
Image
Filtering

EECS 442 ïDavid Fouhey

Winter 2022, University of Michigan
https://web.eecs.umich.edu/~fouhey/teaching/EECS442_W22/

HW Thoughts

ÅHomework in 442 is a bit more flexible, open-
ended, and less guided compared to 281

ÅA difficulty of 442 is that you learn the material
and how to do more open-ended work

ÅThis is a skill that you learn

ÅNumpy is a skill too!

HW Thoughts ïCons

ÅSome stuff will behave mysteriously

ÅSome library code youôll call will be annoying

ÅYou wonôt really work with a specification but
rather a guide

ÅIn general, can be much more frustrating,
especially at first

HW Thoughts ïPros

ÅLife isnôt fill-in-the-blanks!

ÅBut handling open-endedness is a skill you
learn, develop, and practice. You donôt start out
good at it, but you get better at it.

ÅGood news: Many more answers are right
(unless itôs a specific math equation)

ÅIn general, can be much more rewarding.

HW Thoughts

ÅWe rarely expect you match exact bytes

ÅLook at calling code; look at code that calls
you. Google funny numpy bugs.

ÅPrint sizes, types each time you have an error.

ÅTry on small examples

ÅWork in groups

Letôs Take An Image

Letôs Fix Things

Slide Credit: D. Lowe

ÅWe have noise in our image

ÅLetôs replace each pixel with a weighted

average of its neighborhood

ÅWeights are filter kernel

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Out

1D Case

1/3 1/3 1/3Filter

Signal 10 12 9 11 10 11 12

Output 10.33

Whatôs the average

of 9, 10, 12?

(a) 9 (b) 11.5

(c) 10.33 (d) 11.66

1D Case

1/3 1/3 1/3Filter

Signal 10 12 9 11 10 11 12

Output 10.33

Done! Next?

1D Case

1/3 1/3 1/3Filter

Signal 10 12 9 11 10 11 12

Output 10.33 10.66

(1) 10.66 (2) 9.33

(3) 14.2 (4) 11.33

1D Case

1/3 1/3 1/3Filter

Signal 10 12 9 11 10 11 12

Output 10.33 10.66 10

(1) 10.33 (2) 11.33

(3) 10 (4) 9.1

1D Case

1/3 1/3 1/3Filter

Signal 10 12 9 11 10 11 12

Output 10.33 10.66 10 10.66

1D Case

1/3 1/3 1/3Filter

Signal 10 12 9 11 10 11 12

Output 10.33 10.66 10 10.66 11

1D Case

10 12 9 11 10 11 12

1/3 1/3 1/3

10.33 10.66 10 10.66 11

=

You lose pixels (maybeé)

Filter ñseesò only a few pixels at a time

Applying a Linear Filter

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input

F11 F12 F13

F21 F22 F23

F31 F32 F33

Filter

O11 O12 O13

O21 O22 O23

O31 O32 O33

O14

O24

O34

Output

Applying a Linear Filter

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input & Filter

F11 F12 F13

F21 F22 F23

F31 F32 F33

Output

O11

O11 = I11*F11 + I12*F12 + é + I33*F33

Applying a Linear Filter

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input & Filter

F11 F12 F13

F21 F22 F23

F31 F32 F33

Output

O11

O12 = I12*F11 + I13*F12 + é + I34*F33

O12

Applying a Linear Filter

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input

F11 F12 F13

F21 F22 F23

F31 F32 F33

Filter Output

How many times can we apply a

3x3 filter to a 5x6 image?

Applying a Linear Filter

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input Output

Oij = Iij*F11 + Ii(j+1)*F12 + é + I(i+2)(j+2)*F33

O11 O12 O13

O21 O22 O23

O31 O32 O33

O14

O24

O34

F11 F12 F13

F21 F22 F23

F31 F32 F33

Filter

Painful Details ïEdge Cases

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Convolution doesnôt keep the whole image.

Suppose f is the image and g the filter.

f/g Diagram Credit: D. Lowe

Fullïany part of g touches f. Sameïsame size as f;

Validïonly when filter doesnôt fall off edge.

Painful Details ïEdge Cases

What to about the ñ?ò region?

Symm: fold sides over

pad/fill: add value, often 0

f

gg

gg

? ? ? ?

Circular/Wrap: wrap around

f/g Diagram Credit: D. Lowe

Painful Details ïDoes it Matter?

Input

Image

Box Filtered

???

Box Filtered

???

(Iôve applied the filter per-color channel)

Which padding did I use and why?

Note ïthis is a zoom of the filtered, not a filter of the zoomed

Painful Details ïDoes it Matter?

Input

Image

Box Filtered

Symm Pad

Box Filtered

Zero Pad

(Iôve applied the filter per-color channel)

Note ïthis is a zoom of the filtered, not a filter of the zoomed

Practice with Linear Filters

Slide Credit: D. Lowe

Original

?
0 0 0

0 1 0

0 0 0

Practice with Linear Filters

Slide Credit: D. Lowe

Original

0 0 0

0 1 0

0 0 0

The Same!

Practice with Linear Filters

Slide Credit: D. Lowe

Original

?
0 0 0

0 0 1

0 0 0

Practice with Linear Filters

Slide Credit: D. Lowe

Original

0 0 0

0 0 1

0 0 0

Shifted

LEFT

1 pixel

Practice with Linear Filters

Slide Credit: D. Lowe

Original

?
0 1 0

0 0 0

0 0 0

Practice with Linear Filters

Slide Credit: D. Lowe

Original

0 1 0

0 0 0

0 0 0

Shifted

DOWN

1 pixel

Practice with Linear Filters

?

Slide Credit: D. Lowe

Original

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Practice with Linear Filters

Slide Credit: D. Lowe

Original

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Blur

(Box Filter)

Practice with Linear Filters

?

Slide Credit: D. Lowe

Original
1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

0 0 0

0 2 0

0 0 0

-

Practice with Linear Filters

Slide Credit: D. Lowe

Original
1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

0 0 0

0 2 0

0 0 0

-

Sharpened
(Acccentuates

difference from

local average)

Sharpening

Slide Credit: D. Lowe

Properties ïLinear

Assume: I image f1, f2 filters

Linear: apply(I,f1+f2) = apply(I,f1) + apply(I,f2)

I is a white box on black, and f1, f2 are rectangles

Note: I am showing filters un-normalized and blown up. Theyôre a

smaller box filter (i.e., each entry is 1/(size^2))

== +

=A(,)+A(,) =

)+A(A(, ,)

Properties ïShift-Invariant

Assume: I image, f filter

Shift-invariant: shift(apply(I,f)) = apply(shift(I,f))

Intuitively: only depends on filter neighborhood

A(,) =

A(,) =

Painful Details ïSignal Processing

Often called ñconvolutionò. Actually cross-
correlation. Source of terrible confusion.

Cross-Correlation

(Original Orientation)

Convolution

(Flipped in x and y)

Properties of Convolution

ÅAny shift-invariant, linear operation is a convolution ()

ÅCommutative: f g = g f

ÅAssociative: (f g) h = f (g h)

ÅDistributes over +: f (g + h) = f g + f h

ÅScalars factor out: kf g = f kg = k (f g)

ÅIdentity (a single one with all zeros):

Property List: K. Grauman

=*

Questions?

ÅNearly everything onwards is a convolution.

ÅThis is important to get right.

Smoothing With A Box

Intuition: if filter touches it, it gets a contribution.

Input OutputFilter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Solution ïWeighted Combination

Intuition: weight contributions according to
closeness to center.

ὊὭὰὸὩὶ ᶿρ

ὊὭὰὸὩὶ ᶿÅØÐ
ὼ ώ

ς„

Whatôs this?

Recognize the Filter?

ὊὭὰὸὩὶ ᶿ
ρ

ς“„
ÅØÐ

ὼ ώ

ς„

Itôs a Gaussian!

0.003 0.013 0.022 0.013 0.003

0.013 0.060 0.098 0.060 0.013

0.022 0.098 0.162 0.098 0.022

0.013 0.060 0.098 0.060 0.013

0.003 0.013 0.022 0.013 0.003

Smoothing With A Box & Gauss

Still have some speckles, but itôs not a big box

Input Box Filter Gauss. Filter

Gaussian Filters

ů= 1

filter = 21x21

ů= 2

filter = 21x21

ů= 4

filter = 21x21

ů= 8

filter = 21x21

Note: filter visualizations are independently normalized throughout

the slides so you can see them better

Applying Gaussian Filters

Applying Gaussian Filters

Input Image

(no filter)

Applying Gaussian Filters

ů= 1

Applying Gaussian Filters

ů= 2

Applying Gaussian Filters

ů= 4

Applying Gaussian Filters

ů= 8

Picking a Filter Size

ů= 8, size = 21 ů= 8, size = 43

Too small filter Ÿ bad approximation

Want size å 6ů(99.7% of energy)

Left far too small; right slightly too small!

Runtime Complexity

for ImageY in range(N):

for ImageX in range(N):

for FilterY in range(M):

for FilterX in range(M):

é

Time: O(N2M2)

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43 I44 I45 I46

I51 I52 I53 I54 I55 I56

F11 F12 F13

F21 F22 F23

F31 F32 F33

I61 I62 I63 I64 I65 I66

Image size = NxN = 6x6

Filter size = MxM = 3x3

Separability

Fy1

Fy2

Fy3

Fx1 Fx2 Fx3 =

Fx1 *

Fy1

Fx1 *

Fy2

Fx1 *

Fy3

Fx2 *

Fy1

Fx2 *

Fy2

Fx2 *

Fy3

Fx3 *

Fy1

Fx3 *

Fy2

Fx3 *

Fy3

Conv(vector, transposed vector) Ÿ outer product

Separability

ὊὭὰὸὩὶ ᶿ
ρ

ς“„
ÅØÐ

ὼ ώ

ς„

ὊὭὰὸὩὶ ᶿ
ρ

ς“„
ÅØÐ

ὼ

ς„

ρ

ς“„
ÅØÐ

ώ

ς„

Ÿ

Separability

=

1D Gaussian 1D Gaussian = 2D Gaussian

Image 2D Gauss = Image (1D Gauss 1D Gauss)

= (Image 1D Gauss) 1D Gauss

Runtime Complexity

for ImageY in range(N):

for ImageX in range(N):

for FilterY in range(M):

é

for ImageY in range(N):

for ImageX in range(N):

for FilterX in range(M):

é

Time: O(N2M)

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43 I44 I45 I46

I51 I52 I53 I54 I55 I56

I61 I62 I63 I64 I65 I66

Image size = NxN = 6x6

Filter size = Mx1 = 3x1

F1

F2

F3

What are my compute

savings for a 13x13 filter?

Why Gaussian?

Gaussian filtering removes parts of the signal
above a certain frequency. Often noise is high

frequency and signal is low frequency.

Where Gaussian Fails

