Language and Vision

EECS 442 - Prof. David Fouhey Winter 2019, University of Michigan
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W19/

Administrivia

- Last class!
- Poster session later today
- Turn in project reports anytime up until Sunday. We'll try to grade them as they come in.
- Fill out course feedback forms if you haven't already
- Enjoy your summers. Remember to relax (for everyone) and celebrate (for those graduating)

Project Reports

- Look at the syllabus for roughly what we're looking for. Make sure you cover everything.
- Pictures (take up space and are really important): half my papers are pictures
- Copy/paste your proposal and progress report in, smoothen the text, add a few results.

Quick - what's this?

Previously on EECS 442

Previously on EECS 442

Converting Scores to "Probability Distribution"

Cat score	-0.9	$\xrightarrow{\exp (x)} \rightarrow$	$\mathrm{e}^{-0.9}$	0.41	\rightarrow Norm	0.11	P (cat)
Dog score	0.6		$\mathrm{e}^{0.6}$	1.82		0.49	P (dog)
Hat score	0.4		$e^{0.4}$	1.49		0.40	P(hat)
				3.72			

Generally P (class j$): \frac{\exp \left((W x)_{j}\right)}{\sum_{k} \exp \left((W x)_{k}\right)}$

What's a Big Issue?

Take 2

Take 2

Converting Scores to "Probability Distribution"

Cat score	-1.9		0.13	P (cat)
Dog score	1.2	$\operatorname{sgm}(\mathrm{x}) \rightarrow$	0.77	P(dog)
Hat score	0.9		0.71	P (hat)

77% dog 71\% hat 13% cat?

Hmm...

- We'd like to say: "dog with a hat" or "husky wearing a hat" or something else.
- Naïve approach (given N words to choose from and up to C words). How many?
- $\sum_{i=1}^{C} N^{i}$ classes to choose from ($\sim \mathrm{N}^{i}$)
- $\mathrm{N}=10 \mathrm{k}, \mathrm{C}=5$-> 100 billion billion
- Can't train 100 billion billion classifiers

Hmm...

- Pick N-word dictionary, call them class 1, ..., N
- New goal: emit sequence of C N-way classification outputs
- Dictionary could be:
- All the words that appear in training set
- All the ascii characters
- Typically includes special "words": START, END, UNK

Option 1 - Sequence Modeling

Output at i is linear transformation of hidden state

$$
y_{i}=W_{y h} h_{i}
$$

Hidden state at i is linear function of previous hidden state and input at $\mathrm{i},+$ nonlinearity

$$
h_{i}=\sigma\left(W_{h x} x_{i}+W_{h h} h_{i-1}\right)
$$

Option 1 - Sequence Modeling

Option 1 - Sequence Modeling

Captioning

Captioning

Each step: look at input and hidden state (more on that in a second) and decide output. Can learn through CNN!

Results

A female tennis player in action on the court.

A baseball game in progress with the batter up to plate.

A group of young men playing a game of soccer

A brown bear standing on top of a lush green field.

A man riding a wave on top of a surfboard.

A person holding a cell phone in their hand.

Results

A close up of a person brushing his teeth.

A large clock mounted to the side of a building.

A woman laying on a bed in a bedroom.

A bunch of fruit that are sitting on a table.

A black and white cat is sitting on a chair.

A toothbrush holder sitting on top of a white sink.

Captioning - Looking at Each Step

Why might this be better than doing billions of classification problems?

What Goes On Inside?

- Great repo for playing with RNNs (Char-RNN)
- https://github.com/karpathy/char-rnn
- (Or search char-rnn numpy)
- Tokens are just the characters that appear in the training set

Sample Trained on Linux Code

```
/*
    * If this error is set, we will need anything right after that BSD.
    */
static void action_new_function(struct s_stat_info *w.b)
{
    unsigned long flags;
    int lel_idx_bit = e->edd, *sys & ~((unsigned long) *FIRST_COMPAT);
    buf[0] = 0xFFFFFFFF & (bit << 4);
    min(inc, slist->bytes);
    printk(KERN_WARNING "Memory allocated %02x/%02x, "
        "original MLL instead\n"),
        min(min(multi_run - s->len, max) * num_data_in),
        frame_pos, sz + first_seg);
    div_u64_w(val, inb_p);
    spin_unlock(&disk->queue_lock);
    mutex_unlock(&s->sock->mutex);
    mutex_unlock(&func->mutex);
    return disassemble(info->pending_bh);
}
```

Result credit: A. Karpathy

Sample Trained on Names

Rudi Levette Berice Lussa Hany Mareanne Chrestina Carissy Marylen Hammine Janye Marlise Jacacrie Hendred Romand Charienna Nenotto Ette Dorane Wallen Marly Darine Salina Elvyn Ersia Maralena Minoria Ellia Charmin Antley Nerille Chelon Walmor Evena Jeryly Stachon Charisa Allisa Anatha Cathanie Geetra Alexie Jerin Cassen Herbett Cossie Velen Daurenge Robester Shermond Terisa Licia Roselen Ferine Jayn Lusine Charyanne Sales

What Goes on Inside

Outputs of an RNN. Blue to red show timesteps where a given cell is active. What's this?

What Goes on Inside

Outputs of an RNN. Blue to red show timesteps where a given cell is active. What's this?

```
#ifdef CONFIG_MUDITSYSCALL
{
```



```
    }
    return 1:
}
```


What Goes on Inside

Outputs of an RNN. Blue to red show timesteps where a given cell is active. What's this?

Nagging Detail \#1 - Depth

What happens to really deep networks?
Remember g^{n} for $\mathrm{g} \neq 1$
Gradients explode / vanish

Nagging Detail \#1 - Depth

- Typically use more complex methods that better manage gradient flowback (LSTM, GRU)
- General strategy: pass the hidden state to the next timestep as unchanged as possible, only adding updates as necessary

Nagging Detail \#2

Lots of captions are in principle possible!

- A dog in a hat
- A dog wearing a hat
- Husky wearing a hat
- Husky holding a camera, sitting in grass
A dog that's in a hat, sitting on a lawn with a camera

Nagging Detail \#2 - Sampling

Effect of Temperature

- Train on essays about startups and investing
- Normal Temperature: "The surprised in investors weren't going to raise money. I'm not the company with the time there are all interesting quickly, don't have to get off the same programmers. There's a super-angel round fundraising, why do you can do."
- Low temperature: "is that they were all the same thing that was a startup is that they were all the same thing that was a startup is that they were all the same thing that was a startup is that they were all the same"

Nagging Detail \#2 - Sampling

Nagging Detail \#2 - Sampling

Nagging Detail \#3 - Evaluation

Computer: "A husky in a hat" Human: "A dog in a hat"

How do you decide?

1) Ask humans. Why might this be an issue?
2) In practice: use something like precision (how many generated words appear in ground-truth sentences) or recall. Details very important to prevent gaming (e.g., "A a a a a")

More General Sequence Models

Can have multiple inputs, single output

More General Sequence Models

Could be a feature vector!

More General Models

Visual Question-Answering

What color are her eyes?
What is the mustache made of?

Is this person expecting company?
What is just under the tree?

How many slices of pizza are there? Is this a vegetarian pizza?

Does it appear to be rainy?
Does this person have 20/20 vision?

Top-Performing Methods

Top methods now look at objects in the image as opposed to one big image vector.

Two men playing frisbee in a dark field.

Top-Performing Methods

Question: What color is illuminated on the traffic light? Answer left: green. Answer right: red.

Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering. Anderson et al. 2018.

Let's Revisit A Number

- How many 20-word sentences with a vocabulary of 10k words are there really?
- Is it really (10k) ${ }^{20}$? Why not?
- Let's look at some giraffes (I swear this is relevant)

What do Giraffes Do All Day?

A giraffe sitting and resting

A giraffe grazing in its enclosure

With apologies to both giraffes and people who study giraffes, I'm sure they're fascinating

Alternate Idea - Retrieval

Alternate Idea - Retrieval

Retrieval Results

A man riding a wave on a surfboard.

A man riding a wave on a surfboard in the ocean.

A person flying a kite in the sky.

A cat sitting in a bathroom sink.

A person flying a kite in the sky.

A black and white cat sitting in a bathroom sink.

Retrieval Results

A wooden bench in front of a building.

A building with a clock on the top.

The side of a passenger train at a train station.

A window display on the front of a building.

A clock tower on the top of a building.

A bus that is on the side of a road.

Retrieval Results

- In practice: humans don't like retrieved captions as much
- Can't generate anything new!

Novel Captions

Deep Compositional Captioning: Describing Novel Object Categories without Paired Training Data. L. Hendricks et al. CVPR 2016

Simple Baseline for VQA

- Construct a vocabulary of 5000 most frequent answers
- Extract all the information from the image, I
- Construct an image representation using a CNN
- Represent the question, Q with BoW
- Compute distribution of answers, $P(A \mid Q, I)$

Zhou, Bolei, et al. "Simple baseline for visual question answering." arXiv preprint arXiv:1512.02167 (2015). Slide credit: T. Gupta

Qualitative Results

Question: what are they doing Predictions:
playing baseball (score: $10.67=2.01$ [image] +8.66 [word])
baseball (score: $9.65=4.84$ [image] +4.82 [word])
grazing (score: $9.34=0.53$ [image] +8.81 [word])
Based on image only: umpire (4.85), baseball (4.84), batter (4.46) Based on word only: playing wii (10.62), eating (9.97), playing frisbee (9.24)

Question: how many people inside Predictions:

3 (score: $13.39=2.75$ [image] +10.65 [word])
2 (score: $12.76=2.49$ [image] + 10.27 [word])
5 (score: 12.72 = 1.83 [image] + 10.89 [word])
Based on image only: umpire (4.85), baseball (4.84), batter (4.46) Based on word only: 8 (11.24), 7 (10.95), 5 (10.89)

Qualitative Results

Question: which brand is the laptop
Predictions:
apple (score: $10.87=1.10$ [image] + 9.77 [word]) dell (score: $9.83=0.71$ [image] + 9.12 [word])
toshiba (score: $9.76=1.18$ [image] +8.58 [word])
Based on image only: books (3.15), yes (3.14), no (2.95) Based on word only: apple (9.77), hp (9.18), dell (9.12)

- Language prior prunes the answer space significantly

Quantitative Evaluation

	Open-Ended				Multiple-Choice			
	Overall	yes/no	number	others	Overall	yes/no	number	others
IMG [2]	28.13	64.01	00.42	03.77	30.53	69.87	00.45	03.76
BOW [2]	48.09	75.66	36.70	27.14	53.68	75.71	37.05	38.64
BOWIMG [2]	52.64	75.55	33.67	37.37	58.97	75.59	34.35	50.33
LSTMIMG [2]	53.74	78.94	35.24	36.42	57.17	78.95	35.80	43.41
CompMem [6]	52.62	78.33	35.93	34.46	-	-	-	-
NMN+LSTM [1]	54.80	77.70	37.20	39.30	-	-	-	-
WR Sel. [13]	-	-	-	-	60.96	-	-	-
ACK [16]	55.72	79.23	36.13	40.08	-	-	-	-
DPPnet [11]	57.22	80.71	37.24	41.69	62.48	80.79	38.94	52.16
iBOWIMG	55.72	76.55	35.03	42.62	61.68	76.68	37.05	54.44

Evaluated on the VQA dataset

Does the model learn to localize?

Class Activation Mapping applied to VQA Baseline

Question: What are they doing?
Prediction: texting (score: 12.02=3.78 [image] + 8.24 [word]) Word importance: doing(7.01) are(1.05) they(0.49) what(-0.3)

Question: What is he eating?
Prediction: hot dog (score: 13.01=5.02 [image] + 7.99 [word]) Word importance: eating(4.12) what(2.81) is(0.74) he(0.30)

Question: Is there a cat?
Prediction: yes (score: $11.48=4.35$ [image] +7.13 [word])
word importance: is(2.65) there(2.46) a(1.70) cat(0.30)

Question: Where is the cat?
Prediction: shelf (score: $10.81=3.23$ [image] +7.58 [word])
word importance: where (3.89) cat(1.88) the(1.79) is(0.01)

[^0]
Recent Developments

Can balance data to make things difficult

Is the umbrella upside down?

no

Where is the child sitting?
fridge
arms

How many children are in the bed?

1

Some Concluding Thoughts

- Getting this right is really hard!
- Deep learning is trying to do solve any problem you pose with as little effort as possible.
- A lot of this has to do with the data

Some Concluding Thoughts In General

What We've Seen

What happens, math-wise, when you take pictures by poking a hole in barriers

What We've Seen

How to line up two images by finding local regions and matching them

What We've Seen

How to fit functions to data by computing derivatives with respect to a loss function and how that lets you learn things

What We've Seen

How to find the motion between two images that are nearby in time

$I(x, y, t)$

$1(x, y, t+1)$

What We've Seen

What happens mathematically when 2+ cameras see the same scene, and how to get depth from this

Some Take-Homes

- Computer vision, even the most magical parts, isn't magic
- It's linear algebra, data, and figuring out what problems to ask
- The class did a great job implementing stuff and I'm looking forward to seeing the projects
- Many of you will probably be asked to make decisions involving at least machine learning as part of your jobs down the road. Be aware!

[^0]: Slide credit: T. Gupta

