(Mainly) Linear Models

EECS 442 - Prof. David Fouhey Winter 2019, University of Michigan
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W19/

Administrivia

- 60 people: please sign up for AWS educate. If you run into issues, please email them.
- HW2 Due Tonight; HW3 Out Tonight but not due for a fairly long time (March 14) due to Spring Break and Midterm.
- Remember: you have late days, and late days are for spending
- Start early. Be inspired by RANSAC: Trying randomly will do the right thing if you try often.

Midterm

- Covers up to February 19 (next class)
- We'll have review sessions
- In class but randomized
- Please tell us about accomodations

Today and Next Tuesday

- Machine Learning (ML) Crash Course
- I can't cover everything
- If you can, take a ML course or learn online
- ML really won't solve all problems and is incredibly dangerous if misused
- But ML is a powerful tool and not going away

Terminology

- ML is incredibly messy terminology-wise.
- Most things have at lots of names.
- I will try to write down multiple of them so if you see it later you'll know what it is.

Pointers

Useful book (Free too!): The Elements of Statistical Learning Hastie, Tibshirani, Friedman https://web.stanford.edu/~hastie/ElemStatLearn/

Machine Learning Repository

Useful set of data: UCI ML Repository https://archive.ics.uci.edu/ml/datasets.html

A lot of important and hard lessons summarized: https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

Machine Learning (ML)

- Goal: make "sense" of data
- Overly simplified version: transform vector \mathbf{x} into vector $\mathbf{y = T}(\mathbf{x})$ that's somehow better
- Potentially you fit T using pairs of datapoints and desired outputs ($\mathbf{x}_{\mathrm{i}}, \mathbf{y}_{\mathrm{i}}$), or just using a set of datapoints (\mathbf{x}_{i})
- Always are trying to find some transformation that minimizes or maximizes some objective function or goal.

Machine Learning

Input: x

Feature vector/Data point:
Vector representation of datapoint. Each dimension or "feature" represents some aspect of the data.

Output: y

Label / target:
Fixed length vector of desired output. Each dimension
represents some aspect of the output data

Supervised: we are given y .
Unsupervised: we are not, and make our own ys.

Example - Health

Input: \mathbf{x} in R^{N}
Output: y

P(Has Diabetes)
P(No Diabetes)
0.2 Glucose Level

Intuitive objective function: Want correct category to be likely with our model.

Example - Health

Input: \mathbf{x} in R^{N}
Output: y

50 Blood pressure
60 Heart Rate

0.2 Glucose Level

Intuitive objective function: Want our prediction of age to be "close" to true age.

Example - Health

Input: \mathbf{x} in R^{N}
Output: discrete y
(unsupervised)

Intuitive objective function: Want to find K groups that explain the data we see.

Example - Health

Input: \mathbf{x} in R^{N}
Output: continuous y
(discovered)

50	Blood pressure	User dimension 1
60	Heart Rate	User dimension 2
0.2	Glucose Level	User dimension K

Intuitive objective function: Want to K dimensions (often two) that are easier to understand but capture the variance of the data.

Example - Credit Card Fraud

Input: \mathbf{x} in R^{N}
Output: y

Intuitive objective function: Want correct category to be likely with our model.

Example - Computer Vision

Input: \mathbf{x} in R^{N}
Output: y

Pixel at $(0,0)$
Pixel at $(0,1) \quad-\mathbf{f}(\mathbf{W} \mathbf{x}) \rightarrow$

Pixel at ($\mathrm{H}-1, \mathrm{~W}-1$)

Intuitive objective function: Want correct category to be likely with our model.

Example - Computer Vision

Input: \mathbf{x} in R^{N}

Output: y

Intuitive objective function: Want correct category to be likely with our model.

Example - Computer Vision

Input: \mathbf{x} in R^{N}
Output: y

Intuitive objective function: Want correct category to be likely with our model.

Abstractions

- Throughout, assume we've converted data into a fixed-length feature vector. There are welldesigned ways for doing this.
- But remember it could be big!
- Image (e.g., 224x224x3): 151K dimensions
- Patch (e.g., 32x32x3) in image: 3072 dimensions

ML Problems in Vision

ML Problem Examples in Vision

Supervised
(Data+Labels)

Unsupervised (Just Data)

Discrete
Output
Classification/
Categorization

Continuous
Output

ML Problem Examples in Vision Categorization/Classification

 Binning into K mutually-exclusive categories

0.9 P (Cat)
$0.1 P($ Dog $)$
\ldots
0.0

ML Problem Examples in Vision

Supervised
(Data+Labels)

Unsupervised (Just Data)

Discrete
Output
Classification/
Categorization

Continuous
Output

Regression

ML Problem Examples in Vision

Regression
Estimating continuous variable(s)

ML Problem Examples in Vision

Supervised (Data+Labels)

Discrete Output

Classification/
Categorization

Unsupervised (Just Data)

Continuous
Output
Regression

ML Problem Examples in Vision
 Clustering

Given a set of cats, automatically discover clusters or categories.

ML Problem Examples in Vision

Supervised
(Data+Labels)

Discrete Output

Classification/
Categorization

Continuous
Output

Unsupervised (Just Data)

Clustering

Dimensionality
 Reduction

ML Problem Examples in Vision

Dimensionality Reduction

Find dimensions that best explain the whole image/input
 image

LLocation of cat in image

For ordinary images, this is currently a totally hopeless task. For certain images (e.g., faces, this works reasonably well)

Practical Example

- ML has a tendency to be mysterious
- Let's start with:
- A model you learned in middle/high school (a line)
- A fitting method you find in a 200-level math course
- One thing to remember:
- N eqns, <N vars = overdetermined (will have errors)
- N eqns, N vars = exact solution
- N eqns, $>\mathrm{N}$ vars $=$ underdetermined (infinite solns)

Example - Least Squares

Let's make the world's worst weather model

Data: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$,
$\ldots,\left(x_{k}, y_{k}\right)$
Model: $(m, b) y_{i}=m x_{i}+b$
$\operatorname{Or}(\mathbf{w}) \mathrm{y}_{\mathrm{i}}=\mathbf{w}^{\top} \mathbf{x}_{\mathrm{i}}$
Objective function:
$\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}\right)^{2}$

World's Worst Weather Model

Given latitude (distance above
equator), predict temperature
by fitting a line
Latitude (${ }^{\circ}$)

Cemp (F)
City

Ann Arbor

Washington, DC
Austin, TX
Mexico City
Panama City

Example - Least Squares
 $$
\sum_{i=1}^{k}\left(y_{i}-\boldsymbol{w}^{T} \boldsymbol{x}_{\boldsymbol{i}}\right)^{2}
$$
 $$
\rightarrow \quad\|y-X w\|_{2}^{2}
$$

Output:
Temperature
$\boldsymbol{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{k}\end{array}\right]$

Inputs:
Latitude, 1

$$
\boldsymbol{X}=\left[\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{k} & 1
\end{array}\right]
$$

Model/Weights:
Latitude, "Bias"

$$
\boldsymbol{w}=\left[\begin{array}{c}
m \\
b
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Example - Least Squares } \\
& \sum_{i=1}^{k}\left(y_{i}-w^{T} \boldsymbol{x}_{\boldsymbol{i}}\right)^{2} \quad \rightarrow \quad\|y-x w\|_{2}^{2}
\end{aligned}
$$

Output:

Temperature
$\boldsymbol{y}=\left[\begin{array}{c}33 \\ \vdots \\ 83\end{array}\right]$

Inputs:
Latitude, 1

$$
\boldsymbol{X}=\left[\begin{array}{cc}
42 & 1 \\
\vdots & \vdots \\
9 & 1
\end{array}\right]
$$

Model/Weights:
Latitude, "Bias"

$$
\boldsymbol{w}=\left[\begin{array}{c}
m \\
b
\end{array}\right]
$$

Intuitively why do we add a one to the inputs?

Example - Least Squares

Training ($\mathbf{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$):

$$
\begin{aligned}
& \arg \min _{\boldsymbol{w}}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}\|_{2}^{2} \text { or } \\
& \arg \min _{\boldsymbol{w}} \sum_{i=1}^{n}\left\|\boldsymbol{w}^{T} \boldsymbol{x}_{\boldsymbol{i}}-y_{i}\right\|^{2}
\end{aligned}
$$

Loss function/objective: evaluates correctness. Here: Squared L2 norm / Sum of Squared Errors

Training/Learning/Fitting: try to find model that optimizes/minimizes an objective / loss function

Recall: optimal \mathbf{w}^{*} is $\boldsymbol{w}^{*}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}$

Example - Least Squares

Training ($\mathbf{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$):

$$
\begin{aligned}
& \arg \min _{\boldsymbol{w}}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}\|_{2}^{2} \text { or } \\
& \arg \min _{\boldsymbol{w}} \sum_{i=1}^{n}\left\|\boldsymbol{w}^{T} \boldsymbol{x}_{\boldsymbol{i}}-y_{i}\right\|^{2}
\end{aligned}
$$

Inference (x):

$$
\boldsymbol{w}^{T} \boldsymbol{x}=w_{1} x_{1}+\cdots+w_{F} x_{F}
$$

Testing/Inference: Given a new output, what's the prediction?

Least Squares: Learning

Data

City	Latitude		Temp
Ann Arbor	42		33
Washington, DC	39		38
Austin, TX	30		62
Mexico City	19		67
Panama City	9		83

Model
Temp = $-1.47 *$ Lat +97

$$
\boldsymbol{X}_{5 x 2}=\left[\begin{array}{cc}
42 & 1 \\
39 & 1 \\
30 & 1 \\
19 & 1 \\
9 & 1
\end{array}\right] \boldsymbol{y}_{5 x 1}=\left[\begin{array}{l}
33 \\
38 \\
62 \\
67 \\
83
\end{array}\right] \quad \begin{gathered}
\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y} \\
\square
\end{gathered} w_{2 \times 1}=\left[\begin{array}{c}
-1.47 \\
97
\end{array}\right]
$$

Let's Predict The Weather

> The EECS 442 Weather Channel

City	Latitude		Temp		Temp

Is This a Minimum Viable Product?

The EECS 442 Weather Channel

The Weather Channel

Actual Pittsburgh: 45

Actual Berkeley: 53

Actual Sydney:
74

Won't do so well in the Australian market...

Where Can This Go Wrong?

Where Can This Go Wrong?

Data
 Model

City	$\underline{\text { Latitude }}$	Temp		Temp $=$
Ann Arbor	42	33	\square	-1.66^{*} Lat +103

How well can we predict Ann Arbor and DC and why?

Always Need Separated Testing

Model might be fit data too precisely "overfitting"
Remember: \#datapoints = \#params = perfect fit

Model may only work under some conditions (e.g., trained on northern hemisphere).

$$
\begin{gathered}
\text { Sydney: } \\
\text { Temp }=-1.47^{*}-33+97=146
\end{gathered}
$$

Training and Testing

Fit model parameters on training set; evaluate on entirely unseen test set.

Training

Test
"It's tough to make predictions, especially about the future" -Yogi Berra

Nearly any model can predict data it's seen. If your model can't accurately interpret "unseen" data, it's probably useless. We have no clue whether it has just memorized.

Let's Improve Things

If one feature does ok, what about more features!?

City	Latitude	Avg July	Avg	Temp
Name	(deg)	High (F)	Snowfall	(F)
Ann Arbor	42	83	58	33
Washington, DC	39	88	15	38
Ausin, TX	30	95	0.6	62
Mexico City	19	74	0	67
Panama City	9	93	0	83
				$\underbrace{83}$
$X_{5} 4$ 4 features + a feature of 1 s for intercept/bias				

Let's Improve Things

All the math works out!

Data
 $\boldsymbol{w}^{*}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}$
 Model
 $\boldsymbol{W}_{4 \times 1}$

New EECS 442 Weather Rule:
$\mathrm{w}_{1}{ }^{*}$ latitude $+\mathrm{w}_{2}{ }^{*}(\mathrm{avg}$ July high) + $\mathrm{w}_{3}{ }^{*}($ avg snowfall $)+\mathrm{w}_{4}{ }^{*} 1$

In general called linear regression

Let's Improve Things More

If one feature does ok, what about LOTS of features!?

City	Latitude	Avg July	Avg	Day of	Elevation	\% Letter	Temp
Name	(deq)	High (F)	Snowfall	Year	(ti)	\underline{M}	(F)
Ammatbr	42	83	58	45	840	100	33
Wastingon, DC	39	88	15	45	409	3	38
Ausin, Tx	30	95	0.6	45	489	2	62
Mexico City	19	74	0	45	7200	4	67
ama city	9	93	0	45	7	1	83
	$\boldsymbol{X}_{5 \times 7}$		6 features + a feature of 1 s for intercept/bias				$\boldsymbol{y}_{5 \times 1}$

Let's Improve Things More

$$
\quad \begin{gathered}
\text { Model } \\
\boldsymbol{X}_{5 x 7} \quad \boldsymbol{y}_{5 x 1} \\
\end{gathered}
$$

$$
\boldsymbol{w}^{*}=\underbrace{\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)}{ }^{-1} \boldsymbol{X}^{T} \boldsymbol{y}
$$

$\mathbf{X}^{\top} \mathbf{X}$ is a 7×7 matrix but is rank deficient (rank 5) and has no inverse. There are an infinite number of solutions.

Have to express some preference for which of the infinite solutions we want.

The Fix - Regularized Least Squares

Add regularization to objective that prefers some solutions:
Before: $\quad \arg \min _{\boldsymbol{w}}\|y-X w\|_{2}^{2} \longrightarrow$ Loss
After:

Want model "smaller": pay a penalty for w with big norm
Intuitive Objective: accurate model (low loss) but not too complex (low regularization). λ controls how much of each.

The Fix - Regularized Least Squares

Objective: $\arg \min _{\boldsymbol{w}}\|y-X w\|_{2}^{2}+\lambda\|w\|_{\text {Trade-off }}^{2} \underbrace{}_{\text {Regularization }}$

$$
\begin{aligned}
& \text { Take } \frac{\partial}{\partial w}, \text { set to } \mathbf{0} \text {, solve } \\
& \boldsymbol{w}^{*}=\underbrace{\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}+\boldsymbol{\lambda I}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}}
\end{aligned}
$$

$\mathbf{X}^{\top} \mathbf{X}+\lambda \boldsymbol{I}$ is full-rank (and thus invertible) for $\lambda>0$
Called lots of things: regularized least-squares, Tikhonov regularization (after Andrey Tikhonov), ridge regression, Bayesian linear regression with a multivariate normal prior.

The Fix - Regularized Least Squares

Objective: $\arg {\underset{\text { miss }}{\boldsymbol{w}}}_{\min }\|y-X w\|_{\text {Trade-off }}^{2}+\lambda\|w\|_{\text {Regularization }}^{2}$
What happens (and why) if:

$$
\begin{aligned}
& \text { - } \lambda=0 \\
& -\lambda=\infty
\end{aligned}
$$

Training and Testing

Fit model parameters on training set; evaluate on entirely unseen test set.

Training
 Test

How do we pick λ ?

Training and Testing

Fit model parameters on training set; find hyperparameters by testing on validation set; evaluate on entirely unseen test set.

Training Validation Test

Use these data points to fit
$\mathbf{w}^{*}=\left(\mathbf{X}^{\top} \mathbf{X}+\boldsymbol{\lambda I}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$

Evaluate on these points for different λ, pick the best

Classification

Start with simplest example: binary classification

Cat or not cat?

Actually: a feature vector representing the image

Classification by Least-Squares

Treat as regression: x_{i} is image feature; y_{i} is 1 if it's a cat, 0 if it's not a cat. Minimize least-squares loss.

Training ($\mathbf{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$): Inference (x):

$$
\arg \min _{\boldsymbol{w}} \sum_{i=1}^{n}\left\|\boldsymbol{w}^{T} \boldsymbol{x}_{\boldsymbol{i}}-y_{i}\right\|^{2}
$$

$$
\boldsymbol{w}^{T} \boldsymbol{x}>t
$$

Unprincipled in theory, but often effective in practice The reverse (regression via discrete bins) is also common

Rifkin, Yeo, Poggio. Regularized Least Squares Classification (http://cbcl.mit.edu/publications/ps/rlsc.pdf). 2003
Redmon, Divvala, Girshick, Farhadi. You Only Look Once: Unified, Real-Time Object Detection. CVPR 2016.

Easiest Form of Classification

Just memorize (as in a Python dictionary) Consider cat/dog/hippo classification.

If this:
cat.

If this:
dog.

If this: hippo.

Easiest Form of Classification

Where does this go wrong?

Rule: if this, then cat

Hmmm. Not quite the same.

Easiest Form of Classification

Known Images

$$
\begin{gathered}
\boldsymbol{x}_{1}-D\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{T}\right) \\
D\left(\boldsymbol{x}_{N}, \boldsymbol{x}_{T}\right)
\end{gathered}
$$

(1) Compute distance between feature vectors (2) find nearest (3) use label.

Nearest Neighbor

"Algorithm"

Training ($\left.\mathbf{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$:

Inference (x):

Memorize training set

bestDist, prediction $=\operatorname{lnf}$, None for i in range (N) :
if $\operatorname{dist}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}\right)$ < bestDist:
bestDist $=\operatorname{dist}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{x}\right)$
prediction $=y_{i}$

Nearest Neighbor

K-Nearest Neighbors

Take top K-closest points, vote

2D Datapoints (colors = labels)

2D Predictions
(colors = labels)

K-Nearest Neighbors

What distance? What value for K ?
Training Validation Test

Use these data points for lookup

Evaluate on these points for different k, distances

K-Nearest Neighbors

- No learning going on but usually effective
- Same algorithm for every task
- As number of datapoints $\rightarrow \infty$, error rate is guaranteed to be at most $2 x$ worse than optimal you could do on data

Linear Models

Example Setup: 3 classes

Model - one weight per class: w_{0}, w_{1}, w_{2}

$$
\begin{array}{r}
\boldsymbol{w}_{0}^{T} \boldsymbol{x} \text { big if cat } \\
w_{1}^{T} \boldsymbol{x} \text { big if dog } \\
\boldsymbol{w}_{2}^{T} \boldsymbol{x} \text { big if hippo }
\end{array}
$$

Stack together: $\boldsymbol{W}_{3 x F}$ where \mathbf{x} is in R^{F}

Linear Models

Geometric Intuition*

What does a linear classifier look like* in 2D?

*2D is good for vague intuitions, but ML typically deals with at least dozens if not thousands of dimensions. Your intuitions about space and geometry from living in 3D are completely wrong in high dimensions. Never trust people who show you 2D diagrams and write "Intuition" in the slide title. See: On the Surprising Behavior of Distance Metrics in High Dimensional Space. Charu, Hinneburg, Keim. ICDT 2001

Diagram credit: Karpathy \& Fei-Fei. 12-point font mini-rant: me

Visual Intuition

Guess The Classifier

Decision rule is $\mathbf{w}^{\top} \mathbf{x}$. If \mathbf{w}_{i} is big, then big values of x_{i} are indicative of the class.

Deer or Plane?

Guess The Classifier

Decision rule is $\mathbf{w}^{\top} \mathbf{x}$. If \mathbf{w}_{i} is big, then big values of x_{i} are indicative of the class.

Ship or Dog?

Interpreting a Linear Classifier

Decision rule is $\mathbf{w}^{\top} \mathbf{x}$. If \mathbf{w}_{i} is big, then big values of x_{i} are indicative of the class.

Objective 1: Multiclass SVM

Inference (x): $\quad \arg \max _{\mathrm{k}}(\boldsymbol{W} \boldsymbol{x})_{k}$

(Take the class whose weight vector gives the highest score)

Objective 1: Multiclass SVM

(Take the class whose
Inference (x,y): $\arg \max _{\mathrm{k}}(\boldsymbol{W} \boldsymbol{x})_{k}$ weight vector gives the highest score)

Training ($\mathbf{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$):
$\arg \min _{\boldsymbol{W}} \lambda\|\boldsymbol{W}\|_{2}^{2}+\sum_{i}^{n} \sum_{j \neq y_{i}}^{\max \left(0,\left(\boldsymbol{W} \boldsymbol{x}_{i}\right)_{j}-\left(\boldsymbol{W} \boldsymbol{x}_{\boldsymbol{i}}\right)_{y_{i}}+m\right)}$

Regularization
Over all data points
For every class
j that's NOT the correct one (y_{i})

Pay no penalty if prediction for class yi is bigger than j by m ("margin"). Otherwise, pay proportional to the score of the wrong class.

Objective: Multiclass SVM

How on earth do we optimize:

$\arg \min _{\boldsymbol{W}} \lambda\|\boldsymbol{W}\|_{2}^{2}+\sum_{i}^{n} \sum_{j \neq y_{i}} \max \left(0,\left(\boldsymbol{W} \boldsymbol{x}_{i}\right)_{j}-\left(\boldsymbol{W} \boldsymbol{x}_{i}\right)_{y_{i}}+m\right)$ Hold that thought!

Preliminaries

Converting Scores to "Probability Distribution"

Cat score	-0.9		$\mathrm{e}^{-0.9}$	0.41		0.11	P (cat)
Dog score	0.4	$\xrightarrow{\exp (\mathrm{x})}$	$\mathrm{e}^{0.4}$	1.49	$\xrightarrow{\text { Norm }}$	0.40	P(dog)
Hippo score	0.6		$\mathrm{e}^{0.6}$	1.82		0.49	P (hippo)
				$=3.72$			

Generally P (class j$): \frac{\exp \left((W x)_{j}\right)}{\sum_{k} \exp \left((W x)_{k}\right)}$

Objective 2: Softmax

Inference (x): $\underset{\mathbf{k}}{\arg \max ^{2}}(\boldsymbol{W} \boldsymbol{x})_{k}$
(Take the class whose weight vector gives the highest score)

$$
\mathrm{P}(\text { class } \mathrm{j}): \frac{\exp \left((W x)_{j}\right)}{\sum_{k} \exp \left((W x)_{k}\right)}
$$

Why can we skip the exp/sum exp thing to make a decision?

Objective 2: Softmax

Inference (x): $\quad \arg \max _{\mathrm{k}}(\boldsymbol{W} \boldsymbol{x})_{k}$
(Take the class whose weight vector gives the highest score)

Training ($\mathbf{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$):
P(correct class)
$\arg \min _{\boldsymbol{W}} \lambda\|\boldsymbol{W}\|_{2}^{2}+\sum_{i}^{n}-\log \left(\frac{\exp \left((W x)_{y_{i}}\right)}{\left.\sum_{k} \exp \left((W x)_{k}\right)\right)}\right)$

Regularization
Over all data points

Pay penalty for negative loglikelihood of correct class

Objective 2: Softmax

$P($ correct $)=0.05$:
3.0 penalty

P (correct) $=0.5$:
0.11 penalty
$P($ correct $)=0.9$:
0.11 penalty
$P($ correct $)=1$: No penalty!

Next Class

- How do we optimize more complex stuff?
- A bit more ML

ML Problem Examples In Vision

Clustering

Given a set of vectors \mathbf{x}_{i}, find clusters $\mathbf{c}_{\mathbf{j}}$ and assignments d_{ij} that minimizes

$$
c^{*}, d^{*}=\arg \min _{\mathrm{c}, \mathrm{~d}} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} d_{i j}\left(\boldsymbol{c}_{j}-\boldsymbol{x}_{i}\right)^{2}
$$

If point i is assigned to cluster j, minimize squared distance between \mathbf{c}_{j} and \mathbf{x}_{i}

