Videos and **Optical Flow** EECS 442 – Prof. David Fouhey Winter 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W19/

https://www.youtube.com/watch?v=G3QrhdfLCO8

Video

Video: sequence of frames over time Image is function of space (x,y) and time t (and channel c)

Motion Perception

Gestalt psychology Max Wertheimer 1880-1943

Motion and perceptual organization Sometimes motion is the only cue

Slide Credit: S. Lazebnik, but idea of random dot sterogram is due to B. Julesz

Motion and perceptual organization Sometimes motion is the only cue

Slide Credit: S. Lazebnik, but idea of random dot sterogram is due to B. Julesz

Motion and perceptual organization Even impoverished motion data can create a strong percept

Motion and perceptual organization Even impoverished motion data can create a strong percept

Motion and perceptual organization Even impoverished motion data can create a strong percept

Fritz Heider & Marianne Simmel. 1944

Problem Definition: Optical Flow

Want to estimate pixel motion from image I(x,y,t) to image I(x,y,t+1)

Motion estimation: Optical flow

Optical flow is the apparent motion of objects

Will start by estimating motion of each pixel separately Then will consider motion of entire image

Optical Flow

Idea first introduced by psychologist JJ Gibson in ~1940s to describe how to perceive opportunities for motion

Problem Definition: Optical Flow

Solve correspondence problem: given pixel at time t, find **nearby** pixels of the **same color** at time t+1

Key assumptions:

- Color/brightness constancy: point at time t looks same at time t+1
- Small motion: points do not move very far

Brightness constancy: I(x, y, t) = I(x + u, y + v, t + 1)

Recall Taylor $I(x + u, y + v, t) = I(x, y, t) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \cdots$ Expansion:

Optical Flow Equation

$$I(x + u, y + v, t + 1) = I(x, y, t)$$

$$0 \approx I(x + u, y + v, t + 1) - I(x, y, t)$$

$$= I(x, y, t + 1) + I_x u + I_y v - I(x, y, t)$$

$$= I(x, y, t + 1) - I(x, y, t) + I_x u + I_y v$$

Remember
IX?

If you had to guess, what would you call this?

Optical Flow Equation

I(x + u, y + v, t + 1) = I(x, y, t) $0 \approx I(x + u, y + v, t + 1) - I(x, y, t)$ $= I(x, y, t + 1) + I_x u + I_y v - I(x, y, t)$ $= I(x, y, t + 1) - I(x, y, t) + I_x u + I_y v$ $= I_t + I_x u + I_y v$ $= I_t + \nabla I \cdot [u, v]$ Remember IX?

> When is this approximation exact? [u,v] = [0,0] When is it bad? u or v big.

Optical Flow Equation

Brightness constancy equation

$$I_x u + I_y v + I_t = 0$$

What do static image gradients have to do with motion estimation?

Brightness Constancy Example $I_x u + I_y v + I_t = 0$

It =
$$1-0 = 1$$

Iy = 0
Ix = $1-0 = 1$
What's u?

t+1

t

At

What's u?

Optical Flow EquationHave:
$$I_x u + I_y v + I_t = 0$$
 $I_t + \nabla I \cdot [u, v] = 0$ How many equations and unknowns per pixel?1 (single equation), 2 (u and v)One nasty problem: ∇I Suppose $\nabla I^T[u', v'] = 0$ ∇I $I_t + \nabla I^T[u + u', v + v'] = 0$ $I_t + \nabla I^T[u + u', v + v'] = 0$ Can only identify the motion along gradient and **not** motion perpendicular to it

Adapted from S. Lazebnik slides

Aperture problem

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Solving Ambiguity – Lucas Kanade

2 unknowns [u,v], 1 eqn per pixel How do we get more equations? Assume *spatial coherence*: pixel's neighbors have *move together /* have same [u,v] 5x5 window gives 25 new equations

$$I_{t} + I_{x}u + I_{y}v = 0$$

$$\begin{bmatrix} I_{x}(p_{1}) & I_{y}(p_{1}) \\ \vdots & \vdots \\ I_{x}(p_{25}) & I_{y}(p_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_{t}(p_{1}) \\ \vdots \\ I_{t}(p_{25}) \end{bmatrix}$$

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

Solving for [u,v]

$$\begin{bmatrix} I_x(p_1) & I_y(p_1) \\ \vdots & \vdots \\ I_x(p_{25}) & I_y(p_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(p_1) \\ \vdots \\ I_t(p_{25}) \end{bmatrix}$$

$$A_{25x2} d_{2x1} = b_{25x1}$$

What's the solution? $(A^T A)d = A^T b \rightarrow d = (A^T A)^{-1}A^T b$

Intuitively, need to solve (sum over pixels in window)

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad A^T b$$

Solving for [u,v] $\begin{bmatrix} \Sigma I_x I_x & \Sigma I_x I_y \\ \Sigma I_x I_y & \Sigma I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \Sigma I_x I_t \\ \Sigma I_y I_t \end{bmatrix}$ $A^T A \qquad A^T b$ What does this remind you of? Harris corner detection!

When can we find [u,v]? **A**^T**A** invertible: precisely equal brightness isn't **A**^T**A** not too small: noise + equal brightness **A**^T**A** well-conditioned: $|\lambda_1|/|\lambda_2|$ not large (edge)

Low texture region

High textured region

So How Does This Fail?

- Point doesn't move like neighbors:
 - Why would this happen?
 - Figure out which points move together, then come back and fix.
- Brightness constancy isn't true
 - Why would this happen?
 - Solution: other form of matching (e.g. SIFT)
- Taylor series is bad approximation
 - Why would this happen?
 - Solution: Make your pixels big

Lucas-Kanade flow example

Input frames

Output

Slide credit: S. Lazebnik Source: MATLAB Central File Exchange

Revisiting small motions

- Is this motion small enough?
 - Probably not—it's much larger than one pixel
 - How might we solve this problem?

Reduce the resolution!

Do we start at bottom or top to align?

Optical Flow Results

Lucas-Kanade without pyramids

Fails in areas of large

Optical Flow Results

Fixing the errors in Lucas-Kanade

- The motion is large (larger than a pixel)
 - Multi-resolution estimation, iterative refinement
 - Feature matching

Figure 11: (a) The optic flow from multi-scale gradient method. (b) Segmentation obtained by clustering optic flow into affine motion regions. (c) Segmentation from consistency checking by image warping. Representing moving images with layers.

J. Wang and E. Adelson, <u>Representing Moving Images with Layers</u>, IEEE Transactions on Image Processing, 1994

Applying This

 Would like tracks of where things move (e.g., for reconstruction)

C. Tomasi and T. Kanade. <u>Shape and motion from image streams under orthography:</u> <u>A factorization method.</u> *IJCV*, 9(2):137-154, November 1992.

Applying This

- Which features should we track?
 - Use eigenvalues of A^TA to find corners
- Use flow to figure out [u,v] for each "track"
 - Basically assumes translational motion
 - Food for thought: Why is this wrong?
- Register points to first frame by affine warp

J. Shi and C. Tomasi. <u>Good Features to Track</u>. CVPR 1994.

Tracking example

Figure 1: Three frame details from Woody Allen's Manhattan. The details are from the 1st, 11th, and 21st frames of a subsequence from the movie.

Figure 2: The traffic sign windows from frames 1,6,11,16,21 as tracked (top), and warped by the computed deformation matrices (bottom).

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.

State-of-the-art optical flow, 2009

- Start with something similar to Lucas-Kanade
- + gradient constancy
- + energy minimization with smoothing term
- + region matching

Region-based +Pixel-based +Keypoint-based

Large displacement optical flow, Brox et al., CVPR 2009

State-of-the-art optical flow

- Input: 6 channel input (RGB @ t, RGB @ t+1)
- Output: 2 channel input (u,v)
- Current best methods are learned

Fischer et al. 2015. https://arxiv.org/abs/1504.06852

Training Data

Flying Chairs Dataset

Fischer et al. 2015. https://arxiv.org/abs/1504.06852

Deep Optical Flow

Results on Sintel (standard benchmark)

Fischer et al. 2015. https://arxiv.org/abs/1504.06852

Optical flow

- Definition: optical flow is the *apparent* motion of brightness patterns in the image
- Ideally, optical flow would be the same as the motion field
- Have to be careful: apparent motion can be caused by lighting changes without any actual motion
 - Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination

Motion Magnification Idea: take flow, magnify it

Example credit: C. Liu

Motion Magnification

Example credit: C. Liu

Motion Magnification

Example credit: C. Liu