And now for something
completely different!



Learning-Based 3D



Goal

* I'd like to answer: what is computer vision and
where is it headed?

* In the process, I'd like to give you a sense of
what computer vision is like.



What is CV?

Get a computer to understand




What is CV?

This could incorporate:
* Naming things (recognition)
* Reconstruction (geometry)

* Understanding opportunities for action (didn’t
cover — call me in 10 years)

* In the process, requires building up tools for
processing images and fitting models



Reality of “What is CV?”

Right now: most people would say a butfet of
techniques & accumulated knowledge about
geometry, pixels, data and learning.




Don’t Be Disappointed With
The Butfet!

Get a computer
to understand

Understanding an image is

incredibly difficult, involves much | g=&
FFFER

of your incredible brain, and is FREED FR
perhaps “Al-Complete” | BEERE GLEce




Where is it Headed?

3 topics that I am betting on or which other
people are betting on:

* Learning and geometry (Today)
* Embodied agents (Thursday)
* Vision and language (Next Tuesday)

Some slides won't be posted since I'm borrowing
heavily from others’ current research slides that
they’ve been generous to share.



In the Process

* ] hope to give you a sense of how:

* Research in vision is conducted

* We think we know we’ve succeeded

* We think we know we’re not fooling ourselves!



Cues For 3D

X?

A

* Given a calibrated camera and an image, we
only know the ray corresponding to each pixel.
* Nowhere near enough constraints for X
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Cues For 3D

X
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* Stereo: given 2 calibrated cameras in different
views and correspondences, can solve for X



Cues For 3D




Pictorial Cues for 3D
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Learned from Data



Pictorial Cues for 3D

113DII

Learned from Data



3D Representations

Depthmap

FAR

NEAR



3D Representations

FAR

NEAR




3D Representations




3D Representations

D.E. Fouhey, A. Gupta, M. Hebert. Data-Driven 3D Primitives for Single Image Understanding. ICCV 2013.




Direct Cues For Normals

“Depth-difference judgments
and attitude settings

[surface normals] appear to
be independent tasks.”
-Koenderink, van Doorn,
Kappers ‘96

Norman and Todd, The Discriminability of Local Surface Structure. Perception 1996
Koenderink, Van Doorn, Kappers. Pictorial Surface attitude and Local Depth Comparisons. Perception & Psychophysics, 1996

Johnston and Passmore, Independent Encoding of Surface Orientation and Surface Curvature. Vision Research, 1994
etc.



Direct Cues For Normals




Direct Cues to Normals

HEDNE BEREE

Vanishing Point




Comment — Representations

* For something as simple as whether to predict

depth (z(u,v)) or the orientation of the plane

dz 0z i
(_a,a, —1]), there are different:

* Metrics (duh)

* Methods (hmm) — these typically aim to take
advantage of special structure of the problem

 Applications of techniques



Surface Normals

Color Image Normals
D. F. Fouhey, A. Gupta, M. Hebert. Data-Driven 3D Primitives for Single Image Understanding. ICCV 2013.

D. F. Fouhey, A. Gupta, M. Hebert. Unfolding an Indoor Origami World. ECCV 2014.
X. Wang, D.F. Fouhey, A. Gupta. Designing Deep Networks for Surface Normal Estimation. CVPR 2015.




Surface Normals

D. F. Fouhey, A. Gupta, M. Hebert. Data-Driven 3D Primitives for Single Image Understanding. ICCV 2013.
D. F. Fouhey, A. Gupta, M. Hebert. Unfolding an Indoor Origami World. ECCV 2014.
X. Wang, D.F. Fouhey, A. Gupta. Designing Deep Networks for Surface Normal Estimation. CVPR 2015.




Applying Deep Learning

How do we How do we
incorporate represent
constraints? the output?

X. Wang, D.F. Fouhey, A. Gupta. Designing Deep Networks for Surface Normal Estimation. CVPR 2015



Representation and Objective

Input Ground Truth

e

Quantized Normals

Class 1: & Class 2: 1 . Class K: =»

Normal quantization scheme from Ladicky et al. 2014



Results




Results

Input Output




Results




Comment — Picking Problems

* I'd show results, and the response from many
people would be “sure, sure, neat but I'll just
buy a Kinect”



3D Representations




3D Representations

~$50K, 6.5 minutes an image

Adams et al., Scientific Reports, 2016



3D Representations

How thick is the table?

What's behind it?
Is the chair attached to the table?




3D Representations
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RGB Image Voxels

R. Girdhar, D. E. Fouhey, M. Rodriguez, A. Gupta.

Learning a predictable and generative vector representation for objects. ECCV 2016
Contemporary work also proposing to predict voxels: C. Choy et al. ECCV 2016.




3D Representations

f(-)

RGB Image

Voxels

R. Girdhar, D. E. Fouhey, M. Rodriguez, A. Gupta.

Learning a predictable and generative vector representation for objects. ECCV 2016

Contemporary work also proposing to predict voxels: C. Choy et al. ECCV 2016



Approach
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Main Idea

Representation should satisty

* Generative 1n 3D: should be able to construct
objects

* Predictable from 2D: should be able to infer
from an ordinary image



Output Representation — Voxels

* Binary 3D Pixels
* Size fixed in advance
* Spatially organized




Motivation

How many couches are there really?
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Motivation




Approach
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Approach
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Turning off image branch
yields an autoencoder over
voxels



Approach

Turning off
voxel input
yields an
image to
voxel
predictor
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Voxel output



Approach

Learned embedding parameterizes
shape in a way that is:
(a) generative and predictable
(b) accessible from voxels and images



TL-Network




TL-Network




TL-Network
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Training — Stage 1
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Training — Stage 2
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Training Data

* 5 Categories from ShapeNet (no category
labels used in learning)

* Standard rendering techniques

Rendering techniques from Su et al. ICCV15



Training — Stage 3

e 1

=
S

20x20x20
Voxel Input

e
Q
-—
O
Q
=
g
o
o
>~
=
-
[
<t
O

6
-

/
/

" 96
\
\
“ 256
\ 5
N
N
\
N 384
NS
.
\
\
\ 5
\ 2
\
\
'\ y_ |
\
\
,
/
/
/e
S
G
4

4096 FC
4096 FC

20x20x20
Voxel output



Experiments
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Commentary — Experiments

* Main goals of any experiments: Empirically
verity that we achieved what we said we
would achieve.

* “In the computer field, the moment of truth is a
running program; all else is prophecy
Herbert Simon




Experiments
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Visualization




Quantitying Performance

Ground-Truth Predicted
Voxels P(Occupied)
_-_—




Voxel Representation

Test Shape

TL-Networ' <




Commentary — Baselines

* Is 95% good or bad?

* [t depends! You might want to know: how well
does something simple do? How well does a
known method do?

* Typically comparison points: past methods,
linear models, nearest neighbors.

* Considered embarrassing if someone later
finds something simple that beats your
complex method!



Reconstruction Accuracy

Average
precision

PCA TL
96.8 97.6

Qualitatively a pretty big gap,
but quantitatively not so.
Because metric isn’t quite right.




Voxel Representation

f(voxels)
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f(voxels) H x € R®* Does this feature
contain useful

information for

f(voxels) > x € R4 distinguishing
these categories?




Commentary — Alternate Tasks

* Convnets can have hundreds of million of
degrees of freedom

* Biggest fear of many researchers: are we
actually learning the thing we set out to learn
or something entirely different?

* This can have profound issues, especially if
you deploy this

* One solution: test the features on an entirely
different task



Voxel Representation

* Classification of 3D shape categories (e.g.,
toilet) on ModelNet40

* TL was not trained for this task; support vector
fit on features

No Class Info. Class Info. Used
PCA TL 3D ShapeNets
68.4 74.4 77.3

Wau et al., 3D ShapeNets: A Deep Representation for Volumetric Shape Modeling, CVPR “15



Experiments

Can you
predict
voxels from
images?
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Reconstructing Test Models
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Comments

* Train on synthetic images, test on synthetic
images. Any issues?

* Is the network actually learning something or
cheating by using cues left in by the renderer

* One solution: test on new, non-rendered data



Reconstructing IKEA

Data from Lim et al., Parsing IKEA Objects: Fine Pose Estimation, ICCV 2013



Baseline
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Baseline

Go directly
for voxels
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Comments — Baselines

* Not quite the right baseline: just tests whether
the 3D convolutional structure is necessary.

* But you don’t always get things right the first
time around!

* Research is a process, and the real knowledge
comes from multiple papers in a whole series,
typically from different authors, not from just
one paper



Quantitatively

Direct to Voxels
Conv4d  FCS8 TL Networks

CAD 38.0 24.8 65.4
IKEA 31.1 19.8 38.3

CAD




Applying to Scenes

Input: RGB Image Output: Voxels

S. Tulsiani, S. Gupta, D.E. Fouhey, A.A. Efros, J. Malik.
Factoring Shape, Pose, and Layout from the 2D Image of a 3D Scene. To appear at CVPR 2018.




Applying to Scenes
Input: RGB Image Output: Voxels

2. Conflates shape and pose
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Applying to Scenes

Input: RGB Image Output: Factored




Applying to Scenes

Output: Factored Part 1: Layout




Applying to Scenes

Output: Factored Part 2: Per-Object

Voxels
(32°)

HERE Rotation
Translation

i
"""




Approach

rﬁﬁ‘iﬁ

Standard encoder/decoder
with skip connections

Layout




Bounding
Boxes

Approach

Per-Object
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Voxels
(329)

Scale
Trans.



Approach

Per-Object
Voxels
(32%)
Scale
Bounding Irans
Boxes Rot




Quantitative Results

% Rot. <30° 9% Trans.<1m

Base 75.2 90.7
No
Context 69.3 85.4
Regress

Rotation 4.1 N




Results (SUNCG)

Input Ground-Truth Prediction

SunCG: Song et al. CVPR 2017, rendered by Zhang et al. CVPR 2017



Results (SUNCG)

SunCG: Song et al. CVPR 2017, rendered by Zhang et al. CVPR 2017



Results (SUNCG)

SunCG: Song et al. CVPR 2017, rendered by Zhang et al. CVPR 2017



Results (NYUv2)

NYUv2: Silberman et al. ECCV 2012



Representational Benetfits

Input RGB Image Output




