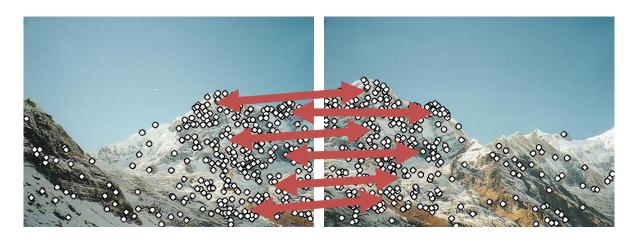
Transformations and Fitting

EECS 442 – Prof. David Fouhey Winter 2019, University of Michigan


http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W19/

Administrivia

HW1 Graded

- Overall the class did really well (mean: ~90%)
- A few 0s for stuff like hand-written / not properly marked up homeworks. Submit a regrade.
- We'll do late-day at end of semester. There's a calculator for grade given late hours.
- HW2 Due Thursday 11:59.99PM
 - We've added a contest. Post the highest validation accuracy you can get (*fairly:* without training on the test set, and while doing bag of words).

So Far

- 1. How do we find distinctive / easy to locate features? (Harris/Laplacian of Gaussian)
- 2. How do we describe the regions around them? (histogram of gradients)
- 3. How do we match features? (L2 distance)
- 4. How do we handle outliers? (RANSAC)

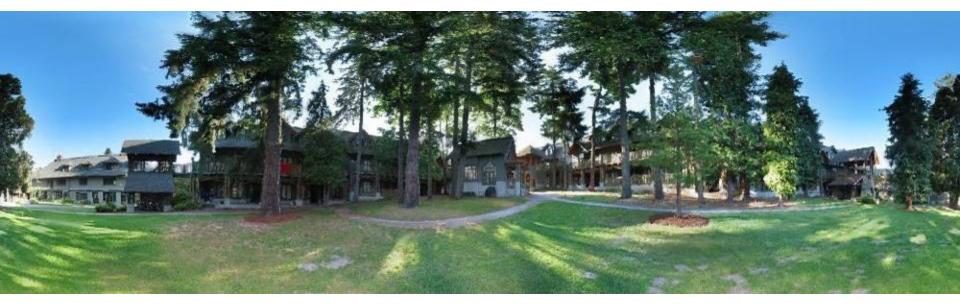
Today

As promised: warping one image to another

Why Mosaic?


Compact Camera FOV = 50 x 35°

Slide credit: Brown & Lowe


Why Mosaic?

- Compact Camera FOV = 50 x 35°
- Human FOV = $200 \times 135^{\circ}$

Why Mosaic?

- Compact Camera FOV = 50 x 35°
- Human FOV = $200 \times 135^{\circ}$
- Panoramic Mosaic $= 360 \times 180^{\circ}$

Why Bother With This Math?

Homework 1 Style

Translation only via alignment

Result

Image Transformations

Image filtering: change range of image

$$g(x) = T(f(x))$$

$$f | \bigwedge_{X} \longrightarrow_{T} g | \bigwedge_{X}$$

Image warping: change domain of image

$$g(x) = f(T(x))$$

$$f | \bigwedge_{X} \longrightarrow_{T} g | \bigwedge_{X}$$

Image Transformations

Image filtering: change range of image

$$g(x) = T(f(x))$$

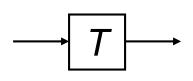
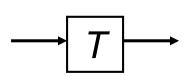



Image warping: change domain of image

$$g(x) = f(T(x))$$

Parametric (Global) warping

Examples of parametric warps

translation

affine

rotation

perspective

aspect

cylindrical

Parametric (Global) Warping

T is a coordinate changing machine

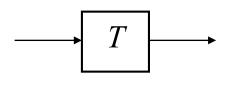
$$p' = T(p)$$

Note: T is the same for all points, has relatively few parameters, and does **not** depend on image content

$$\mathbf{p} = (x,y)$$

$$p' = (x',y')$$

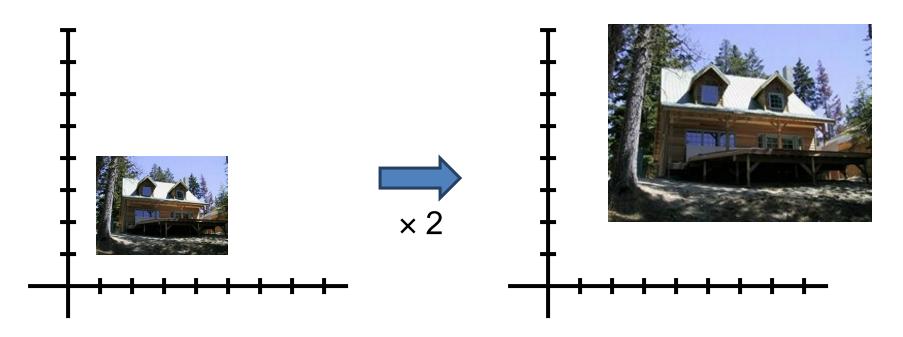
Parametric (Global) Warping


Today we'll deal with linear warps

$$p' \equiv Tp$$

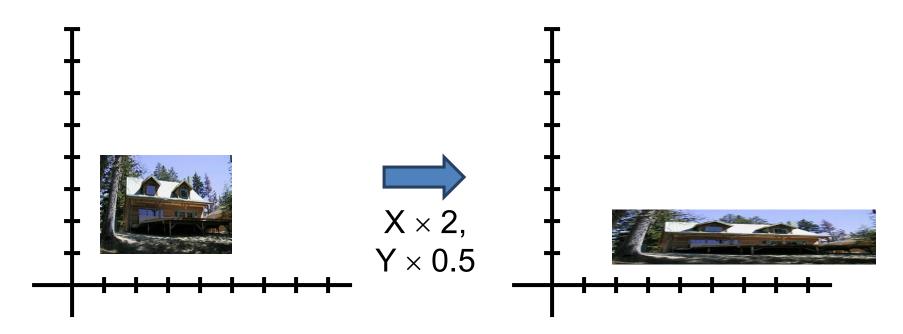
T: matrix; p, p': 2D points. Start with normal points and =, then do homogeneous cords and ≡

$$\mathbf{p} = (x,y)$$



$$p' = (x', y')$$

Scaling


Scaling multiplies each component (x,y) by a scalar. **Uniform** scaling is the same for all components.

Note the corner goes from (1,1) to (2,2)

Scaling

Non-uniform scaling multiplies each component by a different scalar.

Scaling

What does T look like?

$$x' = ax$$
$$y' = by$$

Let's convert to a matrix:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix S

What's the inverse of S?

2D Rotation

Rotation Matrix

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

But wait! Aren't sin/cos non-linear?

x' <u>is</u> a linear combination/function of x, y x' <u>is not</u> a linear function of θ

What's the inverse of R_{θ} ? $I = R_{\theta}^T R_{\theta}$

Things You Can Do With 2x2

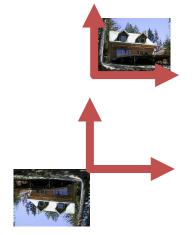
Identity / No Transformation

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Shear

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & sh_x \\ sh_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

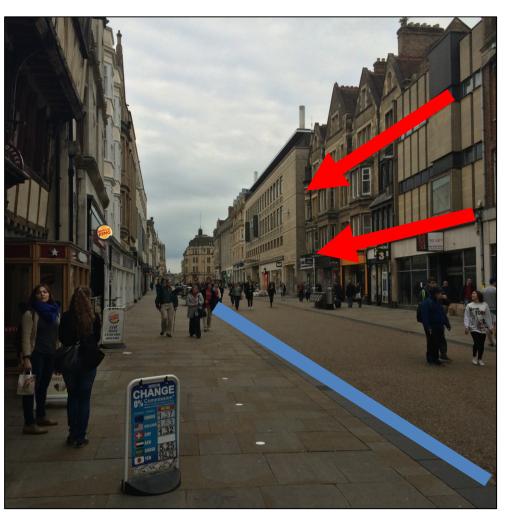
Things You Can Do With 2x2



After

Before

After


2D Mirror About Y-Axis

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror About X,Y

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

What's Preserved?

3D lines project to 2D lines so lines are preserved

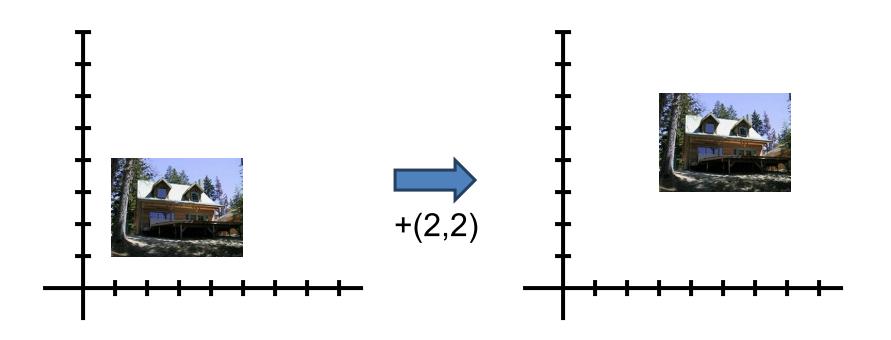
Projections of parallel 3D lines are not necessarily parallel, so not parallelism

Distant objects are smaller so size is not preserved

What's Preserved With a 2x2

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = T \begin{bmatrix} x \\ y \end{bmatrix}$$

After multiplication by T (irrespective of T)

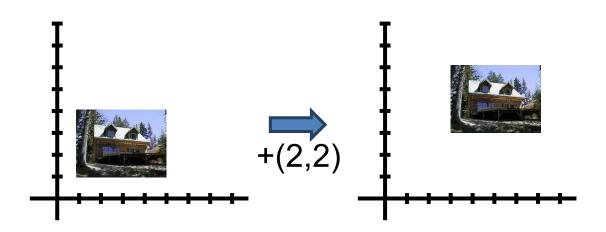

- Origin is origin: 0 = T0
 - Lines are lines
- Parallel lines are parallel
- Ratios between distances the same if scaling is uniform (otherwise no)

Things You Can't Do With 2x2

What about translation?

$$x' = x + t_x$$
, $y' = y + t_y$

How do we fix it?



Homogeneous Coordinates Again

What about translation?

$$x' = x + t_x$$
, $y' = y + t_y$

$$\begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} \equiv \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Representing 2D Transformations

How do we represent a 2D transformation? Let's pick scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \equiv \begin{bmatrix} s_{x} & 0 & a \\ 0 & s_{y} & b \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

What's a b d e f

0 0 0 0 1

Affine Transformations

Affine: linear transformation plus translation

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \equiv \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Will the last coordinate always be 1?

In general (without homogeneous coordinates)

$$x' = Ax + b$$

Matrix Composition

We can combine transformations via matrix multiplication.

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$T(t_{x}, t_{y}) \qquad R(\theta) \qquad S(s_{x}, s_{y})$$

Does order matter?

What's Preserved With Affine

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \equiv \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \equiv \boldsymbol{T} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

After multiplication by T (irrespective of T)

- Origin is origin: 0 = T0
 - Lines are lines
- Parallel lines are parallel
- Ratios between distances? (If scaling is uniform: yes, otherwise no)

Perspective Transformations

Set bottom row to not [0,0,1]
Called a perspective/projective transformation or a

homography

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \equiv \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

How many degrees of freedom?

How Many Degrees of Freedom?

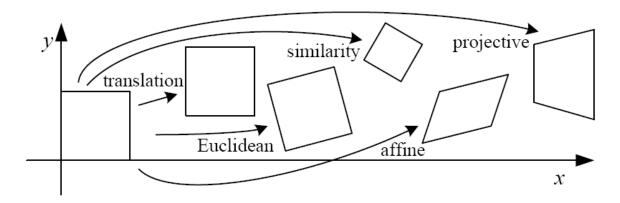
Recall: can always scale by non-zero value

Perspective
$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \equiv \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \equiv \frac{1}{i} \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \equiv \frac{1}{i} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} \equiv \begin{bmatrix} a/i & b/i & c/i \\ d/i & e/i & f/i \\ g/i & h/i & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Homography can always be re-scaled by λ≠0

What's Preserved With Perspective


$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \equiv \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \equiv \mathbf{T} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

After multiplication by T (irrespective of T)

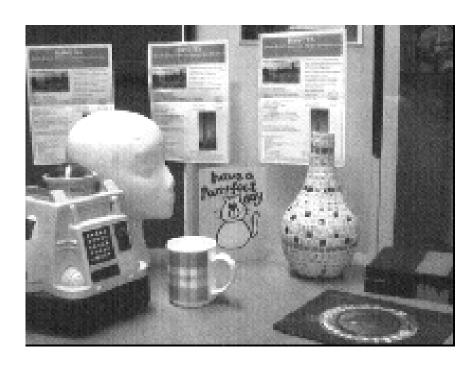
- Origin is origin: 0 = T0
 - Lines are lines
- Parallel lines are parallel
- Ratios between distances

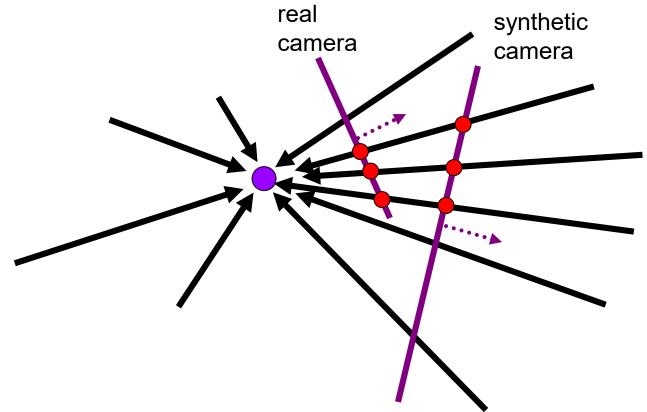
Transformation Families

In general: transformations are a nested set of groups

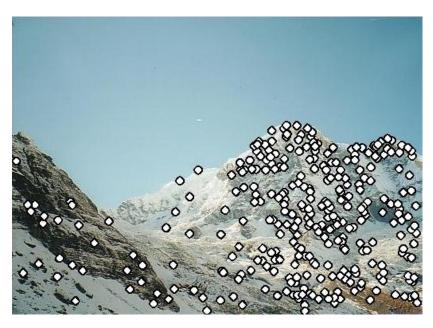
Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} oxed{\left[egin{array}{c c} oldsymbol{I} & oldsymbol{t} & oldsymbol{1} \\ \hline \end{array} brace}_{2 ime3}$	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} R & t\end{array} ight]_{2 imes 3}$	3	lengths +···	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 imes 3}$	4	$angles + \cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

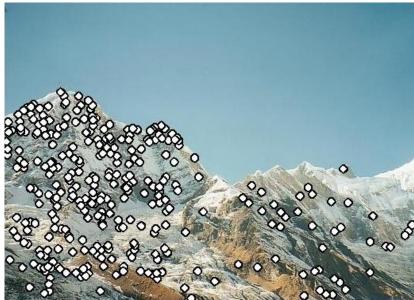
What Can Homographies Do?


Homography example 1: any two views of a *planar* surface


What Can Homographies Do?

Homography example 2: any images from two cameras sharing a camera center


A pencil of rays contains all views



Can generate any synthetic camera view as long as it has the same center of projection!

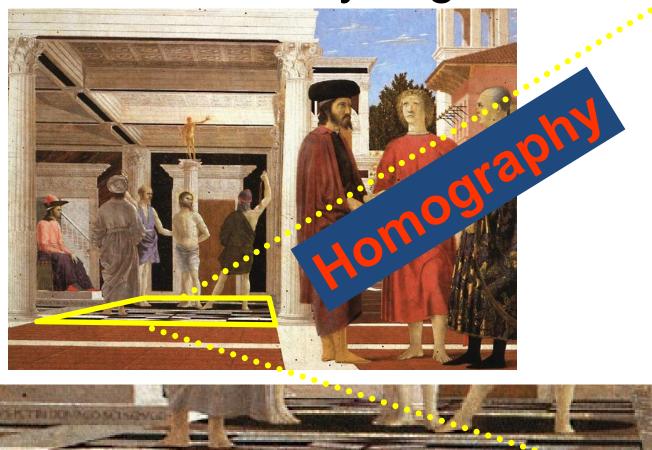
What Can Homographies Do?

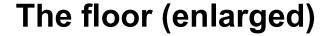
Homography sort of example "3": far away scene that can be approximated by a plane

Fun With Homographies

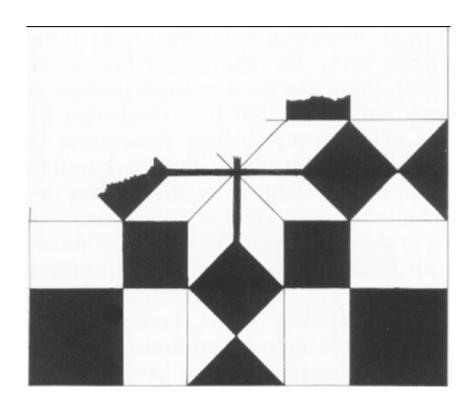
Original image

St. Petersburg photo by A. Tikhonov




Virtual camera rotations

Slide Credit: A. Efros



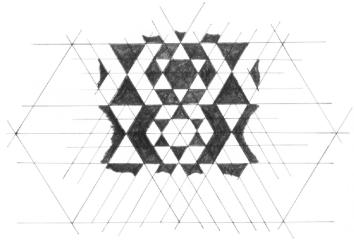
Slide from A. Criminisi

Automatically rectified floor

From Martin Kemp The Science of Art (manual reconstruction)

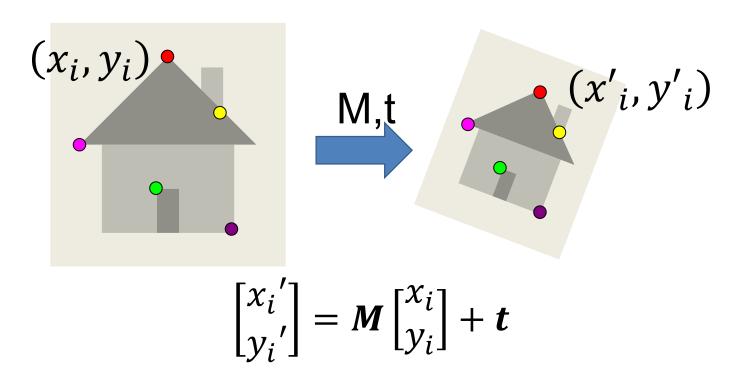
Slide from A. Criminisi

What is the (complicated) shape of the floor pattern?


Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano

Slide from A. Criminisi



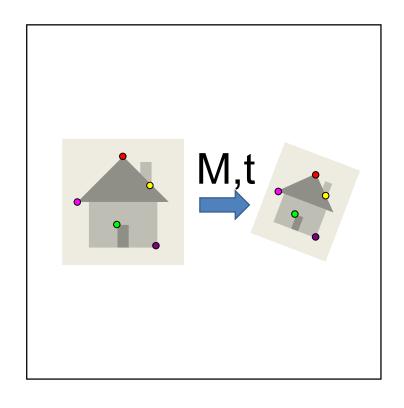
Automatic rectification

From Martin Kemp, The Science of Art (manual reconstruction)

Setup: have pairs of correspondences

Affine Transformation: M,t

Data: (x_i, y_i, x_i', y_i') for


i=1,...,k

Model:

$$[\mathbf{x'}_{i},\mathbf{y'}_{i}] = \mathbf{M}[\mathbf{x}_{i},\mathbf{y}_{i}] + \mathbf{t}$$

Objective function:

$$||[x'_i,y'_i] - M[x_i,y_i] + t||^2$$

Given correspondences: $\mathbf{p}' = [x'_i, y'_i], \mathbf{p} = [x_i, y_i]$

$$\begin{bmatrix} x_i' \\ {y_i'} \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

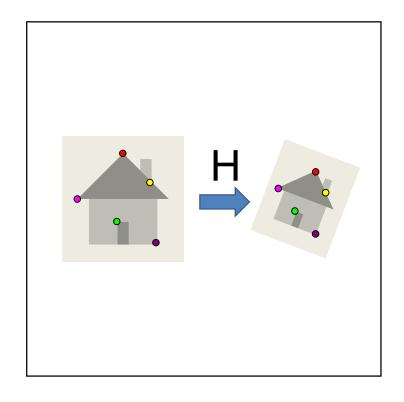
Set up two equations per point

$$\begin{bmatrix} \vdots \\ x_i' \\ y_i' \\ \vdots \end{bmatrix} = \begin{bmatrix} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ & & & & & \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_x \\ t_y \end{bmatrix}$$

$$\begin{bmatrix} \vdots \\ x'_i \\ y'_i \\ \vdots \end{bmatrix} = \begin{bmatrix} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ & & & & & \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_x \\ t_y \end{bmatrix}$$

2 equations per point, 6 unknowns How many points do we need?

Homography: H


Data: (x_i, y_i, x_i', y_i') for

i=1,...,k

Model:

$$[x'_{i},y'_{i},1] \equiv \mathbf{H}[x_{i},y_{i},1]$$

Objective function: It's complicated

Want:
$$\begin{bmatrix} x_i' \\ y_i' \\ w_i' \end{bmatrix} \equiv \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ w_i \end{bmatrix}$$

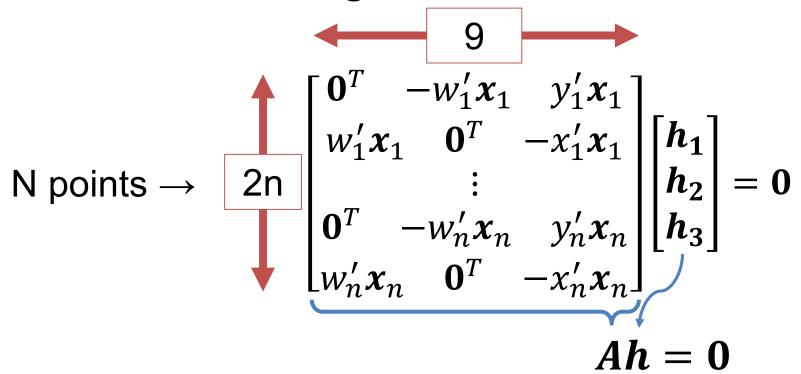
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ w_i \end{bmatrix} \equiv Hx_i \equiv \begin{bmatrix} h_1^T \\ h_2^T \\ h_3^T \end{bmatrix} x_i \equiv \begin{bmatrix} h_1^T x_i \\ h_2^T x_i \\ h_3^T x_i \end{bmatrix}$$

 $a \equiv b \rightarrow a = \lambda b \rightarrow a \times b = 0$ Recall:

$$\begin{bmatrix} x_i' \\ y_i' \\ w_i' \end{bmatrix} \times \begin{bmatrix} \boldsymbol{h}_1^T \boldsymbol{x}_i \\ \boldsymbol{h}_2^T \boldsymbol{x}_i \\ \boldsymbol{h}_3^T \boldsymbol{x}_i \end{bmatrix} = \mathbf{0}$$

Crossproduct

$$\begin{bmatrix} y_i' \boldsymbol{h}_3^T \boldsymbol{x}_i - w_i' \boldsymbol{h}_2^T \boldsymbol{x}_i \\ w_i' \boldsymbol{h}_1^T \boldsymbol{x}_i - x_i' \boldsymbol{h}_3^T \boldsymbol{x}_i \\ x_i' \boldsymbol{h}_2^T \boldsymbol{x}_i - y_i' \boldsymbol{h}_1^T \boldsymbol{x}_i \end{bmatrix} = \mathbf{0}$$


Re-arrange and put 0s in

$$\begin{bmatrix} h_1^T \mathbf{0} - w_i' h_2^T x_i + y_i' h_3^T x_i \\ w_i' h_1^T x_i + h_2^T \mathbf{0} - x_i' h_3^T x_i \\ -y_i' h_1^T x_i + x_i' h_2^T x_i + h_3^T \mathbf{0} \end{bmatrix} = \mathbf{0}$$

Equation
$$\begin{bmatrix} h_1^T \mathbf{0} - w_i' h_2^T x_i + y_i' h_3^T x_i \\ w_i' h_1^T x_i + h_2^T \mathbf{0} - x_i' h_3^T x_i \\ -y_i' h_1^T x_i + x_i' h_2^T x_i + h_3^T \mathbf{0} \end{bmatrix} = \mathbf{0}$$

Pull out h
$$\begin{bmatrix} \mathbf{0}^T & -w'_i x_i & y'_i x_i \\ w'_i x_i & \mathbf{0}^T & -x'_i x_i \\ -y'_i x_i & x'_i x_i & \mathbf{0}^T \end{bmatrix} \begin{bmatrix} \mathbf{h}_1 \\ \mathbf{h}_2 \\ \mathbf{h}_3 \end{bmatrix} = \mathbf{0}$$

Only two linearly independent equations

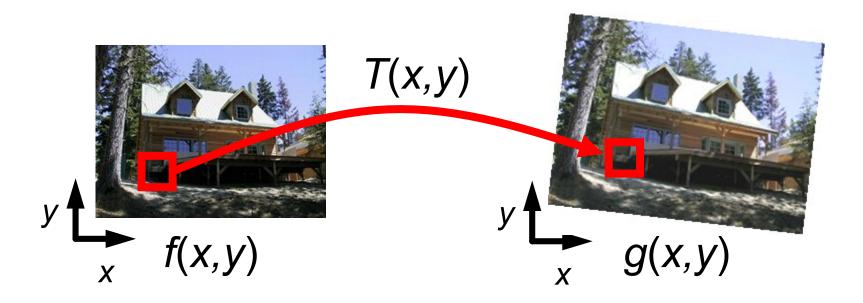
If h is up to scale, what do we use from last time?

$$h^* = \arg\min_{\|h\|=1} \|Ah\|^2$$
 Eigenvector of A^TA with smallest eigenvalue

Small Nagging Detail

||Ah||² doesn't measure model fit (it's called an *algebraic* error that's mainly just convenient to minimize)

Really want geometric error:


$$\sum_{i=1}^{k} \|[x_i', y_i'] - T([x_i, y_i])\|^2 + \|[x_i, y_i] - T^{-1}([x_i', y_i'])\|^2$$

Small Nagging Detail

Solution: initialize with algebraic (min ||Ah||), optimize with geometric using standard non-linear optimizer

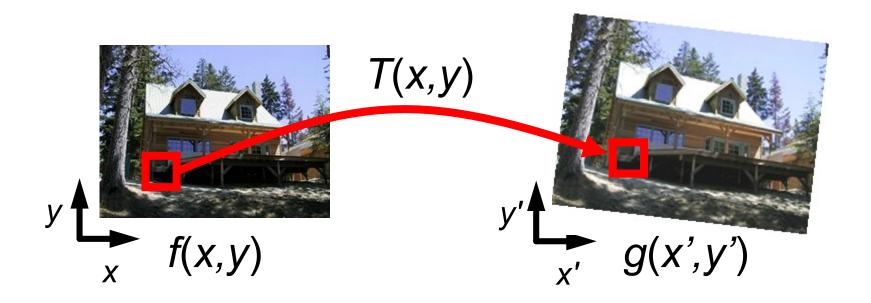
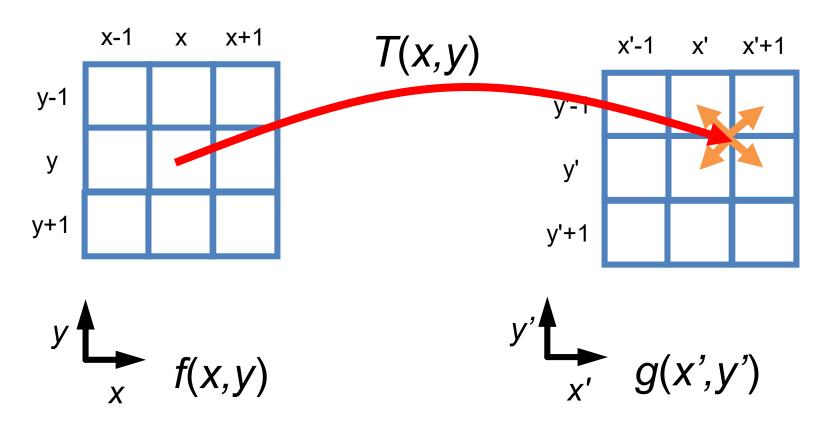
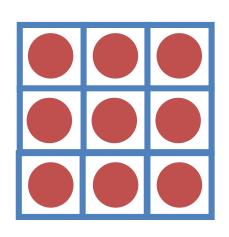
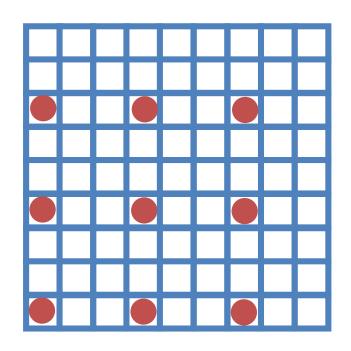

In RANSAC, we always take just enough points to fit. Why might this not make a big difference when fitting a model with RANSAC?

Image Warping

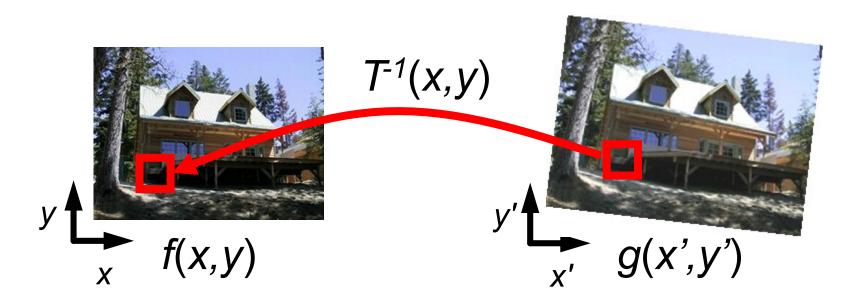

Given a coordinate transform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

Forward Warping

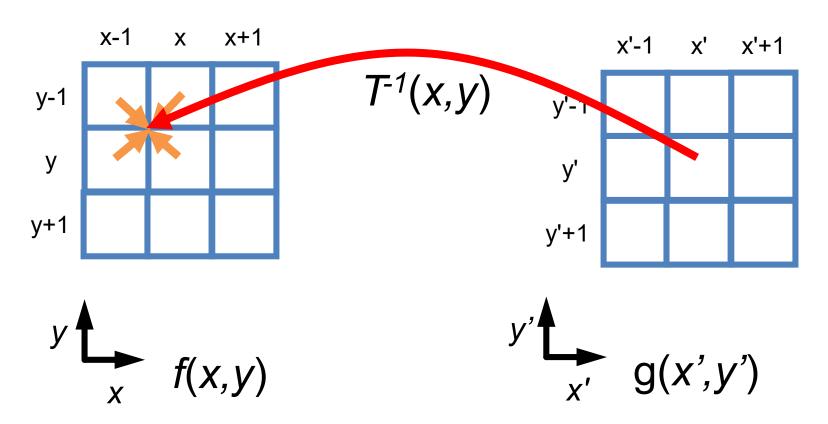

Send the value at each pixel (x,y) to the new pixel (x',y') = T([x,y])


Forward Warping

If you don't hit an exact pixel, give the value to each of the neighboring pixels ("splatting").


Forward Warping

Suppose T(x,y) scales by a factor of 3. Hmmmm.


Inverse Warping

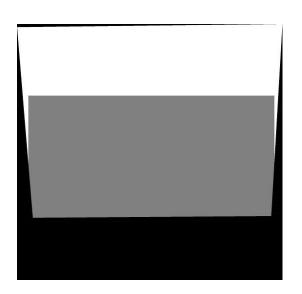
Find out where each pixel g(x',y') should get its value from, and steal it.

Note: requires ability to invert T

Inverse Warping

If you don't hit an exact pixel, figure out how to take it from the neighbors.

Mosaicing


Warped Input 1 I₁

Warped Input 2 I₂

α

 $\alpha I_1 + (1-\alpha)I_2$

Slide Credit: A. Efros

Simplification: Two-band Blending

- Brown & Lowe, 2003
 - Only use two bands: high freq. and low freq.
 - Blend low freq. smoothly
 - Blend high freq. with no smoothing: binary alpha

Figure Credit: Brown & Lowe

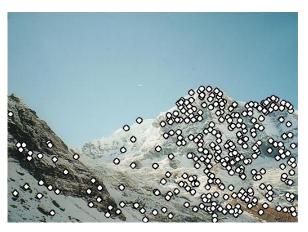
2-band "Laplacian Stack" Blending

Low frequency ($\lambda > 2$ pixels)

High frequency (λ < 2 pixels)

How do you make a panorama?

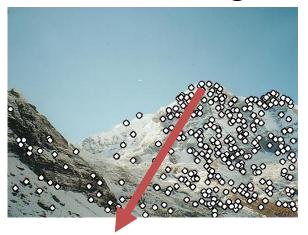
Step 1: Find "features" to match

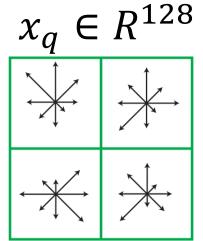

Step 2: Describe Features

Step 3: Match by Nearest Neighbor

Step 4: Fit H via RANSAC

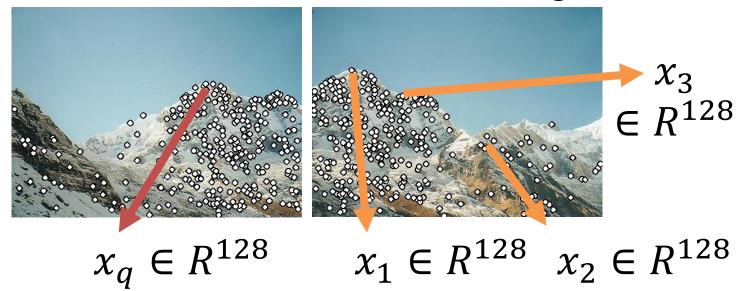
Step 5: Blend Images


Find corners/blobs



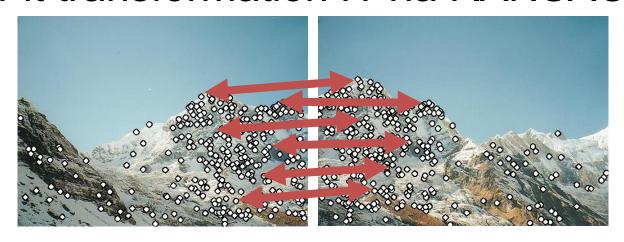
- (Multi-scale) Harris; or
- Laplacian of Gaussian

Describe Regions Near Features



Build histogram of gradient orientations (SIFT)

Match Features Based On Region



Sort by distance to: $x_q \|x_q - x_1\| < \|x_q - x_2\| < \|x_q - x_3\|$

Accept match if: $||x_q - x_1|| / ||x_q - x_2||$

Nearest neighbor is far closer than 2nd nearest neighbor

Fit transformation H via RANSAC

for trial in range(Ntrials):

Pick sample

Fit model

Check if more inliers

Re-fit model with most inliers

$$\arg\min_{\|\boldsymbol{h}\|=1}\|\boldsymbol{A}\boldsymbol{h}\|^2$$

Warp images together

Resample images with inverse warping and blend