(Mainly) Linear Models EECS 442 – Prof. David Fouhey Winter 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W19/

Administrivia

- <u>60 people</u>: please sign up for AWS educate. If you run into issues, please email them.
- HW2 Due Tonight; HW3 Out Tonight but not due for a fairly long time (March 14) due to Spring Break and Midterm.
- Remember: you have late days, and late days are for spending
- Start *early*. Be inspired by RANSAC: Trying randomly will do the right thing if you try often.

Midterm

- Covers up to February 19 (next class)
- We'll have review sessions
- In class but randomized
- Please tell us about accomodations

Today and Next Tuesday

- Machine Learning (ML) Crash Course
- I can't cover everything
- If you can, take a ML course or *learn online*
- ML really won't solve all problems and is incredibly dangerous if misused
- But ML is a powerful tool and not going away

Terminology

- ML is incredibly messy terminology-wise.
- Most things have at lots of names.
- I will try to write down multiple of them so if you see it later you'll know what it is.

Pointers

Useful book (Free too!): The Elements of Statistical Learning Hastie, Tibshirani, Friedman https://web.stanford.edu/~hastie/ElemStatLearn/

Useful set of data: UCI ML Repository https://archive.ics.uci.edu/ml/datasets.html

A lot of important and hard lessons summarized: https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

Machine Learning (ML)

- Goal: make "sense" of data
- Overly simplified version: transform vector x into vector y=T(x) that's somehow better
- Potentially you fit T using pairs of datapoints and desired outputs (x_i,y_i), or just using a set of datapoints (x_i)
- Always are trying to find some transformation that minimizes or maximizes some **objective function** or goal.

Machine Learning

Input: **x**

Output: y

Feature vector/Data point:

Vector representation of datapoint. Each dimension or "feature" represents some aspect of the data.

Label / target:

Fixed length vector of desired output. Each dimension represents some aspect of the output data

Supervised: we are given y. **Unsupervised**: we are not, and make our own ys.

Input: \mathbf{x} in \mathbb{R}^{N}

Output: y

Input: \mathbf{x} in \mathbb{R}^{N}

Output: y

Intuitive objective function: Want our prediction of age to be "close" to true age.

Intuitive objective function: Want to find K groups that explain the data we see.

Intuitive objective function: Want to K dimensions (often two) that are easier to understand but capture the variance of the data.

Example – Computer Vision

Input: \mathbf{x} in $\mathbb{R}^{\mathbb{N}}$

Output: y

Example – Computer Vision

Input: \mathbf{x} in $\mathbb{R}^{\mathbb{N}}$

Output: y

Example – Computer Vision

Output: y

 $f_{1}(\text{Image})$ $f_{2}(\text{Image})$ $f_{N}(\text{Image})$ $f_{N}(\text{Image})$ $f_{N}(\text{Image})$ $f_{N}(\text{Image})$ $f_{N}(\text{Image})$ $f_{N}(\text{Image})$ $f_{N}(\text{Image})$ $f_{N}(\text{Image})$ $f_{N}(\text{Image})$

Input: \mathbf{x} in \mathbb{R}^{N}

Abstractions

- Throughout, assume we've converted data into a fixed-length feature vector. There are welldesigned ways for doing this.
- But remember it could be big!
 - Image (e.g., 224x224x3): 151K dimensions
 - Patch (e.g., 32x32x3) in image: 3072 dimensions

ML Problems in Vision

ML Problem Examples in Vision

Supervised (Data+Labels) Unsupervised (Just Data)

DiscreteClassification/OutputCategorization

Continuous Output

Slide adapted from J. Hays

ML Problem Examples in Vision *Categorization/Classification* Binning into K mutually-exclusive categories

Image credit: Wikipedia

ML Problem Examples in Vision

Supervised (Data+Labels) Unsupervised (Just Data)

DiscreteClassification/OutputCategorization

Continuous Output

Regression

Slide adapted from J. Hays

ML Problem Examples in Vision Regression Estimating continuous variable(s)

Image credit: Wikipedia

ML Problem Examples in Vision

Supervised (Data+Labels) Unsupervised (Just Data)

Discrete Output Classification/ Categorization

Clustering

Continuous Output

Regression

Slide adapted from J. Hays

ML Problem Examples in Vision Clustering

Given a set of cats, automatically discover clusters or *cat*egories.

ML Problem Examples in Vision

Supervised (Data+Labels)

Unsupervised (Just Data)

Discrete Output

Classification/ Categorization

Clustering

Continuous Output

Regression

Dimensionality Reduction

ML Problem Examples in Vision Dimensionality Reduction Find dimensions that best explain the whole image/input

For ordinary images, this is currently a totally hopeless task. For certain images (e.g., faces, this works reasonably well)

Practical Example

- ML has a tendency to be mysterious
- Let's start with:
 - A model you learned in middle/high school (a line)
 - A fitting method you find in a 200-level math course
- One thing to remember:
 - N eqns, <N vars = overdetermined (will have errors)
 - N eqns, N vars = exact solution
 - N eqns, >N vars = underdetermined (infinite solns)

Example – Least Squares

Let's make the world's worst weather model

World's Worst Weather Model

<u>City</u>	<u>Latitude (°)</u>	<u> Temp (F)</u>
Ann Arbor	42	33
Washington, DC	39	38
Austin, TX	30	62
Mexico City	19	67
Panama City	9	83

Example – Least Squares

$$\sum_{i=1}^{k} (y_i - w^T x_i)^2 \longrightarrow ||y - Xw||_2^2$$

Output: Temperature $\boldsymbol{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_k \end{bmatrix}$ Inputs: Latitude, 1 $\boldsymbol{X} = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_k & 1 \end{bmatrix}$

Model/Weights: Latitude, "Bias"

$$\boldsymbol{w} = \begin{bmatrix} m \\ b \end{bmatrix}$$

Example – Least Squares

$$\sum_{i=1}^{k} (y_i - w^T x_i)^2 \longrightarrow \|y - Xw\|_2^2$$

Output: Temperature $y = \begin{bmatrix} 33 \\ \vdots \\ 83 \end{bmatrix}$ Inputs: Latitude, 1 $X = \begin{bmatrix} 42 & 1 \\ \vdots & \vdots \\ 9 & 1 \end{bmatrix}$ **Model/Weights:** Latitude, "Bias"

$$\boldsymbol{w} = \begin{bmatrix} m \\ b \end{bmatrix}$$

Intuitively why do we add a one to the inputs?

Example – Least Squares

Training
$$(\mathbf{x}_i, \mathbf{y}_i)$$
:
$$\arg\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 \quad \text{or}$$
$$\arg\min_{\mathbf{w}} \sum_{i=1}^n \|\mathbf{w}^T \mathbf{x}_i - \mathbf{y}_i\|^2$$

Loss function/objective: evaluates correctness. Here: Squared L2 norm / Sum of Squared Errors

Training/Learning/Fitting: try to find model that *optimizes/minimizes* an objective / loss function

Recall: optimal \mathbf{w}^* is $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

Example – Least Squares

Training
$$(\mathbf{x}_i, \mathbf{y}_i)$$
:
$$\arg\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 \text{ or}$$
$$\arg\min_{\mathbf{w}} \sum_{i=1}^n \|\mathbf{w}^T \mathbf{x}_i - \mathbf{y}_i\|^2$$

Inference (x): $\boldsymbol{w}^T \boldsymbol{x} = w_1 x_1 + \dots + w_F x_F$

Testing/Inference: Given a new output, what's the prediction?

Least Squares: Learning

Data

Model

<u>City</u>	<u>Latitude</u>	<u>Temp</u>	
Ann Arbor	42	33	
Washington, DC	39	38	
Austin, TX	30	62	
Mexico City	19	67	
Panama City	9	83	

$$\boldsymbol{X}_{5x2} = \begin{bmatrix} 42 & 1\\ 39 & 1\\ 30 & 1\\ 19 & 1\\ 9 & 1 \end{bmatrix} \quad \boldsymbol{y}_{5x1} = \begin{bmatrix} 33\\ 38\\ 62\\ 67\\ 83 \end{bmatrix} \quad (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} \\ \boldsymbol{w}_{2x1} = \begin{bmatrix} -1.47\\ 97 \end{bmatrix}$$

Let's Predict The Weather

The EECS 442 Weather Channel

<u>City</u>	<u>Latitude</u>	<u>Temp</u>	<u>Temp</u>	<u>Error</u>
Ann Arbor	42	33	35.3	2.3
Washington, DC	39	38	39.7	1.7
Austin, TX	30	62	52.9	10.9
Mexico City	19	67	69.1	2.1
Panama City	9	83	83.8	0.8

Is This a Minimum Viable Product?

The EECS 442 Weather Channel The Weather Channel

Pittsburgh: Temp = -1.47*40 + 97 = 38 Actual Pittsburgh: 45

Berkeley: Temp = -1.47*38 + 97 = 41

Sydney:

Temp = -1.47*-33 + 97 = 146

Actual Berkeley: 53

Actual Sydney: 74

Won't do so well in the Australian market...
Where Can This Go Wrong?

Where Can This Go Wrong?DataModel \underline{City} $\underline{Latitude}$ \underline{Temp} Ann Arbor4233 \mathbf{Temp} Washington, DC3938 \mathbf{Temp}

How well can we predict Ann Arbor and DC and why?

Always Need Separated Testing

Model might be fit data too precisely "*overfitting*" Remember: #datapoints = #params = perfect fit

Model may only work under some conditions (e.g., trained on northern hemisphere).

Sydney: Temp = -1.47*-33 + 97 = **146**

"It's tough to make predictions, especially about the future" -Yogi Berra

Nearly any model can predict data it's seen. If your model can't accurately interpret "unseen" data, it's probably useless. We have no clue whether it has just memorized.

Let's Improve Things

If one feature does ok, what about more features!?

<u>City</u>	<u>Latitude</u>	<u>Avg July</u>	<u>Avg</u>		<u>Temp</u>
<u>Name</u>	<u>(deg)</u>	<u>High (F)</u>	<u>Snowfall</u>		<u>(F)</u>
Ann Arbor	42	83	58		33
Washington, DC	39	88	15		38
Austin, TX	30	95	0.6		62
Mexico City	19	74	0		67
Panama City	9	93	0		83
	\sim				\checkmark
	X	5 4	4 feat	ures + a feature	y_{5x1}

of 1s for intercept/bias

New EECS 442 Weather Rule: $w_1^{tatitude} + w_2^{tavg}$ July high) + w_3^{tavg} snowfall) + w_4^{tavg} 1

In general called linear regression

Let's Improve Things More

If one feature does ok, what about LOTS of features!?

<u>City</u> <u>Name</u>	<u>Latitude</u> <u>(deg)</u>	<u>Avg July</u> <u>High (F)</u>	<u>Avg</u> Snowfall	<u>Day of</u> <u>Year</u>	<u>Elevation</u> <u>(ft)</u>	<u>% Letter</u> <u>M</u>	<u>Temp</u> <u>(F)</u>
Ann Arbor	42	83	58	45	840	100	33
Washington, DC	39	88	15	45	409	3	38
Austin, TX	30	95	0.6	45	489	2	62
Mexico City	19	74	0	45	7200	4	67
Panama City	9	93	0	45	7	1	83
	\sim						\sim

 X_{5x7}

 y_{5x1}

X^TX is a 7x7 matrix but is **rank deficient** (rank 5) *and has no inverse. There are an infinite number of solutions.*

Have to express some preference for which of the infinite solutions we want.

Exercise for the mathematically-inclined folks: derive what the space of solutions looks like.

The Fix – Regularized Least Squares

Add **regularization** to objective that prefers some solutions:

Want model "smaller": pay a penalty for w with big norm

Intuitive Objective: accurate model (low loss) but not too complex (low regularization). λ controls how much of each.

The Fix – Regularized Least Squares Objective: $\arg\min_{w} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{2}^{2}$ Trade-off Loss Regularization Take $\frac{\partial}{\partial w}$, set to **0**, solve $w^* = (X^T X + \lambda I)^{-1} X^T y$

X^TX+λ**I** is full-rank (and thus invertible) for λ >0

Called *lots of things:* regularized least-squares, Tikhonov regularization (after Andrey Tikhonov), ridge regression, Bayesian linear regression with a multivariate normal prior.

How do we pick λ ?

Use these data points to fit w*=(X^TX+ λI)⁻¹X^Ty Evaluate on these points for different λ, pick the best

Classification

Start with simplest example: binary classification

Actually: a feature vector representing the image

Classification by Least-Squares

Treat as regression: x_i is image feature; y_i is 1 if it's a cat, 0 if it's not a cat. Minimize least-squares loss.

Training
$$(\mathbf{x}_i, \mathbf{y}_i)$$
:
Inference (\mathbf{x}) :
 $\mathbf{w}^T \mathbf{x} > t$

Unprincipled in theory, but often effective in practice The reverse (regression via discrete bins) is also common

Rifkin, Yeo, Poggio. *Regularized Least Squares Classification* (<u>http://cbcl.mit.edu/publications/ps/rlsc.pdf</u>). 2003 Redmon, Divvala, Girshick, Farhadi. *You Only Look Once: Unified, Real-Time Object Detection.* CVPR 2016.

Easiest Form of Classification

Just **memorize** (as in a Python dictionary) Consider cat/dog/hippo classification.

If this: cat.

If this: dog.

If this: hippo.

Easiest Form of Classification Where does this go wrong?

Rule: if this, then cat

Hmmm. Not quite the same.

Easiest Form of Classification

Test **Known Images** Labels Image $x_1 \leftarrow D(x_1, x_T) \triangleright x_T$ Cat! Cat $D(\boldsymbol{x}_N, \boldsymbol{x}_T)$ (1) Compute distance between feature vectors (2) find nearest \boldsymbol{x}_N

(3) use label.

Nearest Neighbor

"Algorithm"

Training (\mathbf{x}_i, y_i) :

Inference (x):

Memorize training set

bestDist, prediction = Inf, None
for i in range(N):
 if dist(x_i,x) < bestDist:
 bestDist = dist(x_i,x)
 prediction = y_i

Nearest Neighbor

2D Datapoints (colors = labels)

2D Predictions (colors = labels)

Diagram Credit: Wikipedia

K-Nearest Neighbors

Take top K-closest points, vote

2D Datapoints (colors = labels)

2D Predictions (colors = labels)

Use these data points for lookup

Evaluate on these points for different k, distances

K-Nearest Neighbors

- No learning going on but usually effective
- Same algorithm for every task
- As number of datapoints → ∞, error rate is guaranteed to be at most 2x worse than optimal you could do on data

Linear Models Example Setup: 3 classes

Model – one weight per class: w_0, w_1, w_2 $w_0^T x$ big if cat $w_1^T x$ big if dog $w_2^T x$ big if hippo

Stack together: W_{3xF} where **x** is in R^F

Linear Models

Geometric Intuition*

What does a linear classifier look like* in 2D?

*2D is good for vague intuitions, but ML typically deals with at least dozens if not *thousands* of dimensions. Your intuitions about space and geometry from living in 3D are **completely wrong** in high dimensions. <u>Never</u> trust people who show you 2D diagrams and write "Intuition" in the slide title. See: *On the Surprising Behavior of Distance Metrics in High Dimensional Space.* Charu, Hinneburg, Keim. ICDT 2001

Diagram credit: Karpathy & Fei-Fei. 12-point font mini-rant: me

Visual Intuition

CIFAR 10: 32x32x3 Images, 10 Classes

airplane	🚧 🔊 🙀 📈 🍬 🐂 🌌 🚮 🛶 純
automobile	ar 🖏 🚵 💁 🐭 😂 📾 🐝
bird	in 🕺 🛃 🕺 🔊 🕵 🐩 🔝 🚵
cat	li 🖉 📚 🔤 🎉 🚵 之 🐳 🗾
deer	NG 💱 🏹 🥽 🏹 🏹 🏹 💱 👔
dog	93. 🔬 🖚 🥶 🍋 🎑 🧑 🔊 🌋
frog	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
horse	🕋 🗶 💯 👥 👘 🕅 📷 🛠 🎉 💓
ship	🚔 🍻 🔤 🚢 🚘 💋 🕫 🕍 🕿
truck	🚄 🎬 💒 👹 🚟 🚞 🖓 🕋 🚮

- Turn each image into feature by unrolling all pixels
- Fit 10 linear models

Guess The Classifier

Decision rule is $\mathbf{w}^T \mathbf{x}$. If \mathbf{w}_i is big, then big values of x_i are indicative of the class.

Deer or Plane?

Diagram credit: Karpathy & Fei-Fei

Guess The Classifier

Decision rule is $\mathbf{w}^T \mathbf{x}$. If \mathbf{w}_i is big, then big values of x_i are indicative of the class.

Ship or Dog?

Diagram credit: Karpathy & Fei-Fei

Interpreting a Linear Classifier Decision rule is $\mathbf{w}^T \mathbf{x}$. If \mathbf{w}_i is big, then big values of x_i are indicative of the class.

Diagram credit: Karpathy & Fei-Fei

Objective 1: Multiclass SVM

Inference (x): $\arg \max_{k} (Wx)_{k}$

(Take the class whose weight vector gives the highest score)

Objective 1: Multiclass SVM

Inference (x,y): $\arg \max_{k} (Wx)_{k}$

(Take the class whose weight vector gives the highest score)

Objective: Multiclass SVM

How on earth do we optimize:

$$\arg\min_{W} \lambda \|W\|_{2}^{2} + \sum_{i}^{n} \sum_{j \neq y_{i}} \max(0, (Wx_{i})_{j} - (Wx_{i})_{y_{i}} + m)$$

Hold that thought!

Preliminaries

Converting Scores to "Probability Distribution"

Generally P(class j):
$$\frac{\exp((Wx)_j)}{\sum_k \exp((Wx)_k)}$$

Objective 2: Softmax

Inference (x): $\arg \max_{k} (Wx)_{k}$

(Take the class whose weight vector gives the highest score)

P(class j):
$$\frac{\exp((Wx)_j)}{\sum_k \exp((Wx)_k)}$$

Why can we skip the exp/sum exp thing to make a decision?

Objective 2: Softmax

Inference (x): $\arg \max_{k} (Wx)_{k}$

(Take the class whose weight vector gives the highest score)

Objective 2: Softmax

P(correct) = 0.05: 3.0 penalty P(correct) = 0.5:0.11 penalty P(correct) = 0.9: 0.11 penalty P(correct) = 1:No penalty!

Next Class

- How do we optimize more complex stuff?
- A bit more ML

ML Problem Examples In Vision Clustering

Given a set of vectors \mathbf{x}_i , find clusters \mathbf{c}_j and assignments d_{ij} that minimizes

$$c^{*}, d^{*} = \arg\min_{c,d} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} d_{ij} (c_{j} - x_{i})^{2}$$

If point i is assigned to cluster j, minimize squared distance between \mathbf{c}_i and \mathbf{x}_i