Single-View Geometry

EECS 442 - Prof. David Fouhey
Winter 2019, University of Michigan
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W19/

Application: Single-view modeling

A. Criminisi, I. Reid, and A. Zisserman, Single View Metrology, IJCV 2000

Application: Measuring Height

Application: Measuring Height

- CSI before CSI
- Covered criminal cases talking to random scientists (e.g., footwear experts)
- How do you tell how tall someone is if they're not kind enough to stand next to a ruler?

Application: Camera Calibration

- Calibration a HUGE pain

$\square \square \square$

Application: Camera Calibration

- What if 3D coordinates are unknown?
- Use scene features such as vanishing points

Slide from Efros, Photo from Criminisi

Camera calibration revisited

- What if 3D coordinates are unknown?
- Use scene features such as vanishing points

Recall: Vanishing points

- All lines having the same direction share the same vanishing point

Calibration from vanishing points

Consider a scene with 3 orthogonal directions
$\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ are finite vps, $\mathbf{v}_{\mathbf{3}}$ infinite vp
Want to align world coordinates with directions

Calibration from vanishing points

$\boldsymbol{P}_{3 x 4} \equiv\left[\begin{array}{llll}\boldsymbol{p}_{1} & \boldsymbol{p}_{2} & \boldsymbol{p}_{3} & \boldsymbol{p}_{4}\end{array}\right]$

It turns out that

$$
\begin{array}{ll}
\boldsymbol{p}_{1} \equiv \boldsymbol{P}[1,0,0,0]^{T} & \text { VP in X direction } \\
\boldsymbol{p}_{\mathbf{2}} \equiv \boldsymbol{P}[0,1,0,0]^{T} & \text { VP in Y direction } \\
\boldsymbol{p}_{\mathbf{3}} \equiv \boldsymbol{P}[0,0,1,0]^{T} & \text { VP in Z direction } \\
\boldsymbol{p}_{4} \equiv \boldsymbol{P}[0,0,0,1]^{T} & \text { Projection of origin }
\end{array}
$$

Note the usual \equiv (i.e., all of this is up to scale) as well as the 0 for the vps

Calibration from vanishing points

- Let's align the world coordinate system with the three orthogonal vanishing directions:

$$
\begin{aligned}
& \boldsymbol{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \boldsymbol{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \boldsymbol{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& \lambda v_{i}=K[R, t]\left[\begin{array}{c}
e_{i} \\
0
\end{array}\right] \\
& \lambda v_{i}=K \boldsymbol{R} \boldsymbol{e}_{i} \\
& R^{-1} K^{-1} \lambda v_{i}=e_{i} \\
& \text { Drop the } \mathrm{t} \\
& \text { Inverses }
\end{aligned}
$$

Calibration from vanishing points

So $e_{i}=R^{-1} K^{-1} \lambda v_{i}$, but who cares?
What are some properties of axes?
Know $\boldsymbol{e}_{\boldsymbol{i}}^{\boldsymbol{T}} \boldsymbol{e}_{\boldsymbol{j}}=0$ for $i \neq j$, so K, R have to satisfy

$$
\begin{array}{rlc}
\left(\boldsymbol{R}^{-\mathbf{1}} \boldsymbol{K}^{-\mathbf{1}} \lambda_{j} \boldsymbol{v}_{\boldsymbol{j}}\right)^{\boldsymbol{T}}\left(\boldsymbol{R}^{-\mathbf{1}} \boldsymbol{K}^{-\mathbf{1}} \lambda_{i} \boldsymbol{v}_{i}\right)=\mathbf{0} & \\
\left(\boldsymbol{R}^{\boldsymbol{T}} \boldsymbol{K}^{-\mathbf{1}} \lambda_{j} \boldsymbol{v}_{\boldsymbol{j}}\right)^{\boldsymbol{T}}\left(\boldsymbol{R}^{\boldsymbol{T}} \boldsymbol{K}^{-\mathbf{1}} \lambda_{i} \boldsymbol{v}_{i}\right)=\mathbf{0} & R^{-1}=R^{T} \\
\lambda_{i} \lambda_{j}\left(\boldsymbol{R}^{\boldsymbol{T}} \boldsymbol{K}^{-1} \boldsymbol{v}_{\boldsymbol{j}}\right)^{\boldsymbol{T}}\left(\boldsymbol{R}^{\boldsymbol{T}} \boldsymbol{K}^{-\mathbf{1}} \boldsymbol{v}_{i}\right)=\mathbf{0} & \text { Move scalars } \\
\boldsymbol{v}_{\boldsymbol{j}} \boldsymbol{K}^{-\boldsymbol{T}} \boldsymbol{R} \boldsymbol{R}^{\boldsymbol{T}} \boldsymbol{K}^{-\mathbf{1}} \boldsymbol{v}_{\boldsymbol{i}}=\mathbf{0} & \text { Clean up } \\
\boldsymbol{v}_{\boldsymbol{j}} \boldsymbol{K}^{-\boldsymbol{T}} \boldsymbol{K}^{-\mathbf{1}} \boldsymbol{v}_{\boldsymbol{i}}=\mathbf{0} & R R^{T}=I
\end{array}
$$

Calibration from vanishing points

- Intrinsics (focal length f, principal point $\mathrm{u}_{0}, \mathrm{v}_{0}$) have to ensure that the rays corresponding to supposedly orthogonal vanishing points are orthogonal

$$
v_{j} K^{-T} K^{-1} v_{i}=0
$$

Calibration from vanishing points

1 finite vanishing point,
2 infinite vanishing points

2 finite vanishing points,
1 infinite vanishing point

3 finite vanishing points

Cannot recover focal length, principal point is the third vanishing point

Can solve for focal length, principal point

Directions and vanishing points

Given vanishing point \boldsymbol{v} camera calibration $\boldsymbol{K}: \boldsymbol{K}^{\mathbf{1}} \boldsymbol{v}$ is direction corresponding to that vanishing point.

Directions and vanishing points

Directions and vanishing points

Directions and vanishing points

If v vanishing point, and \boldsymbol{K} the camera intrinsics, $K^{-1} \boldsymbol{v}$ is the corresponding direction.

Set $u_{0}, v_{0}=0,0$

$$
K^{-1}=
$$

$$
\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 / f & 0 & 0 \\
0 & 1 / f & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
[0, \infty]
$$

Directions and vanishing points

If \boldsymbol{v} vanishing point, and \boldsymbol{K} the camera intrinsics, $K^{-1} \boldsymbol{v}$ is the corresponding direction.

$$
\begin{gathered}
\mathrm{v}_{1}[-\mathrm{f}, 0] \\
\mathrm{O} \\
\mathrm{~K}^{-1} \mathrm{~V}_{1}=[-1,0,1]
\end{gathered}
$$

$$
\mathrm{K}^{-1} \mathrm{v}_{2}=\begin{array}{r}
{[\mathrm{f}, 0] \mathrm{v}_{2}} \\
{[1,0,1]}
\end{array}
$$

$$
K^{-1}=\left[\begin{array}{ccc}
1 / f & 0 & 0 \\
0 & 1 / f & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
[0, \infty] \quad \mathrm{K}^{-1} \mathrm{v}_{3}=[0, \infty, 1]
$$

Rotation from vanishing points

Know that $\lambda_{i} \boldsymbol{v}_{\boldsymbol{i}}=\boldsymbol{K} \boldsymbol{R} \boldsymbol{e}_{\boldsymbol{i}}$ and have \mathbf{K}, but want \mathbf{R}
So: $\lambda \boldsymbol{K}^{\boldsymbol{1}} \boldsymbol{v}_{i}=\boldsymbol{R} \boldsymbol{e}_{\boldsymbol{i}}$
What does $\boldsymbol{R} \boldsymbol{e}_{\boldsymbol{i}}$ look like?
$\boldsymbol{R} \boldsymbol{e}_{1}=\left[\begin{array}{lll}\boldsymbol{r}_{1} & \boldsymbol{r}_{2} & \boldsymbol{r}_{3}\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\boldsymbol{r}_{1}$
The ith column of R is a scaled version of $r_{i}=\lambda K^{-1} \boldsymbol{v}_{\boldsymbol{i}}$

Calibration from vanishing points

- Solve for K (focal length, principal point) using 3 orthogonal vanishing points
- Get rotation directly from vanishing points once calibration matrix known
- Pros:
- Could be totally automatic!
- Cons:
- Need 3 vanishing points, estimated accurately, but with at least two finite!

Finding Vanishing Points

What might go wrong with the circled points?

Finding Vanishing Points

- Find edges $E=\left\{e_{1}, \ldots, e_{n}\right\}$
- All $\binom{n}{2}$ intersections of edges $v_{i j}=e_{i} \times e_{j}$ are potential vanishing points
- Try all triplets of popular vanishing points, check if the camera's focal length, principal point "make sense"
-What are some options for this?

Finding Vanishing Points

Measuring height

Measuring height

Measuring height

Measuring height without a ruler

Compute Z from image measurements

- Need more than vanishing points to do this

Projective invariant

- We need to use a projective invariant: a quantity that does not change under projective transformations (including perspective projection)

Projective invariant

- We need to use a projective invariant: a quantity that does not change under projective transformations (including perspective projection)
- The cross-ratio of four points:

$$
\begin{aligned}
& \frac{\left\|\mathbf{P}_{3}-\mathbf{P}_{1}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{3}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{1}\right\|} \\
& \text { This is one of the } \\
& \text { cross-ratios (can } \\
& \text { reorder arbitrarily) }
\end{aligned}
$$

Measuring height

$$
\begin{aligned}
& \frac{\|\mathbf{T}-\mathbf{B}\|\|\infty-\mathbf{R}\|}{\|\mathbf{R}-\mathbf{B}\|\|\infty-\mathbf{T}\|}=\frac{H}{R} \\
& \text { scene cross ratio } \\
& \frac{\|\mathbf{t}-\mathbf{b}\|\left\|\mathbf{v}_{Z}-\mathbf{r}\right\|}{\|\mathbf{r}-\mathbf{b}\|\left\|\mathbf{v}_{Z}-\mathbf{t}\right\|}=\frac{H}{R} \\
& \text { image cross ratio }
\end{aligned}
$$

Measuring height without a ruler

Remember This?

- Line equation: $a x+b y+c=0$
- Vector form: $\boldsymbol{l}^{T} \boldsymbol{p}=0, \boldsymbol{l}=[a, b, c], \mathbf{p}=[x, y, 1]$
- Line through two points?
$\cdot l=p_{1} \times p_{2}$
- Intersection of two lines?
- $p=\boldsymbol{l}_{1} \times \boldsymbol{l}_{2}$
- Intersection of two parallel lines is at infinity

Examples

A. Criminisi, I. Reid, and A. Zisserman, Single View Metrology, IJCV 2000 Figure from UPenn CIS580 slides

Another example

- Are the heights of the two groups of people consistent with one another?

Piero della Francesca, Flagellation, ca. 1455
A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the analysis of paintings,

Measurements on planes

Measurements on planes

Image rectification: example

Piero della Francesca, Flagellation, ca. 1455

Application: 3D modeling from a single image

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the analysis of paintings,
Proc. Computers and the History of Art, 2002

Application: 3D modeling from a single image

J. Vermeer, Music Lesson, 1662

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the analysis of paintings,
Proc. Computers and the History of Art, 2002

Application: Object Detection

"Reasonable" approximation:

$$
y_{o b j e c t} \approx \frac{h y_{c a m e r a}}{v_{0}-v}
$$

Application: Object detection

(a) input image

Application: Object detection

(b) $\mathrm{P}($ person $)=$ uniform

(c) surface orientation estimate

(d) P (person | geometry)

(e) P (viewpoint | objects)

(f) $\mathrm{P}($ person \mid viewpoint)

(g) P (person|viewpoint,geometry)

Application: Image Editing

K. Karsch and V. Hedau and D. Forsyth and D. Hoiem, Rendering Synthetic Objects into Legacy Photographs, SIGGRAPH Asia 2011

Application: Estimating Layout

V. Hedau, D. Hoiem, D. Forsyth

Recovering the spatial layout of cluttered rooms ICCV 2009

Unsupervised Learning

Can we learn 3D simply from regularities?

Image
Collection

D.F. Fouhey, W. Hussain, A. Gupta, M. Hebert. Single Image 3D without a Single 3D Image. ICCV 2015.

Unsupervised Learning

Can we learn 3D simply from regularities?

Image
 Collection

Tools From
Geometry

Vanishing Points
D.F. Fouhey, W. Hussain, A. Gupta, M. Hebert. Single Image 3D without a Single 3D Image. ICCV 2015.

Unsupervised Learning

Can we learn 3D simply from regularities?

Image
Collection

Tools From
Geometry

Fronto-Parallel Image

D.F. Fouhey, W. Hussain, A. Gupta, M. Hebert. Single Image 3D without a Single 3D Image. ICCV 2015.

Factorization

Factorization

3D Structure

Factorization

3D Structure
Style

Factorization

Image
 Style

Style Elements

Factorization

Image

3D Structure

Style

x

Solving for Style

Image

Style

Vanishing Points

Fronto-Parallel Image

Solving for 3D Structure

Style
Element

Input Image

HOG, Dalal and Triggs '05; ELDA from Hariharan et al. '12

Solving for 3D Structure

Style
Element

Solving for 3D Structure

Style
Element

Input Image

Solving for 3D Structure

Style
Element

Input Image

Solving for 3D Structure

Style
Element

Solving for 3D Structure

Style
Element

Solving for 3D Structure

Style
Element

Input Image

Detection + Orientation

Solving for 3D over a Dataset

Style
Element

Set of Images

Detection + Orientation

Factorization

Image

3D Structure

Style

x

Prior

On average: 3D structure is a camera inside a box, rotated uniformly

Discovered Style Elements

Results

Scaling Up To The World

RGBD Datasets

What about?

Places-205, Zhou et al. NIPS 2014

Style Learned from Internet

Automatically Discovered Style Elements

Places-205, Zhou et al. NIPS 2014

Learning from the Internet

