Transformations and Fitting

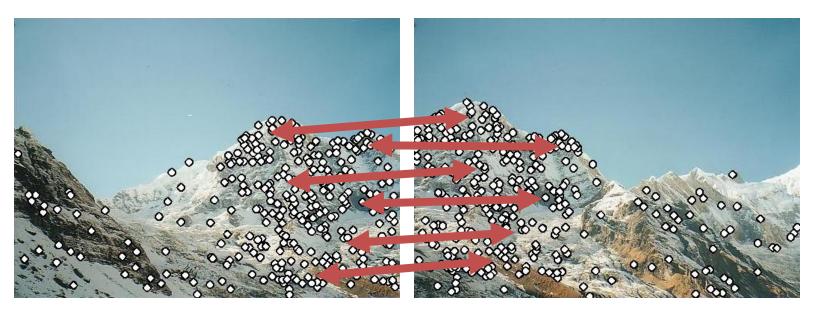
EECS 442 – Prof. David Fouhey Winter 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W19/

Administrivia

- Grading ~80% done
- I will post a link to sign up for Amazon AWS resources.
- Please sign up ASAP

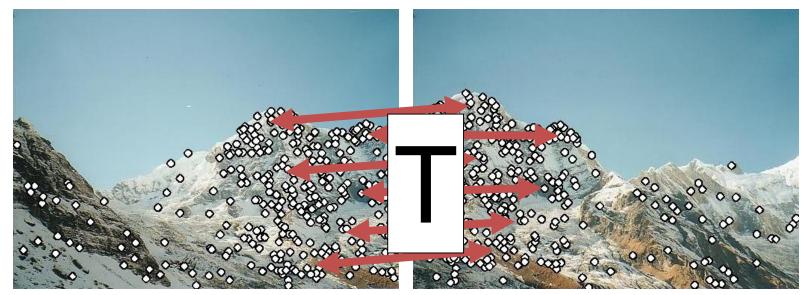
Last Class



- 1. How do we find distinctive / easy to locate features? (Harris/Laplacian of Gaussian)
- 2. How do we describe the regions around them? (Normalize window, use histogram of gradient orientations)

Earlier I promised

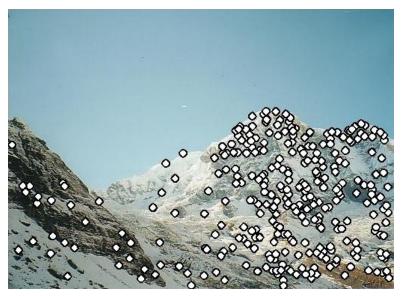
Solving for a Transformation



3: Solve for transformation T (e.g. such that $p1 \equiv T p2$) that fits the matches well

Before Anything Else, Remember

You, with your gigantic brain, see:



The computer sees:

097 097 097	097 09	7 097	097	097	096	097	097	096	096	096
100 100 100	100 10	0 100	101	101	102	101	100	100	100	099
105 105 105										
109 109 109	109 10	9 110	107	118	145	132	120	112	106	103
113 113 113										
118 117 118	123 11	9 118	112	125	142	134	135	139	139	175
123 121 125										
127 127 125	168 14	7 117	139	135	126	147	147	149	156	160
133 130 150										
138 134 179	185 14	1 090	166	117	120	153	111	153	114	126
144 151 188										
152 157 184	183 14	2 127	141	133	137	141	131	147	144	147
130 147 185	180 13	9 131	154	121	140	147	107	147	120	128
035 102 194	175 14	9 140	179	128	146	168	096	163	101	125

You should expect **noise** (not at quite the right pixel) and **outliers** (random matches)

Today

- How do we fit **models** (i.e., a parameteric representation of data that's smaller than the data) to data?
- How do we handle:
 - Noise least squares / total least squares
 - **Outliers** RANSAC (random sample consensus)
 - Multiple models Hough Transform (can also make RANSAC handle this with some effort)

Working Example: Lines

- We'll handle lines as our models today since you should be familiar with them
- Next class will cover more complex models. I promise we'll eventually stitch images together
- You can apply today's techniques on next class's models

Model Fitting

Need three ingredients

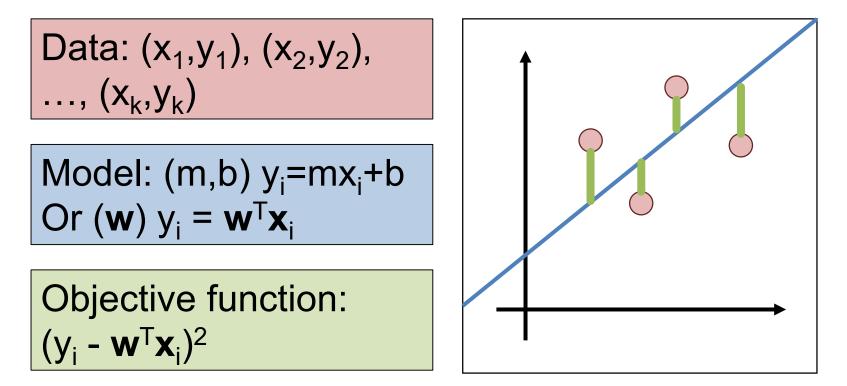
Data: what data are we trying to explain with a model?

Model: what's the compressed, parametric form of the data?

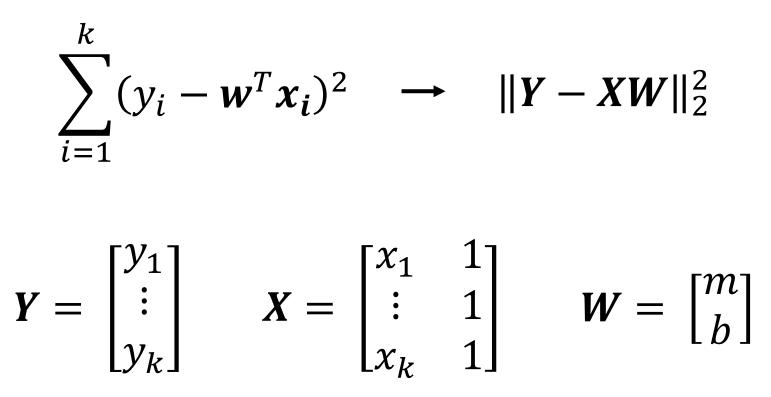
Objective function: given a prediction, how do we evaluate how correct it is?

Example: Least-Squares

Fitting a line to data



Least-Squares Setup



Note: I'm writing the most general form here since we'll do it in general and you can make it specific if you'd like.

Solving Least-Squares
$$\|Y - XW\|_2^2$$
 $\frac{\partial}{\partial W} \|Y - XW\|_2^2 = 2X^T XW - 2X^T Y$ Recall: derivative is
0 at a maximum /
minimum. Same is $\mathbf{0} = 2X^T XW - 2X^T Y$ $X^T XW = X^T Y$

 $W = \left(X^T X\right)^{-1} X^T Y$

Aside: **0** is a vector of 0s. **1** is a vector of 1s.

true about gradients.

Derivation for the Curious

$$\|Y - XW\|_2^2 = (Y - XW)^T (Y - XW)$$
$$= Y^T Y - 2W^T X^T Y + (XW)^T XW$$

$$\frac{\partial}{\partial W} (XW)^T (XW) = 2 \left(\frac{\partial}{\partial W} XW^T \right) XW = 2X^T XW$$

$$\frac{\partial}{\partial W} \|Y - XW\|_2^2 = 0 - 2X^TY + 2X^TXW$$
$$= 2X^TXW - 2X^TY$$

Two Solutions to Getting W

In One Go Implicit form (normal equations) $X^T X W = X^T Y$

Explicit form (don't do this)

$$W = \left(X^T X\right)^{-1} X^T Y$$

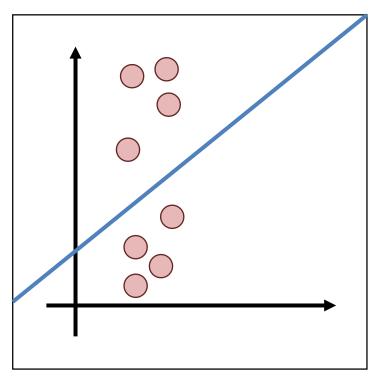
Iteratively

Recall: gradient is also direction that makes function go up the most. What could we do?

$$W_0 = \mathbf{0}$$
$$W_{i+1} = W_i - \gamma \left(\frac{\partial}{\partial W} \|Y - XW\|_2^2\right)$$

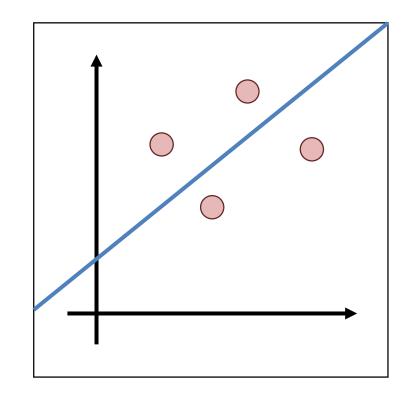
What's The Problem?

- Vertical lines impossible!
- Not rotationally invariant: the line will change depending on orientation of points



Alternate Formulation

Recall: ax + by + c = 0 $\boldsymbol{l}^T \boldsymbol{p} = 0$ $\boldsymbol{l} \equiv [a, b, c] \quad \boldsymbol{p} \equiv [x, y, 1]$ Can always rescale I. Pick a,b,d such that $\|\boldsymbol{n}\|_{2}^{2} = \|[a, b]\|_{2}^{2} = 1$ d = -c



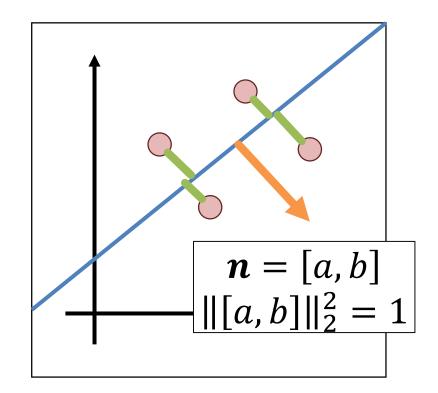
Alternate Formulation

Now:
$$ax + by - d = 0$$

 $n^T[x, y] - d = 0$

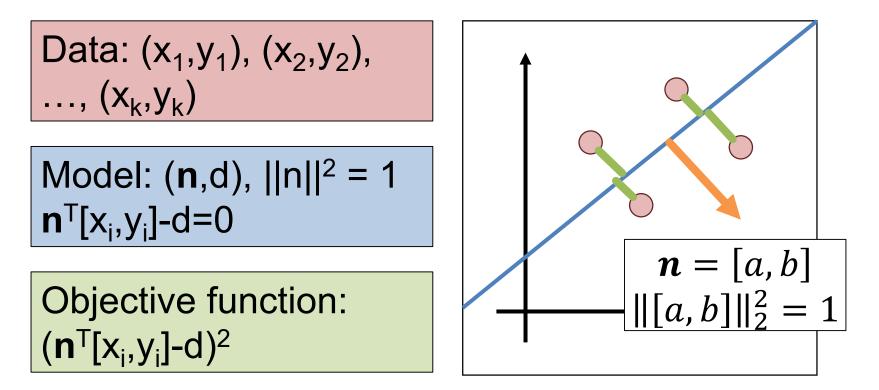
Point to line distance:

$$\frac{\boldsymbol{n}^T[x,y]-d}{\|\boldsymbol{n}\|_2^2} = \boldsymbol{n}^T[x,y]-d$$



Total Least-Squares

Fitting a line to data



Total Least Squares Setup

Figure out objective first, then figure out ||n||=1

$$\sum_{i=1}^{k} (\mathbf{n}^{T}[x, y] - d)^{2} \rightarrow \|\mathbf{X}\mathbf{n} - \mathbf{1}d\|_{2}^{2}$$
$$\mathbf{X} = \begin{bmatrix} x_{1} & y_{1} \\ \vdots & \vdots \\ x_{k} & y_{k} \end{bmatrix} \mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \mathbf{n} = \begin{bmatrix} a \\ b \end{bmatrix} \mathbf{\mu} = \frac{1}{k} \mathbf{1}^{T} \mathbf{X}$$

The mean / center of mass of the points: we'll use it later

Solving Total Least-Squares $\|Xn - \mathbf{1}d\|_2^2 = (Xn - \mathbf{1}d)^T (Xn - \mathbf{1}d)$ $= (Xn)^T (Xn) - 2d\mathbf{1}^T Xn + d^2 \mathbf{1}^T \mathbf{1}$ First solve for d at optimum (set to 0) $\frac{\partial}{\partial d} \|\mathbf{X}\mathbf{n} - \mathbf{1}d\|_2^2 = 0 - 2\mathbf{1}^T \mathbf{X}\mathbf{n} + 2dk$ $0 = -2\mathbf{1}^T X \mathbf{n} + 2dk \longrightarrow 0 = -\mathbf{1}^T X \mathbf{n} + dk$ $\longrightarrow d = \frac{1}{k} \mathbf{1}^T X \mathbf{n} = \mu \mathbf{n}$

Solving Total Least-Squares

$$\|Xn - \mathbf{1}d\|_2^2 = \|Xn - \mathbf{1}\mu n\|_2^2 \qquad d = \mu n$$
$$= \|(X - \mathbf{1}\mu) n\|_2^2$$

Objective is then:

$$\arg \min_{||n||=1} ||(X - \mathbf{1}\mu) n||_2^2$$

Homogeneous Least Squares

$\begin{array}{ll} \arg\min \|Av\|_2^2 & \longrightarrow & \text{Eigenvector corresponding to} \\ \|v\|_2^2 = 1 & & \text{smallest eigenvalue of } A^T A \end{array}$

Why do we need ||v||² = 1 or some other constraint?

Applying it in our case:

 $n = \text{smallest}_{eigenvec}((X - 1\mu)^T(X - 1\mu))$

Note: technically homogeneous only refers to ||Av||=0 but it's common shorthand in computer vision to refer to the specific problem of ||v||=1

Details For ML-People

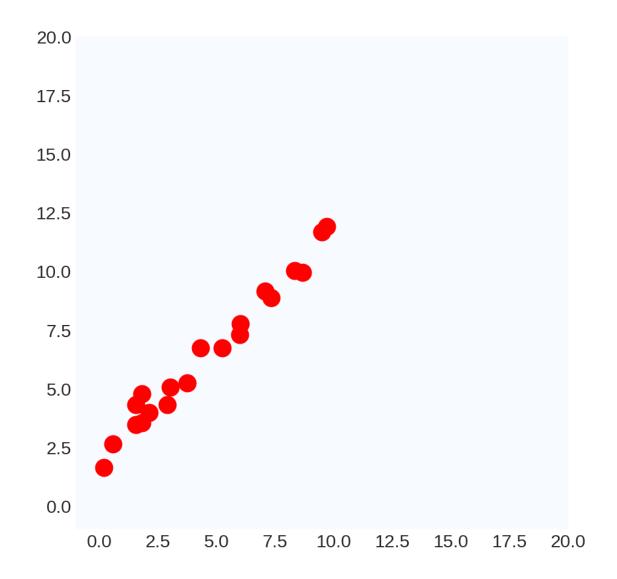
Matrix we take the eigenvector of looks like:

$$(\boldsymbol{X} - \boldsymbol{1}\boldsymbol{\mu})^{T}(\boldsymbol{X} - \boldsymbol{1}\boldsymbol{\mu}) = \begin{bmatrix} \sum_{i} (x_{i} - \mu_{x})^{2} & \sum_{i} (x_{i} - \mu_{x})(y_{i} - \mu_{y}) \\ \sum_{i} (x_{i} - \mu_{x})(y_{i} - \mu_{y}) & \sum_{i} (y_{i} - \mu_{y})^{2} \end{bmatrix}$$

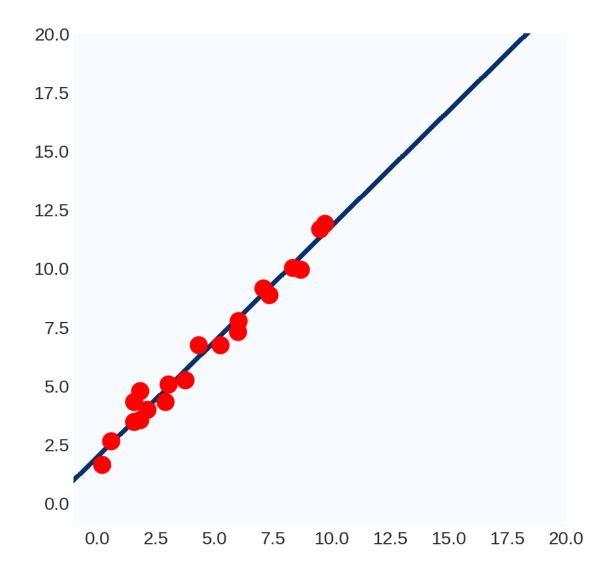
This is a scatter matrix or scalar multiple of the covariance matrix. We're doing PCA, but taking the least principal component to get the normal.

Note: If you don't know PCA, just ignore this slide; it's to help build connections to people with a background in data science/ML.

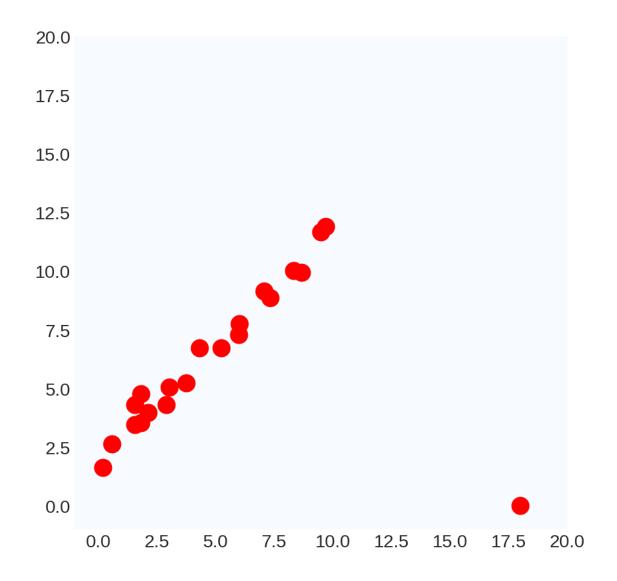
Running Least-Squares



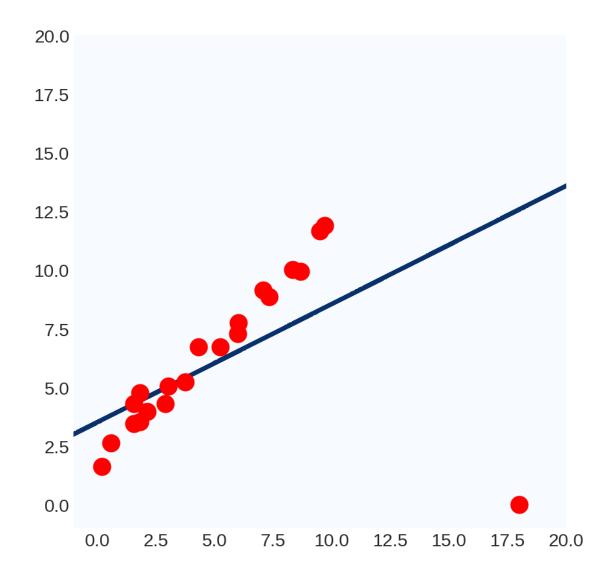
Running Least-Squares



Ruining Least Squares



Ruining Least Squares



Ruining Least Squares

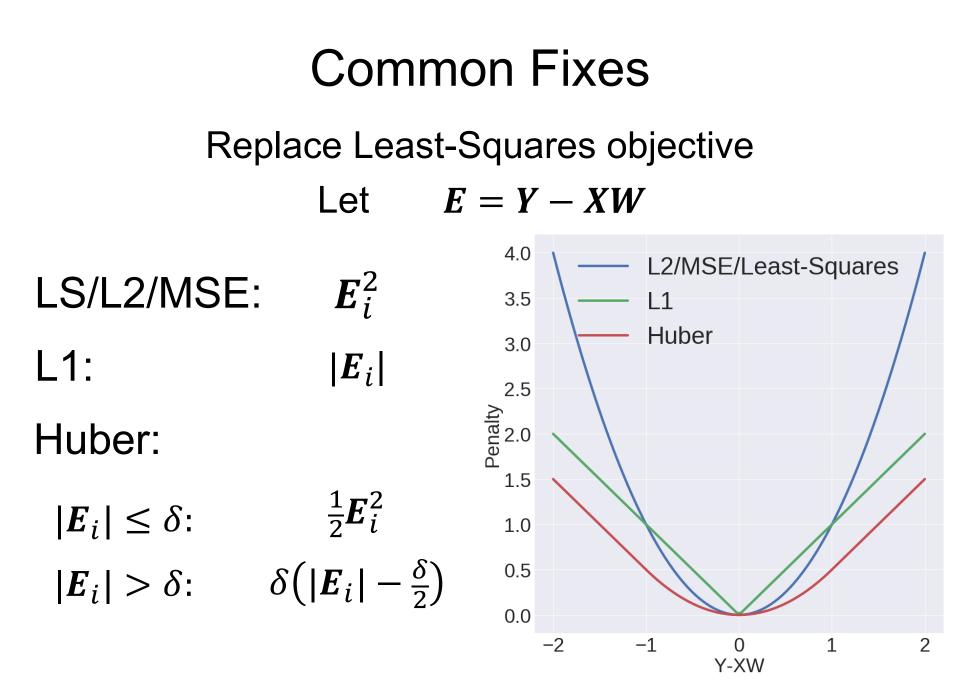
Way to think of it #1: $\|Y - XW\|_2^2$

100² >> 10²: least-squares prefers having no large errors, even if the model is useless overall

Way to think of it #2:

$$\boldsymbol{W} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Weights are a linear transformation of the output variable: can manipulate W by manipulating Y.

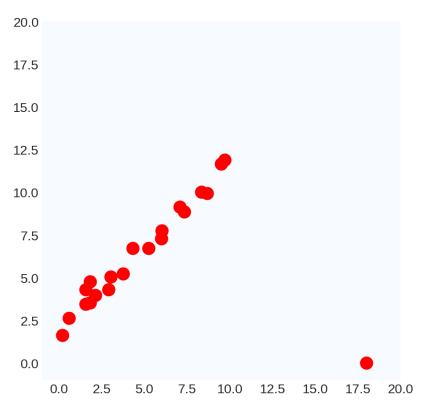


Issues with Common Fixes

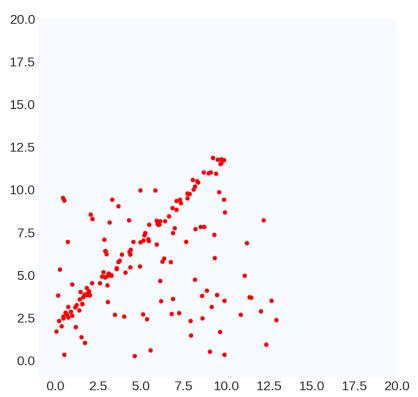
- Usually complicated to optimize:
 - Often no closed form solution
 - Typically not something you could write yourself
 - Sometimes not convex (no global optimum)
- Not simple to extend more complex objectives to things like total-least squares
- Typically don't handle a ton of outliers (e.g., 80% outliers)

Outliers in Computer Vision

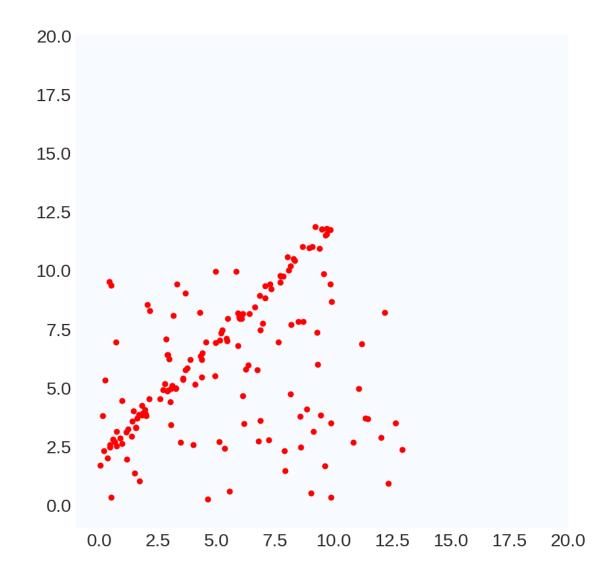
Single outlier: *rare*



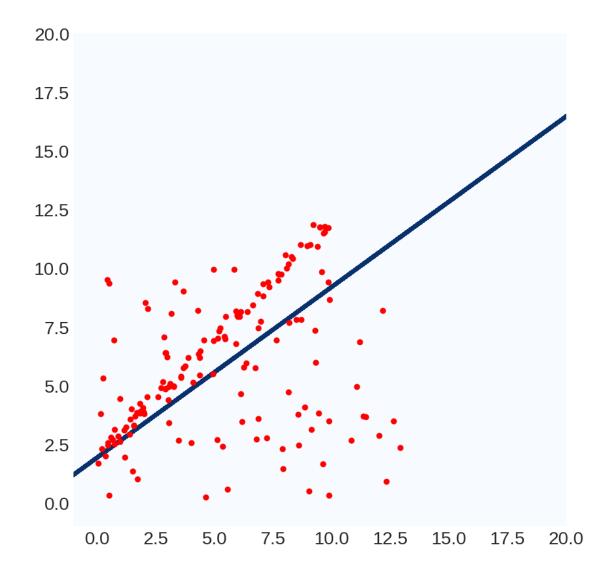
Many outliers: common



Ruining Least Squares Continued



Ruining Least Squares Continued



A Simple, Yet Clever Idea

- What we really want: model explains many points "well"
- *Least Squares*: model makes as few big mistakes as possible over the entire dataset
- *New objective*: find model for which error is "small" for as many data points as possible
- Method: RANSAC (RAndom SAmple Consensus)

M. A. Fischler, R. C. Bolles. <u>Random Sample Consensus: A Paradigm for Model Fitting with</u> <u>Applications to Image Analysis and Automated Cartography</u>. Comm. of the ACM, Vol 24, pp 381-395, 1981.

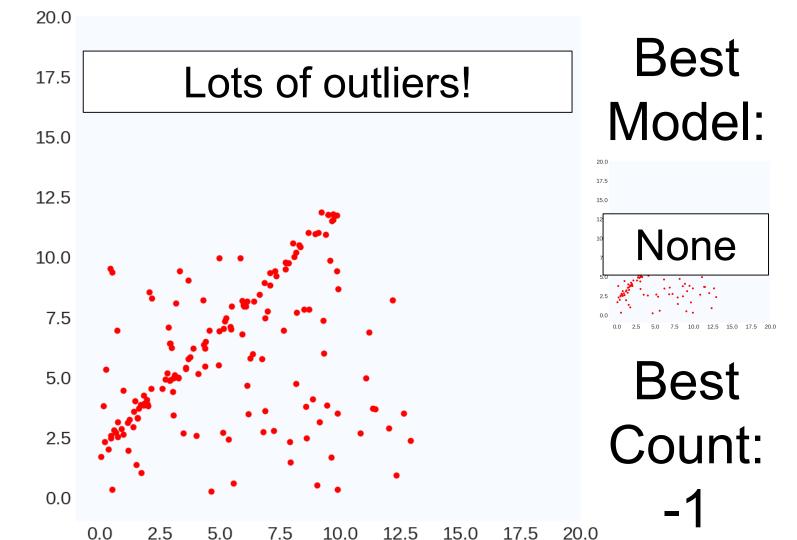
RANSAC For Lines

```
bestLine, bestCount = None, -1
for trial in range(numTrials):
      subset = pickPairOfPoints(data)
      line = totalLeastSquares(subset)
      E = linePointDistance(data,line)
      inliers = E < threshold
      if #inliers > bestCount:
            bestLine, bestCount = line, #inliers
```

Running RANSAC

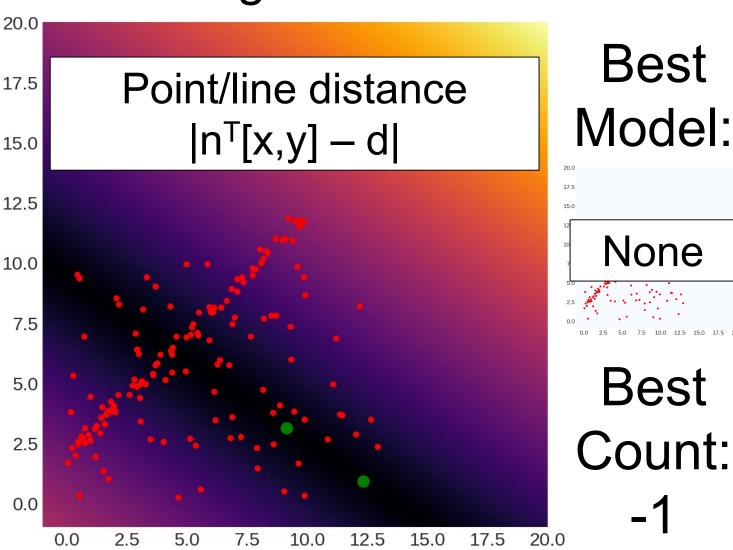
Trial

#1



Running RANSAC 20.0 Best Fit line to 2 17.5 Model: random points 15.0 20.0 17.5 12.5 15.0 Trial None 10.0 #1 7.5 12.5 15.0 17.5 20.0 Best 5.0 Count: 2.5 0.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0

Trial #1



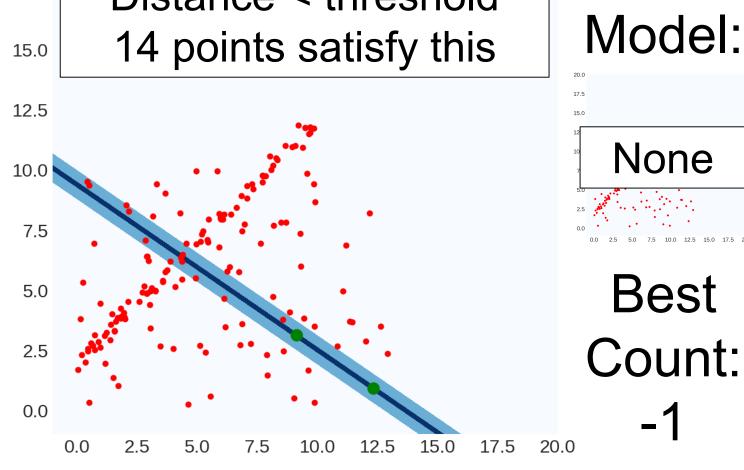
Model: None

> 15.0 17.5

20.0

Distance < threshold 17.5 14 points satisfy this

Trial #1

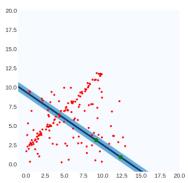


Best

15.0 17.5

20.0

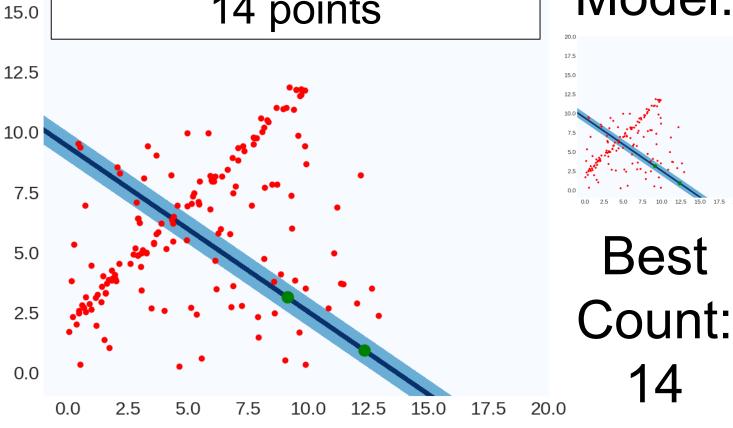
Best Model:



Best

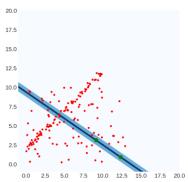
14

Trial #1



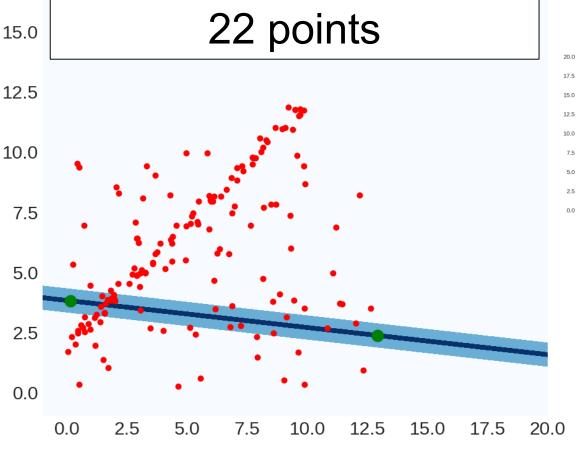
20.0

Best Model:



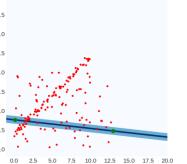
Best Count: 14

Trial #2



20.0

Best Model:

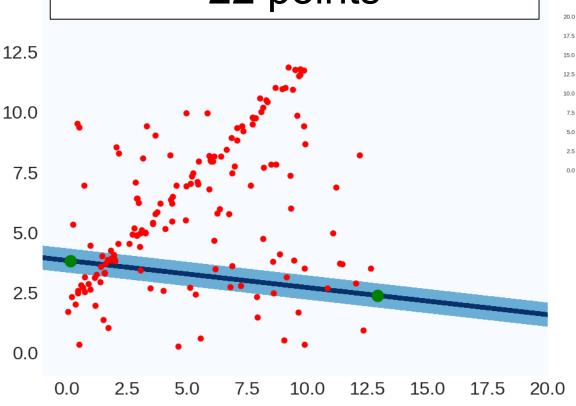


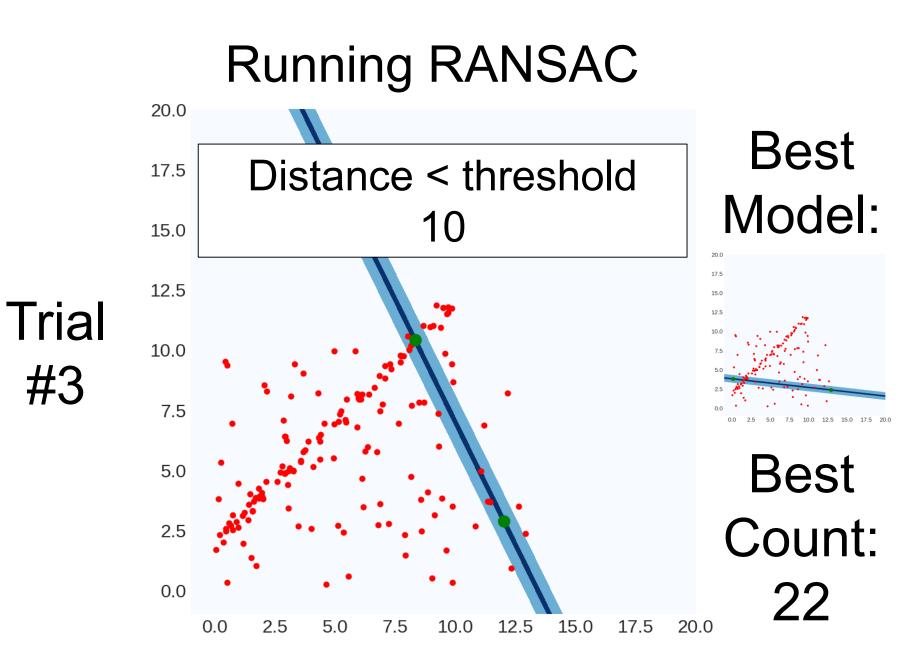
Best

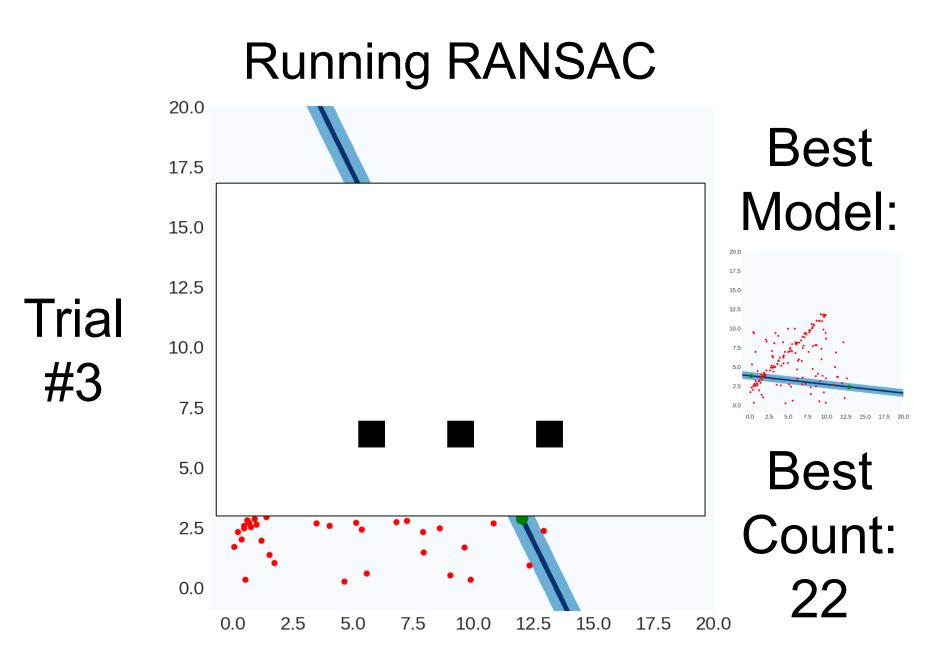
Count:

22

Trial #2

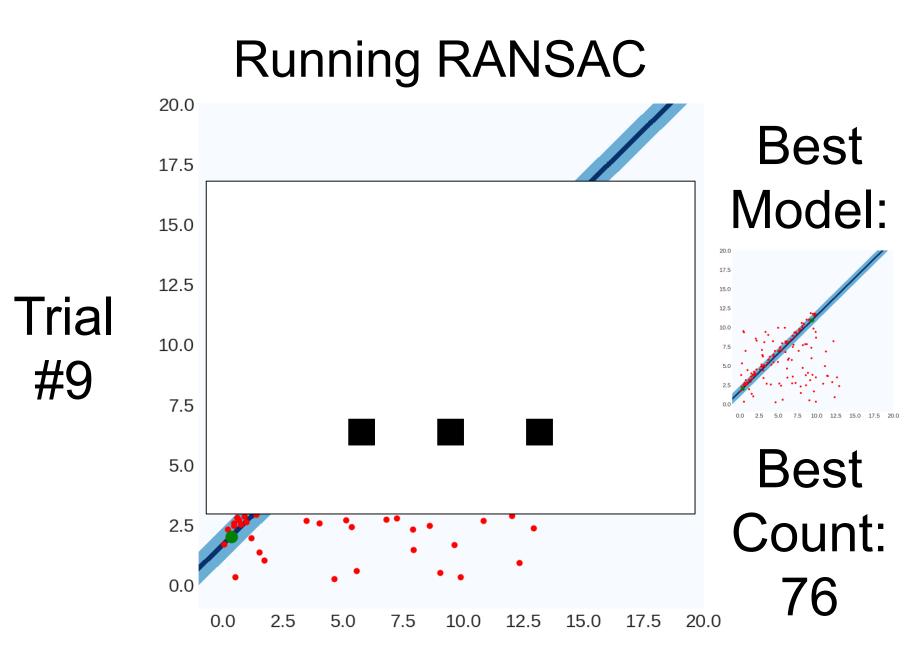


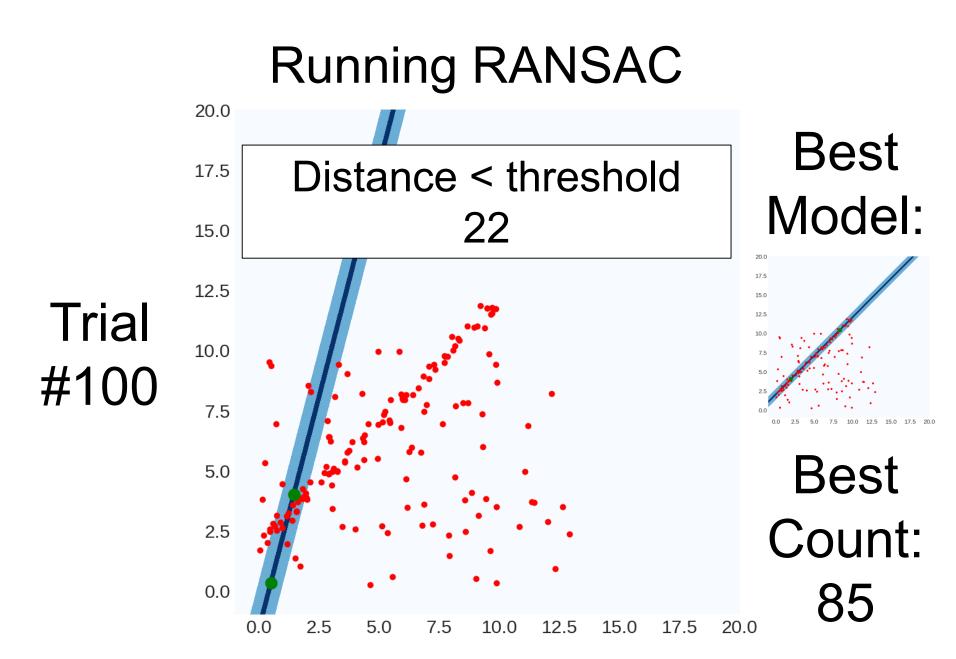


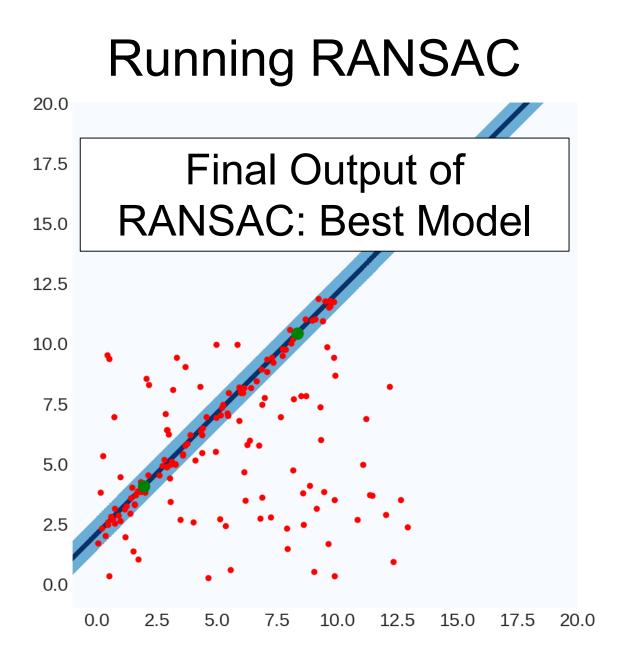


Running RANSAC 20.0 Best **Distance < threshold** 17.5 Model: 76 15.0 20.0 17.5 12.5 15.0 Trial 12.5 10.0 10.0 #9 7.5 12.5 15.0 17.5 Best 5.0 Count: 2.5 0.0 22 12.5 0.0 2.5 5.0 7.5 10.0 15.017.520.0

Running RANSAC 20.0 Best **Distance < threshold** 17.5 Model: 76 15.0 20.0 17.5 12.5 15.0 Trial 12.5 10.0 10.0 #9 7.5 10.0 12.5 15.0 17.5 20.0 Best 5.0 Count: 2.5 0.0 76 12.5 0.0 2.5 5.0 7.5 10.0 15.017.520.0







RANSAC In General

```
best, bestCount = None, -1
for trial in range(NUM TRIALS):
     subset = pickSubset(data,SUBSET SIZE)
     model = fitModel(subset)
     E = computeError(data,line)
     inliers = E < THRESHOLD
     if #(inliers) > bestCount:
           best, bestCount = model, #(inliers)
(often refit on the inliers for best model)
```

r is the fraction of outliers (e.g., 80%) Suppose we pick *s* points (e.g., 2) we run RANSAC *N* times (e.g., 500)

What's the probability of picking a sample set with no outliers?

$$\approx (1-r)^s \qquad (4\%)$$

What's the probability of picking a sample set with any outliers?

$$1 - (1 - r)^s$$
 (96%)

r is the fraction of outliers (e.g., 80%) Suppose we pick *s* points (e.g., 2) we run RANSAC *N* times (e.g., 500)

What's the probability of picking a sample set with any outliers?

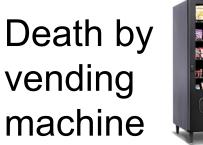
$$1 - (1 - r)^s$$
 (96%)

What's the probability of picking only sample sets with outliers? $(1 - (1 - r)^{s})^{N}$ (10⁻⁷% N=500) (13% N=50)

What's the probability of picking any set with inliers?

$$1 - (1 - (1 - r)^s)^N$$

P(\$157M Jackpot): 1 / 302,575,350



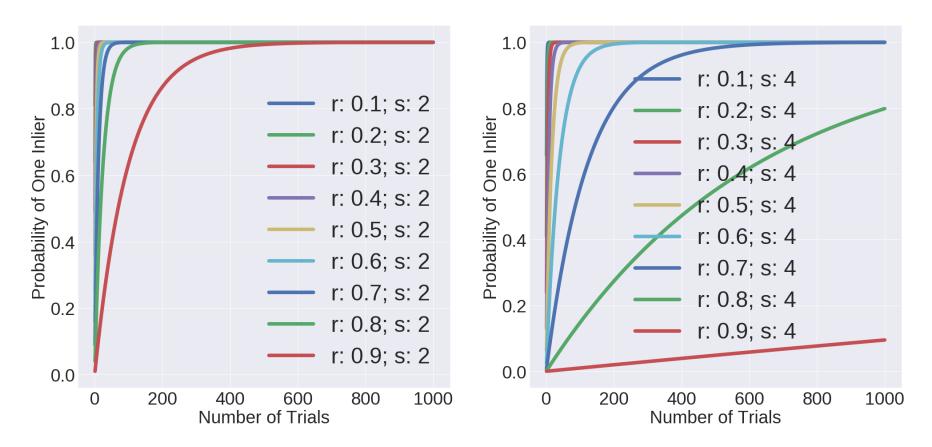
P(Death): ≈1 / 112,000,000

RANSAC fails to fit a line with 80% outliers after trying only 500 times

P(Failure): 1 / 731,784,961

Odds/Jackpot amount from 2/7/2019 megamillions.com, unfortunate demise odds from livescience.com

r is the fraction of outliers (e.g., 80%) Suppose we pick *s* points (e.g., 2) we run RANSAC *N* times (e.g., 500)



Parameters – Subset Size

- Always the smallest possible set for fitting the model.
- Minimum number for lines: 2 data points
- Minimum number of planes: how many?
- Why intuitively?
- You'll find out more precisely in homework 3.

Parameters – Threshold

Common sense; there's no magical threshold

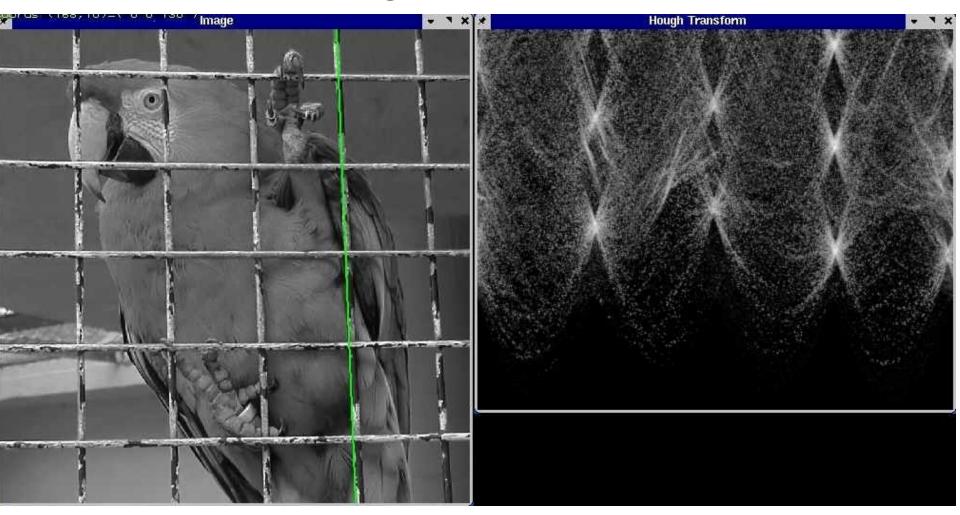
RANSAC Pros and Cons

Pros

- 1. Ridiculously simple
- 2. Ridiculously effective
- 3. Works in general

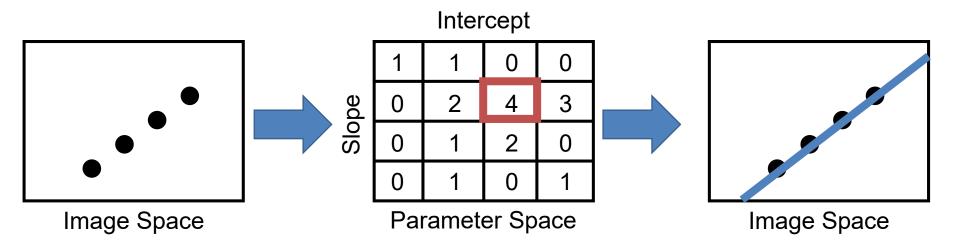
Cons

- 1. Have to tune parameters
- No theory (so can't derive parameters via theory)
- 3. Not magic, especially with lots of outliers



Slide credit: S. Lazebnik

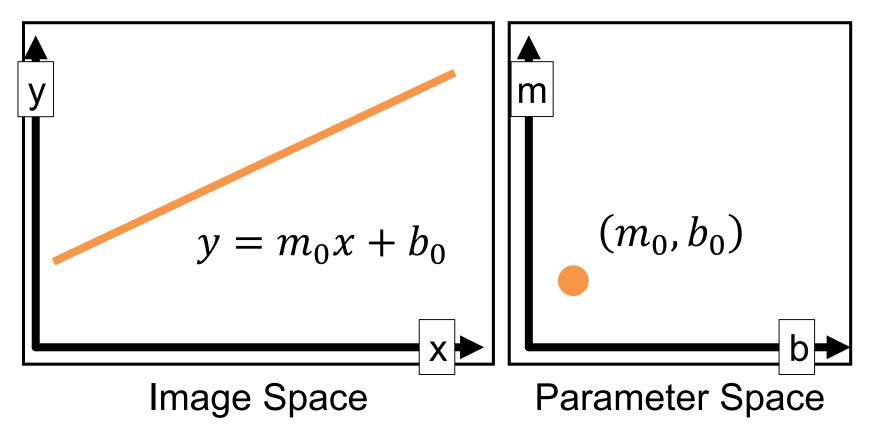
- 1. Discretize space of parametric models
- 2. Each pixel votes for all compatible models
- 3. Find models compatible with many pixels



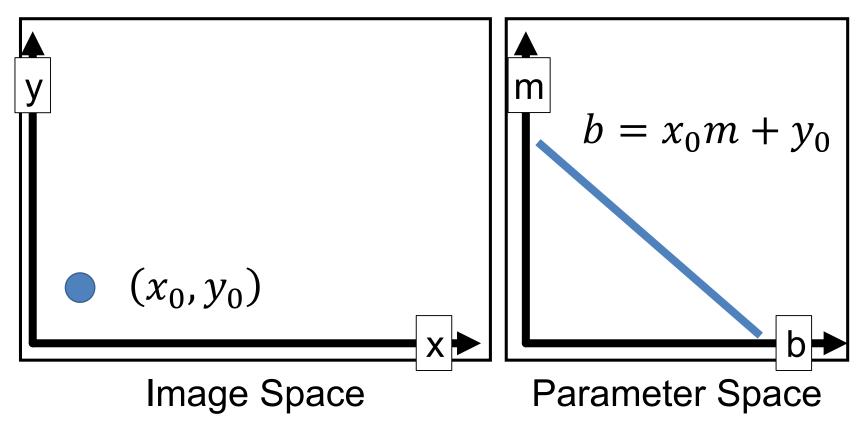
P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Slide credit: S. Lazebnik

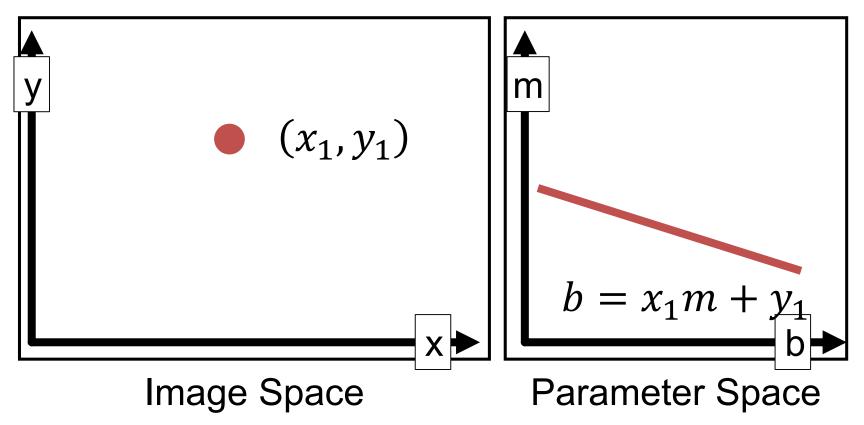
Line in image = point in parameter space



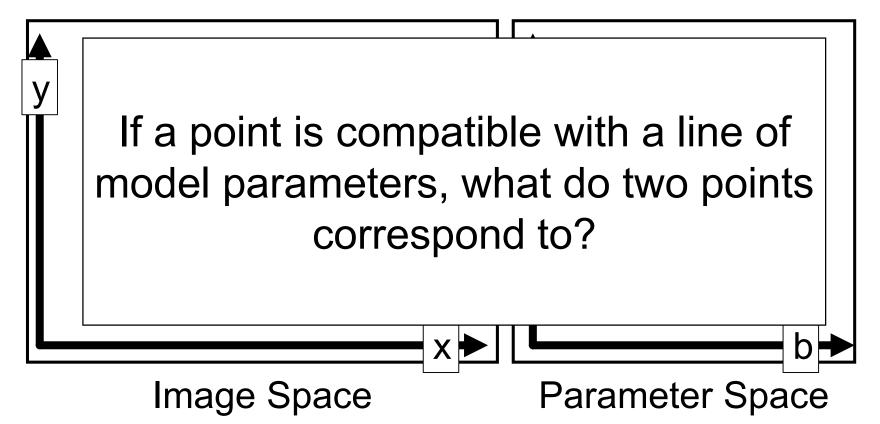
Hough Transform Point in image = line in parameter space All lines through the point: $b = x_0m + y_0$



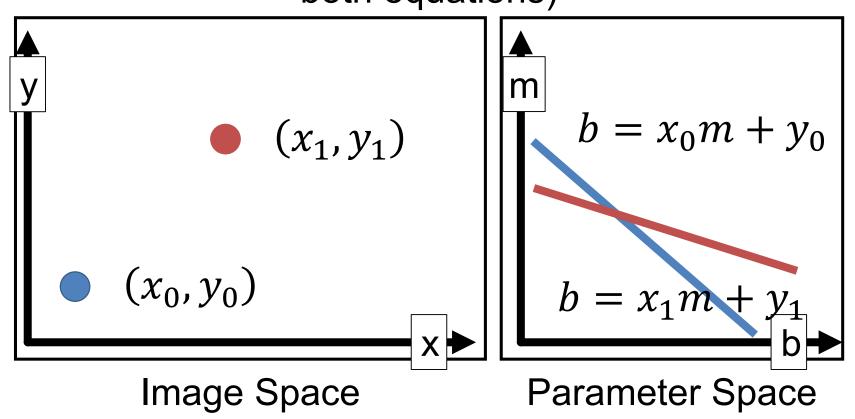
Hough Transform Point in image = line in parameter space All lines through the point: $b = x_1m + y_1$



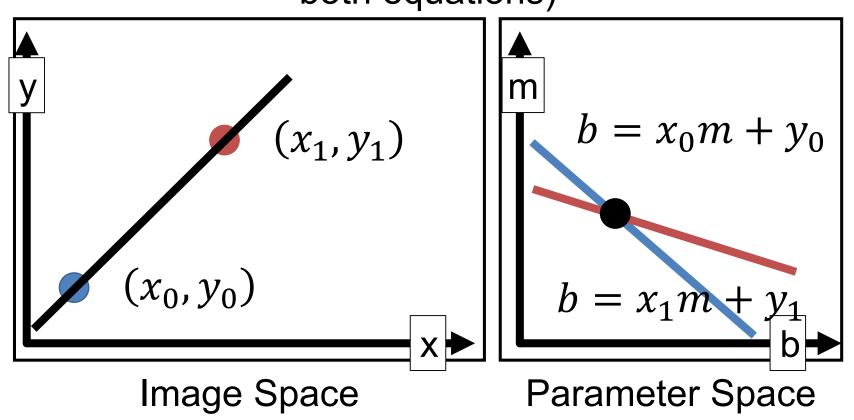
Hough Transform Point in image = line in parameter space All lines through the point: $b = x_1m + y_1$



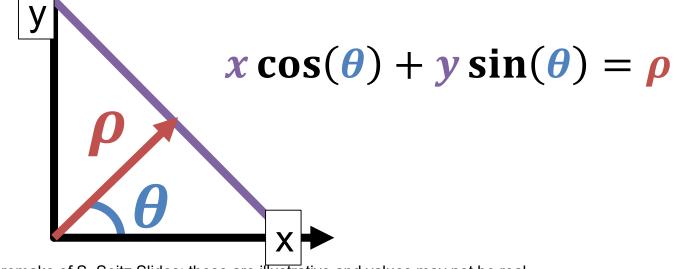
Line through two points in image = intersection of two lines in parameter space (i.e., solutions to both equations)



Line through two points in image = intersection of two lines in parameter space (i.e., solutions to both equations)

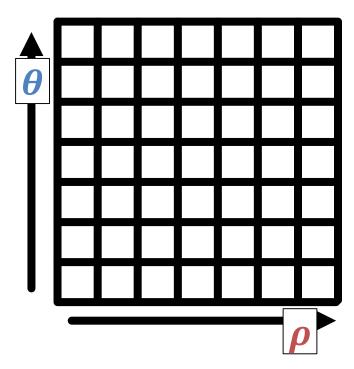


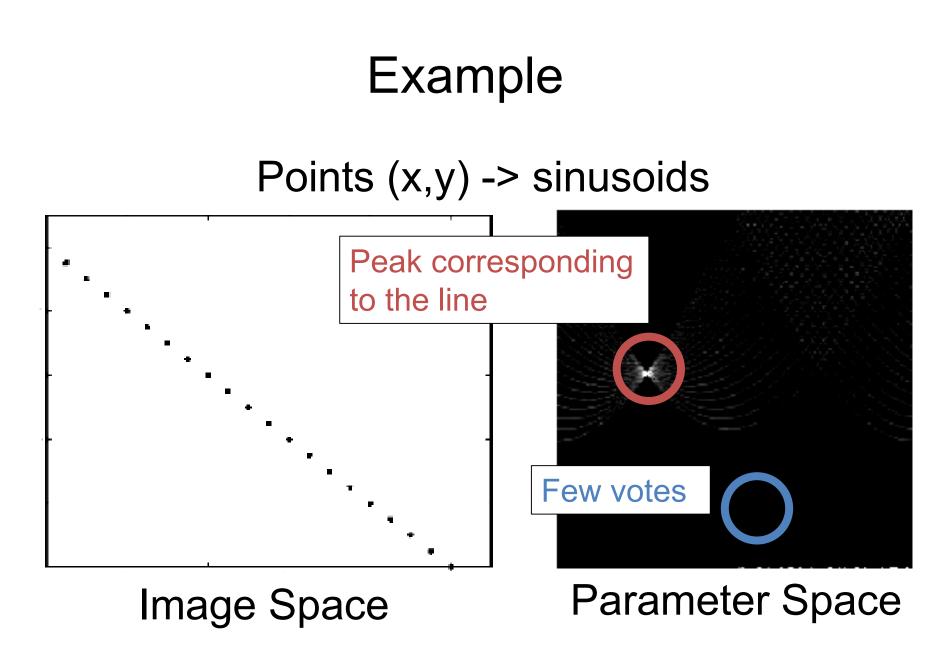
- Recall: m, b space is awful
- ax+by+c=0 is better, but *unbounded*
- Trick: write lines using angle + offset (normally a mediocre way, but makes things bounded)



Hough Transform Algorithm Remember: $x \cos(\theta) + y \sin(\theta) = \rho$

Accumulator H = zeros(?,?) For x,y in detected_points: For θ in range(0,180,?): $\rho = x \cos(\theta) + y \sin(\theta)$ H[θ , ρ] += 1 #any local maxima (θ , ρ) of H is a line #of the form $\rho = x \cos(\theta) + y \sin(\theta)$





Slide Credit: S. Lazebnik

Hough Transform Pros / Cons

Pros

- 1. Handles **multiple** models
- 2. Some robustness to noise
- 3. In principle, general

Cons

- Have to bin ALL parameters: exponential in #params
- 2. Have to parameterize your space nicely
- Details really, really important (a working version requires a lot more than what I showed you)

Next Time

• What happens with fitting more complex transformations?