Video: Tracking and Action Recognition

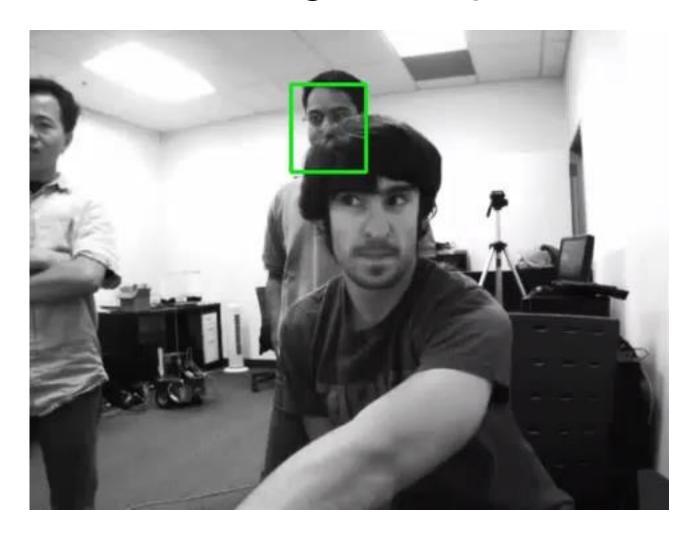
EECS 442 – Prof. David Fouhey Winter 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W19/

Today: Tracking Objects

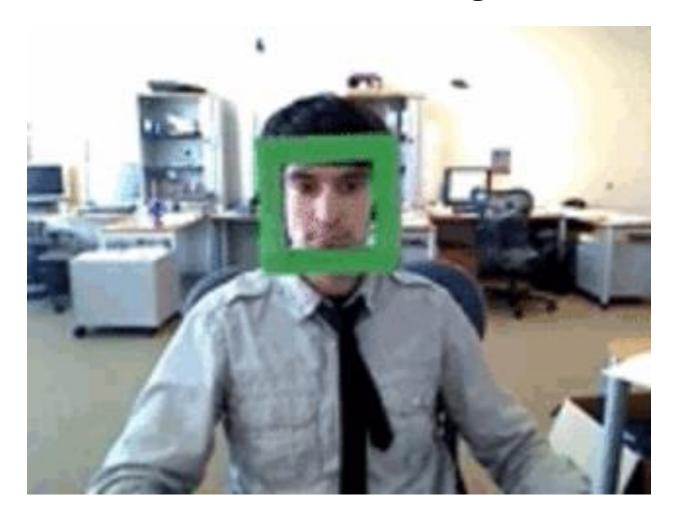
- Goal: Locating a moving object/part across video frames
- This class:
 - Examples
 - Probabilistic Tracking
 - Kalman filter
 - Particle filter

Tracking Examples



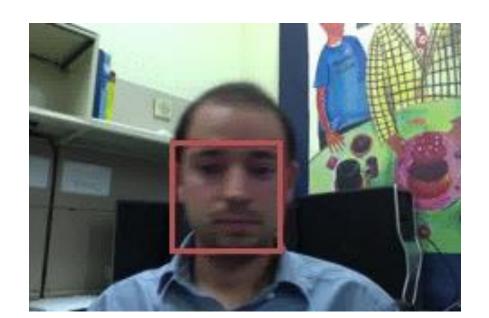
Tracking Examples

Best Tracking



Difficulties

- Erratic movements, rapid motion
- Occlusion
- Surrounding similar objects

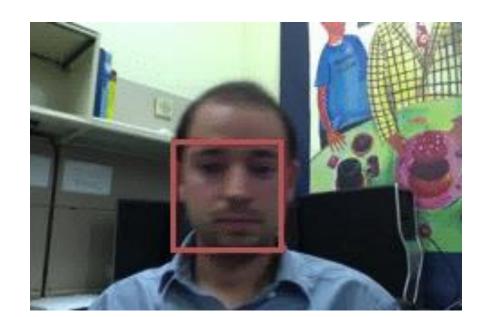


Slide credit: D. Hoiem

Tracking by Detection

Tracking by detection:

- Works if object is detectable
- Need some way to link up detections

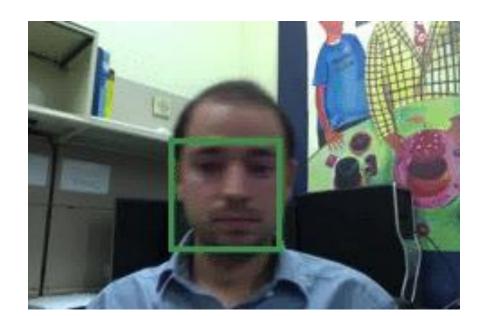


Slide credit: D. Hoiem

Tracking With Dynamics

Based on motion, predict object location

- Restrict search for object
- Measurement noise is reduced by smoothness
- Robustness to missing or weak observations

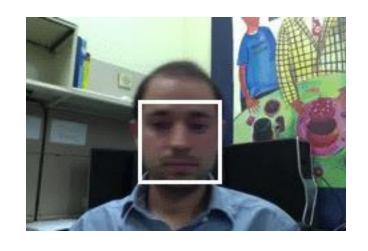


Strategies For Tracking

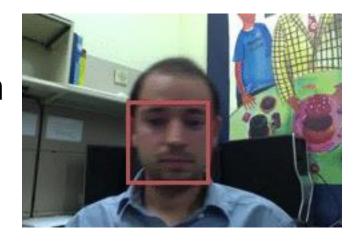
- Tracking with motion prediction:
 - Predict object's state in next frame.
 - Fuse with observation.

General Tracking Model

State X: actual state of object that we want to estimate.
Could be: Pose, viewpoint, velocity, acceleration.



Observation Y: our "measurement" of state X. Can be noisy. At each time step t, state changes to X_t, get Y_t.



Steps of Tracking

Prediction: What's the next state of the object given past measurements

$$P(X_t|Y_0 = y_0, ..., Y_{t-1} = y_{t-1})$$

Correction: Compute updated estimate of the state from prediction and measurements

$$P(X_t|Y_0 = y_0, ..., Y_{t-1} = y_{t-1}, Y_t = y_t)$$

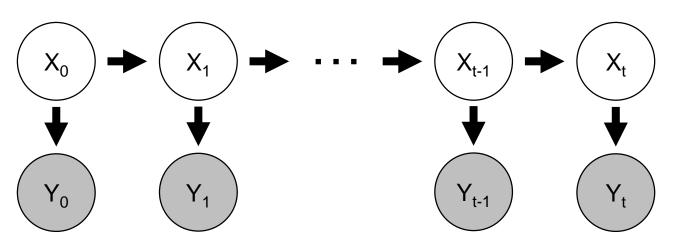
Simplifying Assumptions

Only immediate past matters (Markovian)

$$P(X_t|X_0,...,X_{t-1}) = P(X_t|X_{t-1})$$

Measurement depends only on current state (Independence)

$$P(Y_t|X_0, Y_0, ..., X_{t-1}, Y_{t-1}, X_t) = P(Y_t|X_t)$$



Slide credit: D. Hoiem

Problem Statement

Have models for:

(1) P(next state) given current state / Transition

$$P(X_t|X_{t-1})$$

(2) P(observation) given state / Observation

$$P(Y_t|X_t)$$

Want to recover, for each timestep t

$$P(X_t|y_0,...,y_t)$$

Probabilistic tracking

- Base case:
 - Start with initial *prediction*/prior: $P(X_0)$
 - For the first frame, *correct* this given the first measurement: $Y_0 = y_0$

Probabilistic tracking

- Base case:
 - Start with initial *prediction*/prior: $P(X_0)$
 - For the first frame, *correct* this given the first measurement: $Y_0 = y_0$

- Each subsequent step:
 - **Predict** X_t given past evidence
 - Observe y_t: correct X_t given current evidence

Prediction

Given $P(X_{t-1}|y_0,...,y_{t-1})$ want $P(X_t|y_0,...,y_{t-1})$

$$\begin{split} &P(X_{t}|y_{0},...,y_{t-1})\\ &= \int P(X_{t},X_{t-1}|y_{0},...,y_{t-1}) \ dX_{t-1}\\ &= \int P(X_{t},|X_{t-1},y_{0},...,y_{t-1}) P(X_{t-1}|y_{0},...,y_{t-1}) \ dX_{t-1}\\ &= \int P(X_{t},|X_{t-1}) P(X_{t-1}|y_{0},...,y_{t-1}) \ dX_{t-1} \end{split}$$

Total probability

Condition on X_{t-1}

Markovian

dynamics model corrected estimate from previous step

Correction

Given $P(X_t|y_0,...,y_{t-1})$ want $P(X_t|y_0,...,y_{t-1},y_t)$

$$\begin{split} &P(X_{t}|y_{0},...,y_{t})\\ &= \frac{P(y_{t}|X_{t},y_{0},...,y_{t-1})P(X_{t}|y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}\\ &= \frac{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}\\ &= \frac{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})}{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})} \end{split}$$

Bayes Rule

Independence Assumption

Condition on X,

Correction

Given $P(X_t|y_0,...,y_{t-1})$ want $P(X_t|y_0,...,y_{t-1},y_t)$

$$P(X_{t}|y_{0},...,y_{t})$$

$$= \begin{array}{c} \text{observation} & ..,y_{t-1})P(Y_{t}|Y_{0},...,y_{t-1}) \\ \text{model} & v_{t}|y_{0},...,y_{t-1}) \\ \\ = \frac{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})}{P(v_{t}|y_{0},...,y_{t-1})} \\ \\ = \frac{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})}{\int P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1}) dX_{t}} \\ \\ \text{Normalization} \\ \text{Factor} \end{array}$$

Bayes Rule

Independence Assumption

Condition on X_t

Slide credit: D. Hoiem

Summarize

Transition
Observation

P(state given past)
P(state given past+present)

Prediction:

$$P(X_t|y_0,...,y_{t-1}) = \int P(X_t,|X_{t-1}|)P(X_{t-1}|y_0,...,y_{t-1}) dX_{t-1}$$

Correction:

$$P(X_t|y_0,...,y_t) = \frac{P(y_t|X_t)P(X_t|y_0,...,y_{t-1})}{\int P(y_t|X_t)P(X_t|y_0,...,y_{t-1}) dX_t}$$

Nasty integrals! Also these are probability distributions

Solution 1 – Kalman Filter

- What's the product of two Gaussians?
- Gaussian
- What do you need to keep track of for a multivariate Gaussian?
- Mean, Covariance

Kalman filter: assume everything's Gaussian

Solution 1 – Kalman Filter

"The Apollo computer used 2k of magnetic core RAM and 36k wire rope [...]. The CPU was built from ICs [...]. Clock speed was under 100 kHz"

Rudolf Kalman

Comparison

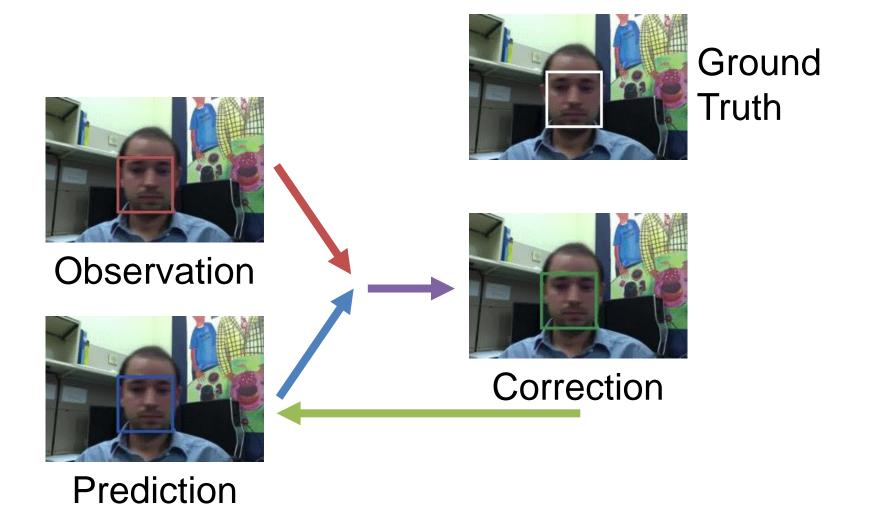


Ground Truth

Observation

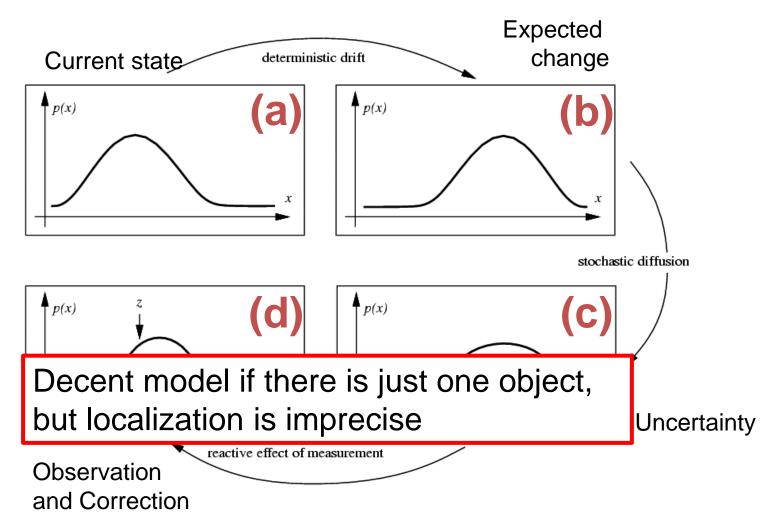
Correction

Example: Kalman Filter

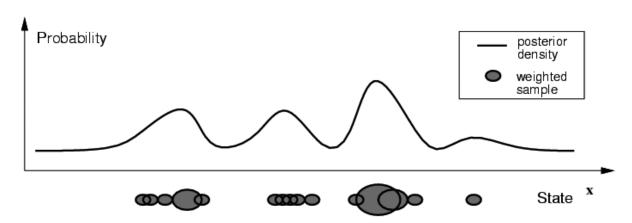


Slide credit: D. Hoiem

Propagation of Gaussian densities



Particle filtering

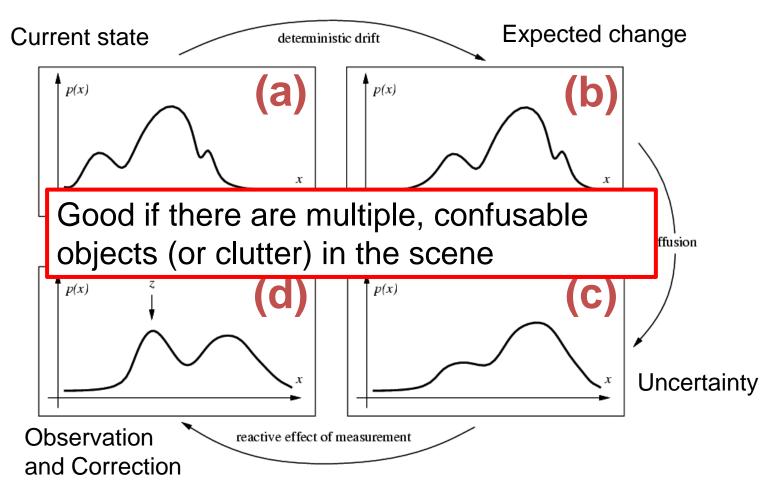


Represent the state distribution non-parametrically

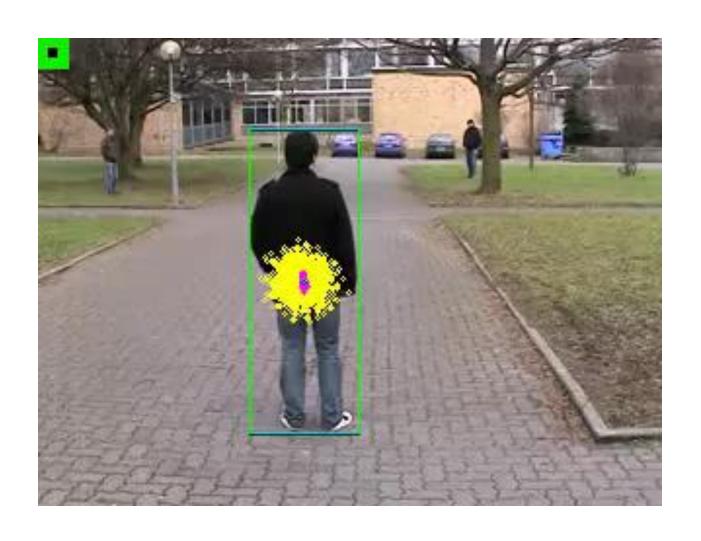
- Prediction: Sample possible values X_{t-1} for the previous state
- Correction: Compute likelihood of X_t based on weighted samples and $P(y_t|X_t)$

M. Isard and A. Blake, <u>CONDENSATION -- conditional density propagation for visual tracking</u>, IJCV 29(1):5-28, 1998

Non-parametric densities



Particle Filtering



Particle Filtering More Generally

- Object tracking:
 - State: object location
 - Observation: detect bounding box
 - Transition: assume constant velocity, etc.
- Vehicle tracking:
 - State: car location [x,y,theta] + velocity
 - Observation: register location in map
 - Transition: assume constant velocity, etc.

Particle Filtering More Generally

Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization

Marcus A Brubaker, Andreas Geiger and Raquel Urtasun

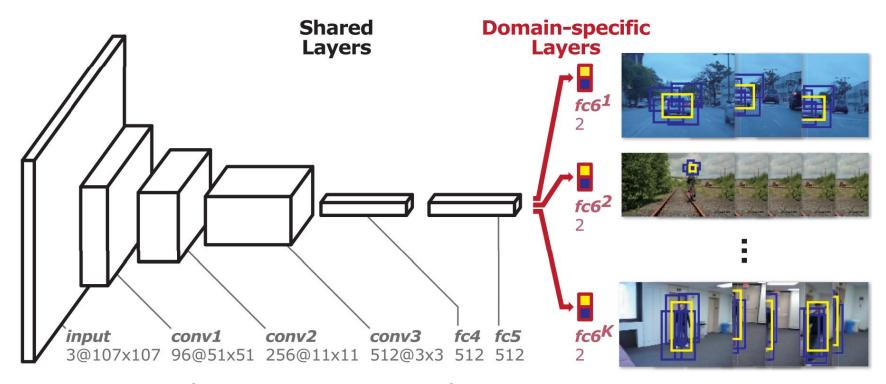
Code and other videos at: http://www.cs.toronto.edu/~mbrubake

In General

- If you have something intractable:
- Option 1: Pretend you're dealing with Gaussians, everything is nice
- Option 2: Monte-carlo method, don't have to do intractable math

MD-Net

- Offline: train to differentiate between target and bg for K different targets
- Online: fine-tune network in new sequence



Nam and Han, CVPR 2016, Learning Multi-Domain Convolutional Neural Networks For Visual Tracking

Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

Hyeonseob Nam and Bohyung Han

Tracking Issues

- Initialization
 - Manual (click on stuff)
 - Detection
 - Background subtraction

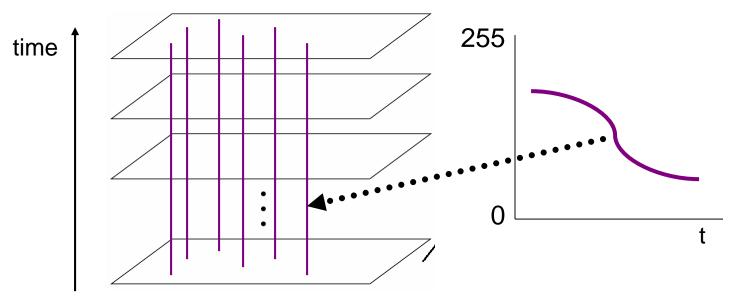
Slide credit: D. Hoiem

Detour: Background Subtraction

Moving in Time

- Moving <u>only</u> in time, while not moving in space, has many advantages
 - No need to find correspondences
 - Can look at how each ray changes over time
 - In science, always good to change just one variable at a time
- This approach has always interested artists (e.g. Monet)

Image Stack



- As can look at video data as a spatio-temporal volume
 - If camera is stationary, each line through time corresponds to a single ray in space
 - We can look at how each ray behaves
 - What are interesting things to ask?

Example

Examples

Average image

Median Image

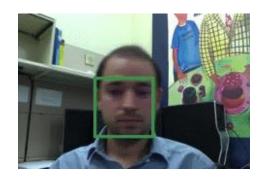
Average/Median Image

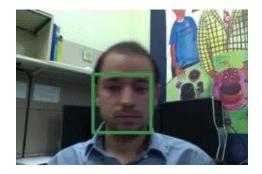
Background Subtraction

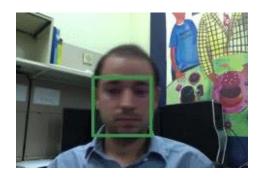
Slide credit: A. Efros

- Initialization
- Getting observation and dynamics models
 - Observation model: match template or use trained detector
 - Dynamics Model: specify with domain knowledge

- Initialization
- Getting observation and dynamics models
- Combining prediction vs correction:
 - Dynamics too strong: ignores data
 - Observation too strong: tracking = detection







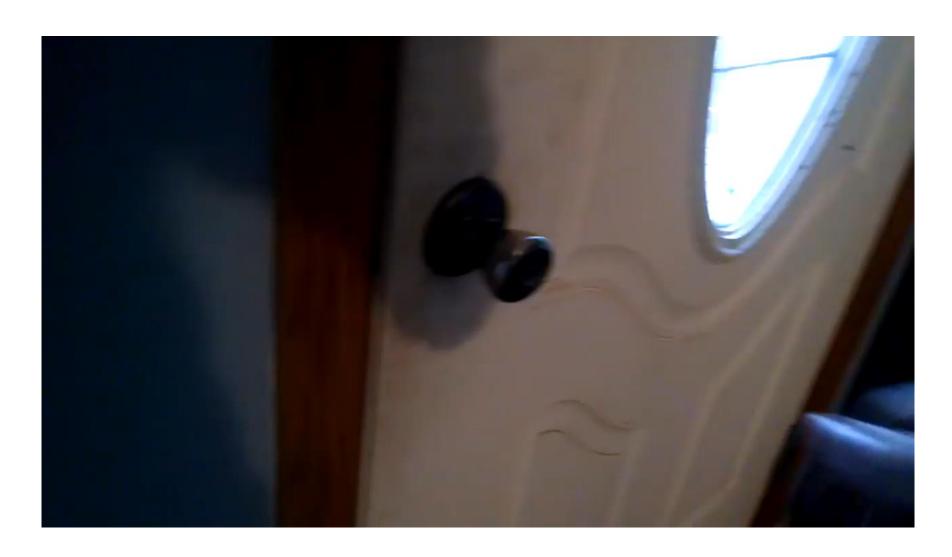
Too strong dynamics model

Too strong observation model

- Initialization
- Getting observation and dynamics models
- Combining prediction vs correction
- Data association:
 - Need to keep track of which object is which. Particle filters good for this

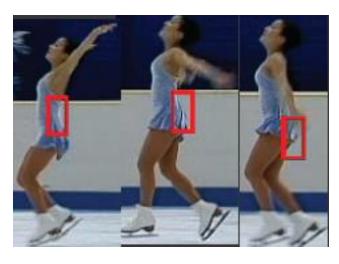
Slide credit: D. Hoiem

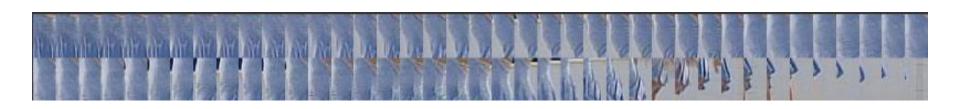
Tracking Issues – Data Association



- Initialization
- Getting observation and dynamics models
- Combining prediction vs correction
- Data association
- Drift
 - · Errors can accumulate over time

Drift





D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by Learning their Appearance</u>. PAMI 2007.

Things to remember

- Tracking objects = detection + prediction
- Probabilistic framework
 - Predict next state
 - Update current state based on observation
- Two simple but effective methods
 - Kalman filters: Gaussian distribution
 - Particle filters: multimodal distribution

Slide credit: D. Hoiem

Action Recognition

- Image recognition:
 - Input: HxWx3 image
 - Output: F-dimensional output
- Action recognition
 - Input: ?x?x? video
 - Output: F-dimensional output

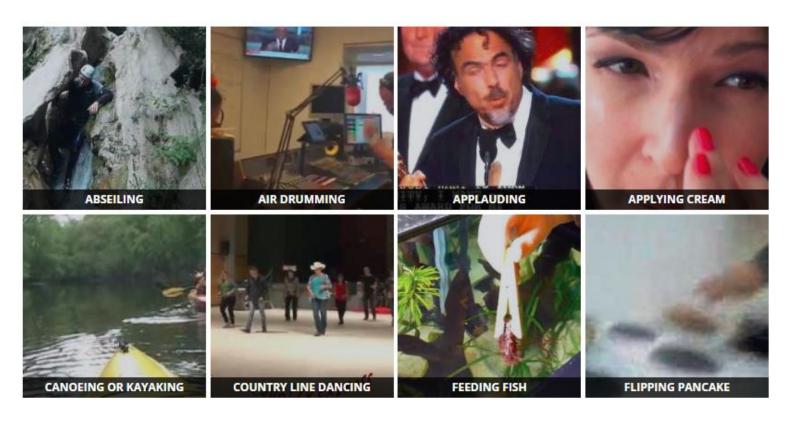
Datasets – KTH

#Classes: 6, Videos: 2391, Source: Lab, Year: 2004 Recognizing Human Actions: A Local SVM Approach C. Schuldt, I. Laptev, B. Caputo

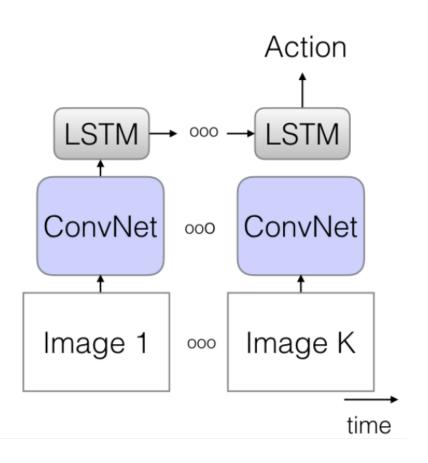
Datasets – UCF 101

#Classes: 101, #Videos: 9,511, Source: YouTube, Year: 2012 UCF101: A Dataset of 101 Human Action Classes From Videos in The Wild. K. Soomro, A. Zamir, M. Shah

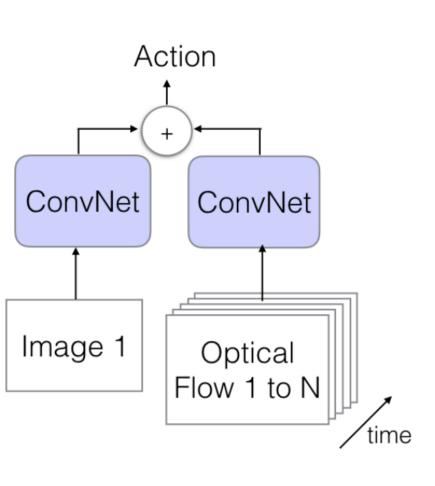
Datasets – Kinetics



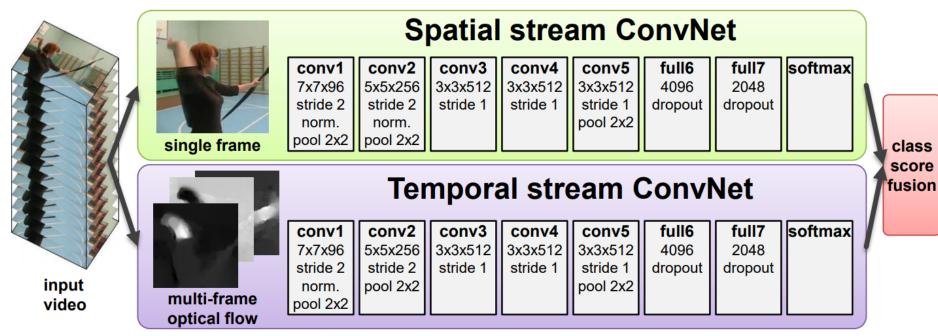
#Classes: 400, #Videos: 240K, Source: YouTube, Year: 2017
The Kinetics Human Action Video Dataset
W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, A. Zisserman,

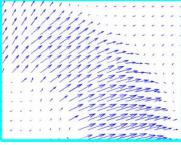


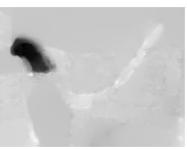
- Take learned sequence modeler (also used in language tasks, e.g., sentence -> sentiment)
- Feed in convnet activations as opposed to words

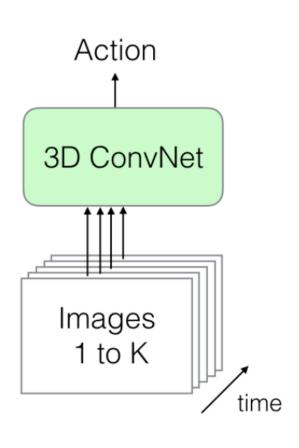


- One network (Image) takes HxWx3 image
- Other network (Flow) takes HxWx2*N image
- Add them together

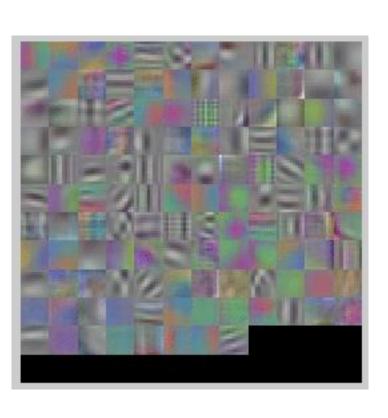




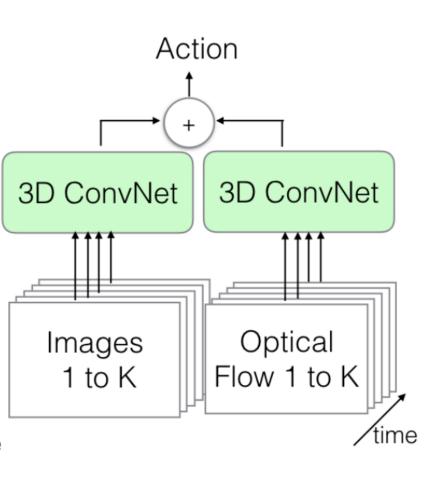




- Dump all the frames in as a HxWx3xN tensor
- Convolutions are 3D



Filters pick up on spatial patterns and motion patterns



- RGB frames go in as HxWx3xN tensor
- Flow frames in as HxWx2xN tensor
- Convolutions are 3D

Comparisons

Take-homes:

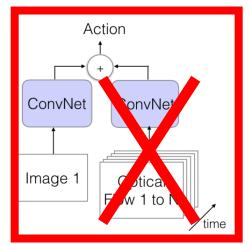
- Flow + RGB does best
- 3D Convolutions does best

	UCF-101			miniKinetics			
Architecture	RGB	B Flow RGB + Flow 1		RGB	Flow	RGB + Flow	
(a) LSTM	81.0	_	- –		_	_	
(b) 3D-ConvNet	51.6	_	_	60.0	_	_	
(c) Two-Stream	83.6	85.6	91.2	70.1	58.4	72.9	

(e) Two-Stream I3D	84.5	90.6	93.4	74.1	69.6	78.7
--------------------	------	------	------	------	------	------

Hmm... #1

Just looking at independent frames does shockingly well.



		UCF	-101	miniKinetics			
Architecture	RGB	Flow RGB + Flow		RGB	Flow	RGB + Flow	
(a) LSTM	81.0	_			_	_	
(b) 3D-ConvNet	51.6	_	_	60.0	_	_	
(c) Two-Stream	83.6	85.6	91.2	70.1	58.4	72.9	

(e) Two-Stream I3D	84.5	90.6	93.4	74.1	69.6	78. 7	

Hmm... #2

Using optical flow as input improves things. If flow is so important, can't it just learn this on its own?

	UCF-101			miniKinetics			
Architecture	RGB	Flow RGB + Flow 1		RGB	Flow	RGB + Flow	
(a) LSTM	81.0	_	_	69.9	_	_	
(b) 3D-ConvNet	51.6	_	_	60.0	_	_	
(c) Two-Stream	83.6	85.6	91.2	70.1	58.4	72.9	

(e) Two-Stream I3D **84.5 90.6 93.4 74.1 69.6 78.7**