$$
\begin{aligned}
P(R, A) & =P(R) P(A) \\
& =P(R \mid A) P(A) \text { (Chain Rule) } \\
\Rightarrow P(R \mid A) & =P(R)
\end{aligned}
$$

Formalizing Fairness

Y : Target variable (e.g. recidivism)
R : Classifier response (e.g. predicted recidivism)
A : Sensitive attribute (e.g. race)

Fairness Definition 1: Independence

The classifier response is independent (as a random variable) from the sensitive attribute

$$
P(R, A)=P(R) P(A) \Longrightarrow P(R \mid A)=P(R)
$$

COMPAS predictions are not independent - different distributions for black vs white

Formalizing Fairness

Y : Target variable (e.g. recidivism)
R : Classifier response (e.g. predicted recidivism)
A : Sensitive attribute (e.g. race)

Fairness Definition \#2: Separation

The classifier response is conditionally independent from the sensitive attribute given the target

$$
P(R, A \mid Y)=P(R \mid Y) P(A \mid Y)
$$

Formalizing Fairness

Fairness Definition \#2: Separation

COMPAS scores do

 not satisfy separationThe classifier response is conditionally independent from the sensitive attribute given the target

$$
P(R, A \mid Y)=P(R \mid Y) P(A \mid Y)
$$

By chain rule:

$$
=P(R \mid A, Y) P(A \mid Y)
$$

Which implies that: $P(R \mid A, Y)=P(R \mid Y)$
Same False Positive Rates between groups:

$$
P(R=1 \mid Y=0, A=a)=P(R=1 \mid Y=0, A=b)
$$

Same False Negative Rates between groups:

$$
P(R=0 \mid Y=1, A=a)=P(R=0 \mid Y=1, A=b)
$$

Formalizing Fairness

There are multiple ways to formalize notions of fairness mathematically

We've seen two (independence, separation) but there are many more!
Arvind Narayanan, " 21 fairness definitions and their politics" https://www.youtube.com/watch?v=j|XIuYdnyyk

It may be impossible to achieve all notions of fairness at the same time

Conclusion: Fairness in ML is not (purely) a technical problem! We need to think about context, stakeholders

Allocative Harms

- A system decides how to allocate resources
- If the system is biased, it may allocate resources unfairly or perpetuate inequality
- Examples:
- Sentencing criminals
- Loan applications
- Mortgage applications
- Insurance rates
- College admissions
- Job applications

Example: Video Interviewing

Technology

A face-scanning algorithm increasingly decides whether you deserve the job

HireVue claims it uses artificial intelligence to decide who's best for a job. Outside experts call it 'profoundly disturbing.'

Question 2 of 6
Tell me about a time when you solved a problem for a customer in a way that exceeded his or her expectations.

Hungarian -> English Translation
\equiv Google Translate
English translation
makes assumptions
Sign in
Documents

```
憗 Text
憗 Text
Ő szép. Ő okos. Ő olvas. Ő mosogat. Ő ×
épít. Ő varr. Ő tanít. Ơ főz. Ő kutat. Ő
gyereket nevel. Ő zenél. Ő takarító. Ő
politikus. Ő sok pénzt keres. Ő
süteményt süt. Ő professzor. Ő
asszisztens.|

\section*{Hungarian does not use gendered pronouns}
She is beautiful. He is clever. He reads. She washes the dishes. He builds. She sews. He teaches. She cooks. He's researching. She is raising a child. He plays music. She's a cleaner. He is a politician. He makes a lot of money. She is baking a cake. He's a professor. She's an assistant.

\section*{Hungarian -> English Translation}

\section*{\(\equiv\) Google Translate}

\title{
Possible solution: \\ Change the task; offer multiple suggestions
}
4)

he is beautiful (masculine)
■ く


First woman: CEO Barbie =(

Google coo 2021 results more diverse ๒ \＆a


Chief executive officer－Wikipedia en．wikipedia．org


Harvard study：What CEOs do all day cnbc．com


\section*{google}


CEO vs．Owner：The Key Differences onlinemasters．ohio．edu


CEO doesn＇t believe in CX ． heartofthecustomer．com


How to use＇CEO magic＇when tryi．．． europeanceo．com


7 Personality Traits Every CEO Shoul．．． forbes．com


Odilon Almeida as President ．．． businesswire．com


Roeland Baan new CEO of Haldor T．．． blog．topsoe．com
 －－
black （I）


You are the CEO of Your Life－Person．．． personalexcellence．co


Wartime CEOs are not the ideal leaders ft．com


\section*{Image Super-Resolution}

Input: Low-Resolution Face


Output: High-Resolution Face


\section*{Pre-Al Photos}

- What does this photo do?
- Back in the day you got your photos printed. Kodak had print shops calibrate their settings via "Shirley Cards"
- Calibration settings totally off for people with darker skin!

\section*{Economic Bias in Visual Classifiers}


\section*{Ground-Truth: Soap}

Source: UK, \$1890/month

Azure: toilet, design, art, sink
Clarifai: people, faucet, healthcare, lavatory, wash closet
Google: product, liquid, water, fluid, bathroom accessory
Amazon: sink, indoors, bottle, sink faucet
Watson: gas tank, storage tank, toiletry, dispenser, soap dispenser
Tencent: lotion, toiletry, soap dispenser, dispenser, after shave


Ground-Truth: Soap
Source: Nepal, \$288/month
Azure: food, cheese, bread, cake, sandwich Clarifai: food, wood, cooking, delicious, healthy Google: food, dish, cuisine, comfort food, spam Amazon: food, confectionary, sweets, burger Watson: food, food product, turmeric, seasoning Tencent: food, dish, matter, fast food, nutriment
*This analysis
Problem: Datasets are Biased conflates gender with sex, and

\section*{Example: COCO Dataset} assumes that it is binary.


Define "gender bias" of object category C as:

Multilabel
Classification
Person
Umbrella
Cat
\#(C,Man)
\#(C,Man)+\#(C,Woman)

Example: "Snowboards" are 90\% biased towards men

\section*{Problem: Bias Amplification}

CNN predictions are more biased than their training data!
Reducing bias in datasets is not enough


\section*{Gender Shades: Intersectionality}
\(■\) MSFT ■ Face++ ■IBM


\author{
Task: Gender Classification Input: RGB Image \\ Output: \{Man, Woman\} Prediction
}

\section*{Gender Shades: Intersectionality}
\(\square\) MSFT ■ Face++ ■IBM


\section*{Gender Shades: Intersectionality}
\(\square\) MSFT ■ Face++ ■IBM


\section*{Gender Shades: Intersectionality}
\(\square\) MSFT \(\square\) Face++ ■IBM


\section*{Gender Shades: Intersectionality}
\(\square\) MSFT ■ Face++ ■IBM



Problem: Much higher error rate for dark-skinned women

Bigger Problem: Why are we classifying gender at all? Why does an automated system care? If it does, ask!

\section*{Think Critically about Datasets}

CelebA Dataset: 202k images labeled with 40 binary attributes


Liu et al, "Deep Learning Face Attributes in the Wild", ICCV 2015

\section*{Think Critically about Datasets}

CelebA Dataset: 202k images labeled with 40 binary attributes
\begin{tabular}{ll} 
5_o_Clock_Shadow & Double_Chin \\
Arched_Eyebrows & Eyeglasses \\
Attractive & Goatee \\
Bags_Under_Eyes & Gray_Hair \\
Bald & Heavy_Makeup \\
Bangs & High_Cheekbones \\
Big_Lips & Male \\
Big_Nose & Mouth_Slightly_Open \\
Black_Hair & Mustache \\
Blond_Hair & Narrow_Eyes \\
Blurry & No_Beard \\
Brown_Hair & Oval_Face \\
Bushy_Eyebrows & Pale_Skin \\
Chubby &
\end{tabular}

Pointy_Nose
Receding_Hairline
Rosy_Cheeks
Sideburns
Smiling
Straight_Hair
Wavy_Hair
Wearing_Earrings
Wearing_Hat
Wearing_Lipstick
Wearing_Necklace
Wearing_Necktie
Young

\section*{Think Critically about Datasets}

CelebA Dataset: 202k images labeled with 40 binary attributes
\begin{tabular}{lll} 
5_o_Clock_Shadow & Double_Chin & Pointy_Nose \\
Arched_Eyebrows & Eyeglasses & Receding_Hairline \\
Attractive & Goatee & Rosy_Cheeks \\
Bags_Under_Eyes & Gray_Hair & Sideburns \\
Bald & Heavy_Makeup & Smiling \\
Bangs & High_Cheekbones & Straight_Hair \\
Big_Lips & Male & Wavy_Hair \\
Big_Nose & Mouth_Slightly_Open & Wearing_Earrings \\
Black_Hair & Mustache & Wearing_Hat \\
Blond_Hair & Narrow_Eyes & Wearing_Lipstick \\
Blurry & No_Beard & Wearing_Necklace \\
Brown_Hair & Oval_Face & Wearing_Necktie \\
Bushy_Eyebrows & Pale_Skin & Young
\end{tabular}

Chubby

Many attributes seem subjective. Who chose the attributes?
Why? How are they defined? Who labeled the images?

\section*{Think Critically about Datasets}

CelebA Dataset: 202k images labeled with 40 binary attributes
5_o_Clock_Shadow Arched Evebrows

\section*{Almost no detail in the paper} images of 5, 749 identities. Each image in CelebA and LFWA is annotated with forty face attributes and five key points by a professional labeling company. CelebA and LFWA have over eight million and five hundred thousand attribute labels, respectively.


Wearing_Necklace Wearing_Necktie Young

\section*{Cnuody}

Many attributes seem subjective. Who chose the attributes?
Why? How are they defined? Who labeled the images?

\section*{Datasheets for Datasets}

\title{
Idea: A standard list of questions to answer when releasing a dataset. Who created it? Why? What is in it? How was it labeled?
}

\author{
A Database for Studying Face Recognition in Unconstrained Environments \\ Labeled Faces in the Wild
}

\section*{Motivation}

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that needed to be filled? Please provide a description.
Labeled Faces in the Wild was created to provide images that can be used to study face recognition in the unconstrained setting where image characteristics (such as pose, illumination, resolution, focus), subject demographic makeup (such as age, gender, race) or appearance (such as hairstyle, makeup, clothing) cannot be controlled. The dataset was created for the specific task of pair matching: given a pair of images each containing a face, determine whether or not the images are of the same person. \({ }^{1}\)

Who created this dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)?
The initial version of the dataset was created by Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller, most of whom were researchers at the University of Massachusetts Amherst at the time of the dataset's release in 2007.

Who funded the creation of the dataset? If there is an associated grant, please provide the name of the grantor and the grant name and number.
The construction of the LFW database was supported by a United States National Science Foundation CAREER Award.

The dataset does not contain all possible instances. There are no known relationships between instances except for the fact that they are all individuals who appeared in news sources on line, and some individuals appear in multiple pairs.

What data does each instance consist of? "Raw" data (e.g., unprocessed text or images)or features? In either case, please provide a description.
Each instance contains a pair of images that are 250 by 250 pixels in JPEG 2.0 format.

Is there a label or target associated with each instance? If so, please provide a description.
Each image is accompanied by a label indicating the name of the person in the image.

Is any information missing from individual instances? If so, please provide a description, explaining why this information is missing (e.g., because it was unavailable). This does not include intentionally removed information, but might include, e.g., redacted text.
Everything is included in the dataset.
Are relationships between individual instances made explicit (e.g., users' movie ratings, social network links)? If so, please describe how these relationships are made explicit.
There are no known relationships between instances except for


\section*{Model Cards}

\section*{Idea: A standard list of questions to answer when releasing a trained model. Who created it? What data was it trained on? What should it be used for? What should it not be used for?}

\section*{Model Card}
- Model Details. Basic information about the model.
- Person or organization developing model
- Model date
- Model version
- Model type
- Information about training algorithms, parameters, fairness constraints or other applied approaches, and features
- Paper or other resource for more information
- Citation details
- License
- Where to send questions or comments about the model
- Intended Use. Use cases that were envisioned during development.
- Primary intended uses
- Primary intended users
- Out-of-scope use cases
- Factors. Factors could include demographic or phenotypic groups, environmental conditions, technical attributes, or others listed in Section 4.3.
- Relevant factors
- Evaluation factors
- Metrics. Metrics should be chosen to reflect potential realworld impacts of the model.
- Model performance measures
- Decision thresholds
- Variation approaches
- Evaluation Data. Details on the dataset(s) used for the quantitative analyses in the card.
- Datasets
- Motivation
- Preprocessing
- Training Data. May not be possible to provide in practice. When possible, this section should mirror Evaluation Data. If such detail is not possible, minimal allowable information should be provided here, such as details of the distribution over various factors in the training datasets.
- Quantitative Analyses
- Unitary results
- Intersectional results
- Ethical Considerations
- Caveats and Recommendations

\section*{Model Cards}

\section*{Adopted by Google, OpenAI}


\section*{- Model Card: CLIP \\ Inspired by Model Cards for Model Reporting (Mitchell et al.) and Lessons from Archives (Jo \& Gebru), we're providing some accompanying information about the multimodal model. \\ Model Details}

The CLIP model was developed by researchers at OpenAl to learn about what contributes to robustness in computer vision tasks. Th model was also developed to test the ability of models to generalize to arbitrary image classification tasks in a zero-shot manner. In was not developed for general model deployment - to deploy models like CLIP, researchers will first need to carefully study their capabilities in relation to the specific context they're being deployed within.

\section*{Model Date}

January 2021

\section*{Model Type}

The base model uses a ResNet50 with several modifications as an image encoder and uses a masked self-attention Transformer as a text encoder. These encoders are trained to maximize the similarity of (image, text) pairs via a contrastive loss. There is also a varian of the model where the ResNet image encoder is replaced with a Vision Transformer

\section*{Model Version}

Initially, we've released one CLIP model based on the Vision Transformer architecture equivalent to ViT-B/32, along with the RN50 model, using the architecture equivalent to ResNet-50.

As part of the staged release process, we have also released the RN101 model, as well as RN50×4, a RN50 scaled up \(4 \times\) according to the EfficientNet scaling rule.

Please see the paper linked below for further details about their specification.

\section*{Documents}
- Blog Post
- CLIP Paper

\section*{Model Use}

\section*{Intended Use}

The model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such models - the CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis.

\section*{Model Cards}

\section*{Out-of-Scope Use Cases}

Any deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP's performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful.

Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.

\section*{Re-Examining Vision Datasets}

\section*{Tiny Images Dataset: 80M images collected semiautomatically from a dictionary plus image search}

Turns out it contains offensive category labels

\section*{Re-Examining Vision Datasets}

\section*{Tiny Images dataset contains offensive category labels}

June 29th, 2020
It has been brought to our attention [1] that the Tiny Images dataset contains some derogatory terms as categories and offensive images. This was a consequence of the automated data collection procedure that relied on nouns from WordNet. We are greatly concerned by this and apologize to those who may have been affected.

The dataset is too large ( 80 million images) and the images are so small ( \(32 \times 32\) pixels) that it can be difficult for people to visually recognize its content. Therefore, manual inspection, even if feasible, will not guarantee that offensive images can be completely removed.

We therefore have decided to formally withdraw the dataset. It has been taken offline and it will not be put back online. We ask the community to refrain from using it in future and also delete any existing copies of the dataset that may have been downloaded.

\section*{Result: Tiny Images Dataset taken offline by authors}

\section*{Consent vs Copyright Image copyright != Consent to use in a dataset}

\section*{Consent vs Copyright}

\section*{Image copyright != Consent to use in a dataset}

"One in two American adults is in a law enforcement face recognition network."

\section*{Bigger Picture}

\section*{Al for radiographic COVID-19 detection selects shortcuts over signal}

Alex J. DeGrave \(\mathbb{©}^{1,2,3}\), Joseph D. Janizek \(\mathbb{C}^{1,2,3}\) and Su-In Lee \({ }^{()^{1 凶}}\)


Takeaways
- Thinking about bias and fairness in automated systems goes far beyond computer vision
- People in many fields are thinking about these issues, not just CS
- It's important that the next generation of engineers and scientists (you all!) spend some time thinking about the implications of their work on people and society

\title{
Next Time: \\ Al For Science
}

\section*{Formalizing Fairness}

Independence: \(P(R, A)=P(R) P(A)\)
Separation: \(P(R, A \mid Y)=P(R \mid Y) P(A \mid Y)\)
What happens if a binary classifier satisfies both?

\section*{Formalizing Fairness}

Independence: \(P(R, A)=P(R) P(A)\)
Separation: \(P(R, A \mid Y)=P(R \mid Y) P(A \mid Y)\)
What happens if a binary classifier satisfies both?
\[
P(R=r \mid A=a)=P(R=r) \quad \text { (Independence) }
\]

\section*{Formalizing Fairness}

Independence: \(P(R, A)=P(R) P(A)\)
Separation: \(P(R, A \mid Y)=P(R \mid Y) P(A \mid Y)\)
What happens if a binary classifier satisfies both?
\(P(R=r \mid A=a)=P(R=r) \quad\) (Independence)
(Total probability) \(=\sum_{y} P(R=r \mid Y=y) P(Y=y)\)

\section*{Formalizing Fairness}

Independence: \(P(R, A)=P(R) P(A)\)
Separation: \(P(R, A \mid Y)=P(R \mid Y) P(A \mid Y)\)
What happens if a binary classifier satisfies both?
\(P(R=r \mid A=a)=P(R=r) \quad\) (Independence)
(Total probability) \(=\sum_{y} P(R=r \mid Y=y) P(Y=y)\)
(Total probability)
\(P(R=r \mid A=a)=\sum_{y} P(R=r \mid A=a, Y=y) P(Y=y \mid A=a)\)

\section*{Formalizing Fairness}

Independence: \(P(R, A)=P(R) P(A)\)
Separation: \(P(R, A \mid Y)=P(R \mid Y) P(A \mid Y)\)
What happens if a binary classifier satisfies both?
\(P(R=r \mid A=a)=P(R=r) \quad\) (Independence)
(Total probability) \(=\sum_{y} P(R=r \mid Y=y) P(Y=y)\)
(Total probability)
\(P(R=r \mid A=a)=\sum_{y} P(R=r \mid A=a, Y=y) P(Y=y \mid A=a)\)
(Separation) \(\quad=\sum_{y} P(R=r \mid Y=y) P(Y=y \mid A=a)\)

\section*{Formalizing Fairness}

Independence: \(P(R, A)=P(R) P(A)\)
Separation: \(P(R, A \mid Y)=P(R \mid Y) P(A \mid Y)\)
What happens if a binary classifier satisfies both?
\(P(R=r \mid A=a)=P(R=r) \quad\) (Independence)
(Total probability) \(=\sum_{y} P(R=r \mid Y=y) P(Y=y)\)
(Total probability)
\(P(R=r \mid A=a)=\sum_{y} P(R=r \mid A=a, Y=y) P(Y=y \mid A=a)\)
(Separation) \(\quad=\sum_{y} P(R=r \mid Y=y) P(Y=y \mid A=a)\)

\section*{Formalizing Fairness}

Independence: \(P(R, A)=P(R) P(A)\)
Separation: \(P(R, A \mid Y)=P(R \mid Y) P(A \mid Y)\)
What happens if a binary classifier satisfies both?
For all values a of \(A\), and all values \(r\) of \(R\), we must have:
\(\sum_{y} P(R=r \mid Y=y) P(Y=y)=\sum_{y} P(R=r \mid Y=y) P(Y=y \mid A=a)\)

\section*{Formalizing Fairness}

Independence: \(P(R, A)=P(R) P(A)\)
Separation: \(P(R, A \mid Y)=P(R \mid Y) P(A \mid Y)\)
What happens if a binary classifier satisfies both?
For all values a of \(A\), and all values \(r\) of \(R\), we must have:
\(\sum_{y} P(R=r \mid Y=y) P(Y=y)=\sum_{y} P(R=r \mid Y=y) P(Y=y \mid A=a)\)
\[
\begin{aligned}
& P(Y=0 \mid A=a)=p_{a} \\
& P(Y=\mathbf{1} \mid A=a)=\mathbf{1}-p_{a}
\end{aligned}
\]

\section*{Formalizing Fairness}

Independence: \(P(R, A)=P(R) P(A)\)
Separation: \(P(R, A \mid Y)=P(R \mid Y) P(A \mid Y)\)
What happens if a binary classifier satisfies both?
For all values a of \(A\), and all values \(r\) of \(R\), we must have:
\[
\begin{array}{rl}
\sum_{y} P(R=r \mid Y=y) P(Y=y)=\sum_{y} P(R=r \mid Y=y) P(Y=y \mid A=a) \\
P(Y=0)=p & P(Y=0 \mid A=a)=p_{a} \\
P(Y=1)=1-p & P(Y=\mathbb{1} \mid A=a)=1-p_{a}
\end{array}
\]

\section*{Formalizing Fairness}

Independence: \(P(R, A)=P(R) P(A)\)
Separation: \(P(R, A \mid Y)=P(R \mid Y) P(A \mid Y)\)
What happens if a binary classifier satisfies both?
For all values a of \(A\), and all values \(r\) of \(R\), we must have:
\[
\begin{array}{lll}
\sum_{y} P(\mathbb{R}=r \mid Y=y) P(Y=y)=\sum_{y} P(\mathbb{R}=r \mid Y=y) P(Y=y \mid A=a) \\
P(\mathbb{R}=r \mid Y=0)=r_{0} & P(Y=0)=p & P(Y=0 \mid A=a)=p_{a} \\
P(\mathbb{R}=r \mid Y=\mathbb{1})=r_{1} & P(Y=\mathbb{1})=\mathbb{1}-p & P(Y=\mathbb{1} \mid A=a)=\mathbb{1}-p_{a}
\end{array}
\]

\section*{Formalizing Fairness}

Independence: \(P(R, A)=P(R) P(A)\)
Separation: \(P(R, A \mid Y)=P(R \mid Y) P(A \mid Y)\)
What happens if a binary classifier satisfies both?
For all values a of \(A\), and all values \(r\) of \(R\), we must have:
\[
\begin{aligned}
& \sum_{y} P(R=r \mid Y=y) P(Y=y)=\sum_{y} P(R=r \mid Y=y) P(Y=y \mid A=a) \\
& P(R=r \mid Y=0)=r_{0} \quad P(Y=0)=p \quad P(Y=0 \mid A=a)=p_{a} \\
& P(R=r \mid Y=1)=r_{1} \quad P(Y=1)=1-p \quad P(Y=1 \mid A=a)=1-p_{a} \\
& r_{0} p+r_{1}(1-p)=r_{0} p_{a}+r_{1}\left(1-p_{a}\right) \\
& p\left(r_{0}-r_{1}\right)=p_{a}\left(r_{0}-r_{1}\right) \quad \text { Option 1: } r_{0}=r_{1} \\
& \text { Option 2: } p=p_{a} \\
& \text { Target, attribute } \\
& \text { are independent } \\
& \text { Useless classifier! }
\end{aligned}
\]```

