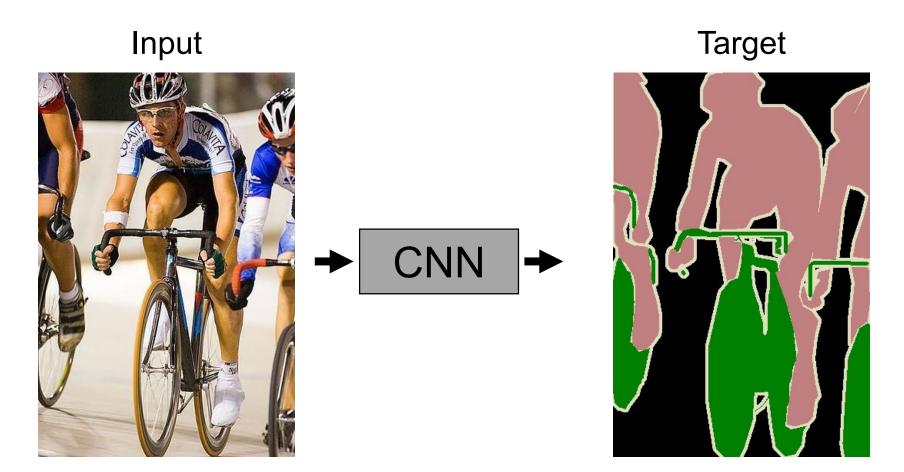
Object Detection

EECS 442 – Prof. David Fouhey Winter 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W19/

Last Time

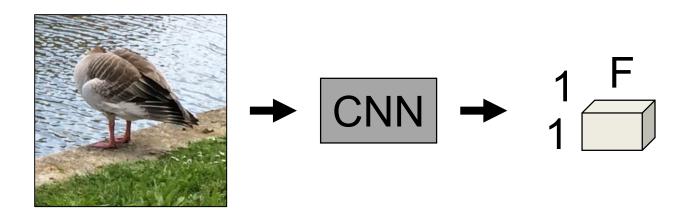
"Semantic Segmentation": Label each pixel with the object category it belongs to.



Today – Object Detection

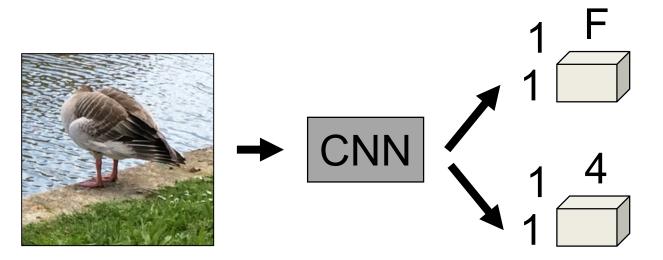
"Object Detection": Draw a box around each

instance of a list of categories Input **Target**



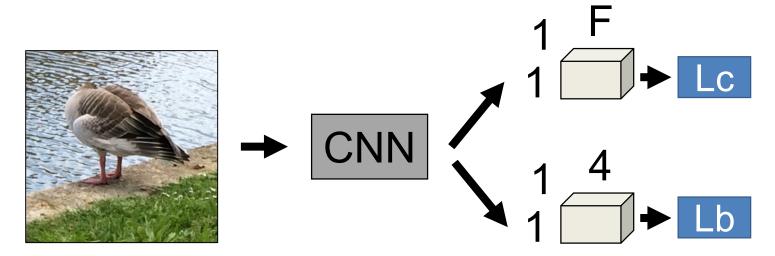
Starting point:

Can predict the probability of F classes P(cat), P(goose), ... P(tractor)



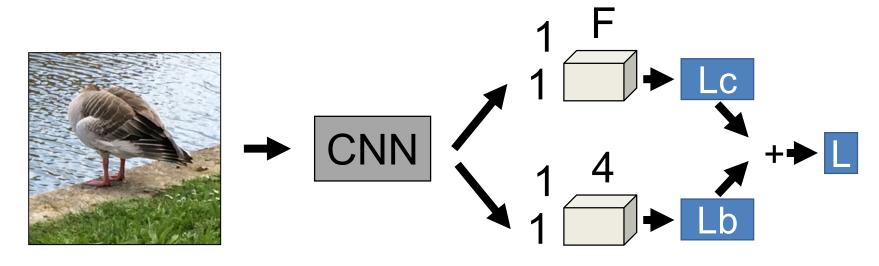
Add another output (why not):

Predict the *bounding box* of the object [x,y,width,height] or [minX,minY,maxX,maxY]



Put a loss on it:

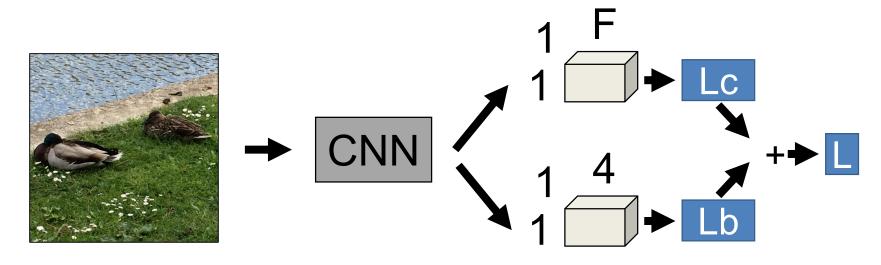
Penalize mistakes on the classes with Lc = negative log-likelihood Lb = L2 loss



Add losses, backpropagate

Final loss: $L = Lc + \lambda Lb$

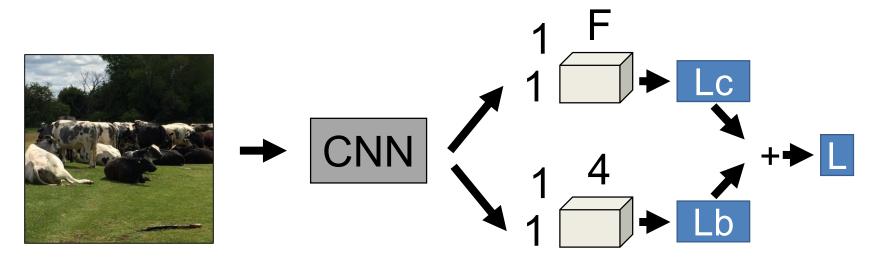
Why do we need the λ ?



Now there are two ducks.

How many outputs do we need?

F, 4, F, 4 = 2*(F+4)



Now it's a herd of cows.

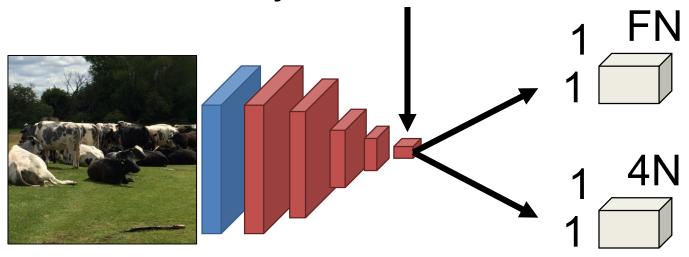
We need *lots* of outputs

(in fact the precise number of objects that are in the image, which is circular reasoning).

In General

- Usually can't do varying-size outputs.
- Even if we could, think about how you would solve it if you were a network.

Bottleneck has to *encode* where the objects are for all objects and all N



An Alternate Approach

Examine every sub-window and determine if it is a tight box around an object

Yes

No?
Hold this thought

No

Sliding Window Classification

Let's assume we're looking for pedestrians in a box with a fixed aspect ratio.

Sliding Window

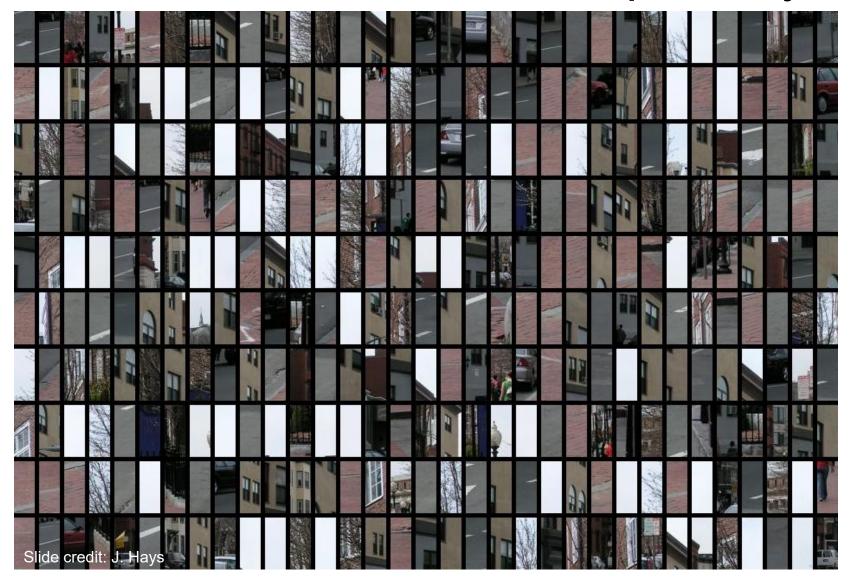
Key idea – just try all the subwindows in the image at all positions.

Generating hypotheses

Key idea – just try all the subwindows in the image at all positions **and scales**.

Note – Template did not change size

Each window classified separately

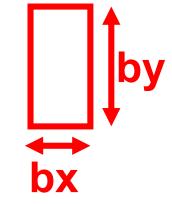


How Many Boxes Are There?

Given a HxW image and a "template" of size by, bx.

Q. How many sub-boxes are there of size (by,bx)?

A. (H-by)*(W-bx)



This is before considering adding:

- scales (by*s,bx*s)
- aspect ratios (by*sy,bx*sx)

Challenges of Object Detection

- Have to evaluate tons of boxes
- Positive instances of objects are extremely rare

How many ways can we get the box wrong?

- 1. Wrong left x
- 2. Wrong right x
- 3. Wrong top y
- 4. Wrong bottom y

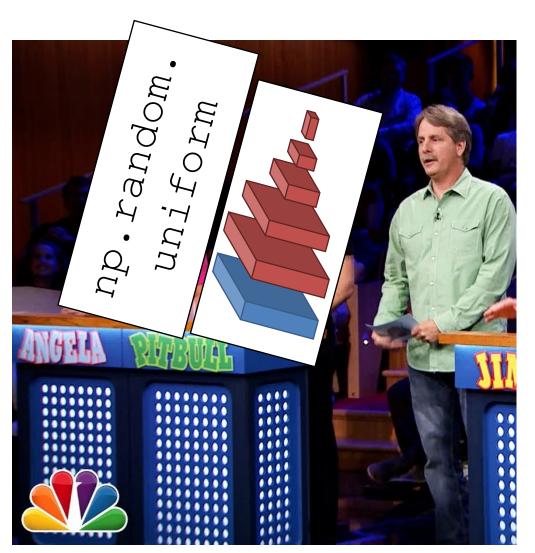
Prime-time TV

Are You Smarter Than A 5th Grader?

Adults compete with 5th graders on elementary school facts.

Adults often not smarter.

Computer Vision TV



Are You Smarter Than A Random Number Generator?

Models trained on data compete with making random guesses.

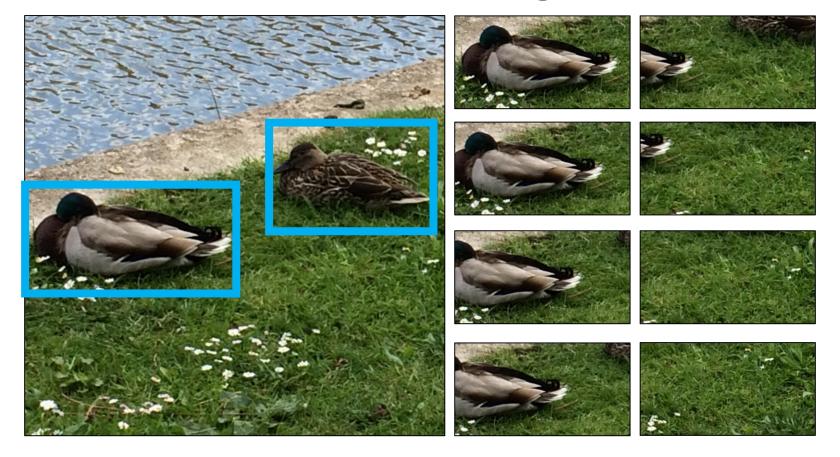
Models often not better.

Are You Smarter than a Random Number Generator?

- Prob. of guessing 1k-way classification?
 - 1/1,000
- Prob. of guessing all 4 bounding box corners within 10% of image size?
 - (1/10)*(1/10)*(1/10)*(1/10)=1/10,000
- Probability of guessing both: 1/10,000,000
- Detection is hard (via guessing and in general)
- Should always compare against guessing or picking most likely output label

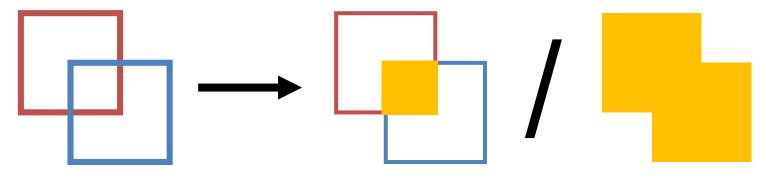
Evaluating – Bounding Boxes

Raise your hand when you think the detection stops being correct.

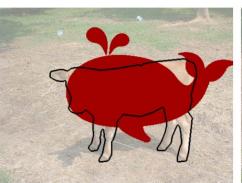


Evaluating – Bounding Boxes Standard metric for two boxes:

Intersection over union/IoU/Jaccard coefficient



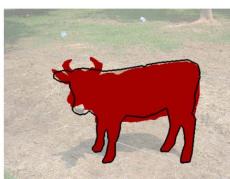




(b) $\mathcal{J} = 0.554$



(c) $\mathcal{J} = 0.703$



(d)
$$\mathcal{J} = 0.910$$

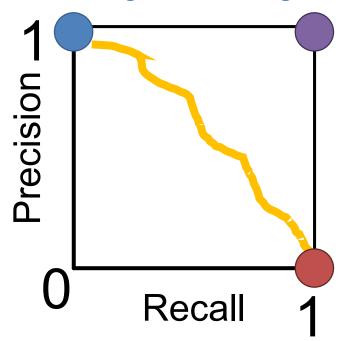
Evaluating Performance

- Remember: accuracy = average of whether prediction is correct
- Suppose I have a system that gets 99% accuracy in person detection.
- What's wrong?
- I can get that by just saying no object everywhere!

Evaluating Performance

- True detection: high intersection over union
- Precision: #true detections / #detections
- Recall: #true detections / #true positives

Reject everything: no mistakes

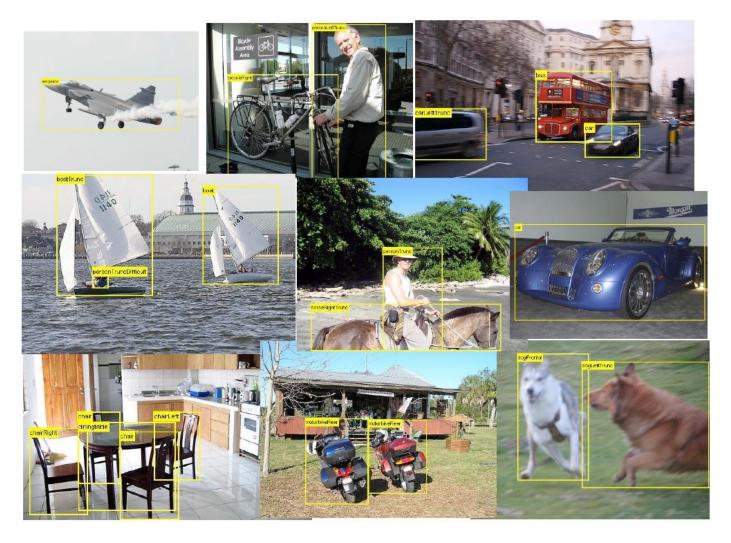


Ideal!

Summarize by area under curve (avg. precision)

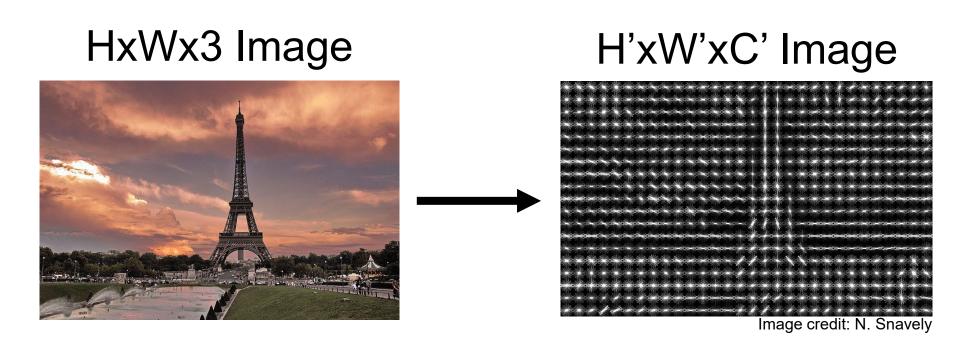
Accept everything: Miss nothing

Generic object detection



Histograms of oriented gradients (HOG)

Partition image into blocks and compute histogram of gradient orientations in each block



N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>,

Slide Credit: S. Lazebnik

CVPR 2005

Pedestrian detection with HOG

Train a pedestrian template using a linear support vector machine

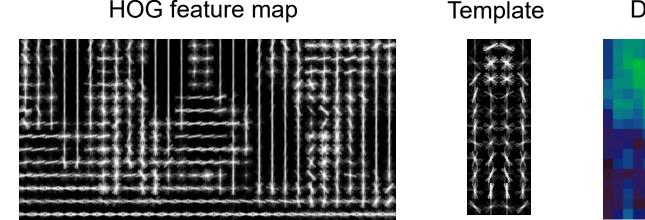
positive training examples

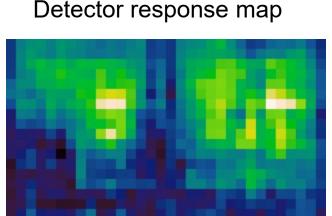
negative training examples

N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, Slide Credit: S. Lazebnik CVPR 2005

Pedestrian detection with HOG

- Train pedestrian "template" using a linear sym
- At test time, convolve feature map with template
- Find local maxima of response
- For multi-scale detection, repeat over multiple levels of a HOG pyramid





N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, Slide Credit: S. Lazebnik CVPR 2005

Example detections

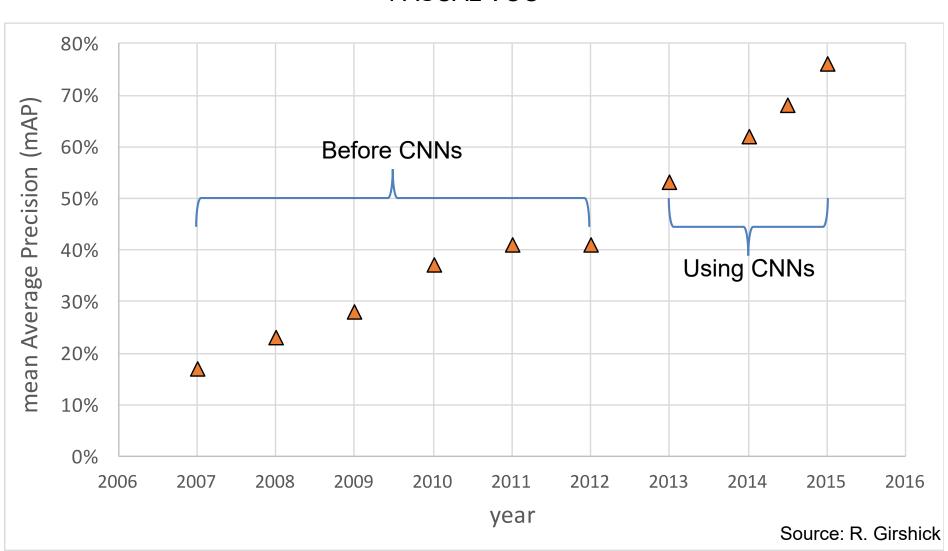
[Dalal and Triggs, CVPR 2005]

PASCAL VOC Challenge (2005-2012)

- 20 challenge classes:
- Person
- Animals: bird, cat, cow, dog, horse, sheep
- Vehicles: aeroplane, bicycle, boat, bus, car, motorbike, train
- Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor
- Dataset size (by 2012): 11.5K training/validation images, 27K bounding boxes, 7K segmentations

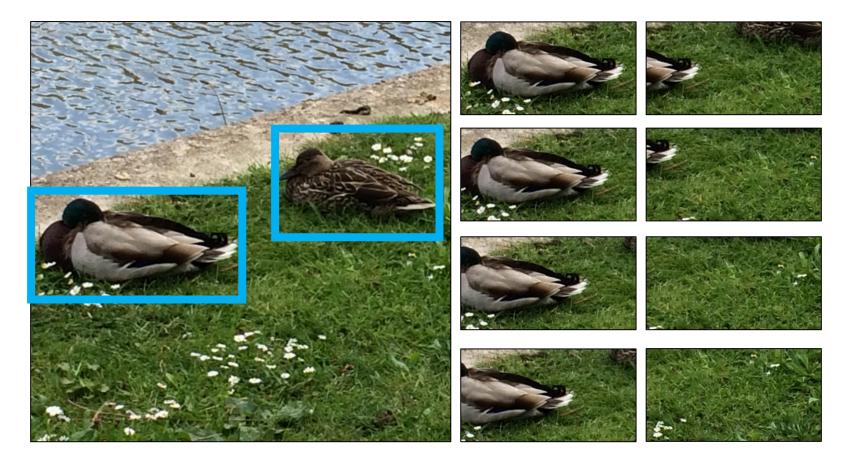
Object detection progress

PASCAL VOC

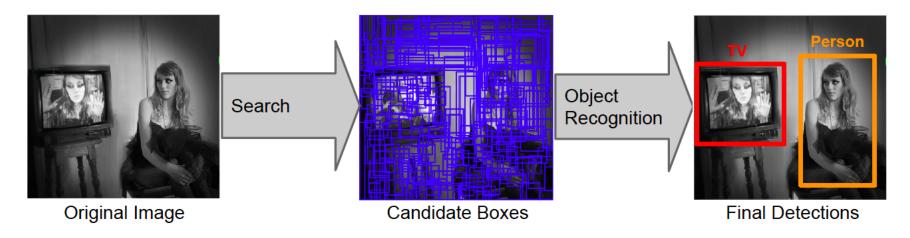


Region Proposals

Do I need to spend a lot of time filtering all the boxes covering grass?

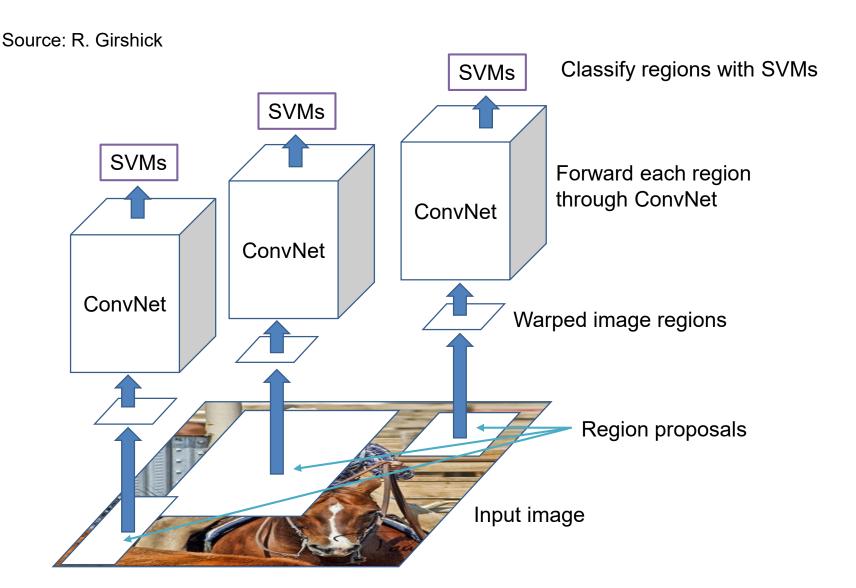


Region proposals



- As an alternative to sliding window search, evaluate a few hundred region proposals
 - Can use slower but more powerful features and classifiers
 - Proposal mechanism can be category-independent
 - Proposal mechanism can be trained

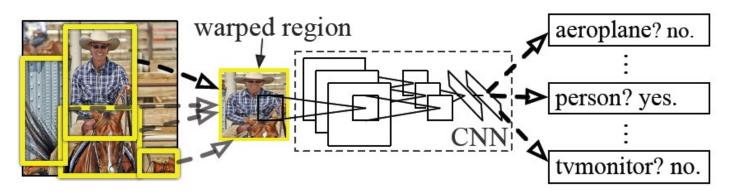
R-CNN: Region proposals + CNN features



R. Girshick, J. Donahue, T. Darrell, and J. Malik, <u>Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation</u>, CVPR 2014.

R-CNN details





- Regions: ~2000 Selective Search proposals
- Network: AlexNet pre-trained on ImageNet (1000 classes), fine-tuned on PASCAL (21 classes)
- **Final detector**: warp proposal regions, extract fc7 network activations (4096 dimensions), classify with linear SVM
- Bounding box regression to refine box locations
- **Performance:** mAP of 53.7% on PASCAL 2010 (vs. 35.1% for Selective Search and 33.4% for DPM).

R-CNN pros and cons

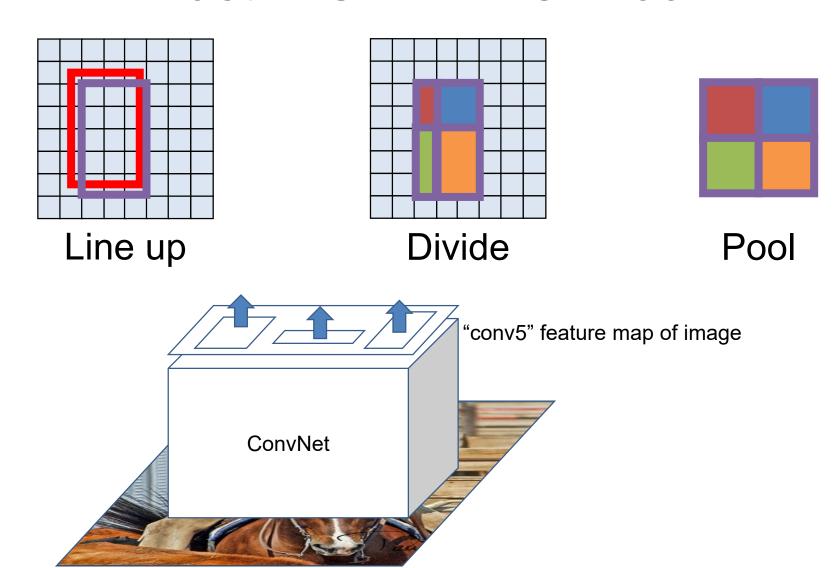
Pros

- Accurate!
- Any deep architecture can immediately be "plugged in"

Cons

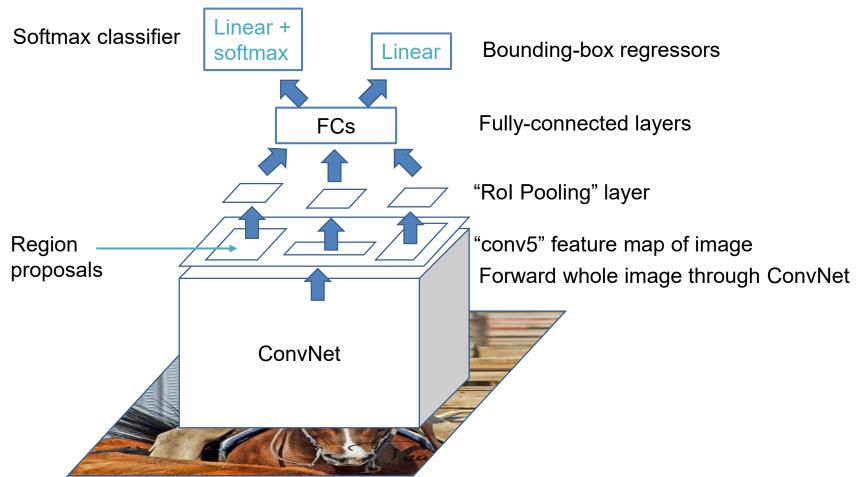
- Ad hoc training objectives
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressions (least squares)
- Training is slow (84h), takes a lot of disk space
 - 2000 CNN passes per image
- Inference (detection) is slow (47s / image with VGG16)

Fast R-CNN – ROI-Pool



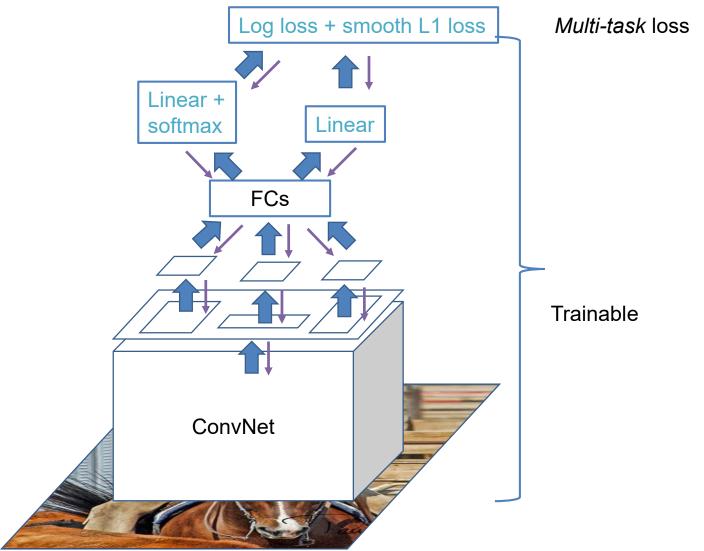
Source: R. Girshick, Fast R-CNN, ICCV 2015

Fast R-CNN



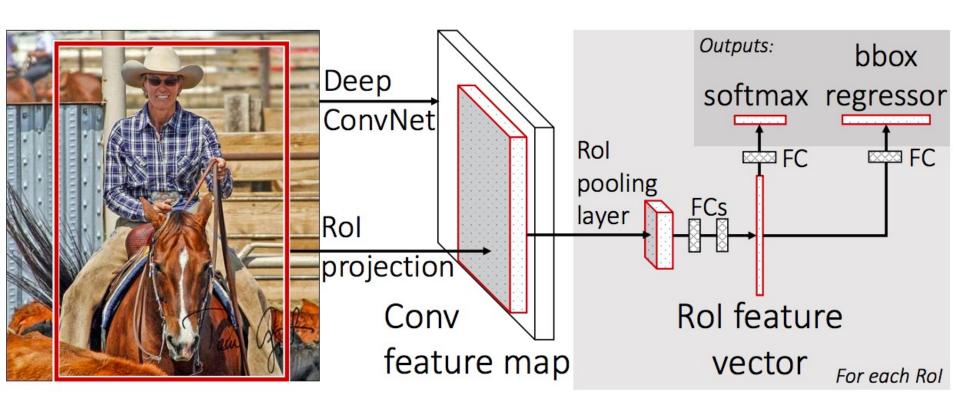
Source: R. Girshick, Fast R-CNN, ICCV 2015

Fast R-CNN training



Source: R. Girshick, Fast R-CNN, ICCV 2015

Fast R-CNN: Another view

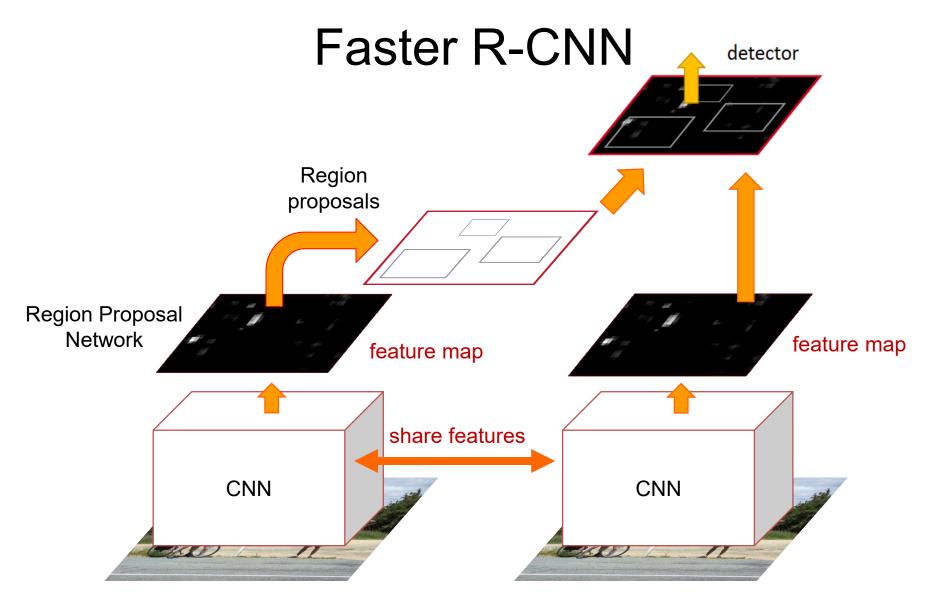


Fast R-CNN results

	Fast R-CNN	R-CNN
Train time (h)	9.5	84
- Speedup	8.8x	1x
Test time / image	0.32s	47.0s
Test speedup	146x	1x
mAP	66.9%	66.0%

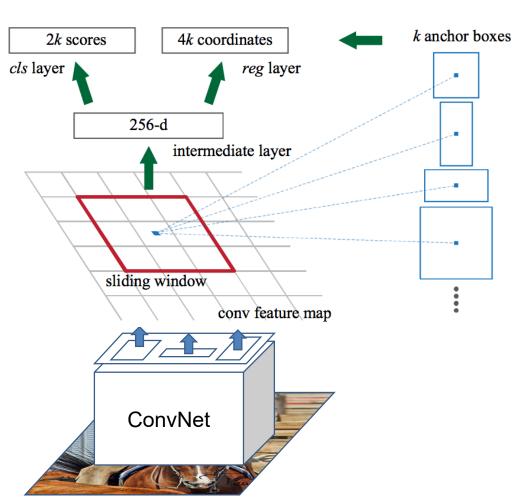
Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

Source: R. Girshick



S. Ren, K. He, R. Girshick, and J. Sun, <u>Faster R-CNN: Towards Real-Time Object Detection with</u>
<u>Region Proposal Networks</u>, NIPS 2015

Region Proposal Network (RPN)



sanchor boxes Small network applied to conv5 feature map.

Predicts:

- good box or not (classification),
- how to modify box (regression)

for k "anchors" or boxes relative to the position in feature map.

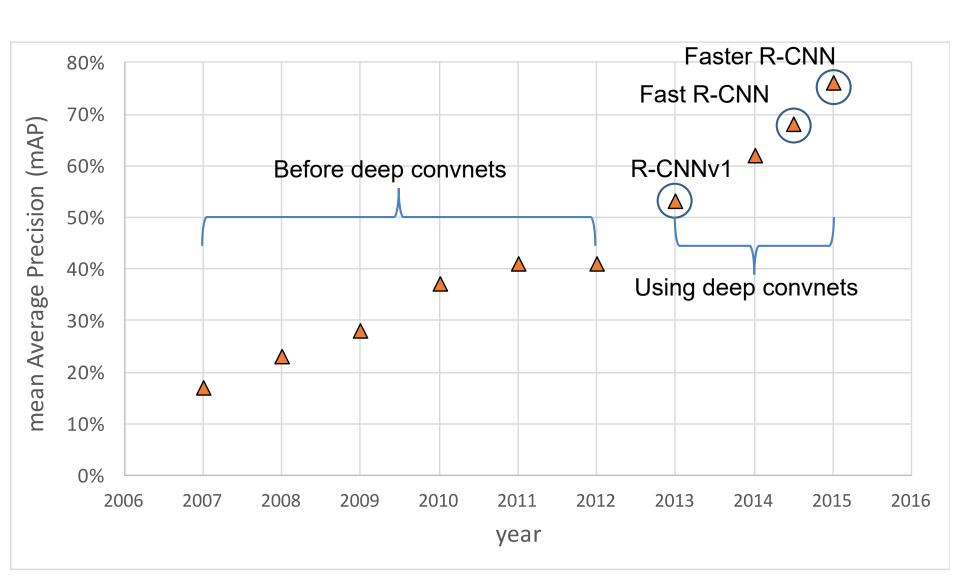
Source: R. Girshick

Faster R-CNN results

system	time	07 data	07+12 data
R-CNN	~50s	66.0	-
Fast R-CNN	~2s	66.9	70.0
Faster R-CNN	198ms	69.9	73.2

detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet

Object detection progress



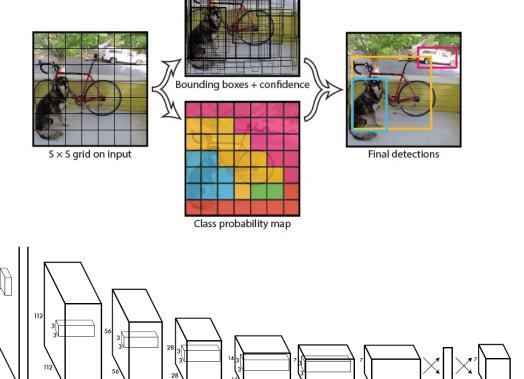
1. Take conv feature maps

at 7x7 resolution

2. Add two FC layers to predict, at each location, score for each class and 2 bboxes w/ confidences

7x speedup over Faster[™]
 RCNN (45-155 FPS vs.
 7-18 FPS)

 Some loss of accuracy due to lower recall, poor localization



J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, <u>You Only Look Once: Unified, Real-Time</u>

<u>Object Detection</u>, CVPR 2016

Conv. Layer

Maxpool Layer

Conv. Layers

1x1x128

3x3x256

1x1x256

3x3x512

Maxpool Layer

Conv. Layers

3x3x512 \

1x1x512

3x3x1024

Maxpool Layer

2x2-s-2

1x1x256 } x4

Conv. Layers

3x3x1024

3x3x1024

3x3x1024-s-2

1x1x512 3x3x1024

Conv. Layers

Conn. Layer Conn. Layer

Conv. Layer

3x3x192

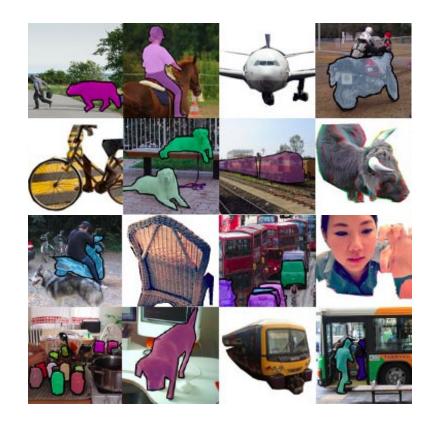
Maxpool Layer

New detection benchmark: COCO (2014)

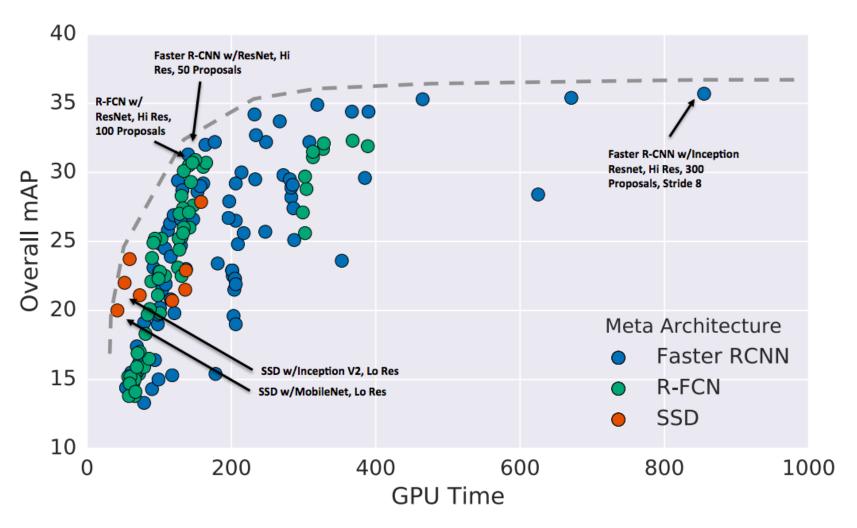
- 80 categories instead of PASCAL's 20
- Current best mAP: 52%

COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:

- Object segmentation
- Recognition in context
- Superpixel stuff segmentation
- 330K images (>200K labeled)
- 1.5 million object instances
- 80 object categories
- 91 stuff categories
- ✓ 5 captions per image
- 250,000 people with keypoints



New detection benchmark: COCO (2014)



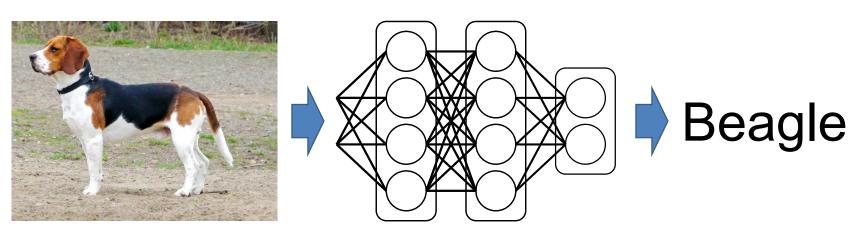
J. Huang et al., <u>Speed/accuracy trade-offs for modern convolutional</u>
<u>object detectors</u>, CVPR 2017

Summary: Object detection with CNNs

- R-CNN: region proposals + CNN on cropped, resampled regions
- Fast R-CNN: region proposals + Rol pooling on top of a conv feature map
- Faster R-CNN: RPN + Rol pooling
- Next generation of detectors
 - Direct prediction of BB offsets, class scores on top of conv feature maps
 - Get better context by combining feature maps at multiple resolutions

And Now For Something Completely Different

ImageNet + Deep Learning

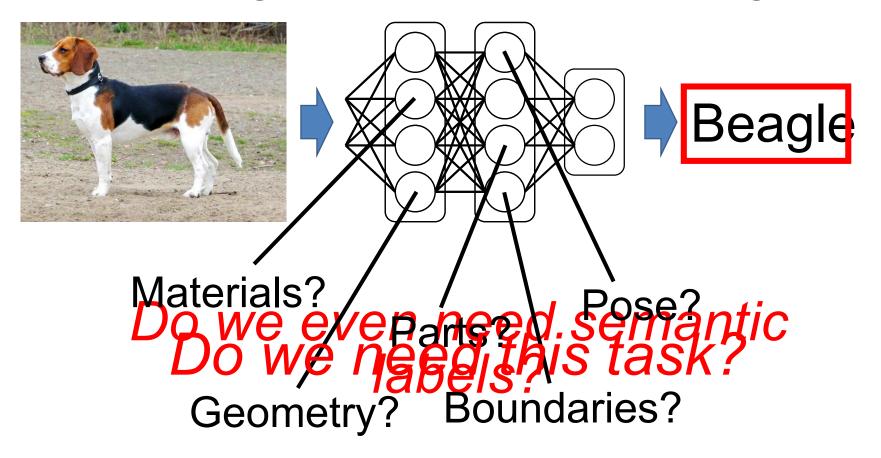


- ..

- Image Retrieval
- Detection (RCNN)
- Segmentation (FCI
- Depth Estimation

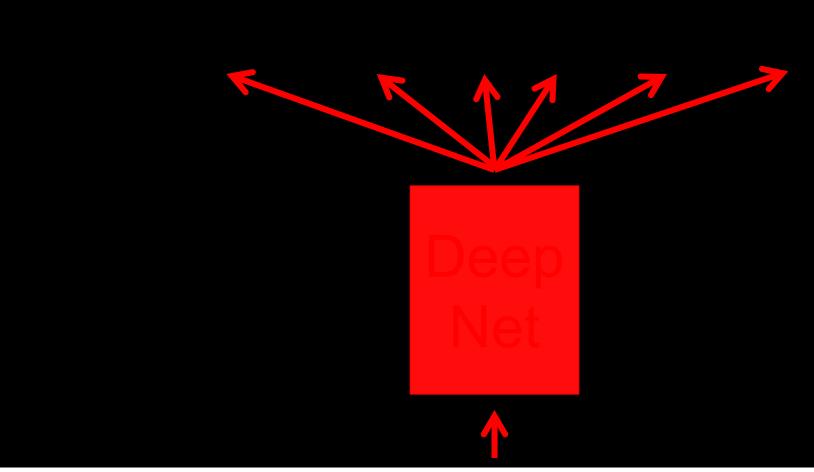
Slide Credit: C. Doersch

ImageNet + Deep Learning



Context as Supervision

[Collobert & Weston 2008; Mikolov et al. 2013]

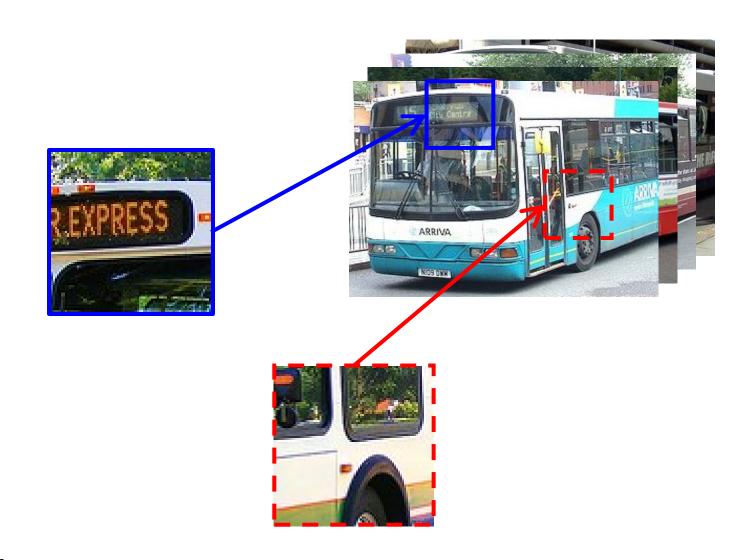


store-bought gimmicks and appliances, the toasters and

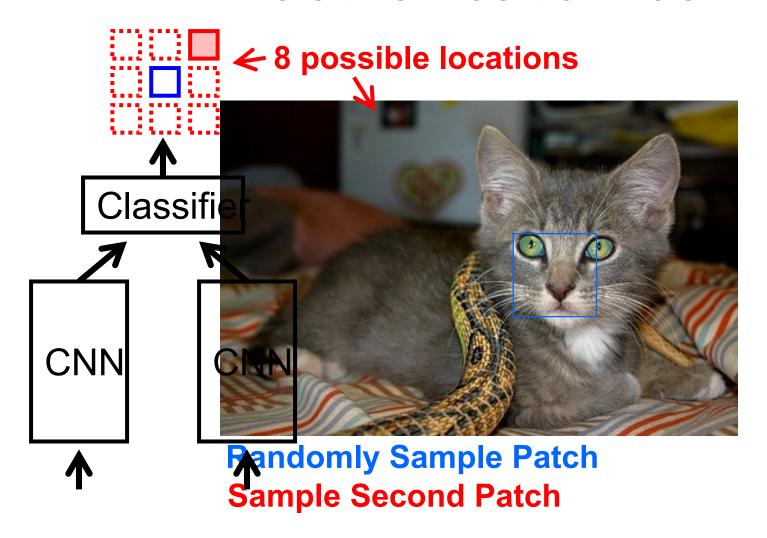
Slide Credit: C. Doersch

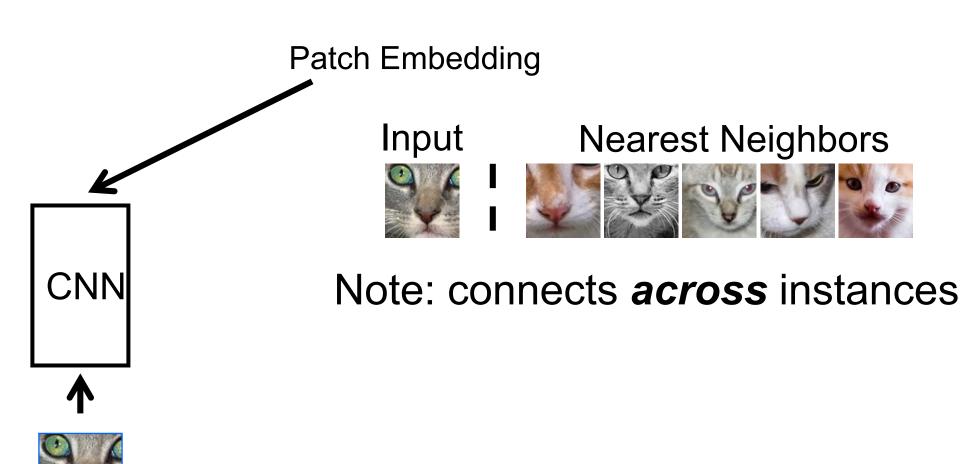
Context Brediction for Images

Semantics from a non-semantic task

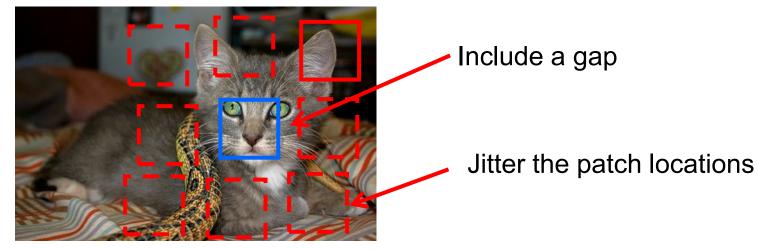


Relative Position Task



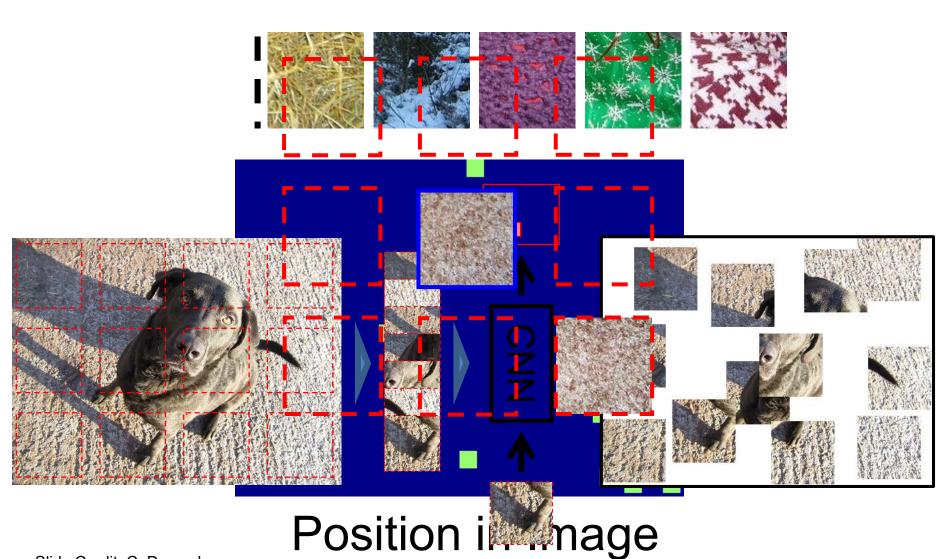


Avoiding Trivial Shortcuts



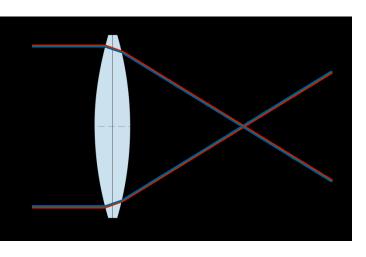
Slide Credit: C. Doersch

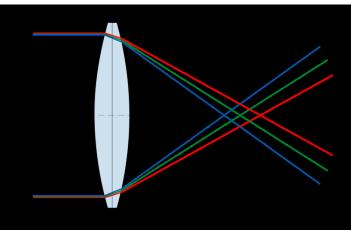
A Not-So "Trivial" Shortcut



Slide Credit: C. Doersch

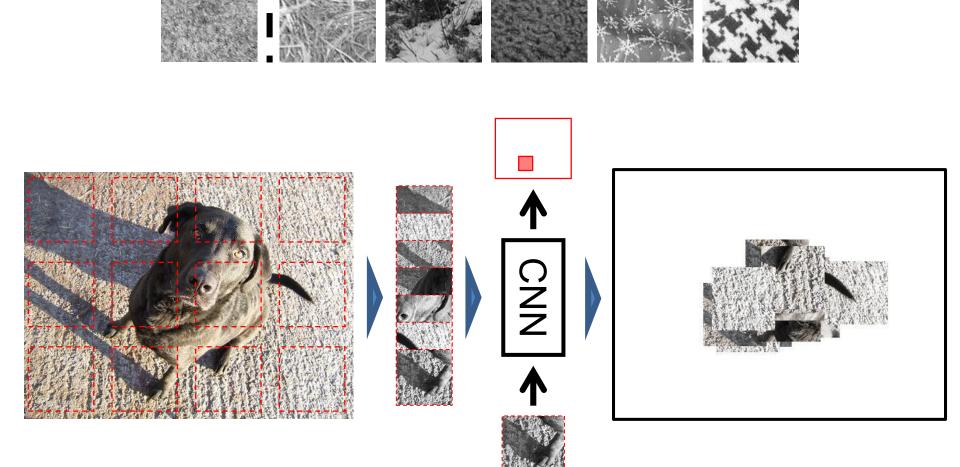
Chromatic Aberration





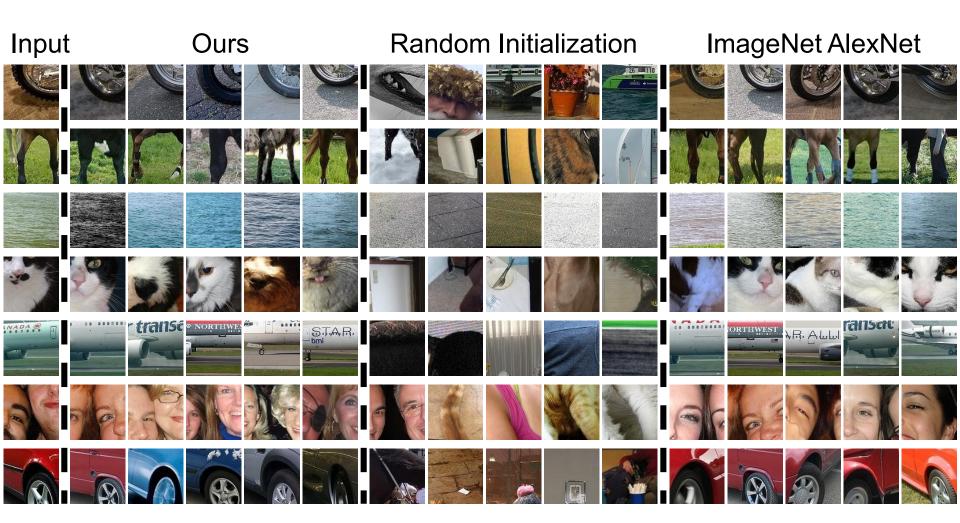
Slide Credit: C. Doersch

Chromatic Aberration

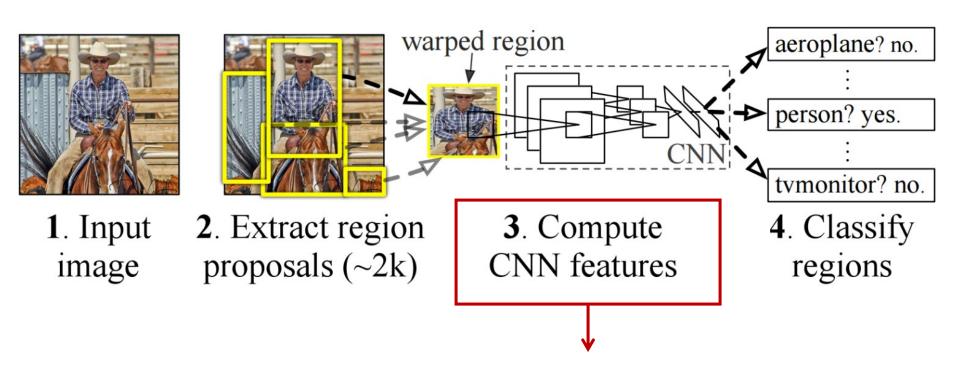


Slide Credit: C. Doersch

What is learned?



Pre-Training for R-CNN



Pre-train on relative-position task, w/o labels

VOC 2007 Performance

68.6

No Rescaling
Krähenbühl et al. 2015

VGG + Krähenbühl et al.

56.8 54.2 61.7

[Krähenbühl, Doersch, Donahue & Darrell, "Data-dependent Initializations of CNNs", 2015]

51.1

46.3

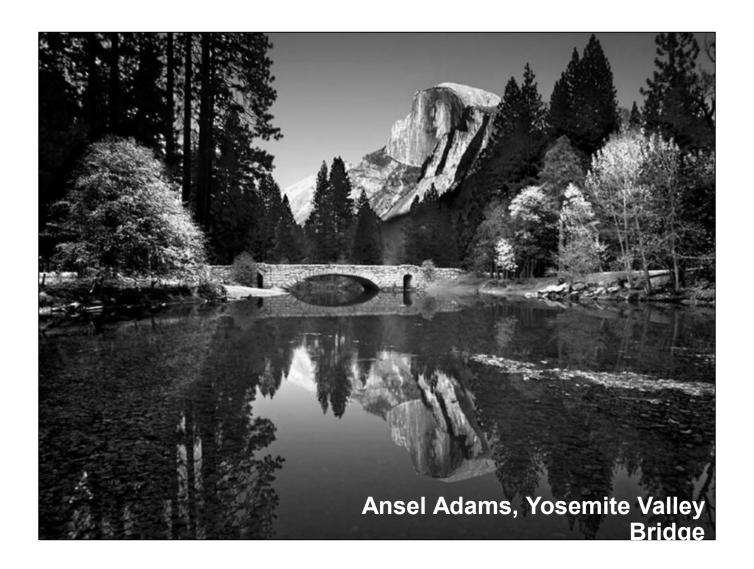
45.6 40.7 42.4

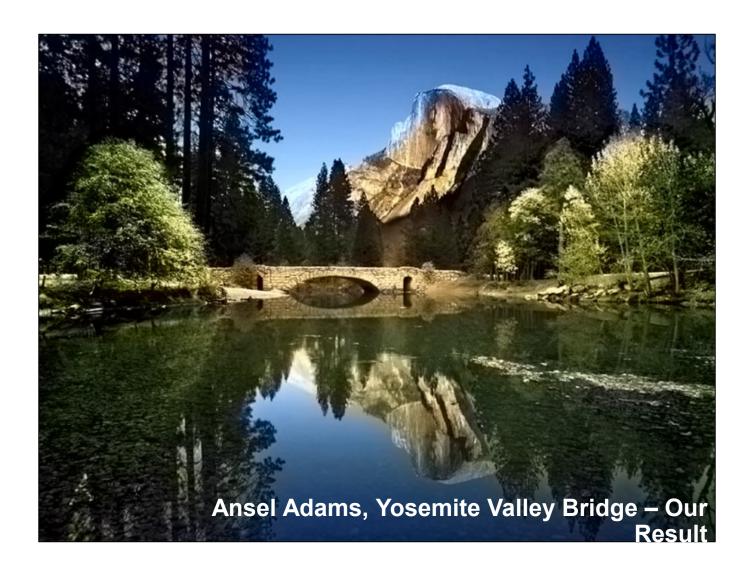
ImageNet Labels

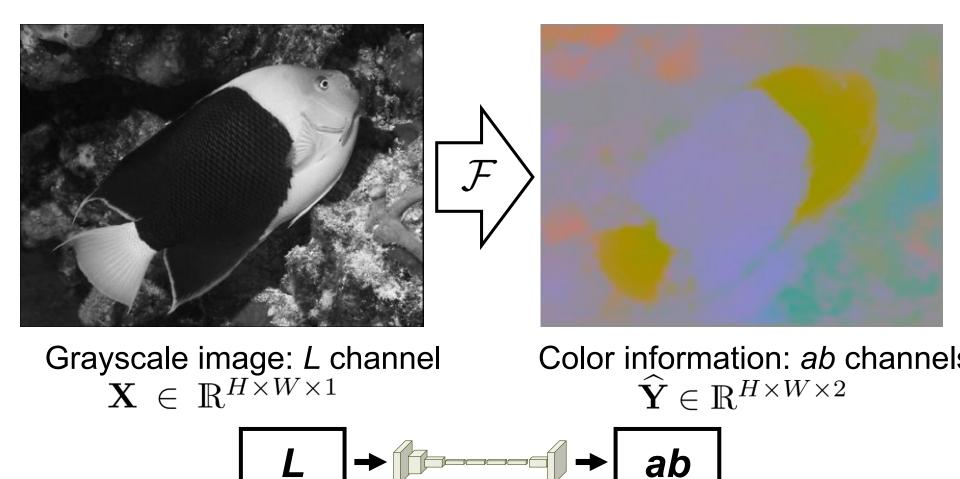
Ours

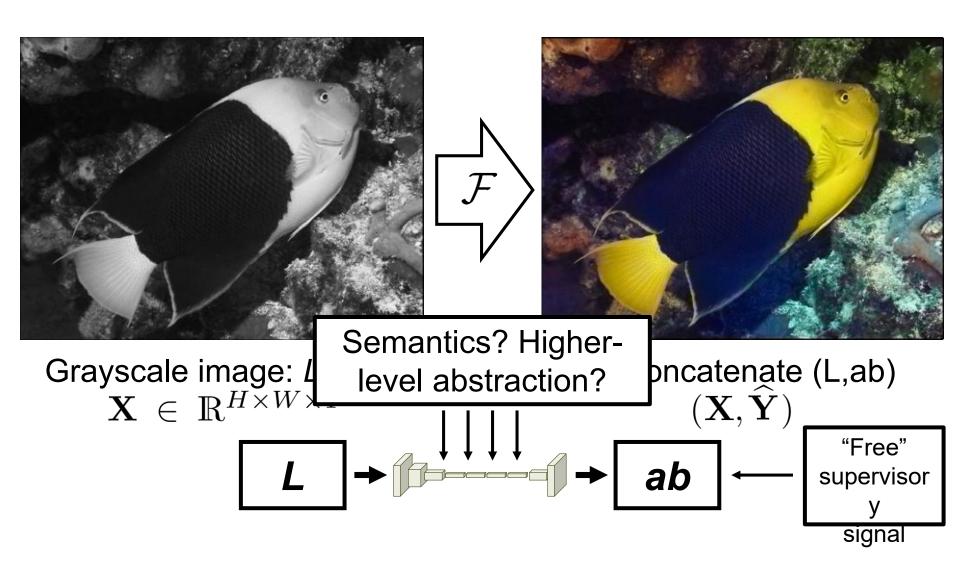
No Pretraining

Other Sources Of Signal

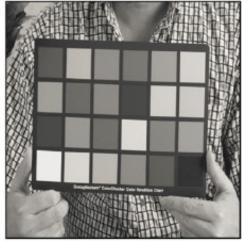




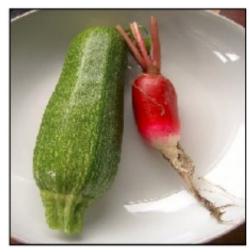




Input



Ground Truth



Output

