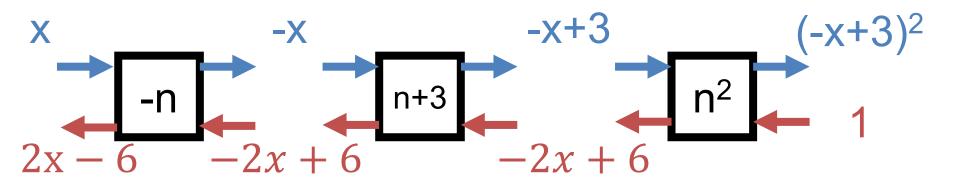
Convolutional Neural Neural Nets II

EECS 442 – Prof. David Fouhey Winter 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W19/

Previously – Backpropagation

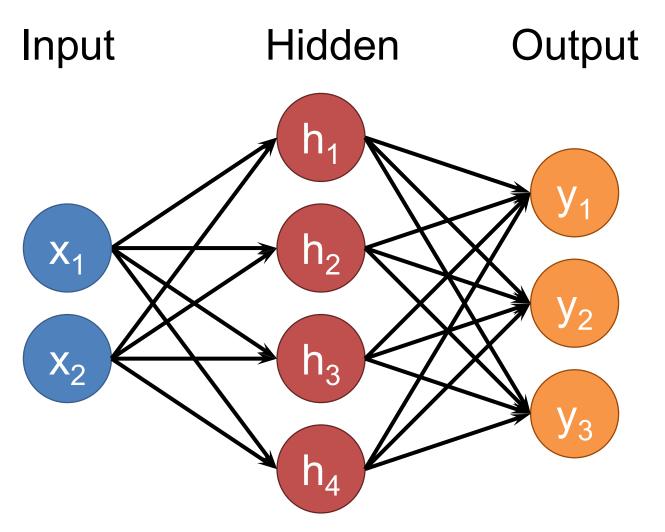
$$f(x) = (-x+3)^2$$



Forward pass: compute function

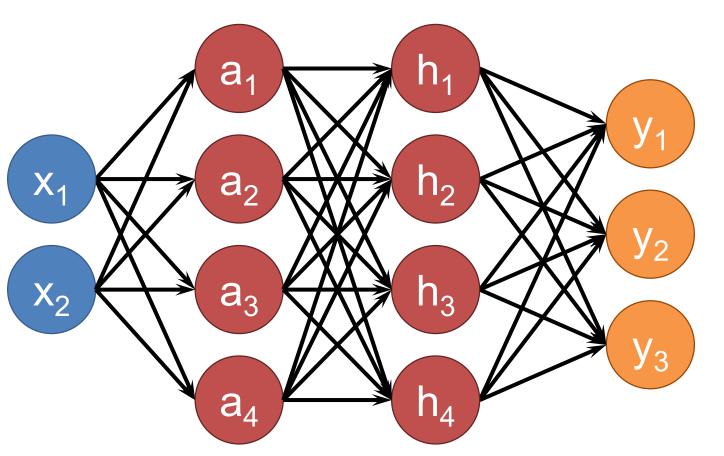
Backward pass: compute derivative of all parts of the function

Setting Up A Neural Net

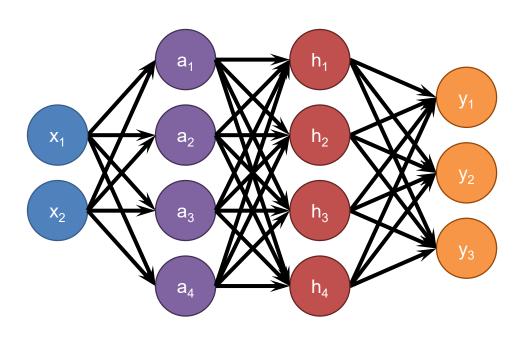


Setting Up A Neural Net

Input Hidden 1 Hidden 2 Output



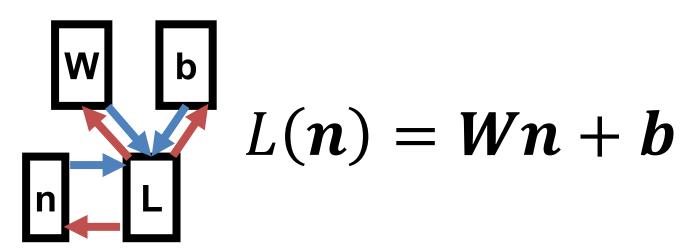
Fully Connected Network



Each neuron connects to each neuron in the previous layer

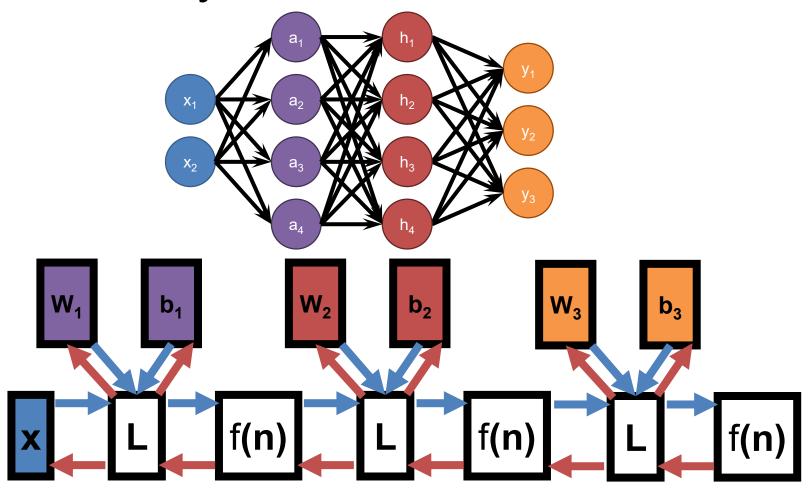
Fully Connected Network

Define New Block: "Linear Layer" (Ok technically it's Affine)



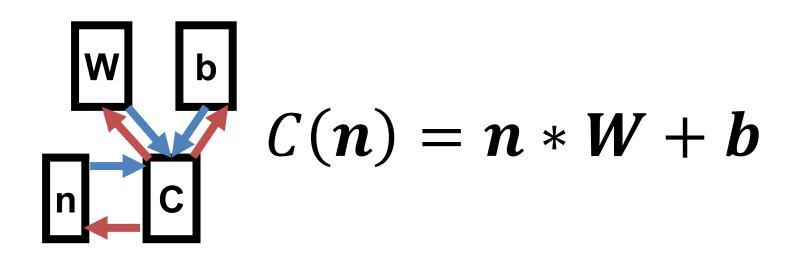
Can get gradient with respect to all the inputs (do on your own; useful trick: have to be able to do matrix multiply)

Fully Connected Network

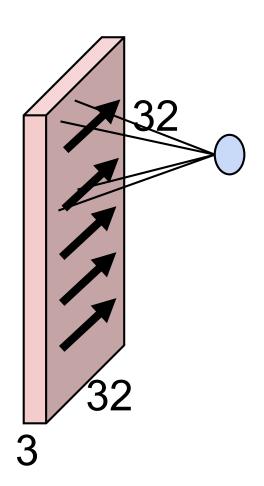


Convolutional Layer

New Block: 2D Convoluiton

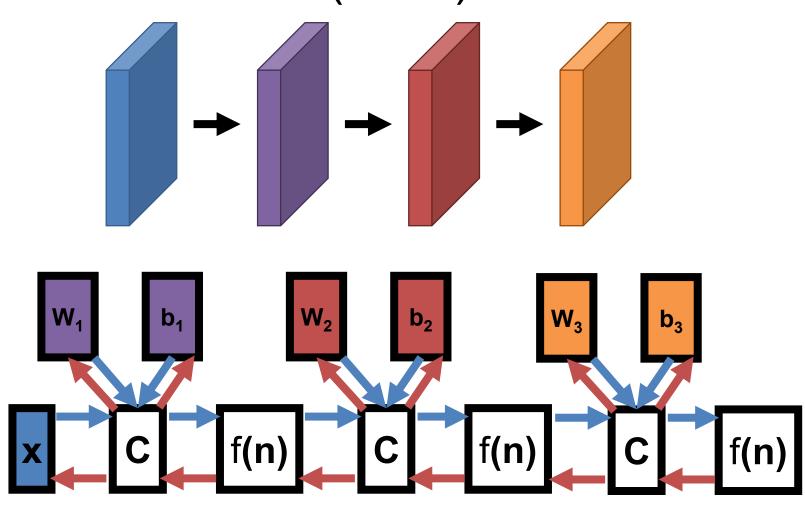


Convolution Layer



$$b + \sum_{i=1}^{F_h} \sum_{j=1}^{F_w} \sum_{k=1}^{c} F_{i,j,k} * I_{y+i,x+j,c}$$

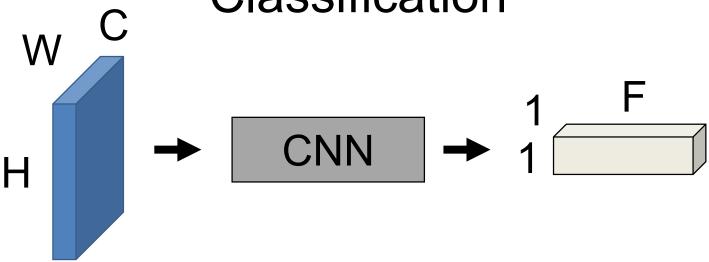
Convolutional Neural Network (CNN)



Convert HxW image into a F-dimensional vector

- What's the probability this image is a cat (F=1)
- Which of 1000 categories is this image? (F=1000)
- At what GPS coord was this image taken? (F=2)
- Identify the X,Y coordinates of 28 body joints of an image of a human (F=56)

Today's Running Example: Classification

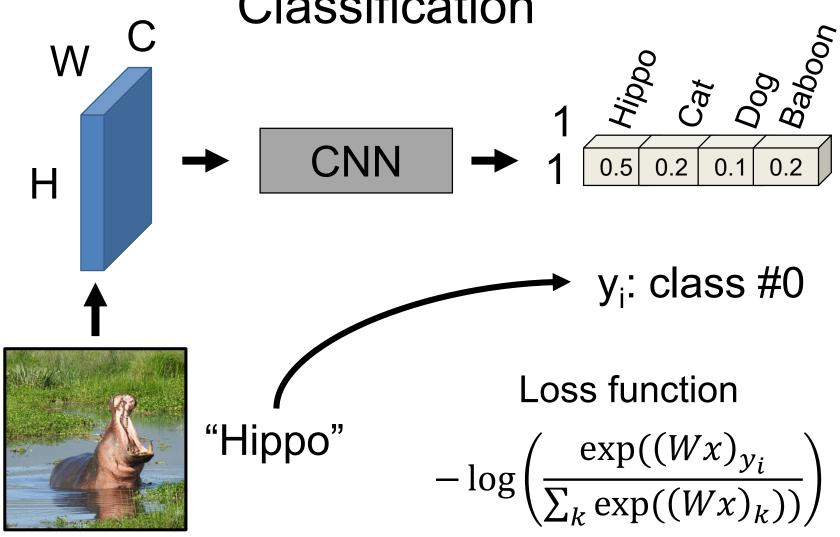


Running example: image classification

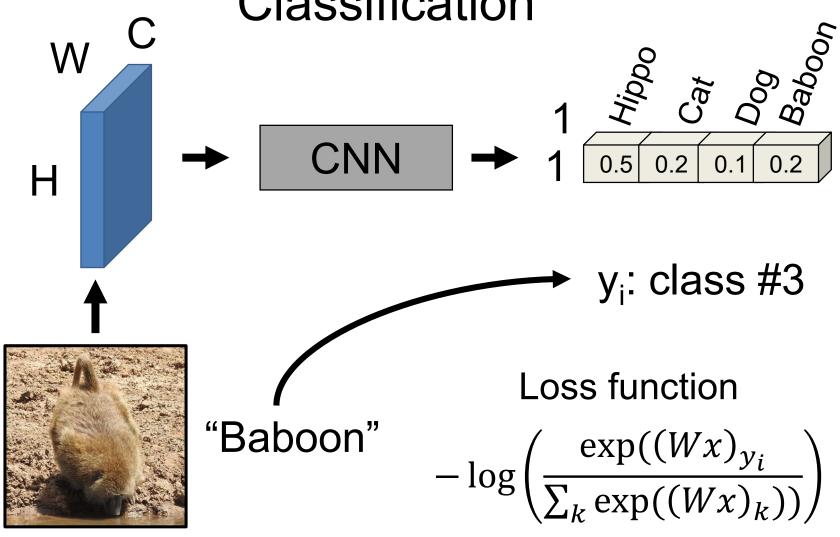
P(image is class #1)
P(image is class #2)

P(image is class #F)

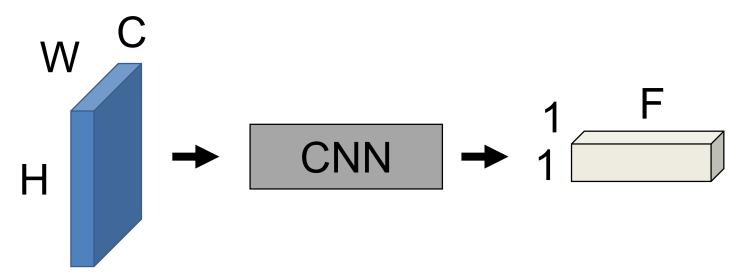
Today's Running Example: Classification



Today's Running Example: Classification



Model For Your Head



- Provide:
 - Examples of images and desired outputs
 - Sequence of layers producing a 1x1xF output
 - A loss function that measures success
- Train the network -> network figures out the parameters that makes this work

Layer Collection

You can construct functions out of layers. The only requirement is the layers "fit" together. Optimization figures out what the parameters of the layers are.

Image credit: lego.com

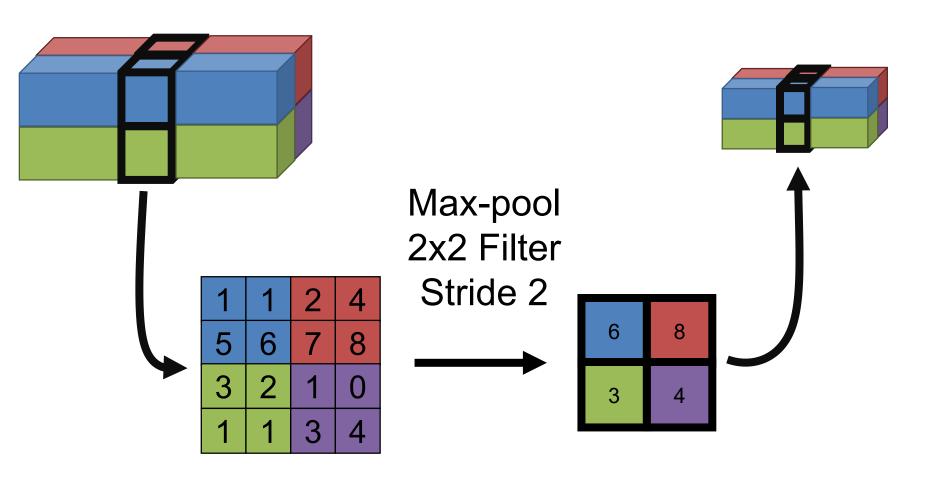
Review - Pooling

Idea: just want spatial resolution of activations / images smaller; applied per-channel

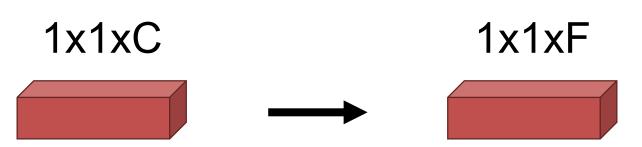
1	1	2	4	Max-pool 2x2 Filter		
5	6	7	8	Stride 2	6	8
3	2	1	0		3	4
1	1	3	4			

Slide credit: Karpathy and Fei-Fei

Review – Pooling



Other Layers – Fully Connected



Map C-dimensional feature to F-dimensional feature using linear transformation W (FxC matrix) + b (Fx1 vector)

How can we write this as a convolution?

Everything's a Convolution

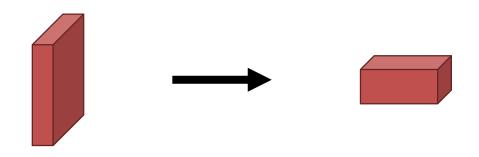
1x1xC 1x1xF

Set Fh=1, Fw=1

1x1 Convolution with F Filters

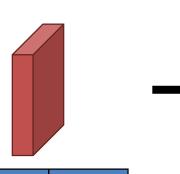
$$b + \sum_{i=1}^{F_h} \sum_{j=1}^{F_w} \sum_{k=1}^{C} F_{i,j,k} * I_{y+i,x+j,c} \longrightarrow b + \sum_{k=1}^{C} F_k * I_c$$

Converting to a Vector HxWxC 1x1xF



How can we do this?

Converting to a Vector* – Pool HxWxC 1x1xF



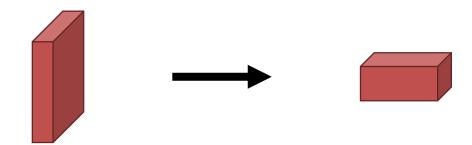
1	1	2	4
5	6	7	8
3	2	7	0
1	1	3	4

Avg Pool
HxW Filter
Stride 1

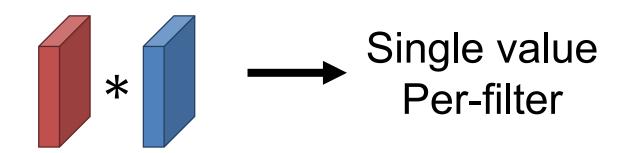
3.1

$$*(If F == C)$$

Converting to a Vector – Convolve HxWxC 1x1xF



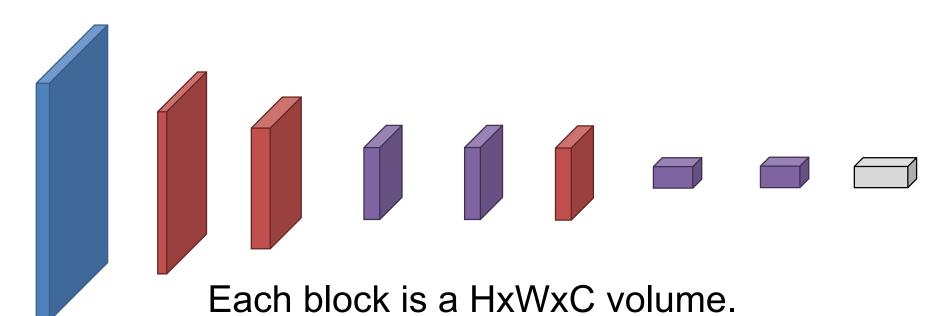
HxW Convolution with F Filters



Looking At Networks

- We'll look at 3 landmark networks, each trained to solve a 1000-way classification output (Imagenet)
 - Alexnet (2012)
 - VGG-16 (2014)
 - Resnet (2015)

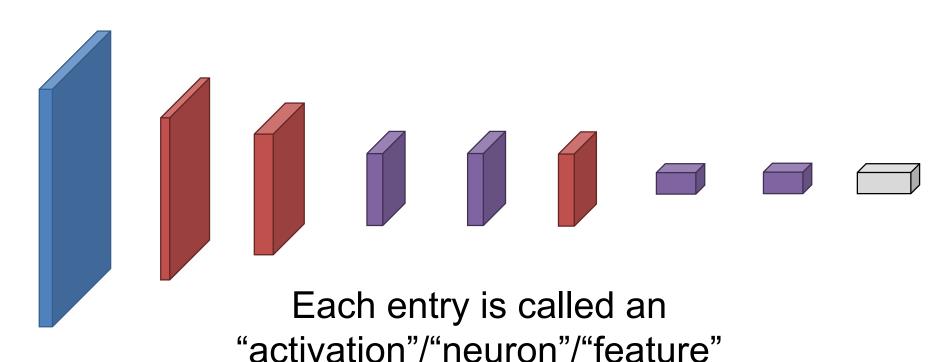
Input	Conv 2			•
227x227 3	27x27 256			



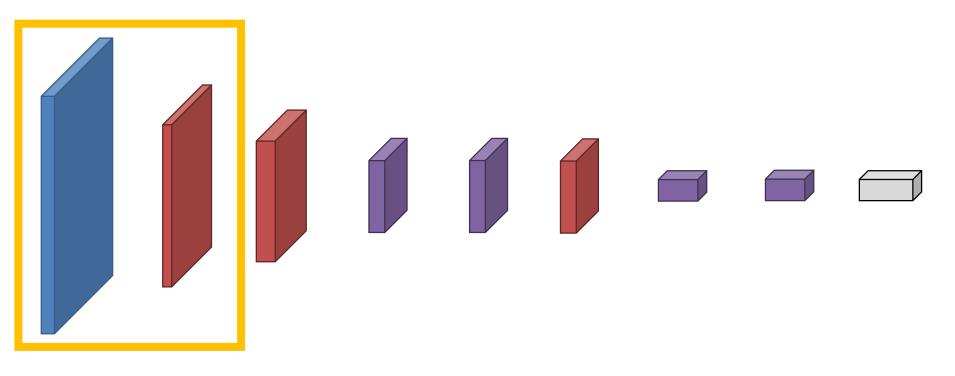
You transform one volume to another with convolution

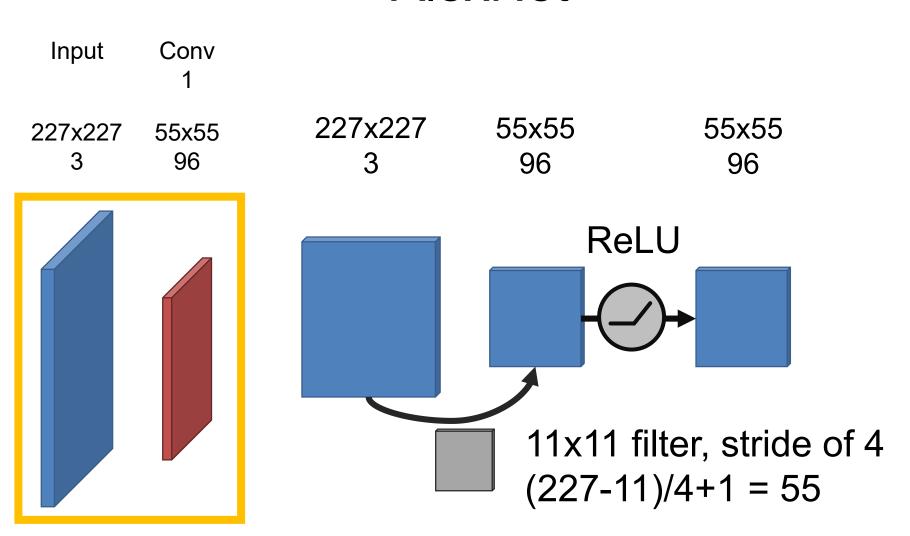
CNN Terminology

Input			Conv 5		Output
227x227 3			13x13 256		

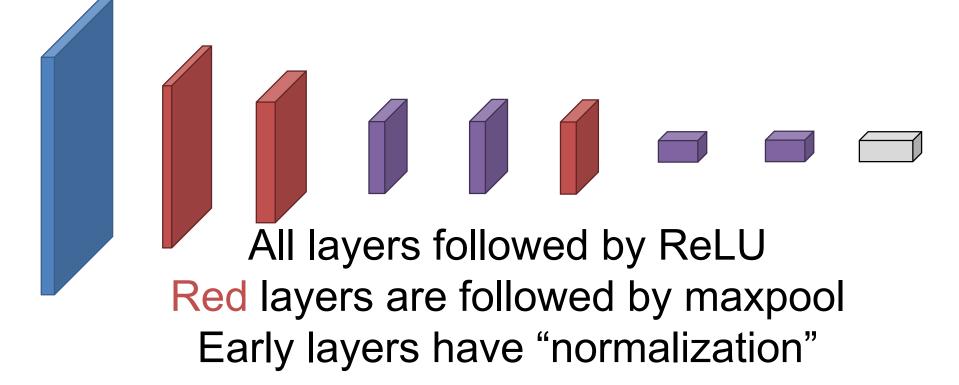


Input			Conv 5		•
227x227 3			13x13 256		



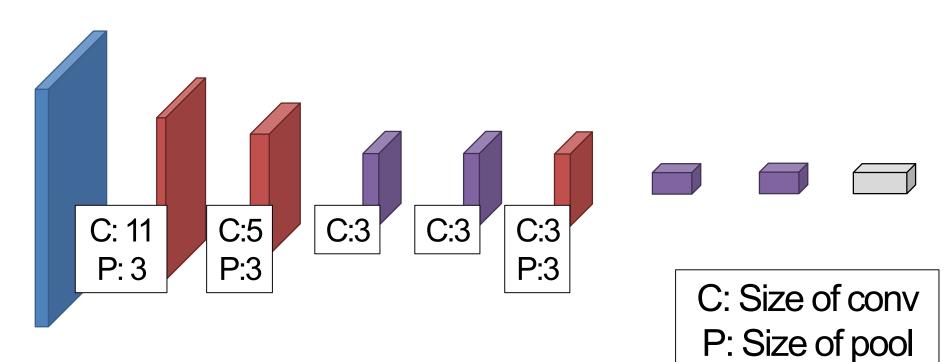


Input	Conv 2			Output
227x227 3	 27x27 256			

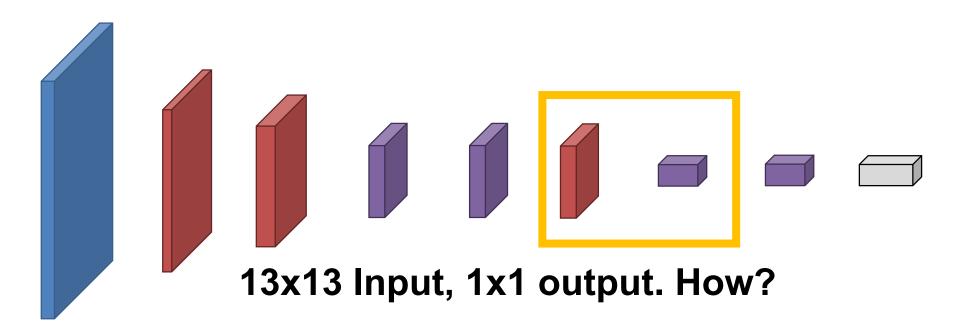


AlexNet – Details

Input	Conv 2			Output
227x227 3	 27x27 256	 		

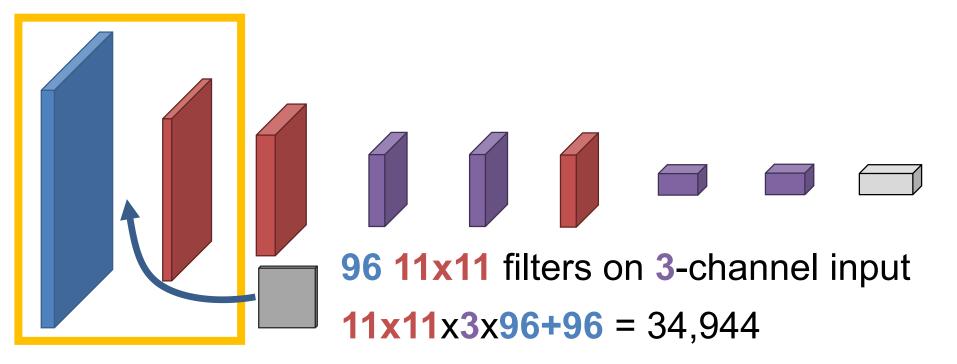


Input	Conv 2			Output
227x227 3	 27x27 256	 		

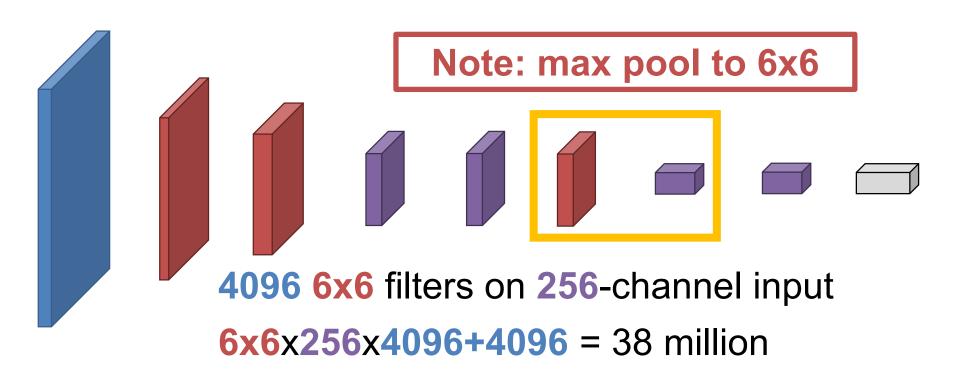


Input	Conv 1	Conv 2	Conv 3	Conv 4	Conv 5	FC 6	FC 7	Output
227x227 3	55x55 96	27x27 256	13x13 384	13x13 384	13x13 256	1x1 4096	1x1 4096	1x1 1000

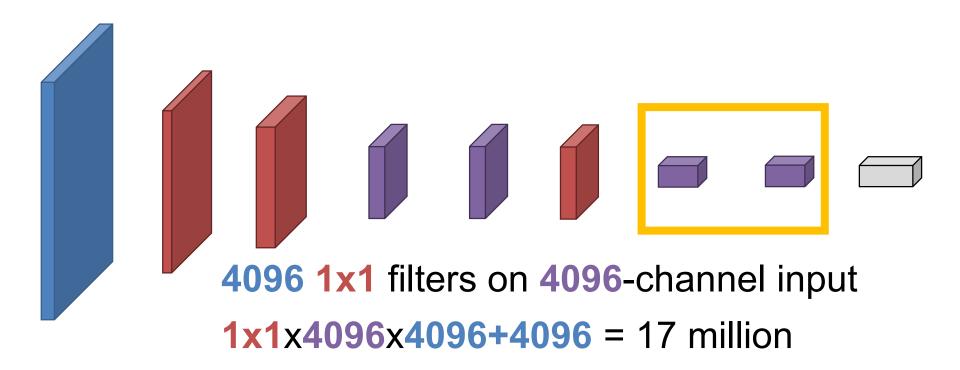
Input	Conv 2			•
227x227 3	 27x27 256			



Input	Conv 2			Output
227x227 3	27x27 256			



Input	Conv 2			Output
227x227 3	 27x27 256			



How long would it take you to list the parameters of Alexnet at 4s / parameter?

```
1 year? 4 years? 8 years? 16 years?
```

- 62.4 million parameters
- Vast majority in fully connected layers
- But... paper notes that removing the convolutions is disastrous for performance.

Dataset – ILSVRC

- Imagenet Largescale Visual Recognition Challenge
- 1000 Categories
- 1.4M images

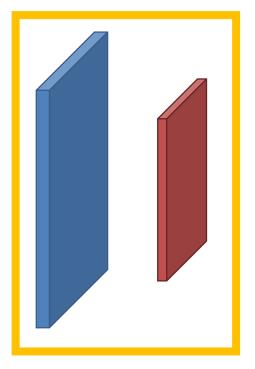
Dataset – ILSVRC

birds flamingo partridge cock ruffed grouse quail bottles beer bottle wine bottle water bottle pop bottle . . . pill bottle cars minivan cab race car wagon jeep

Figure Credit: O. Russakovsky

Visualizing Filters

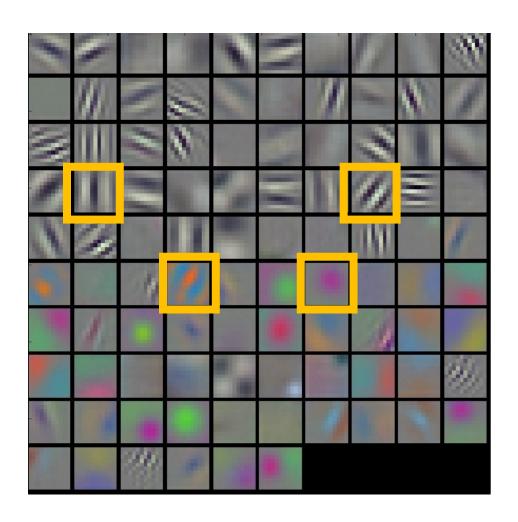
Input Conv 1 227x227 55x55 3 96



Conv 1 Filters

- Q. How many input dimensions?
 - A: 3
- What does the input mean?
 - R, G, B, duh.

What's Learned

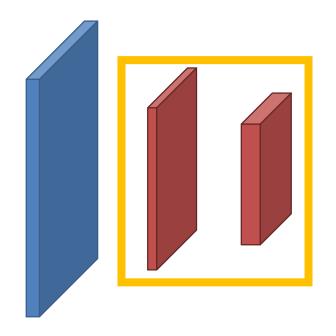


First layer filters of a network trained to distinguish 1000 categories of objects

Remember these filters go over color.

Visualizing Later Filters

Input	Conv	Conv		
•	1	2		
227x227	55x55	27x27		
3	96	256		



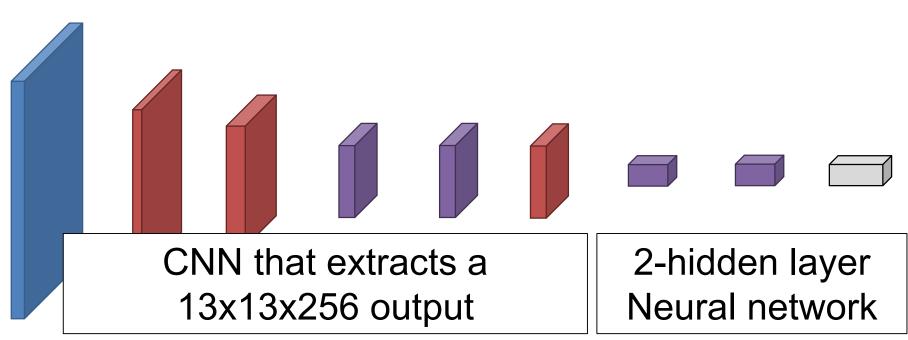
Conv 2 Filters

- Q. How many input dimensions?
 - A: 96.... hmmm
- What does the input mean?
 - Uh, the uh, previous slide

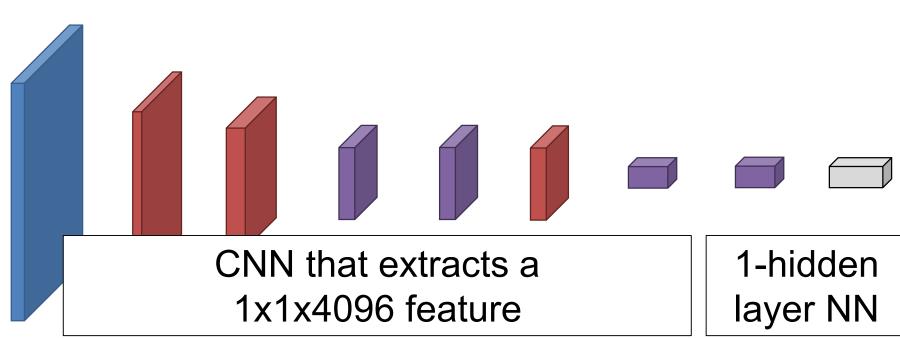
Visualizing Later Filters

 Understanding the meaning of the later filters from their values is typically impossible: too many input dimensions, not even clear what the input means.

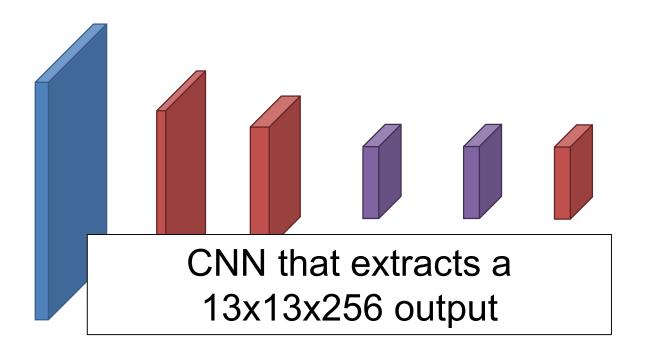
Input	Conv		Conv	Conv	Conv	FC	FC	Output
	1	2	3	4	5	6	7	
227x227	55x55	27x27	13x13	13x13	13x13	1x1	1x1	1x1
3	96	256	384	384	256	4096	4096	1000



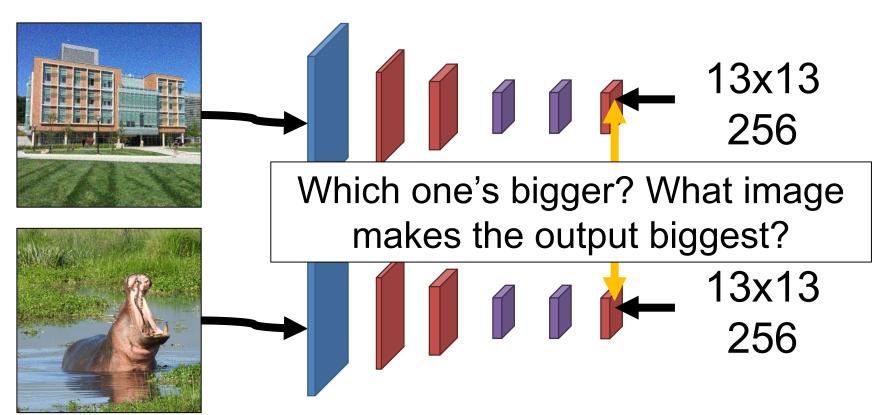
Input			Conv 5		Output
227x227 3			13x13 256	1x1 4096	1x1 1000



Input	Conv 2		
227x227 3	 27x27 256		



Feed an image in, see what score the filter gives it. A more pleasant version of a real neuroscience procedure.



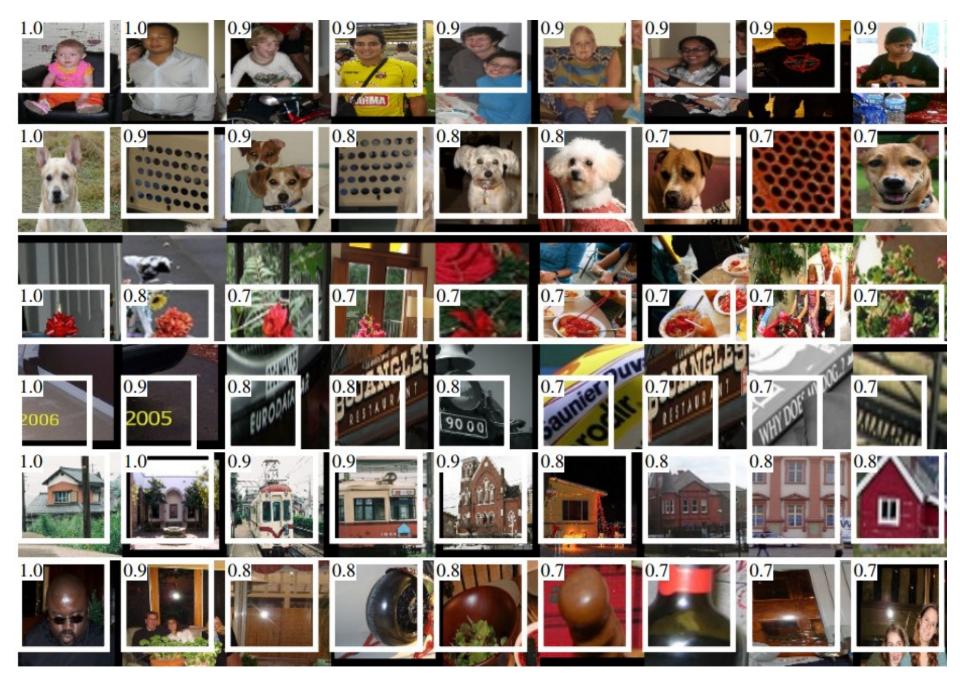
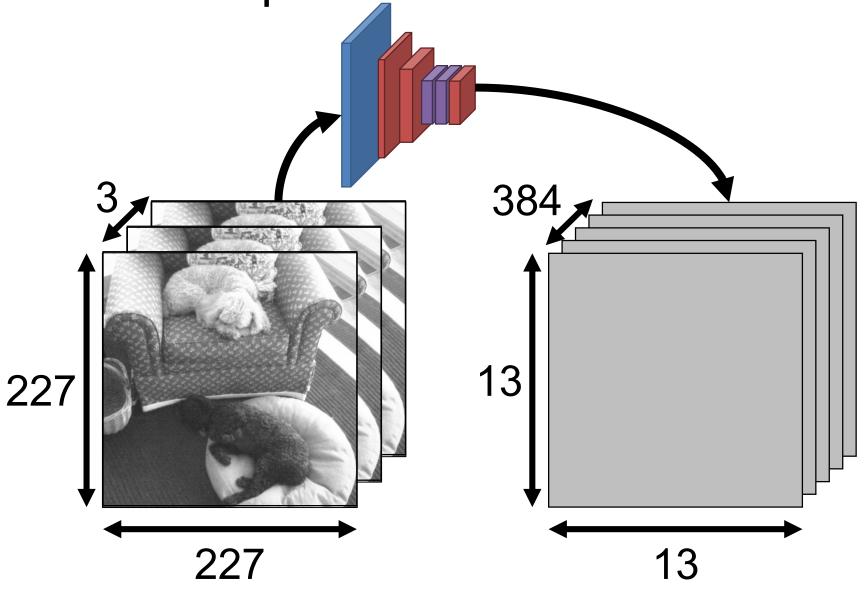
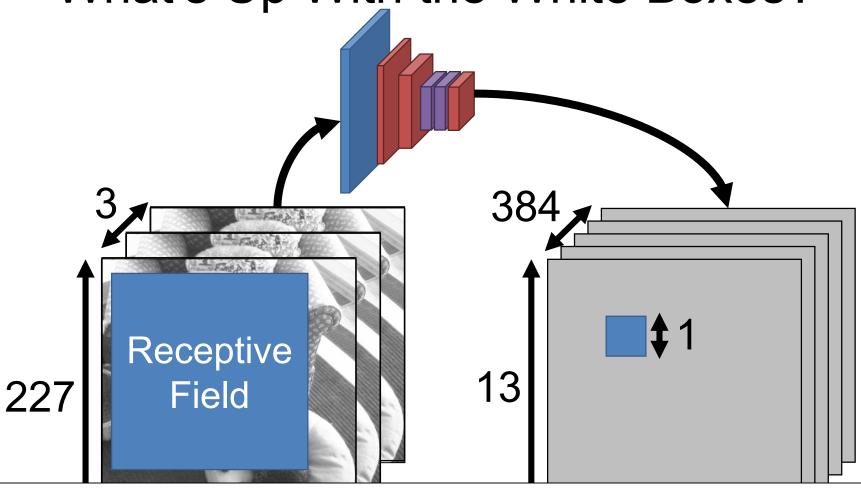


Figure Credit: Girschick et al. CVPR 2014.

What's Up With the White Boxes?



What's Up With the White Boxes?



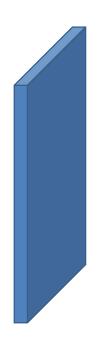
Due to convolution, each later layer's value depends on / "sees" only a fraction of the input image.

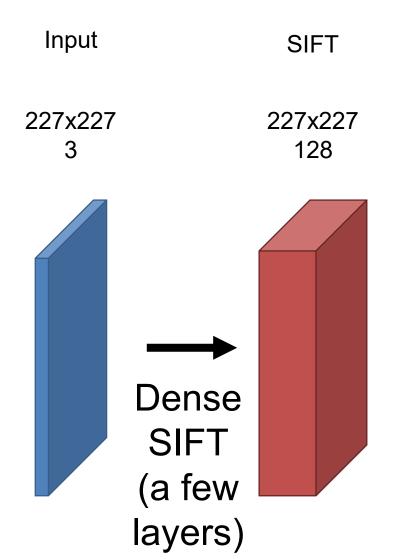
Can use receptive fields to see where the network is "looking" to make its decisions

A very active area of research (lots of great work done by Bolei Zhou, MIT → CUHK)

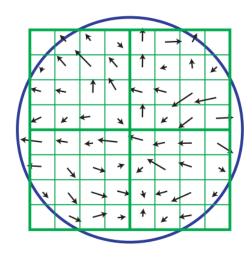
Input

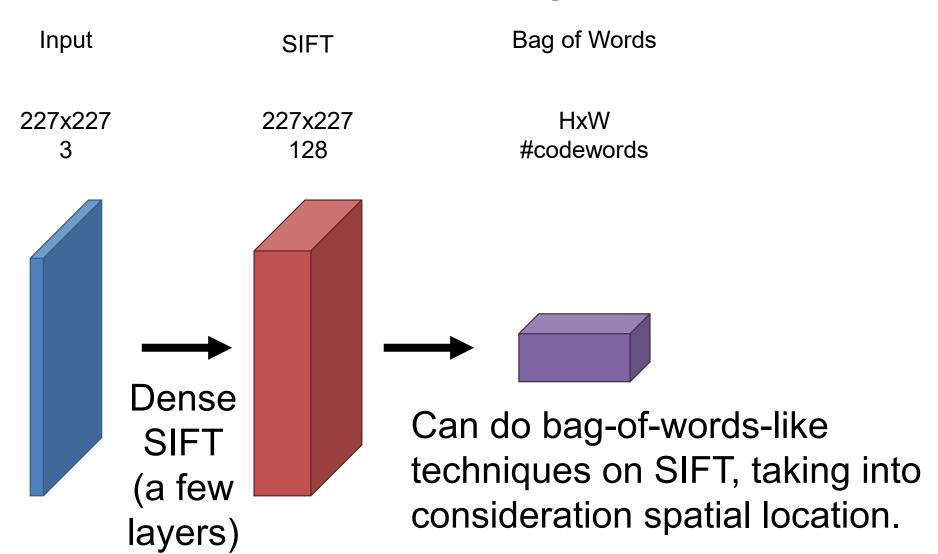
227x227 3

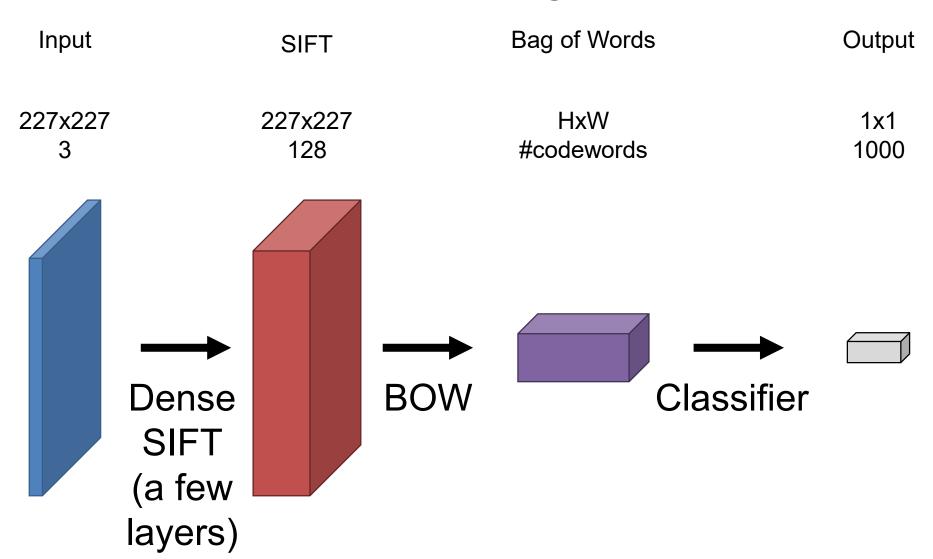


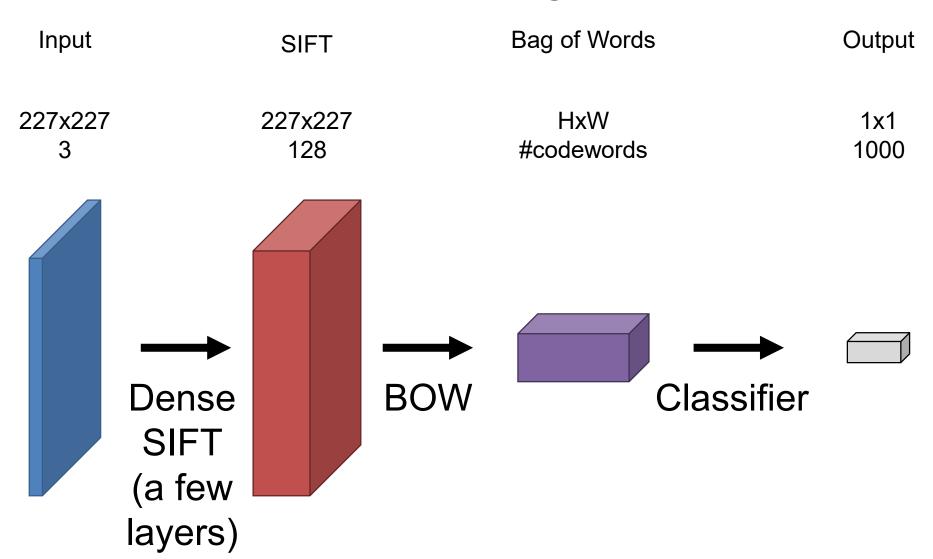


Recall: can compute a descriptor based on histograms of image gradients. Do it densely (at each pixel).

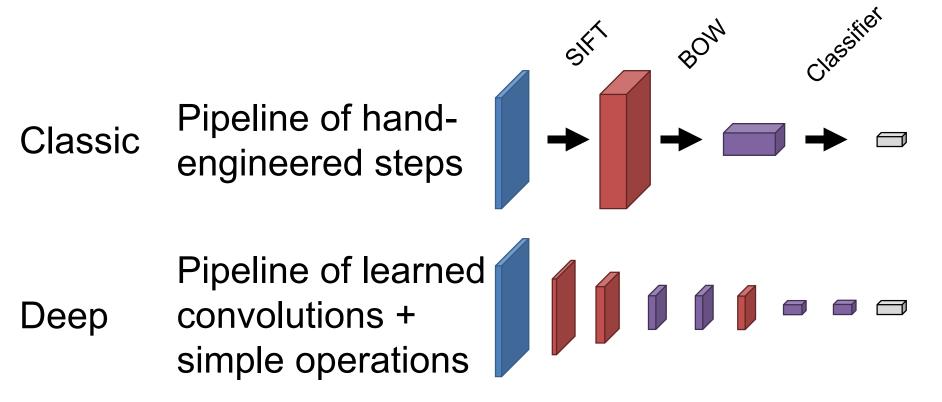








Classic vs Deep Recognition



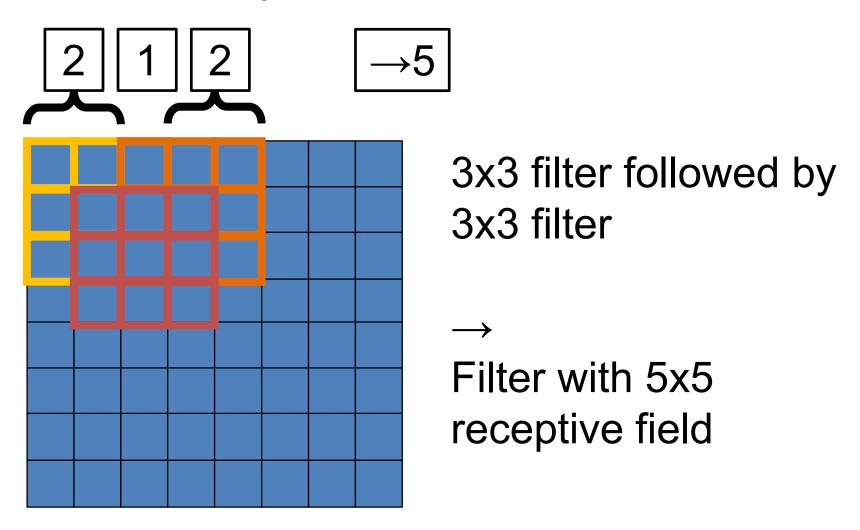
What are some differences?

The classic steps don't: talk to each other or have many parameters that are learned from data.

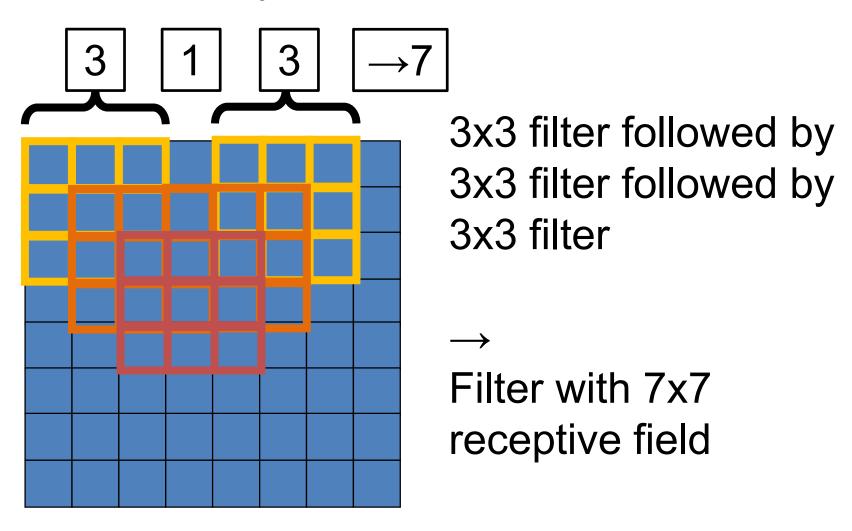
3 Key Developments Since Alexnet

- 3x3 Filters
- Batch Normalization
- Residual Learning

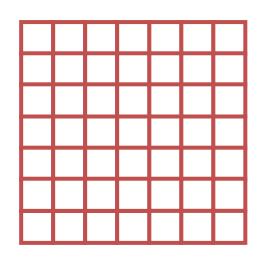
Key Idea – 3x3 Filters



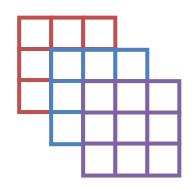
Key Idea – 3x3 Filters



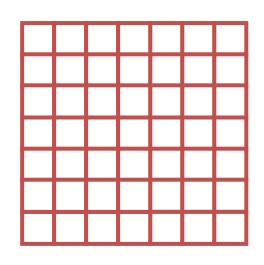
Why Does This Make A Difference?



Empirically, repeated 3x3 filters do better compared to a 7x7 filter.



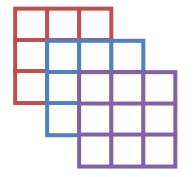
Key Idea – 3x3 Filters



Receptive Field: 7x7 pixels

Parameters/channel: 49

Number of ReLUs: 1



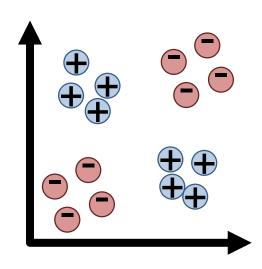
Receptive Field: 7x7 pixels

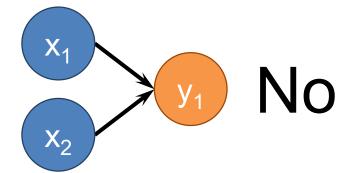
Parameters/channel: 3x3x3=27

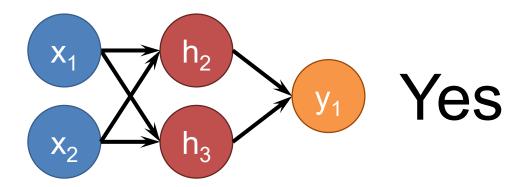
Number of ReLUs: 3

We Want More Non-linearity!

Can they implement xor?

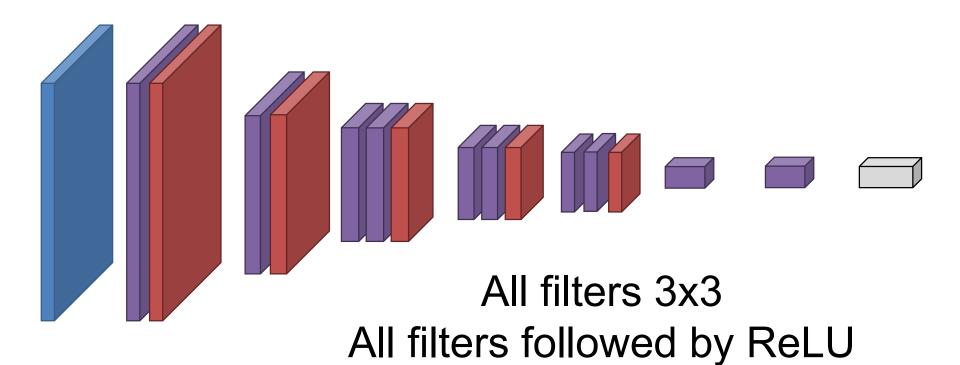






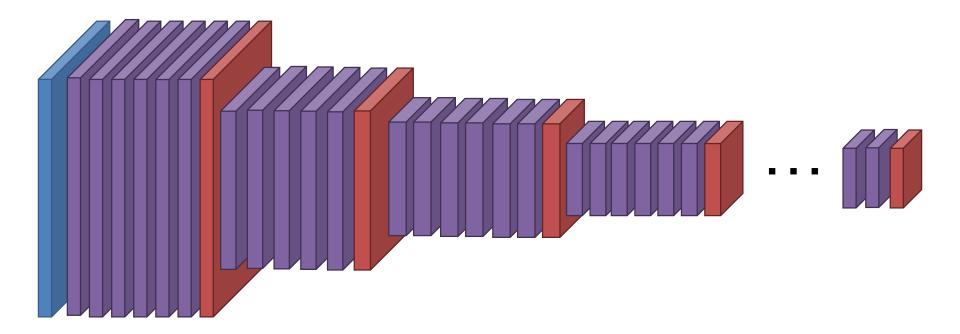
VGG16

Input	Conv 1	Conv 2			Output
224x224 3	224x224 64				



Training Deeper Networks

Why not just stack continuously?
What will happen to gradient going back?



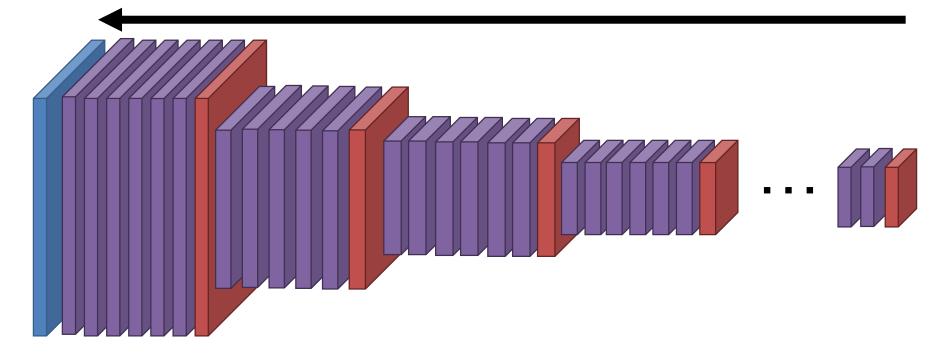
Backprop

Every backpropagation step multiplies the gradient by the local gradient

 $1 * d * d * d ... * d = d^{n-1}$

What if d << 1, n big?

Vanishing Gradients



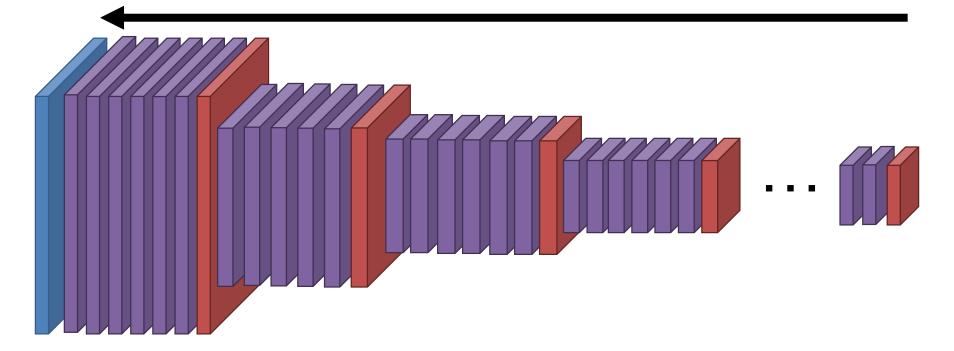
Backprop

Every backpropagation step multiplies the gradient by the local gradient

 $1 * d * d * d ... * d = d^{n-1}$

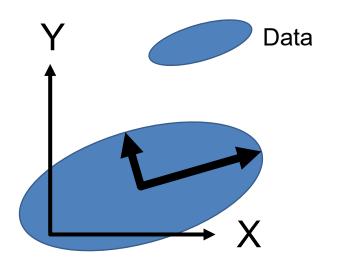
What if d >> 1, n big?

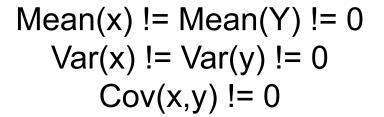
Exploding Gradients

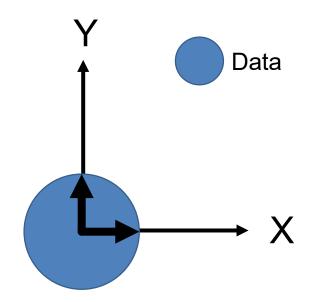


Solution 1 – Batch Normalization

Learning algorithms work far better when data looks like the right as opposed to the left





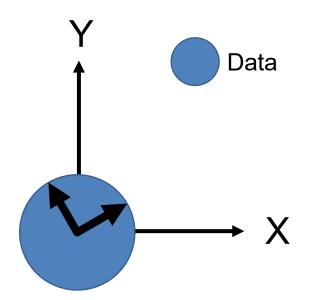


Mean(x) = Mean(Y) = 0

$$Var(x) = Var(y) = 1$$

 $Cov(x,y) = 0$

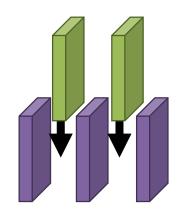
Solution 1 – Batch Normalization



Mean(x) = Mean(Y) = 0Var(x) = Var(y) = 1

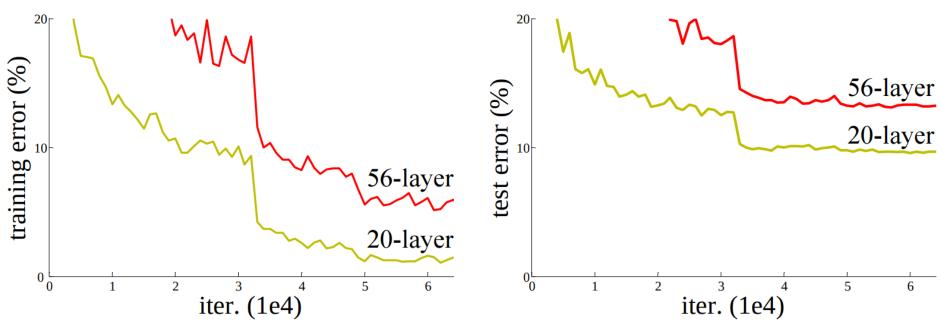
Idea: make layer (Batch Norm) that normalizes things going through it based on estimates of $Var(x_i)$ in each batch.

Stick in between other layers



There exists vs. We Can Find

- Still can't fit models to the data: Deeper model fits worse than shallower model on the training data.
- There exists a deeper model that's identical to the shallow model. Why?

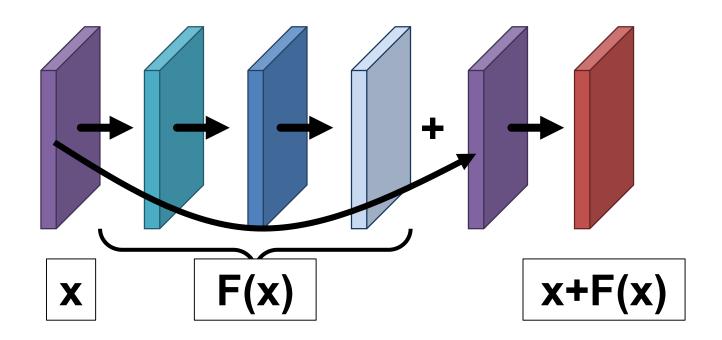


K. He et al. Deep Residual Learning for Image Recognition. CVPR 2016

Residual Learning

New Building Block: x + F(x)

Lets you train networks with 100s of layers.



Evaluating Results

At training time, we minimize: $-\log\left(\frac{\exp((Wx)_{y_i}}{\sum_k \exp((Wx)_k))}\right)$

At test time, we evaluate, given predicted class \hat{y}_i :

Accuracy:
$$\frac{1}{n} \sum_{i=1}^{n} 1(y_i = \widehat{y}_i)$$

Evaluating Many Categories

Does this image depict a cat or a dog?

To avoid penalizing ambiguous images, many challenges let you make five guesses (top-5 accuracy):

Your prediction is correct if one of the guesses is right.

Accuracy over the Years

	Top 1 Error	Top 5 Error
Best Pre-Deep	_	26.2%*
Alexnet	43.5%	20.9%
VGG-16	28.4%	9.6%
+Batch Norm	26.6%	8.5%
Resnet-152	21.7%	5.9%
Human*	_	5.1%

A Practical Aside

- People usually use hardware specialized for matrix multiplies (the card below does 13.4T flops if it's matrix multiplies).
- The real answer to why we love homogeneous coordinates?
 - Makes rendering matrix multiplies →
 - leads to matrix multiplication hardware →
 - deep learning.

Training a CNN

- Download a big dataset
- Initialize network weights randomly
- for epoch in range(epochs):
 - Shuffle dataset
 - for each minibatch in datsaet.:
 - Put data on GPU
 - Compute gradient
 - Update gradient with SGD

Training a CNN from Scratch

Need to start w somewhere

- AlexNet: weights ~ Normal(0,0.01), bias = 1
- "Xavier" initialization: Uniform $(\frac{-1}{\sqrt{n}}, \frac{1}{\sqrt{n}})$ where n is the number of neurons
- "Kaiming" initialization: Normal $(0, \sqrt{2/n})$

Take-home: important, but use defaults

Training a ConvNet

- Convnets typically have millions of parameters:
 - AlexNet: 62 million
 - VGG16: 138 million
- Convnets typically fit on ~1.2 million images
- Remember least squares: if we have fewer data points than parameters, we're in trouble
- Solution: need regularization / more data

Training a CNN – Weight Decay

SGD Update

$$\mathbf{w_{t+1}} = \mathbf{w_t} - \epsilon \frac{\partial L}{\partial \mathbf{w_t}}$$

$$\mathbf{w_{t+1}} = \mathbf{w_t} - \eta \epsilon \mathbf{w_t} + \epsilon \frac{\partial L}{\partial \mathbf{w_t}}$$

What does this remind you of?

Weight decay is very similar to regularization but might not be the same for more complex optimization techniques.

Quick Quiz

Raise your hand if it's a hippo

Horizontal Flip

Color Jitter

Image Cropping

Training a CNN –Augmentation

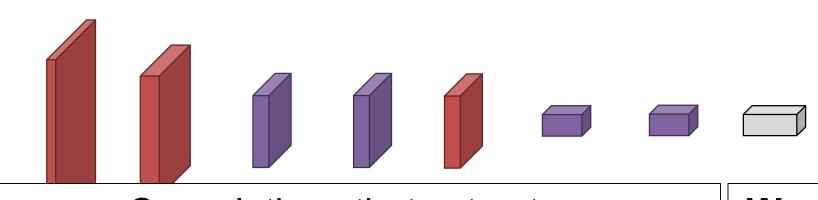
- Apply transformations that don't affect the output
- Produces more data but you have to be careful that it doesn't change the meaning of the output

Training a CNN – Fine-tuning

What if you don't have data?

Fine-Tuning: Pre-trained Features

- 1. Extract some layer from an existing network
 - 2. Use as your new feature.
 - 3. Learn a linear model. Surprisingly effective



Convolutions that extract a 1x1x4096 feature (*Fixed/Frozen/Locked*)

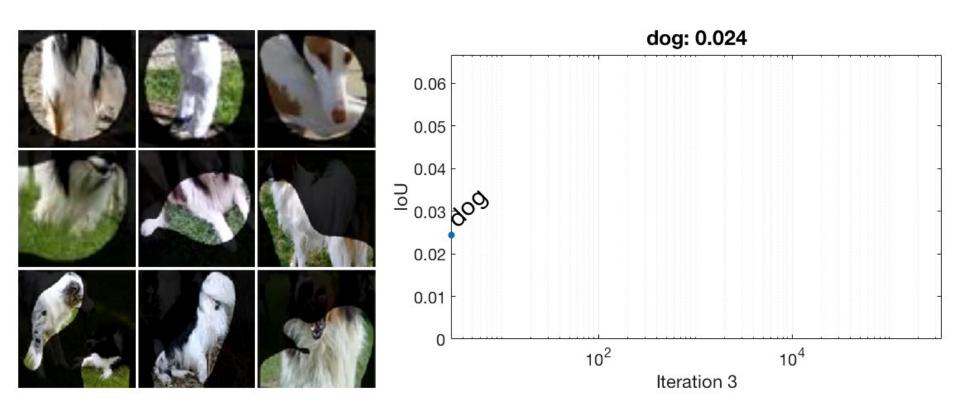
wx +b

Fine-Tuning: Transfer Learning

- Rather than initialize from random weights, initialize from some "pre-trained" model that does something else.
- Most common model is trained on ImageNet.
- Other pretraining tasks exist but are less popular.

Fine-Tuning: Transfer Learning

Why should this work?
Transferring from objects (dog) to scenes (waterfall)



Recommendations

- <10K images: features
- Always try fine-tuning
- >100K images: consider trying from scratch

Summary

- We learned about converting an image into a vector output (e.g., which of K classes is this image, or predict K continuous outputs)
- We learned about some building blocks for doing this