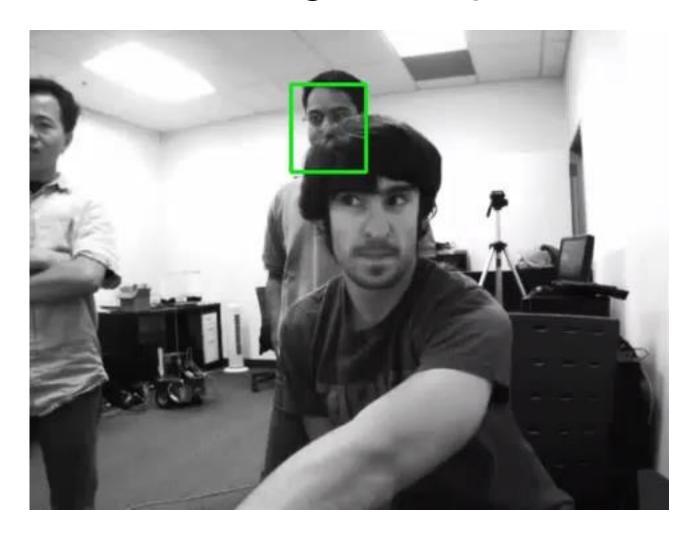
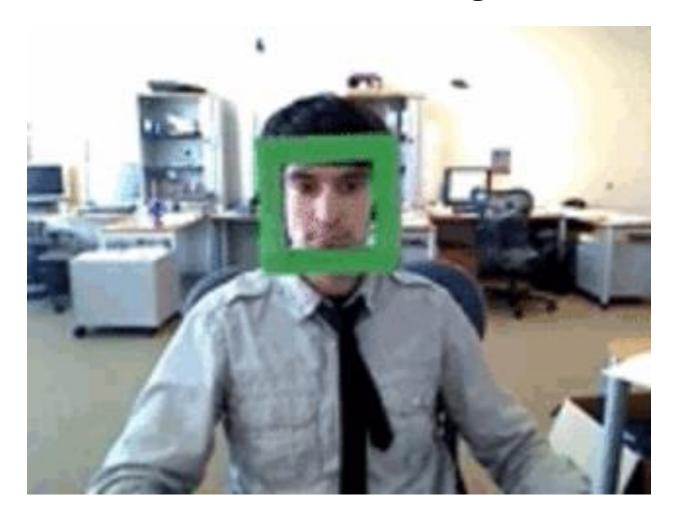
# Video: Tracking and Action Recognition


EECS 442 – Prof. David Fouhey Winter 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442\_W19/

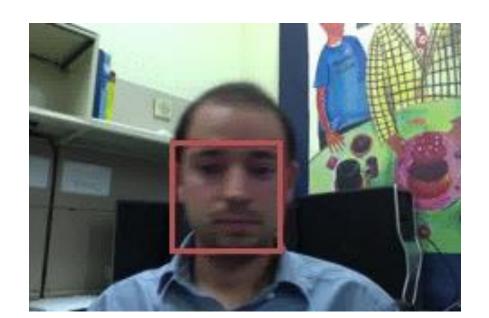
## Today: Tracking Objects

- Goal: Locating a moving object/part across video frames
- This class:
  - Examples
  - Probabilistic Tracking
  - Kalman filter
  - Particle filter


## Tracking Examples



## **Tracking Examples**

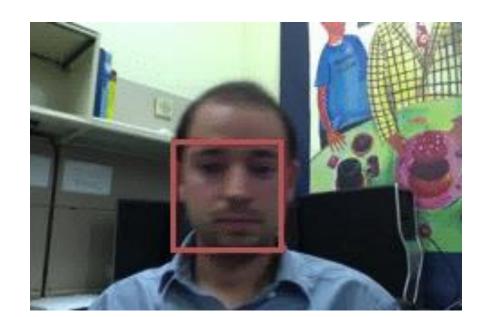



# **Best Tracking**



#### **Difficulties**

- Erratic movements, rapid motion
- Occlusion
- Surrounding similar objects

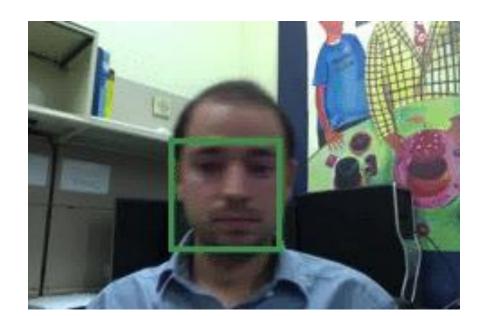



Slide credit: D. Hoiem

## Tracking by Detection

#### Tracking by detection:

- Works if object is detectable
- Need some way to link up detections

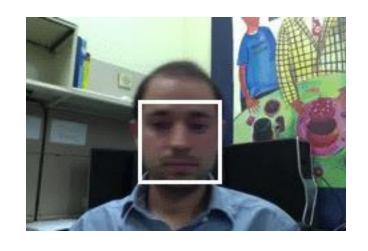



Slide credit: D. Hoiem

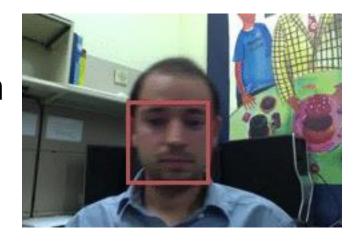
## Tracking With Dynamics

Based on motion, predict object location

- Restrict search for object
- Measurement noise is reduced by smoothness
- Robustness to missing or weak observations




## Strategies For Tracking


- Tracking with motion prediction:
  - Predict object's state in next frame.
  - Fuse with observation.

## **General Tracking Model**

State X: actual state of object that we want to estimate.
Could be: Pose, viewpoint, velocity, acceleration.



# Observation Y: our "measurement" of state X. Can be noisy. At each time step t, state changes to X<sub>t</sub>, get Y<sub>t</sub>.



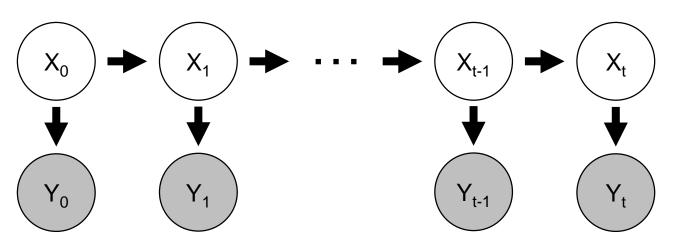
## Steps of Tracking

**Prediction**: What's the next state of the object given past measurements

$$P(X_t|Y_0 = y_0, ..., Y_{t-1} = y_{t-1})$$

**Correction**: Compute updated estimate of the state from prediction and measurements

$$P(X_t|Y_0 = y_0, ..., Y_{t-1} = y_{t-1}, Y_t = y_t)$$


## Simplifying Assumptions

Only immediate past matters (Markovian)

$$P(X_t|X_0,...,X_{t-1}) = P(X_t|X_{t-1})$$

Measurement depends only on current state (Independence)

$$P(Y_t|X_0, Y_0, ..., X_{t-1}, Y_{t-1}, X_t) = P(Y_t|X_t)$$



Slide credit: D. Hoiem

#### **Problem Statement**

Have models for:

(1) P(next state) given current state / Transition

$$P(X_t|X_{t-1})$$

(2) P(observation) given state / Observation

$$P(Y_t|X_t)$$

Want to recover, for each timestep t

$$P(X_t|y_0,...,y_t)$$

## Probabilistic tracking

- Base case:
  - Start with initial *prediction*/prior:  $P(X_0)$
  - For the first frame, *correct* this given the first measurement:  $Y_0 = y_0$

## Probabilistic tracking

- Base case:
  - Start with initial *prediction*/prior:  $P(X_0)$
  - For the first frame, *correct* this given the first measurement:  $Y_0 = y_0$

- Each subsequent step:
  - **Predict** X<sub>t</sub> given past evidence
  - Observe y<sub>t</sub>: correct X<sub>t</sub> given current evidence

#### Prediction

Given  $P(X_{t-1}|y_0,...,y_{t-1})$  want  $P(X_t|y_0,...,y_{t-1})$ 

$$\begin{split} &P(X_{t}|y_{0},...,y_{t-1})\\ &= \int P(X_{t},X_{t-1}|y_{0},...,y_{t-1}) \ dX_{t-1}\\ &= \int P(X_{t},|X_{t-1},y_{0},...,y_{t-1}) P(X_{t-1}|y_{0},...,y_{t-1}) \ dX_{t-1}\\ &= \int P(X_{t},|X_{t-1}) P(X_{t-1}|y_{0},...,y_{t-1}) \ dX_{t-1} \end{split}$$

Total probability

Condition on X<sub>t-1</sub>

Markovian

dynamics model corrected estimate from previous step

#### Correction

Given  $P(X_t|y_0,...,y_{t-1})$  want  $P(X_t|y_0,...,y_{t-1},y_t)$ 

$$\begin{split} &P(X_{t}|y_{0},...,y_{t})\\ &= \frac{P(y_{t}|X_{t},y_{0},...,y_{t-1})P(X_{t}|y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}\\ &= \frac{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}\\ &= \frac{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})}{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})} \end{split}$$

Bayes Rule

Independence Assumption

Condition on X,

#### Correction

Given  $P(X_t|y_0,...,y_{t-1})$  want  $P(X_t|y_0,...,y_{t-1},y_t)$ 

$$P(X_{t}|y_{0},...,y_{t})$$

$$= \begin{array}{c} \text{observation} & ..,y_{t-1})P(Y_{t}|Y_{0},...,y_{t-1}) \\ \text{model} & v_{t}|y_{0},...,y_{t-1}) \\ \\ = \frac{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})}{P(v_{t}|y_{0},...,y_{t-1})} \\ \\ = \frac{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})}{\int P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1}) dX_{t}} \\ \\ \text{Normalization} \\ \text{Factor} \end{array}$$

Bayes Rule

Independence Assumption

Condition on X<sub>t</sub>

Slide credit: D. Hoiem

#### Summarize

Transition
Observation

P(state given past)
P(state given past+present)

**Prediction:** 

$$P(X_t|y_0,...,y_{t-1}) = \int P(X_t,|X_{t-1}|)P(X_{t-1}|y_0,...,y_{t-1}) dX_{t-1}$$

Correction:

$$P(X_t|y_0,...,y_t) = \frac{P(y_t|X_t)P(X_t|y_0,...,y_{t-1})}{\int P(y_t|X_t)P(X_t|y_0,...,y_{t-1}) dX_t}$$

Nasty integrals! Also these are probability distributions

#### Solution 1 – Kalman Filter

- What's the product of two Gaussians?
- Gaussian
- What do you need to keep track of for a multivariate Gaussian?
- Mean, Covariance

Kalman filter: assume everything's Gaussian

#### Solution 1 – Kalman Filter

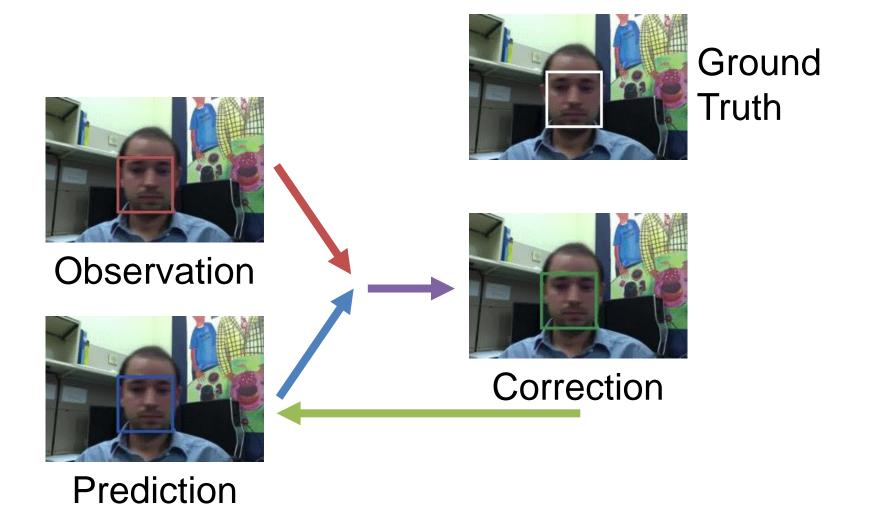

"The Apollo computer used 2k of magnetic core RAM and 36k wire rope [...]. The CPU was built from ICs [...]. Clock speed was under 100 kHz"

Rudolf Kalman



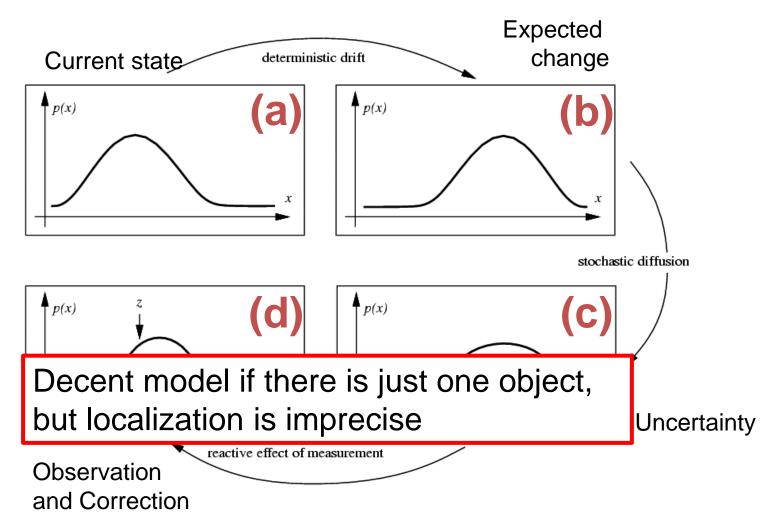


## Comparison

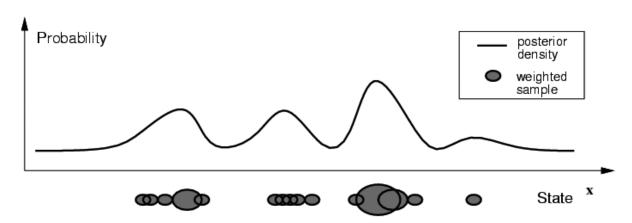



**Ground Truth** 

Observation


Correction

## Example: Kalman Filter

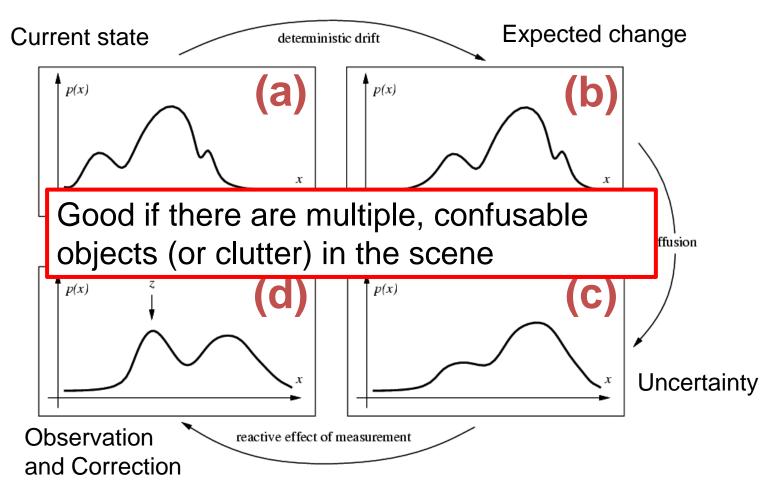



Slide credit: D. Hoiem

## Propagation of Gaussian densities



## Particle filtering




Represent the state distribution non-parametrically

- Prediction: Sample possible values  $X_{t-1}$  for the previous state
- Correction: Compute likelihood of  $X_t$  based on weighted samples and  $P(y_t|X_t)$

M. Isard and A. Blake, <u>CONDENSATION -- conditional density propagation for visual tracking</u>, IJCV 29(1):5-28, 1998

## Non-parametric densities



# Particle Filtering



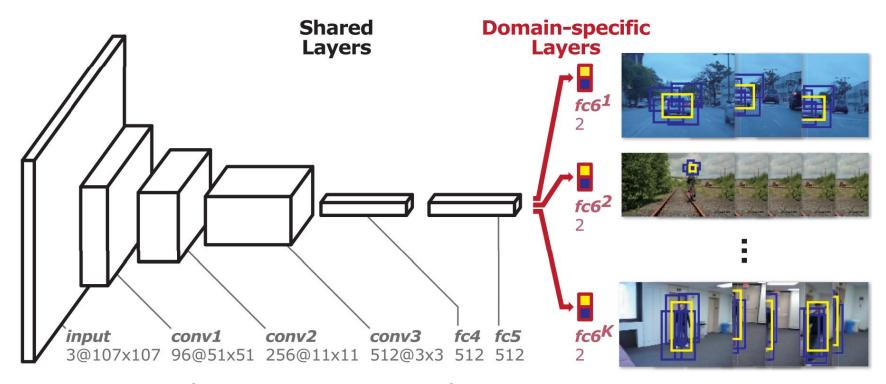
## Particle Filtering More Generally

- Object tracking:
  - State: object location
  - Observation: detect bounding box
  - Transition: assume constant velocity, etc.
- Vehicle tracking:
  - State: car location [x,y,theta] + velocity
  - Observation: register location in map
  - Transition: assume constant velocity, etc.

## Particle Filtering More Generally

#### Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization

Marcus A Brubaker, Andreas Geiger and Raquel Urtasun


Code and other videos at: http://www.cs.toronto.edu/~mbrubake

#### In General

- If you have something intractable:
- Option 1: Pretend you're dealing with Gaussians, everything is nice
- Option 2: Monte-carlo method, don't have to do intractable math

#### MD-Net

- Offline: train to differentiate between target and bg for K different targets
- Online: fine-tune network in new sequence



Nam and Han, CVPR 2016, Learning Multi-Domain Convolutional Neural Networks For Visual Tracking

## Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

Hyeonseob Nam and Bohyung Han

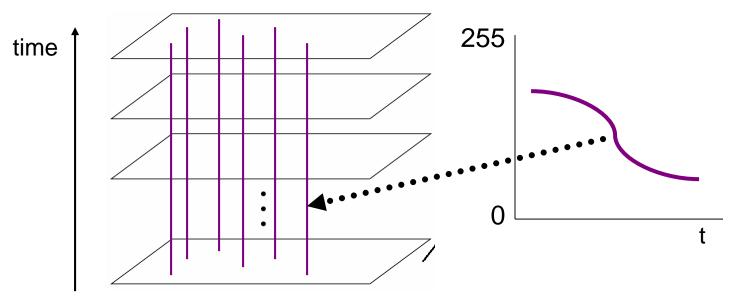
## Tracking Issues

- Initialization
  - Manual (click on stuff)
  - Detection
  - Background subtraction

Slide credit: D. Hoiem

## Detour: Background Subtraction

## Moving in Time


- Moving <u>only</u> in time, while not moving in space, has many advantages
  - No need to find correspondences
  - Can look at how each ray changes over time
  - In science, always good to change just one variable at a time
- This approach has always interested artists (e.g. Monet)







## Image Stack



- As can look at video data as a spatio-temporal volume
  - If camera is stationary, each line through time corresponds to a single ray in space
  - We can look at how each ray behaves
  - What are interesting things to ask?

# Example



# Examples



Average image



Median Image

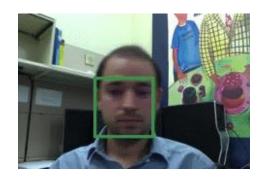
# Average/Median Image

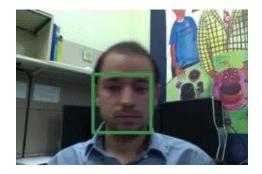


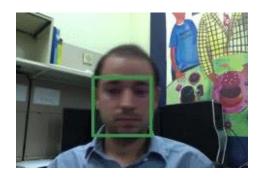


# **Background Subtraction**







Slide credit: A. Efros

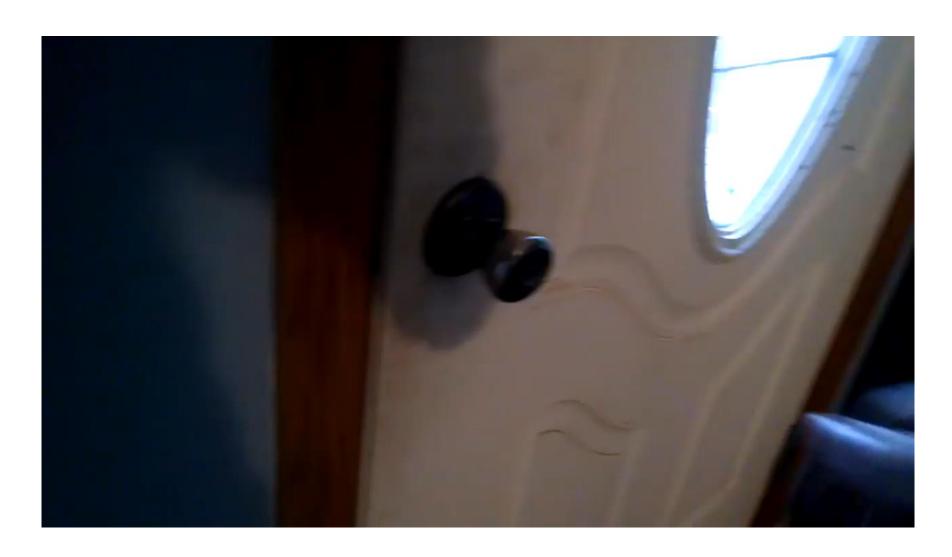
- Initialization
- Getting observation and dynamics models
  - Observation model: match template or use trained detector
  - Dynamics Model: specify with domain knowledge

- Initialization
- Getting observation and dynamics models
- Combining prediction vs correction:
  - Dynamics too strong: ignores data
  - Observation too strong: tracking = detection





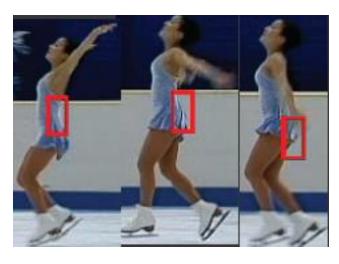


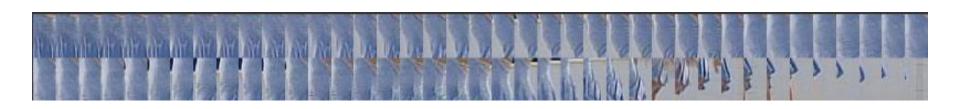

Too strong dynamics model

Too strong observation model

- Initialization
- Getting observation and dynamics models
- Combining prediction vs correction
- Data association:
  - Need to keep track of which object is which. Particle filters good for this

Slide credit: D. Hoiem


# Tracking Issues – Data Association




- Initialization
- Getting observation and dynamics models
- Combining prediction vs correction
- Data association
- Drift
  - · Errors can accumulate over time

### **Drift**







D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by Learning their Appearance</u>. PAMI 2007.

### Things to remember

- Tracking objects = detection + prediction
- Probabilistic framework
  - Predict next state
  - Update current state based on observation
- Two simple but effective methods
  - Kalman filters: Gaussian distribution
  - Particle filters: multimodal distribution

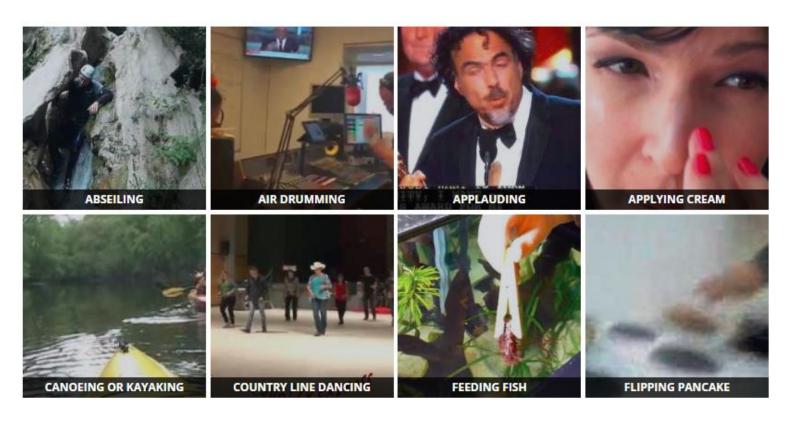
Slide credit: D. Hoiem

### **Action Recognition**

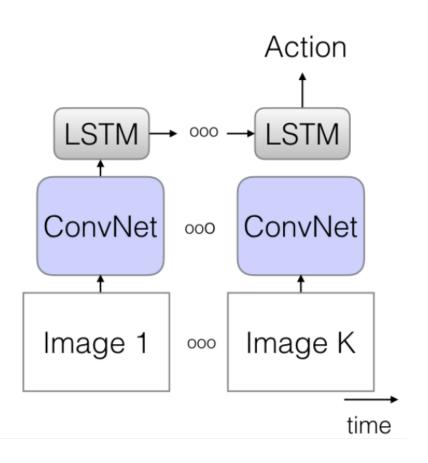
- Image recognition:
  - Input: HxWx3 image
  - Output: F-dimensional output
- Action recognition
  - Input: ?x?x? video
  - Output: F-dimensional output

#### Datasets – KTH

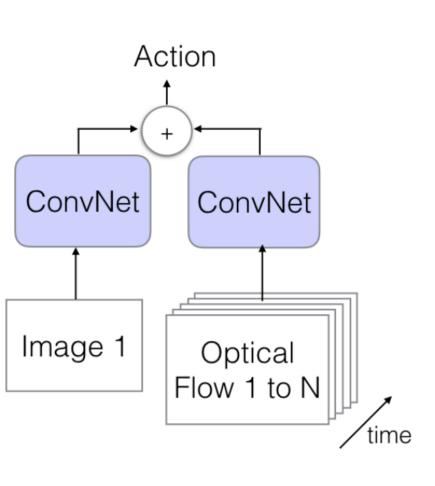



#Classes: 6, Videos: 2391, Source: Lab, Year: 2004 Recognizing Human Actions: A Local SVM Approach C. Schuldt, I. Laptev, B. Caputo

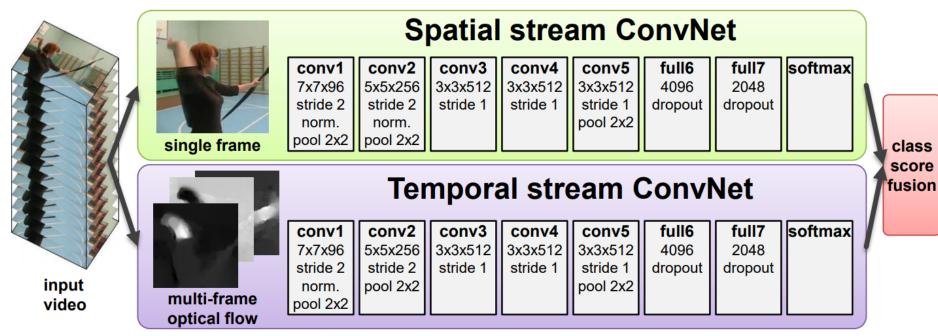
#### Datasets – UCF 101




#Classes: 101, #Videos: 9,511, Source: YouTube, Year: 2012 UCF101: A Dataset of 101 Human Action Classes From Videos in The Wild. K. Soomro, A. Zamir, M. Shah

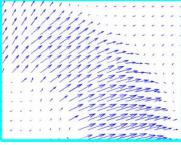

#### Datasets – Kinetics



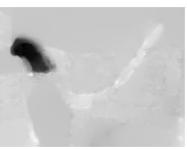

#Classes: 400, #Videos: 240K, Source: YouTube, Year: 2017
The Kinetics Human Action Video Dataset
W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, A. Zisserman,

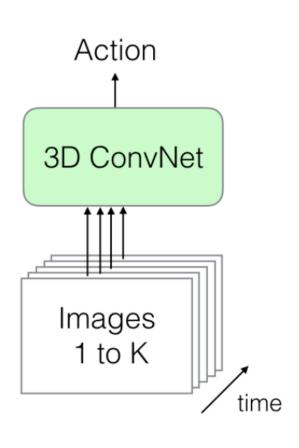


- Take learned sequence modeler (also used in language tasks, e.g., sentence -> sentiment)
- Feed in convnet activations as opposed to words

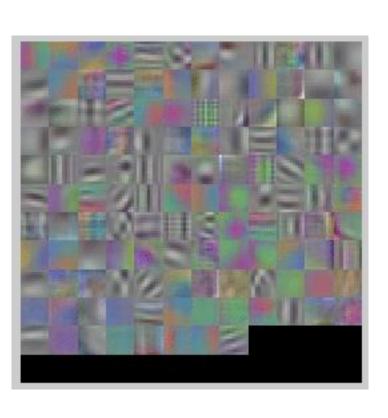



- One network (Image) takes HxWx3 image
- Other network (Flow) takes HxWx2\*N image
- Add them together

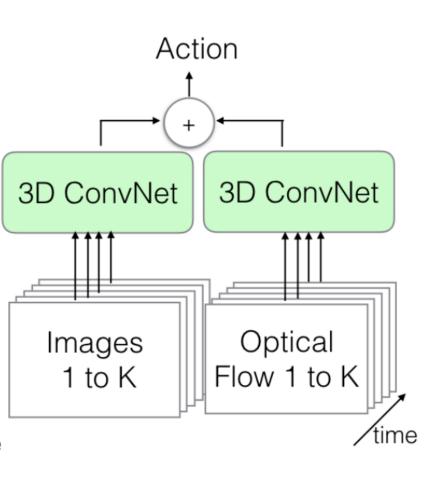









- Dump all the frames in as a HxWx3xN tensor
- Convolutions are 3D



Filters pick up on spatial patterns and motion patterns



- RGB frames go in as HxWx3xN tensor
- Flow frames in as HxWx2xN tensor
- Convolutions are 3D

### Comparisons

#### Take-homes:

- Flow + RGB does best
- 3D Convolutions does best

|                | UCF-101 |                     |      | miniKinetics |      |            |  |
|----------------|---------|---------------------|------|--------------|------|------------|--|
| Architecture   | RGB     | B Flow RGB + Flow 1 |      | RGB          | Flow | RGB + Flow |  |
| (a) LSTM       | 81.0    | _                   | - –  |              | _    | _          |  |
| (b) 3D-ConvNet | 51.6    | _                   | _    | 60.0         | _    | _          |  |
| (c) Two-Stream | 83.6    | 85.6                | 91.2 | 70.1         | 58.4 | 72.9       |  |

| (e) Two-Stream I3D | 84.5 | 90.6 | 93.4 | 74.1 | 69.6 | 78.7 |
|--------------------|------|------|------|------|------|------|
|--------------------|------|------|------|------|------|------|

### Hmm... #1

Just looking at independent frames does shockingly well.



|                |      | UCF             | -101 | miniKinetics |      |            |  |
|----------------|------|-----------------|------|--------------|------|------------|--|
| Architecture   | RGB  | Flow RGB + Flow |      | RGB          | Flow | RGB + Flow |  |
| (a) LSTM       | 81.0 | _               |      |              | _    | _          |  |
| (b) 3D-ConvNet | 51.6 | _               | _    | 60.0         | _    | _          |  |
| (c) Two-Stream | 83.6 | 85.6            | 91.2 | 70.1         | 58.4 | 72.9       |  |

|                    |      |      | <br> | <br>        |      | <br>         |  |
|--------------------|------|------|------|-------------|------|--------------|--|
| (e) Two-Stream I3D | 84.5 | 90.6 | 93.4 | <b>74.1</b> | 69.6 | <b>78.</b> 7 |  |

### Hmm... #2

Using optical flow as input improves things. If flow is so important, can't it just learn this on its own?

|                | UCF-101 |                   |      | miniKinetics |      |            |  |
|----------------|---------|-------------------|------|--------------|------|------------|--|
| Architecture   | RGB     | Flow RGB + Flow 1 |      | RGB          | Flow | RGB + Flow |  |
| (a) LSTM       | 81.0    | _                 | _    | 69.9         | _    | _          |  |
| (b) 3D-ConvNet | 51.6    | _                 | _    | 60.0         | _    | _          |  |
| (c) Two-Stream | 83.6    | 85.6              | 91.2 | 70.1         | 58.4 | 72.9       |  |

(e) Two-Stream I3D **84.5 90.6 93.4 74.1 69.6 78.7**