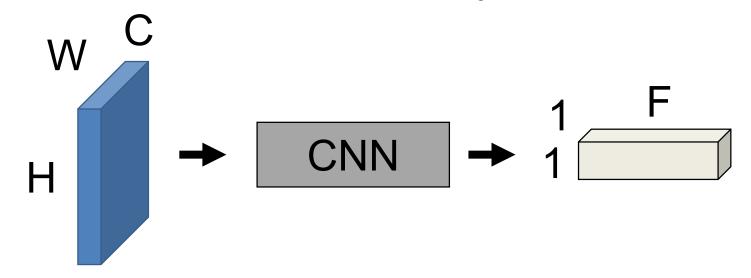
Pixel Labeling

EECS 442 – Prof. David Fouhey Winter 2019, University of Michigan

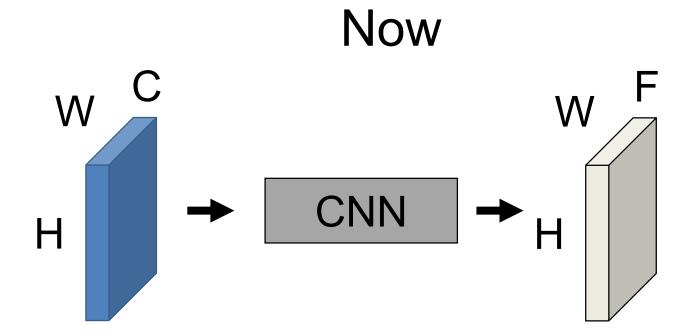
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W19/

Previously



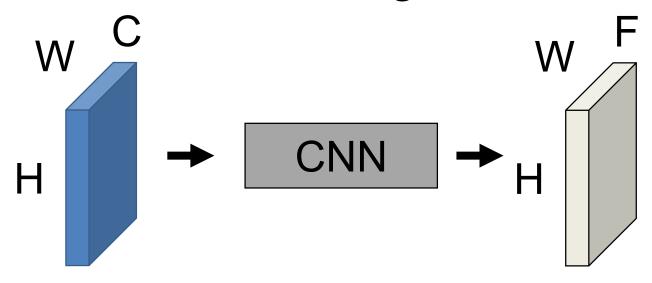
Convert HxW image into a F-dimensional vector

Is this image a cat?
At what distance was this photo taken?
Is this image fake?



Convert HxW image into a F-dimensional vector

Which pixels in this image are a cat?
How far is each pixel away from the camera?
Which pixels of this image are fake?



Today's Running Example

- Predict F-dimensional vector representing probability of each of F classes at every pixel
- Loss computed/backprop'd at every pixel.

Each pixel has label, inc. **background**, and unknown Usually visualized by colors.

Note: don't distinguish between object instances

Input

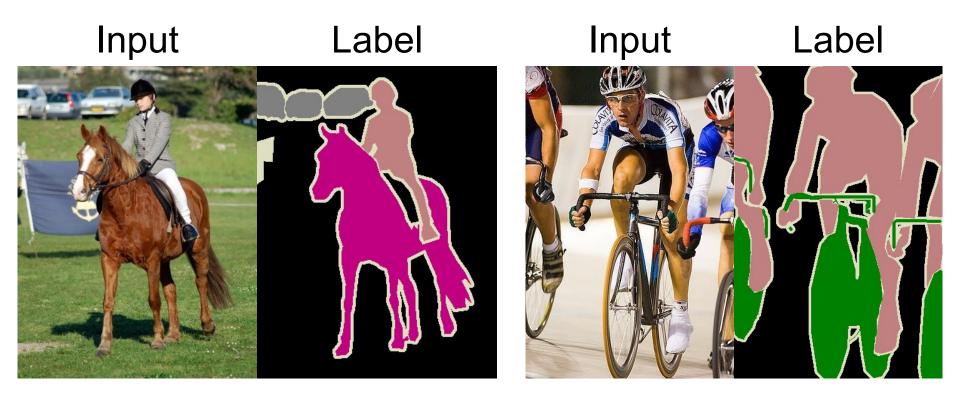
Label

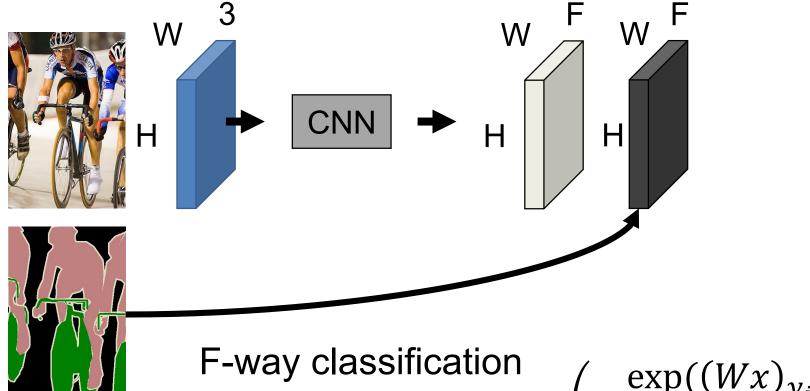
Input

Label

Image Credit: Everingham et al. Pascal VOC 2012.

"Semantic": a usually meaningless word. Meant to indicate here that we're **naming** things.



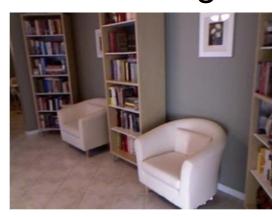


F-way classification loss function $-\log\left(\frac{\exp((Wx)_{y_i}}{\sum_k \exp((Wx)_k))}\right)$ at every pixel:

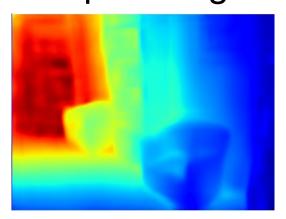
Other Tasks – Depth Prediction

Instead: give label of depthmap, train network to do regression (e.g., $||z_i - \widehat{z_i}||$ where z_i is the ground-truth and $\widehat{z_i}$ the prediction of the network at pixel i).

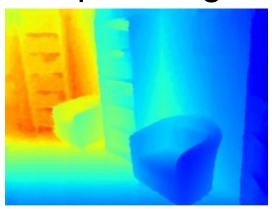
Input HxWx3 RGB Image



Output HxWx1
Depth Image

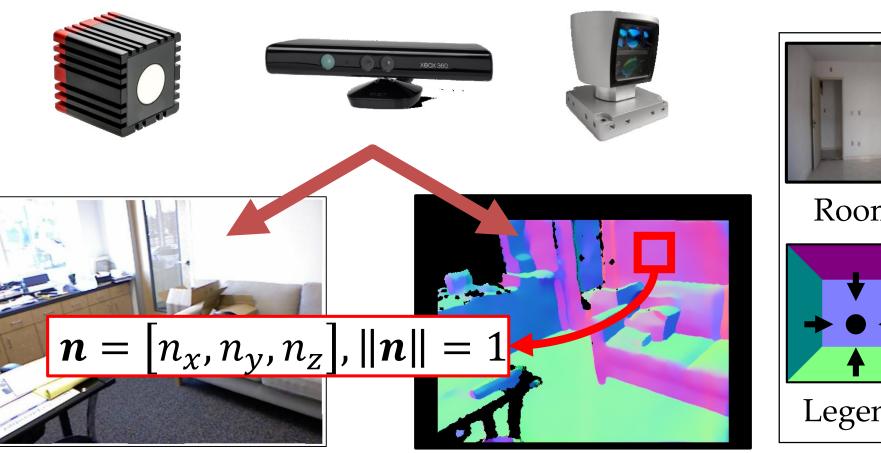


True HxWx1
Depth Image



Result credit: Eigen and Fergus, ICCV 2015

Other Tasks – Surface Normals



Room Legend

Color Image

Normals

Surface Normals

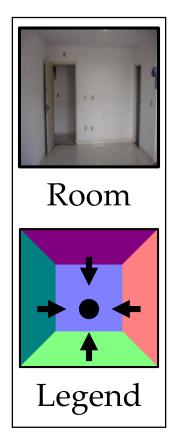
Instead: train normal network to minimize $\|\boldsymbol{n}_i - \widehat{\boldsymbol{n}_i}\|$ where \boldsymbol{n}_i is ground-truth and $\widehat{\boldsymbol{n}_i}$ prediction at pixel i.

Input: HxWx3 RGB Image

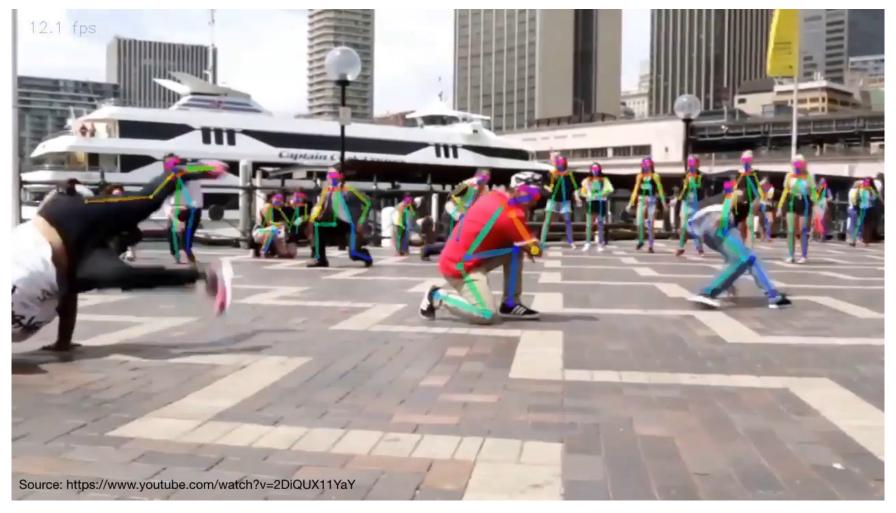
Output: HxWx3
Normals

Result credit: X. Wang, D. Fouhey, A. Gupta, Designing Deep Networks for Surface Normal Estimation. CVPR 2014

Surface Normals



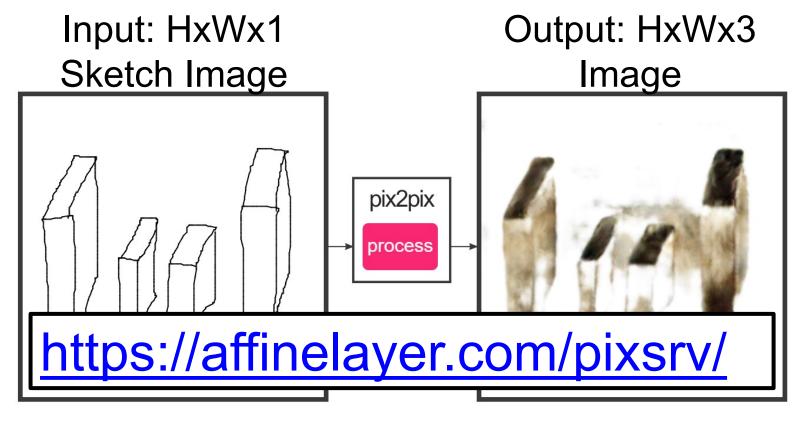
Other Tasks – Human Pose Estimation



Result credit: Z. Cao et al. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. CVPR 2017.

Other Task – Edges to Cats

Train network to minimize $||I_j - \widehat{I_j}||$ where I_j is GT and $\widehat{I_j}$ prediction at pixel j (*plus other magic*).



Why Is This Task Hard?

Image credit: A. Torralba

Why Is This Task Hard?

What's this? (No Cheating!)

- (a) Keyboard?
- (b) Hammer?

- (c) Old cell phone?
- (d) Xbox controller?

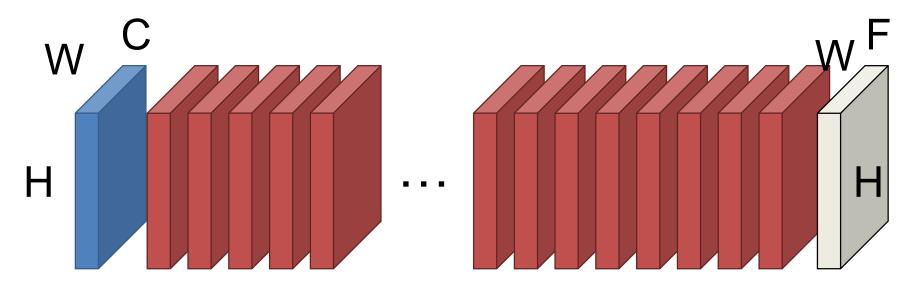
Why Is This Task Hard?

Image credit: COCO dataset

First – Two "Wrong" Ways

It's helpful to see two "wrong" ways to do this.

Why Not Stack Convolutions?

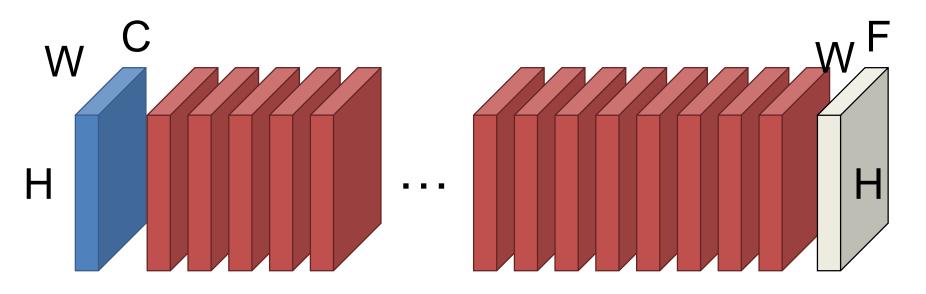


n 3x3 convs have a receptive field of 2n+1 pixels

How many convolutions until >=200 pixels?

100

Why Not Stack Convolutions?



Suppose 200 3x3 filters/layer, H=W=400

Storage/layer/image: 200 * 400 * 400 * 4 bytes = 122MB

Uh oh!*

*100 layers, batch size of 20 = 238GB of memory!

If Memory's the Issue...

Crop out every sub-window and predict the label in the middle.

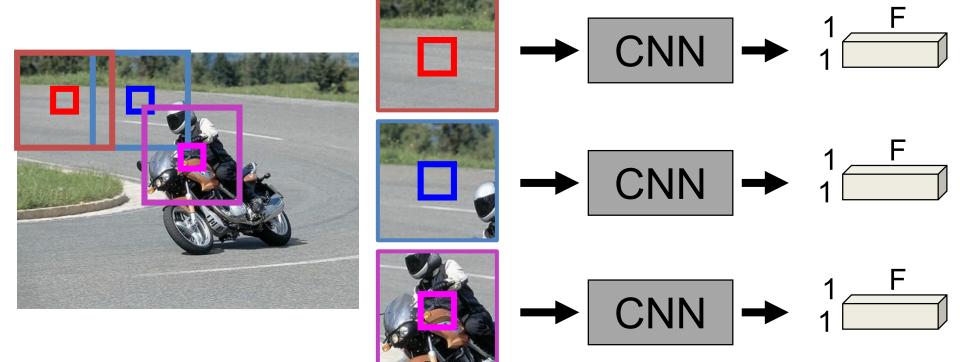
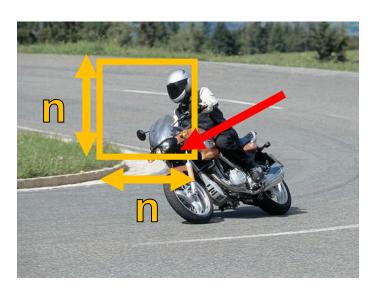


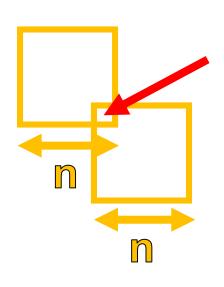
Image credit: PASCAL VOC, Everingham et al.

If Memory's the Issue...

Meet "Gabor". We extract NxN patches and do independent CNNs. How many times does Gabor filter the red pixel?

Gabor





Answer: (2n-1)*(2n-1) Gabor's looking for a better job with a smarter boss.

The Big Issue

We need to:

- 1. Have large receptive fields to figure out what we're looking at
- 2. Not waste a ton of time or memory while doing so

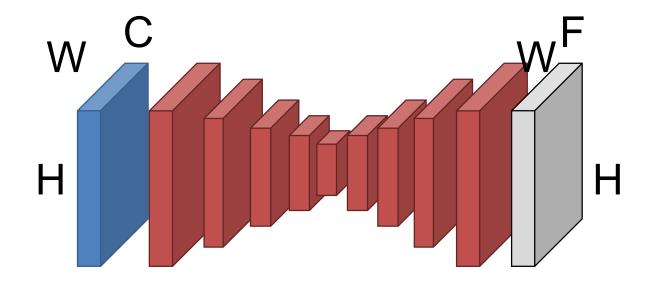
These two objectives are in total conflict

Encoder-Decoder

Key idea: First **downsample** towards middle of network. Then **upsample** from middle.

How do we downsample?

Convolutions, pooling



Where Do We Get Parameters?

Convnet that maps images to vectors

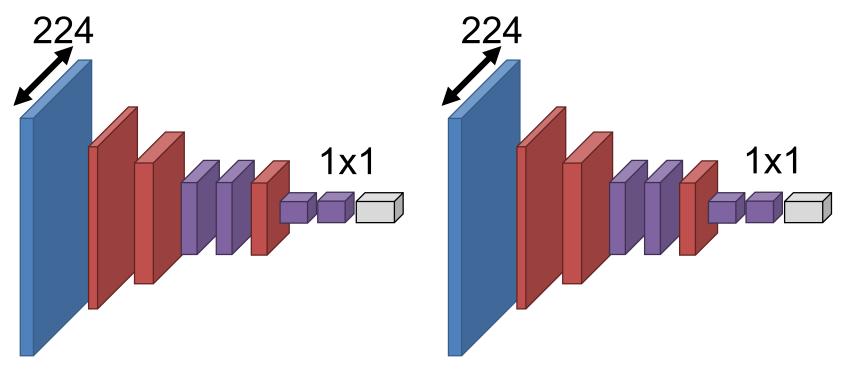


Recall that we can rewrite any vector-vector operations via 1x1 convolutions

Where Do We Get Parameters?

Convnet that maps images to vectors

Convnet that maps images to images

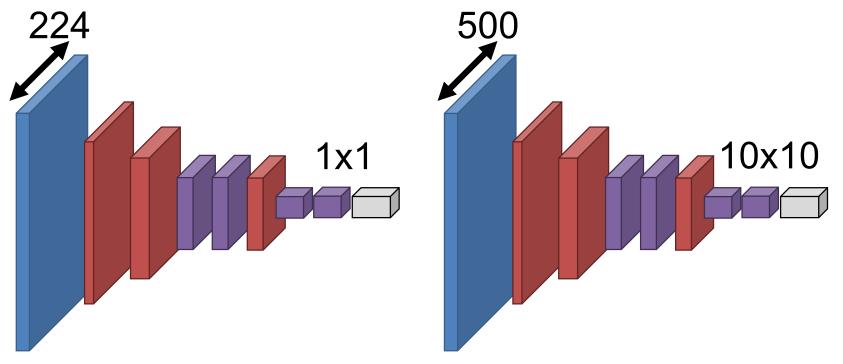


What if we make the input bigger?

Where Do We Get Parameters?

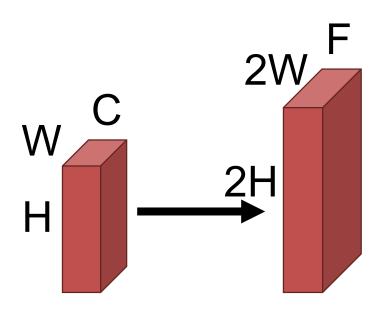
Convnet that maps images to vectors

Convnet that maps images to images



Since it's convolution, can reuse an image network

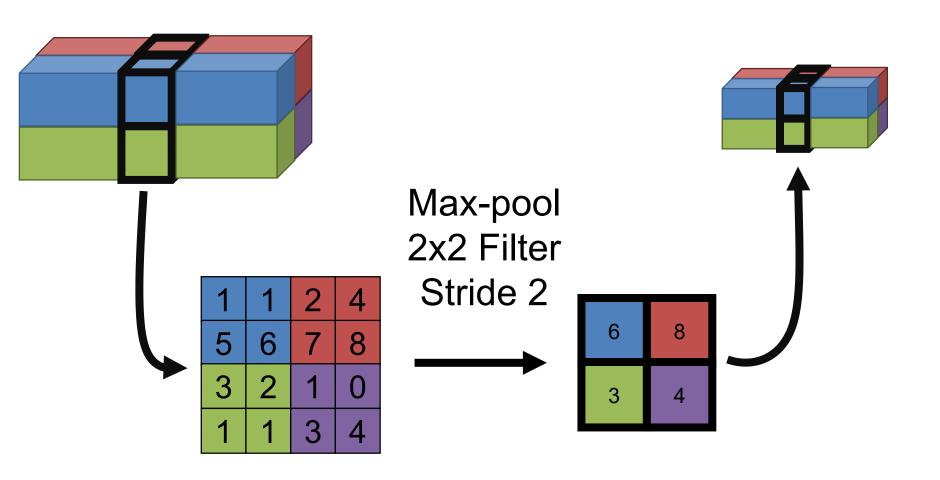
How Do We Upsample?



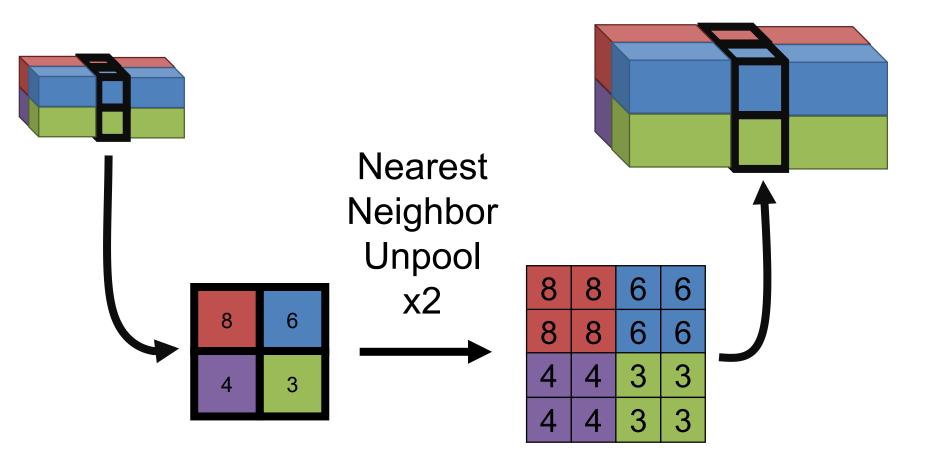
Do the opposite of how we downsample:

- 1. Pooling → "Unpooling"
- 2. Convolution → "Transpose Convolution"

Recall: Pooling

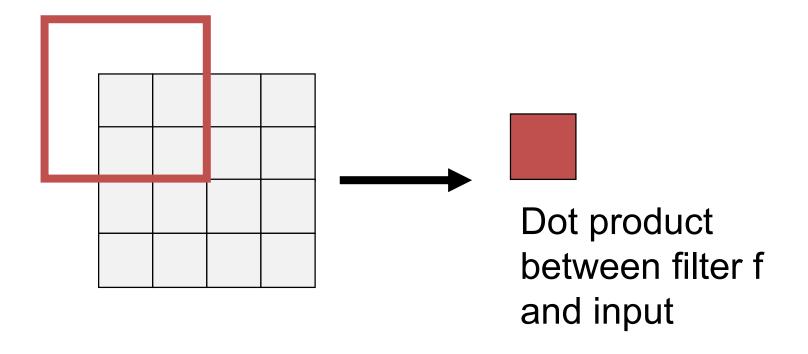


Now: Unpooling



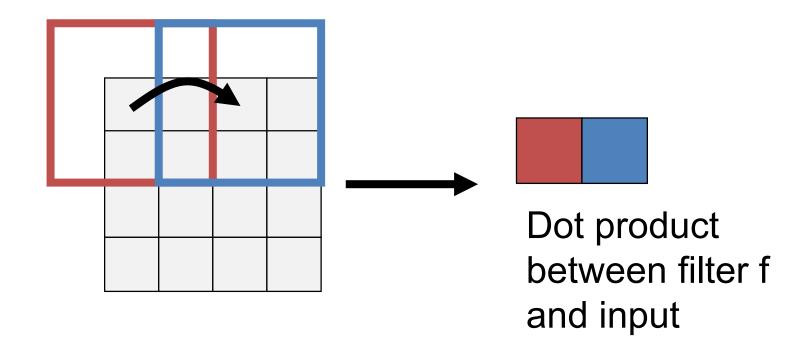
Recall: Convolution

3x3 Convolution, Stride 2, Pad 1



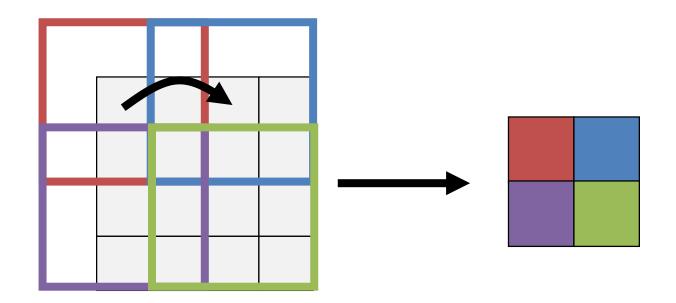
Recall: Convolution

3x3 Convolution, Stride 2, Pad 1



Recall: Convolution

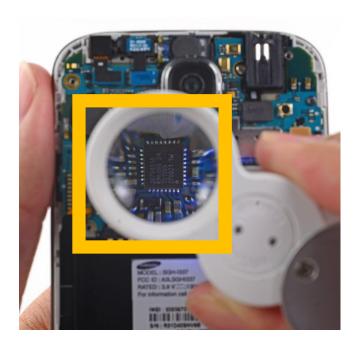
3x3 Convolution, Stride 2, Pad 1



Transpose Convolution

Convolution

Filter: little lens that looks at a pixel.



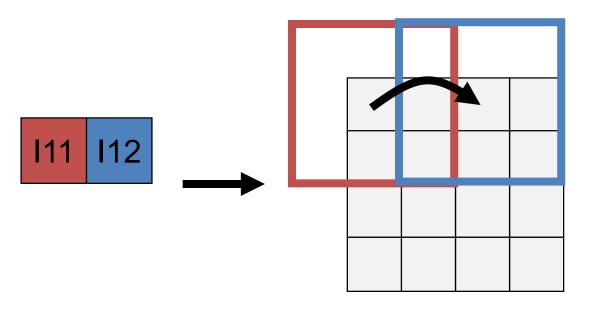
Transpose Conv.

Filter: tiles used to make image

Image credit: ifixit.com, thespruce.com

Transpose Convolution

3x3 Transpose Convolution, Stride 2, Pad 1

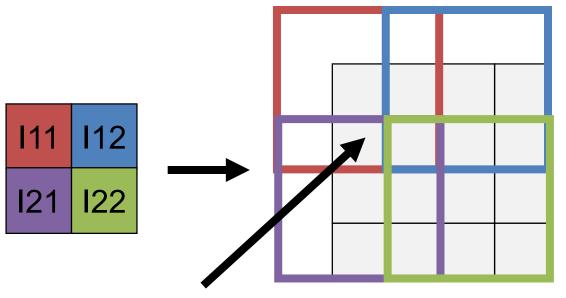


Output is filter F weighted by input I

$$I_{11}F I_{12}F$$

Transpose Convolution

3x3 Transpose Convolution, Stride 2, Pad 1



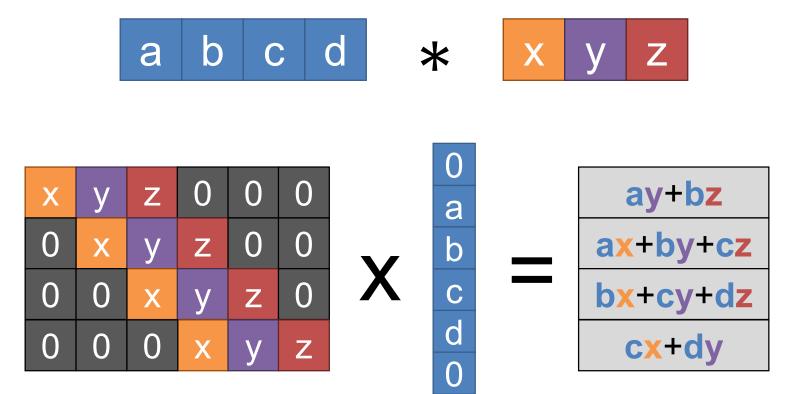
Sum outputs at overlap (e.g., from $I_{11}F$ and $I_{21}F$)

Output is filter F weighted by input I

$$I_{11}F I_{12}F$$
 $I_{21}F I_{22}F$

Why "Transpose Convolution"?

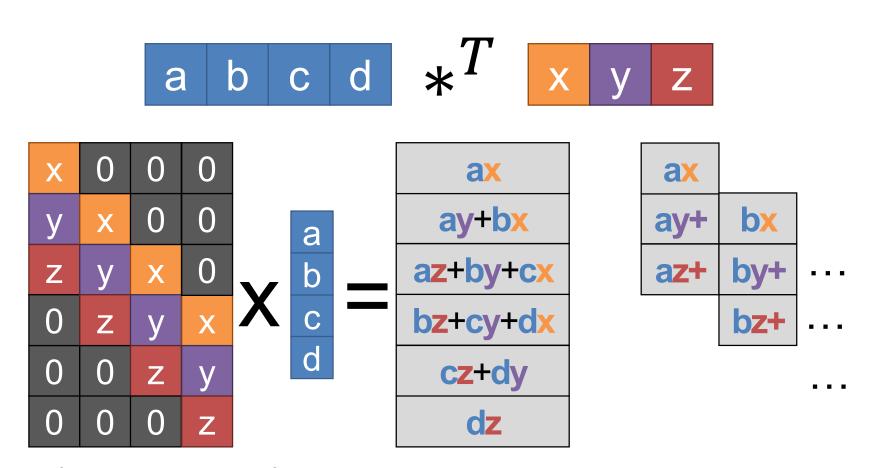
Can write convolution as matrix-multiply Input: 4, Filter: 3, Stride: 1, Pad: 1



Example Credit: L. Fei-Fei, J. Johnson, S. Yeung

Why "Transpose Convolution"?

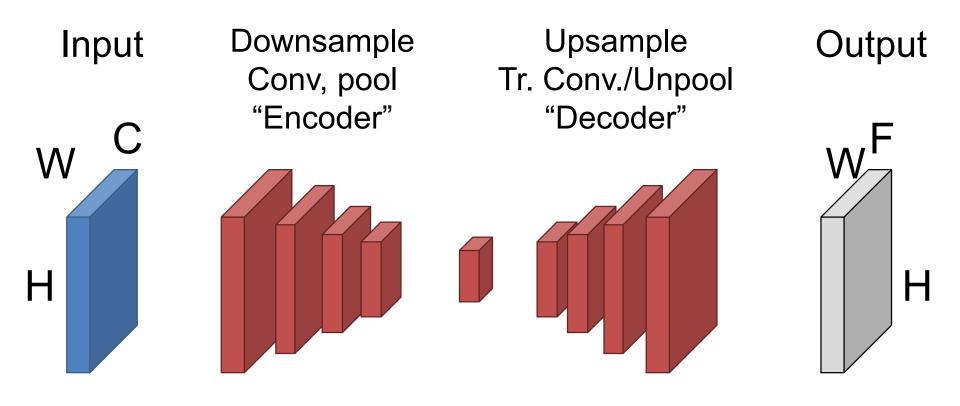
Transpose convolution is convolution transposed



Example Credit: L. Fei-Fei, J. Johnson, S. Yeung

Putting it Together

Convolutions + pooling downsample/compress/encode Transpose convs./unpoolings upsample/uncompress/decode

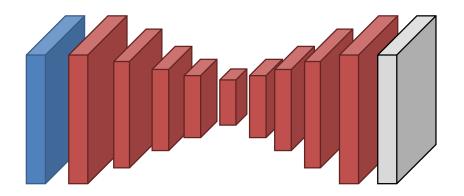


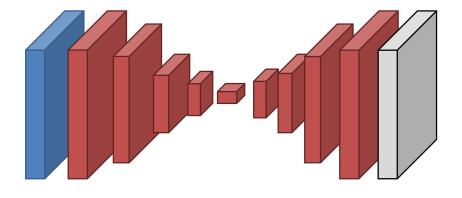
Putting It Together – Block Sizes

- Networks come in lots of forms
- Don't take any block sizes literally.
- Often (not always) keep some spatial resolution

Encode to spatially smaller tensor, then decode.

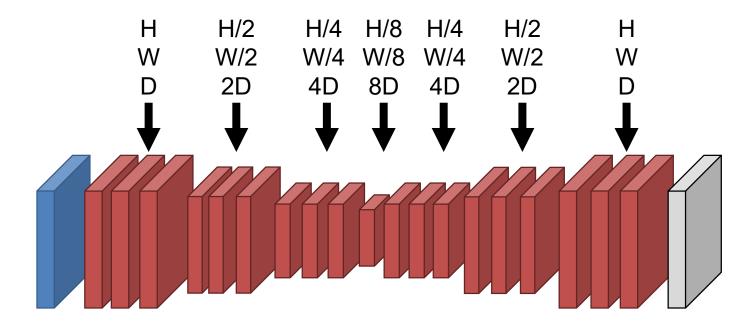
Encode to 1D vector then decode





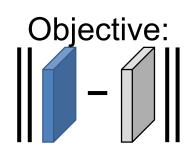
Putting It Together – Block Sizes

- Often multiple layers at each spatial resolution.
 - Often halve spatial resolution and double feature depth every few layers

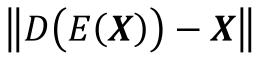


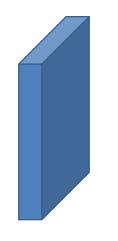
An Aside: Autoencoders

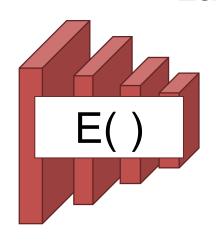
Network compresses input to "bottleneck", decodes it back to input.

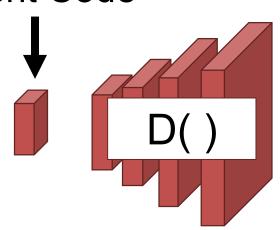


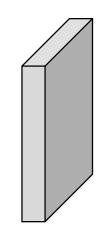
Bottleneck/
Latent Space/
Latent Code











Walking the Latent Space*

Interpolation in Latent Space

Result from Wu et al. Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. NIPS 2016

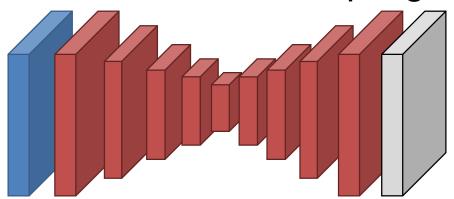
^{*}In the interest of honesty in advertising: not an autoencoder, but a similar method with the same goal of learning a latent space

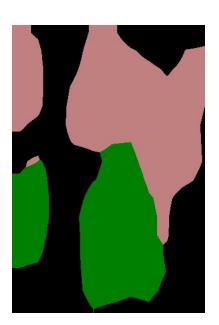
Missing Details

While the output *is* HxW, just upsampling often produces results without details/not aligned with the image.

Why?

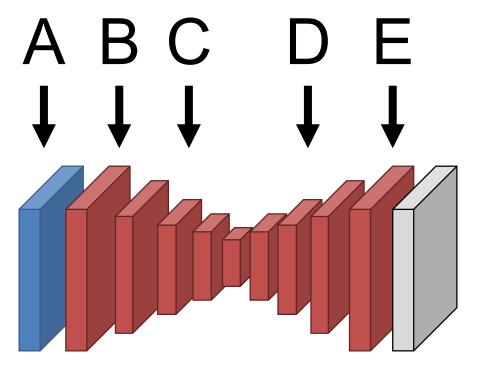
Information about details lost when downsampling!

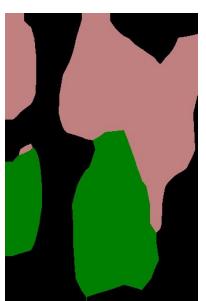




Missing Details

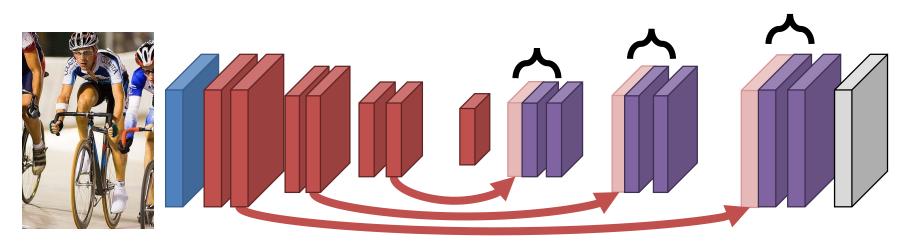
Where is the useful information about the high-frequency details of the image?





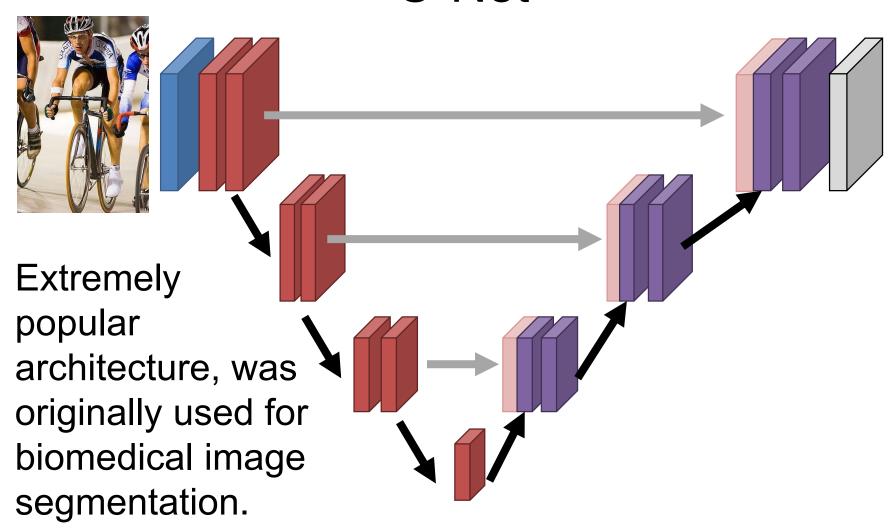
Missing Details

How do you send details forward in the network?
You copy the activations forward.
Subsequent layers at the same resolution figure out how to fuse things.



Copy

U-Net



Evaluating Pixel Labels

Predicted Input Classes **Image** W W CNN

How do we convert final HxWxF into labels?

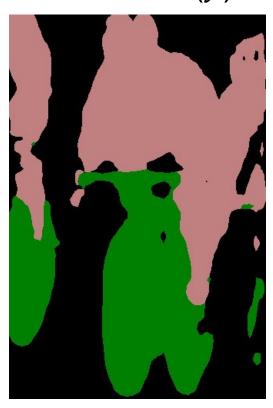
argmax over labels

Evaluating Semantic Segmentation

Given predictions, how well did we do?

Input

Prediction (\hat{y})



Ground-Truth (y)



Evaluating Semantic Segmentation

Prediction and ground-truth are images where each pixel is one of F classes.

Accuracy: mean($\hat{y} = y$)

Intersection over union, averaged over classes

