Scales and Descriptors

EECS 442 – Prof. David Fouhey Winter 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W19/

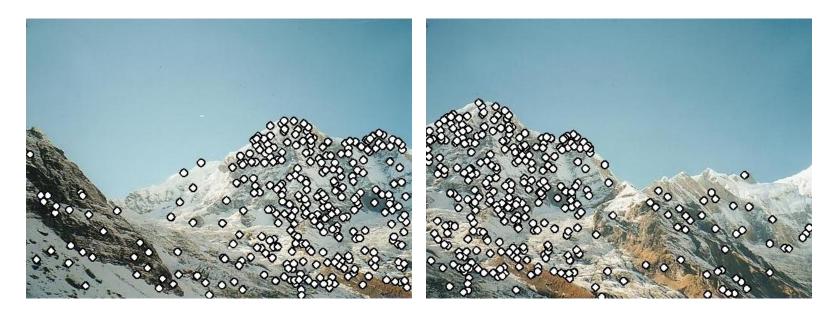
Administrivia

- Project proposal suggestion list out
 - Feel free to ask, pitch ideas in office hours or on piazza
- Homework 2 is out
- Homework 1 is being graded
 - So far looks overall very good!
 - We'll try to get it done fast, accurately, and fairly

Copying: Better Options Exist

- Usually painfully obvious even with obfuscation
- The graders are really smart
- I don't have many options here
- Submit it late (that's why we have late days), half-working (that's why we have partial credit), or take the zero on the homework
 - These really aren't a big deal in the grand scheme of things. You will almost certainly not care about doing poorly on a homework in even 1 year.
- If you're overwhelmed, talk to us

Recap: Motivation

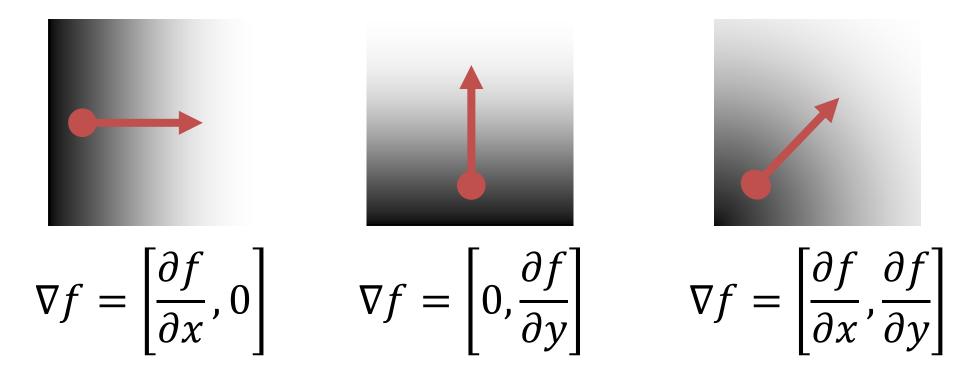


1: find corners+features

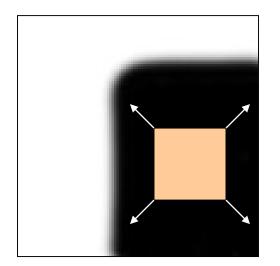
Image credit: M. Brown

Last Time

Image gradients – treat image like function of x,y – gives edges, corners, etc.



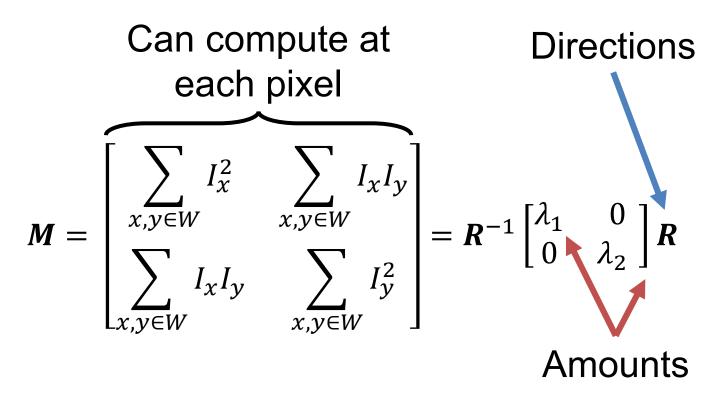
Last Time – Corner Detection Can localize the location, or any shift \rightarrow big intensity change.



"flat" region: no change in all directions "edge": no change along the edge direction "corner": significant change in all directions

Corner Detection

By doing a taylor expansion of the image, the second moment matrix tells us how quickly the image changes and in which directions.



In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w

$$\boldsymbol{M} = \begin{bmatrix} \sum_{x,y \in W} w(x,y) I_x^2 & \sum_{x,y \in W} w(x,y) I_x I_y \\ \sum_{x,y \in W} w(x,y) I_x I_y & \sum_{x,y \in W} w(x,y) I_y^2 \end{bmatrix}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

In Practice

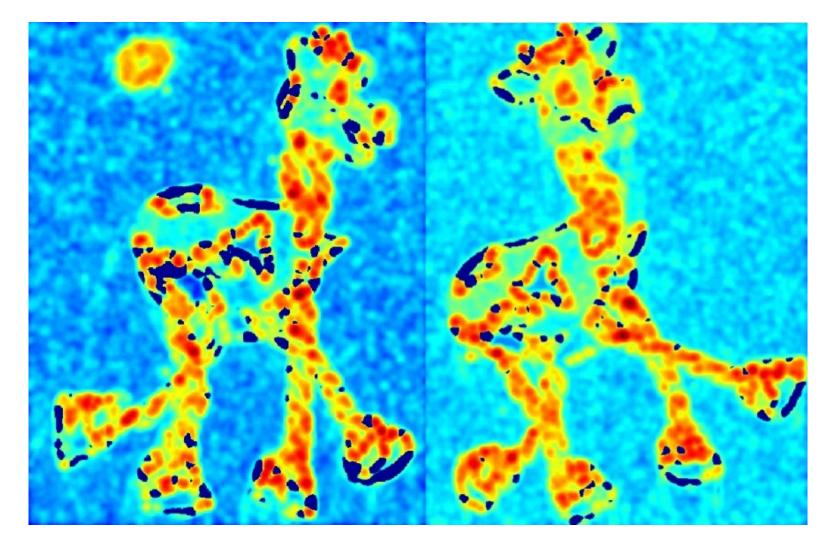
- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R

$$R = \det(\mathbf{M}) - \alpha \ trace(\mathbf{M})^{2}$$
$$= \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Computing R

Computing R



In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R
- 4. Threshold R

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Thresholded R

In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R
- 4. Threshold R
- 5. Take only local maxima (called non-maxima suppression)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Thresholded

Final Results

Desirable Properties

If our detectors are repeatable, they should be:

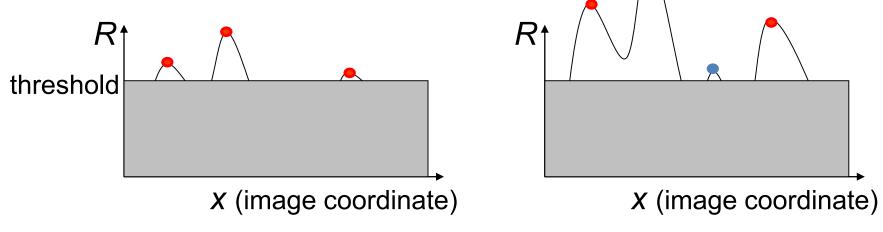
- Invariant to some things: image is transformed and corners remain the same
- Covariant/equivariant with some things: image is transformed and corners transform with it.

Recall Motivating Problem

Images may be different in lighting and geometry

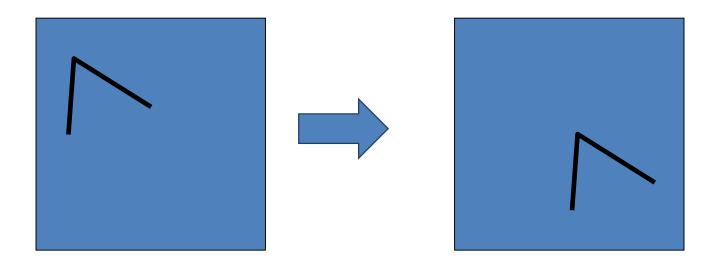
Affine Intensity Change $I_{new} = aI_{old} + b$

M only depends on derivatives, so *b* is irrelevant But *a* scales derivatives and there's a threshold



Partially invariant to affine intensity changes

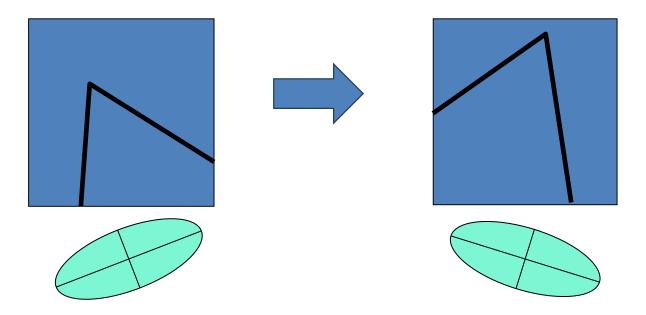
Image Translation



All done with convolution. Convolution is translation equivariant.

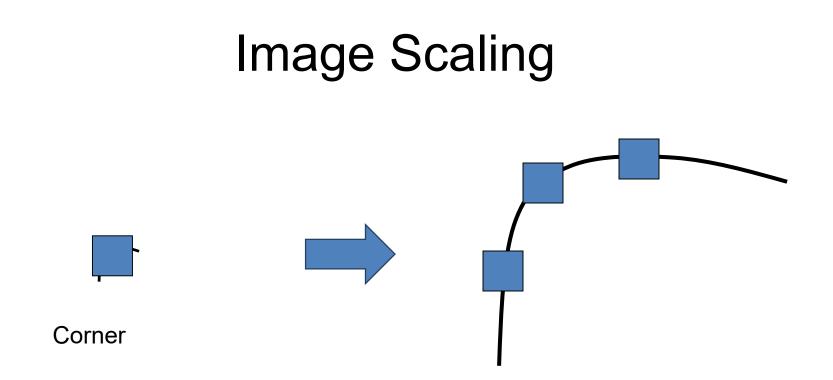
Equivariant with translation

Image Rotation



Rotations just cause the corner rotation matrix to change. Eigenvalues remain the same.

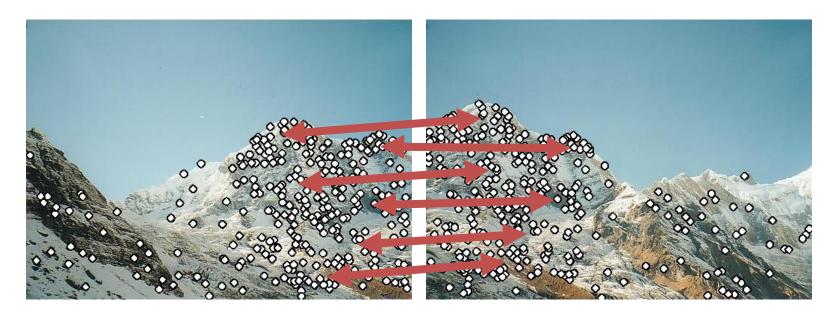
Equivariant with rotation



One pixel can become many pixels and vice-versa.

Not equivariant with scaling How do we fix this?

Recap: Motivation



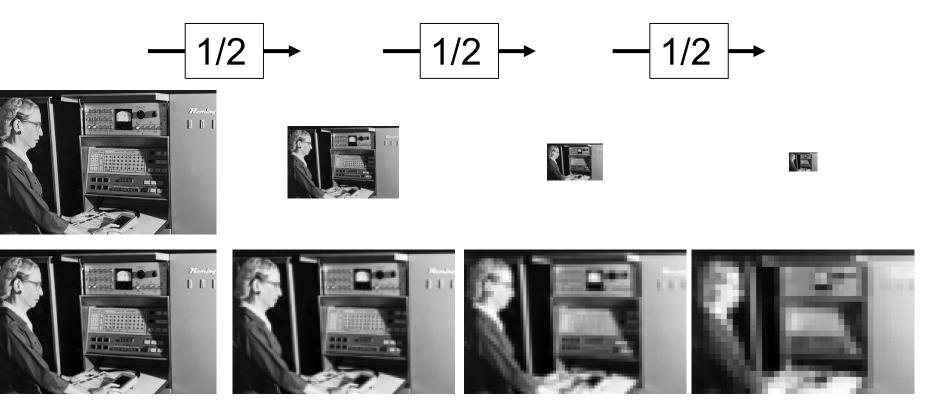
1: find corners+features2: match based on local image dataHow?

Image credit: M. Brown

Today

- Fixing scaling by making detectors in both location **and scale**
- Enabling matching between features by describing regions

Key Idea: Scale Left to right: each image is half-sized Upsampled with big pixels below



Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)

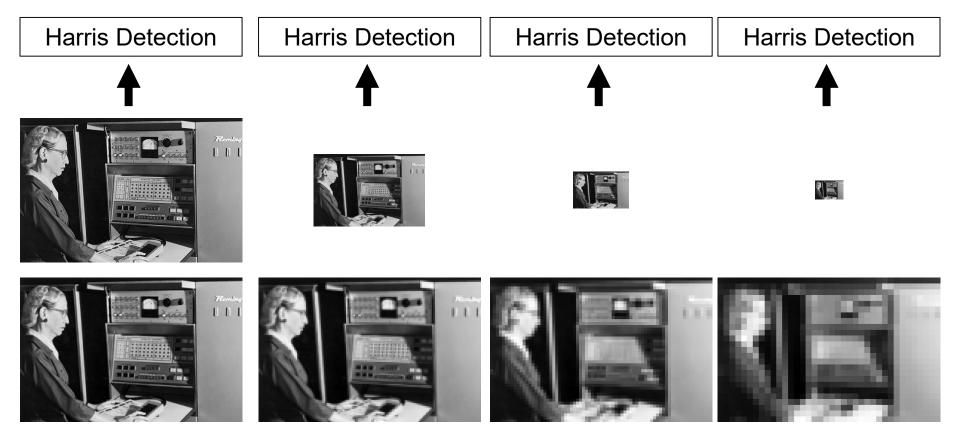
Key Idea: Scale Left to right: each image is half-sized If I apply a KxK filter, how much of the original image does it see in each image?

$$-1/2 \rightarrow -1/2 \rightarrow -1/2 \rightarrow$$

Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)

Solution to Scales

Try them all!



See: Multi-Image Matching using Multi-Scale Oriented Patches, Brown et al. CVPR 2005

Given a 50x16 person detector, how do I detect: (a) 250x80 (b) 150x48 (c) 100x32 (d) 25x8 people?

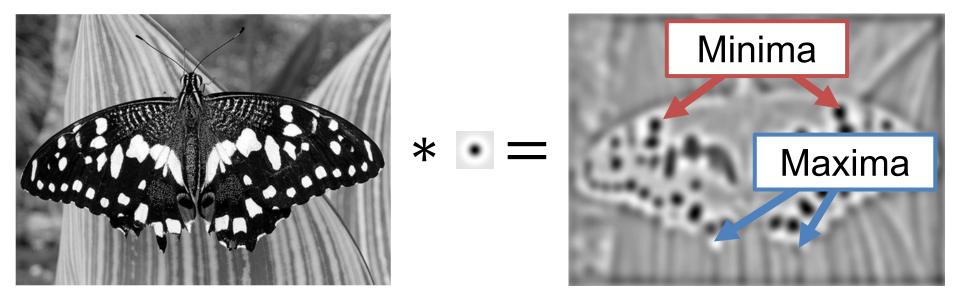
Detecting all the people The red box is a fixed size

Detecting all the people The red box is a fixed size

Detecting all the people The red box is a fixed size

Blob Detection

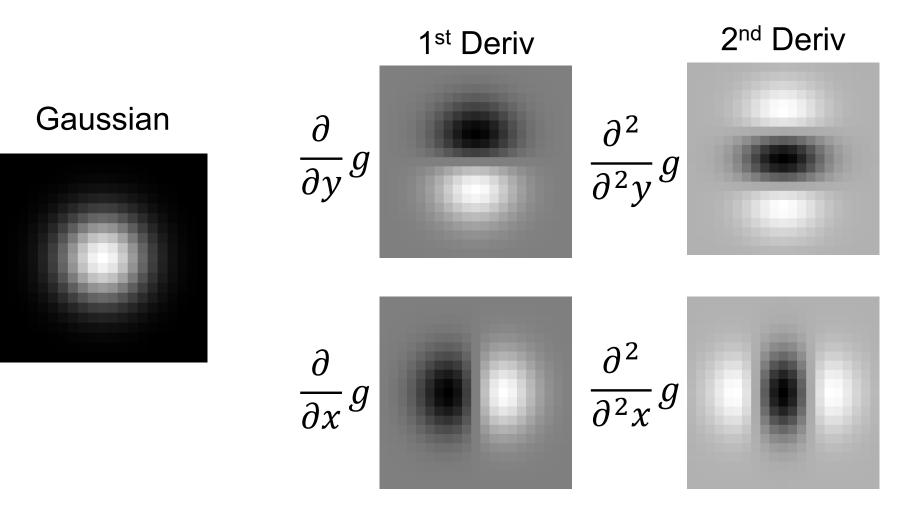
Another detector (has some nice properties)



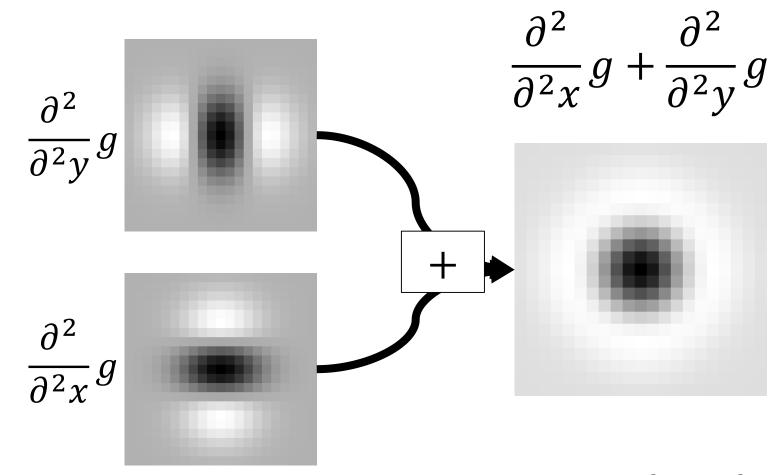
Find maxima *and minima* of blob filter response in scale *and space*

Slide credit: N. Snavely

Gaussian Derivatives



Laplacian of Gaussian



Slight detail: for technical reasons, you need to scale the Laplacian.

$$\nabla_{norm}^2 = \sigma^2 \left(\frac{\partial^2}{\partial x^2} g + \frac{\partial^2}{\partial^2 y} g \right)$$

Edge Detection with Laplacian

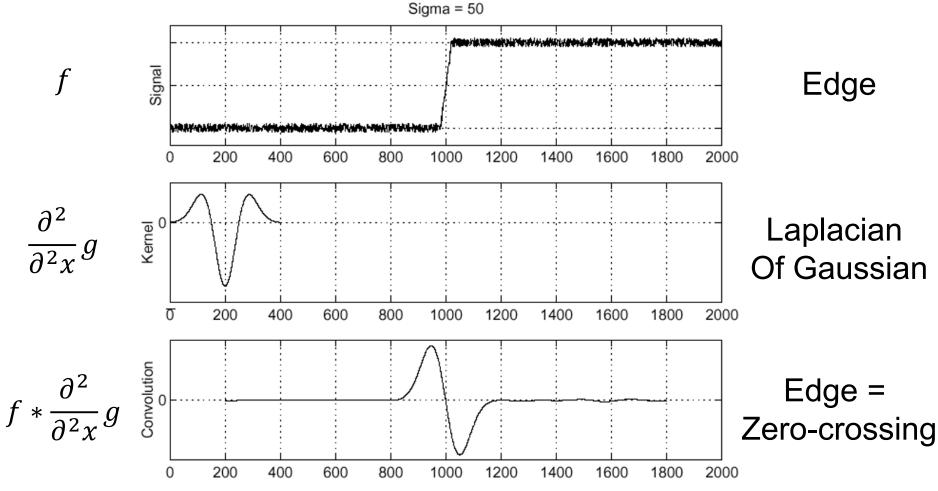


Figure credit: S. Seitz

Blob Detection with Laplacian

Edge: zero-crossing Blob: superposition of zero-crossing

Remember: can scale signal or filter

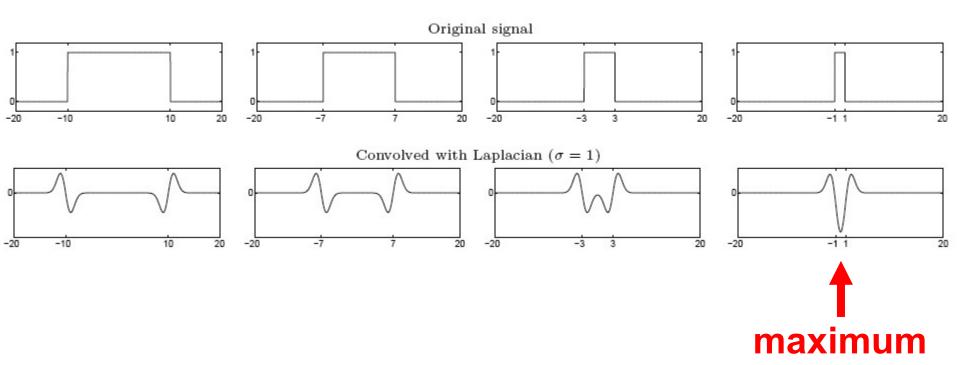
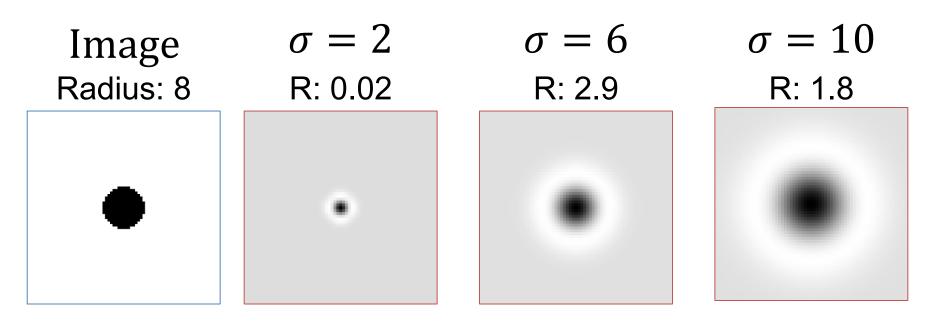


Figure credit: S. Lazebnik

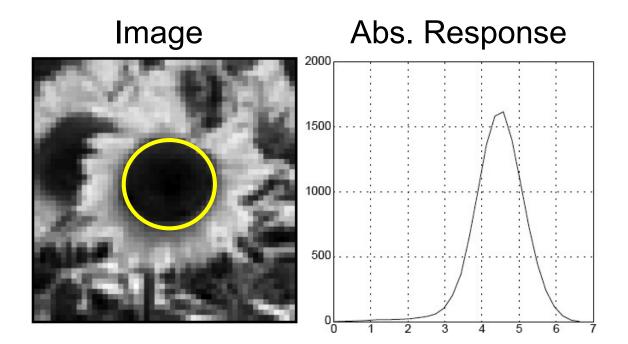
Scale Selection

Given binary circle and Laplacian filter of scale σ , we can compute the response as a function of the scale.



Characteristic Scale

Characteristic scale of a blob is the scale that produces the maximum response



Slide credit: S. Lazebnik. For more, see: T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> International Journal of Computer Vision **30** (2): pp 77--116.

Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales

Scale-space blob detector: Example

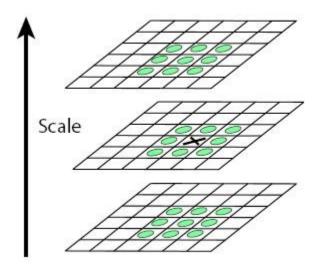
Slide credit: S. Lazebnik

Scale-space blob detector: Example

sigma = 11.9912

Scale-space blob detector

- 1. Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scale-space



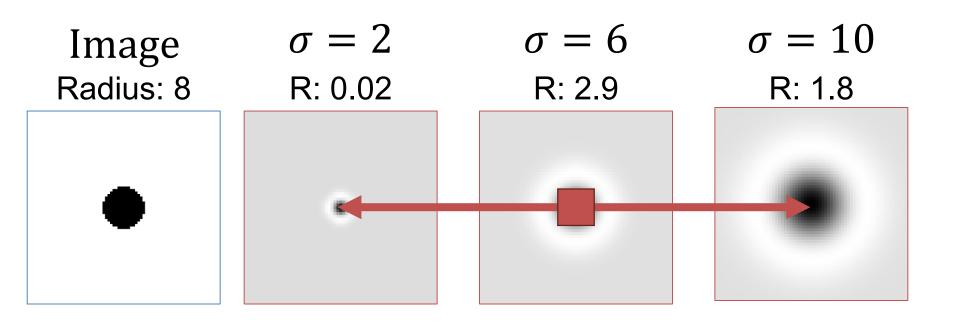
(After Class) Finding Maxima

Point i,j is maxima (minima if you flip sign) in image I if:

```
for y=range(i-1,i+1+1):
for x in range(j-1,j+1+1):
if y == i and x== j: continue
#below has to be true
I[y,x] < I[i,j]
```

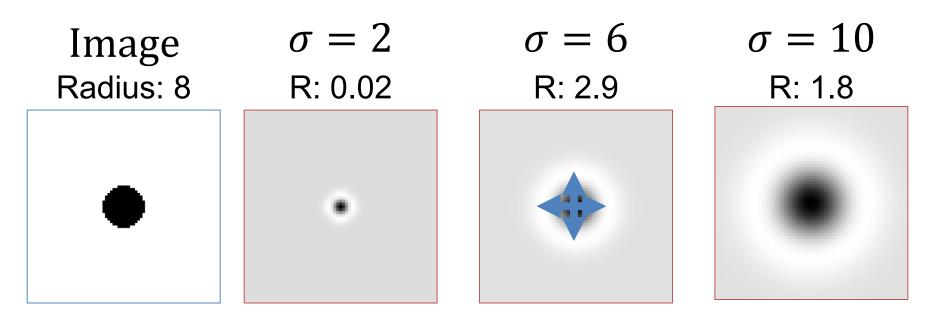
(After Class) Scale Space

Red lines are the scale-space neighbors



(After Class) Scale Space

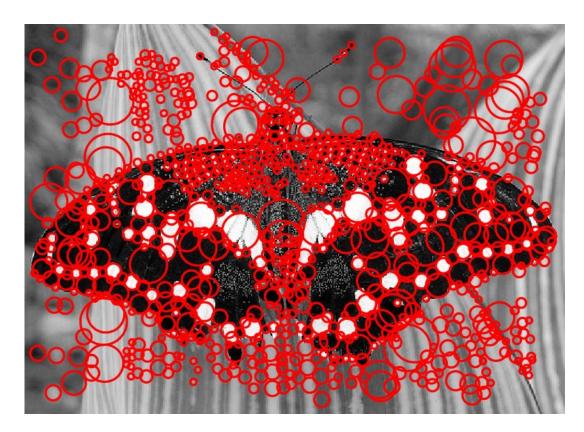
Blue lines are image-space neighbors (should be just one pixel over but you should get the point)



(After Class) Finding Maxima

Suppose I[:,:,k] is image at scale k. Point i,j,k is maxima (minima if you flip sign) in image I if: for y=range(i-1,i+1+1): for x in range(j-1,j+1+1): for c in range(k-1,k+1+1): if y == i and x == j and c == k: continue #below has to be true I[y,x,c] < I[i,i,k]

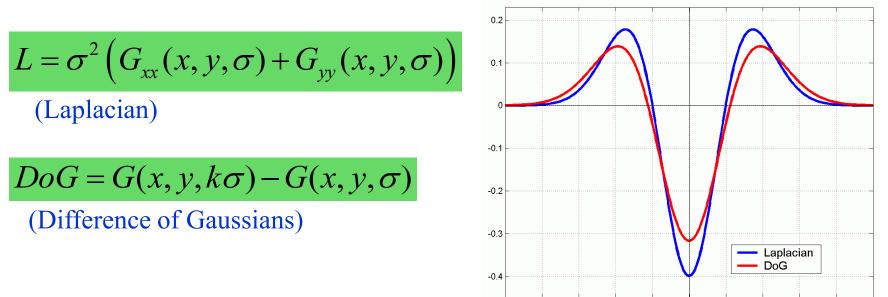
Scale-space blob detector: Example



Slide credit: S. Lazebnik

Efficient implementation

• Approximating the Laplacian with a difference of Gaussians:



-5

-2

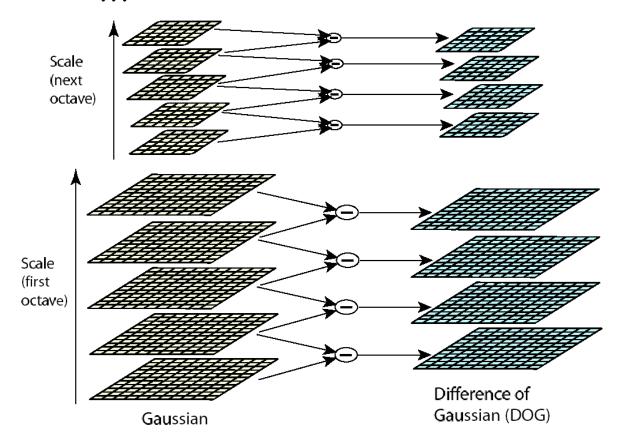
_1

0

2

-3

Efficient implementation



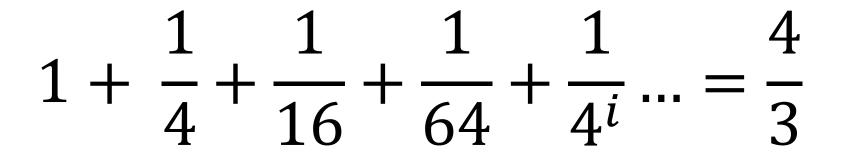
David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Slide credit: S. Lazebnik

Problem 1 Solved

- How do we deal with scales: try them all
- Why is this efficient?

Vast majority of effort is in the first and second scales



Problem 2 – Describing Features

Image – 40

1/2 size, rot. 45° Lightened+40



100x100 crop at Glasses

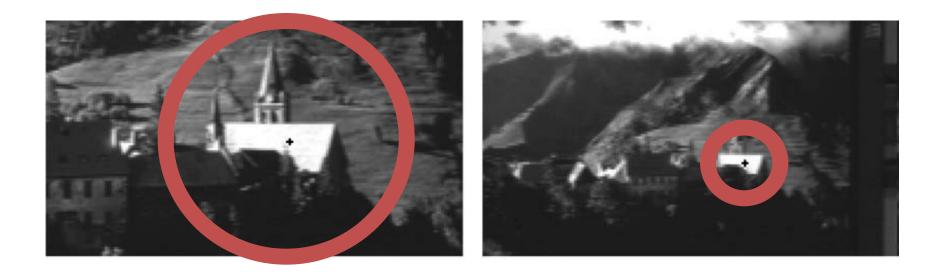
Problem 2 – Describing Features

Once we've found a corner/blobs, we can't just use the image nearby. What about:

- 1. Scale?
- 2. Rotation?
- 3. Additive light?

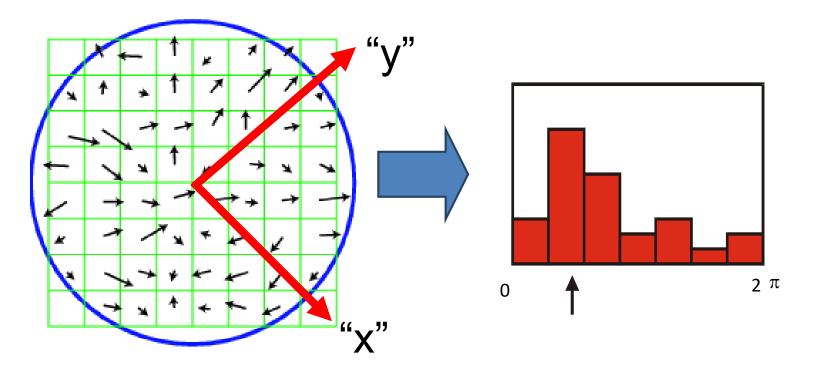
Handling Scale

Given characteristic scale (maximum Laplacian response), we can just rescale image



Handling Rotation

Given window, can compute dominant orientation and then rotate image



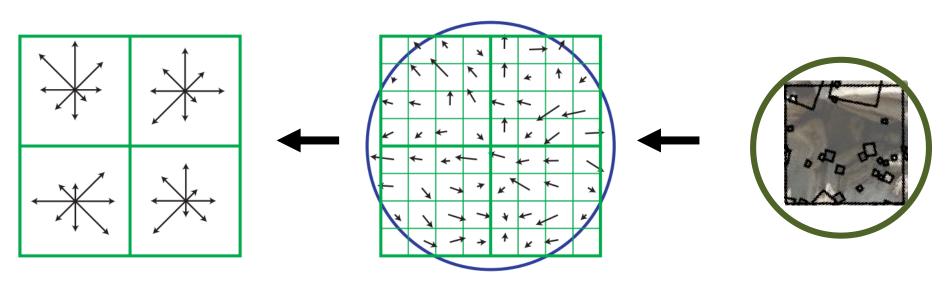
Scale and Rotation SIFT features at characteristic scales and dominant orientations

Picture credit: S. Lazebnik. Paper: David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

Scale and Rotation

Picture credit: S. Lazebnik. Paper: David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

SIFT Descriptors



- 1. Compute gradients
- 2. Build histogram (2x2 here, 4x4 in practice) Gradients ignore global illumination changes

Figure from David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

SIFT Descriptors

- In principle: build a histogram of the gradients
- In reality: quite complicated
 - Gaussian weighting: smooth response
 - Normalization: reduces illumination effects
 - Clamping:
 - Affine adaptation:

Properties of SIFT

- Can handle: up to ~60 degree out-of-plane rotation, Changes of illumination
- Fast and efficient and lots of code available

Feature Descriptors

Think of feature as some non-linear filter that maps pixels to 128D feature

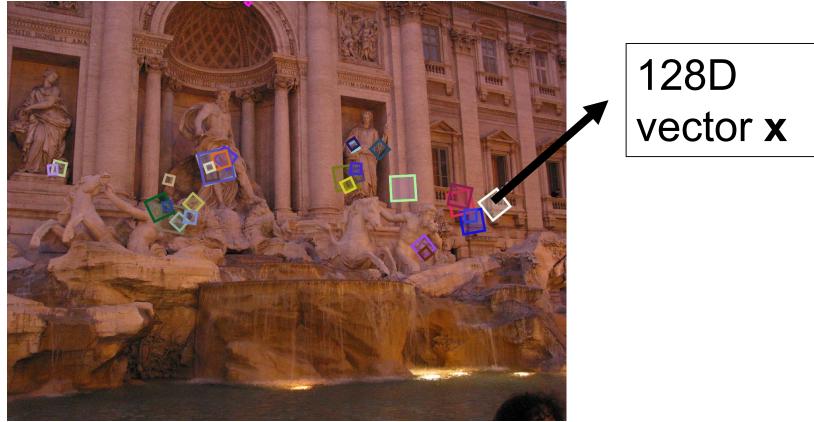
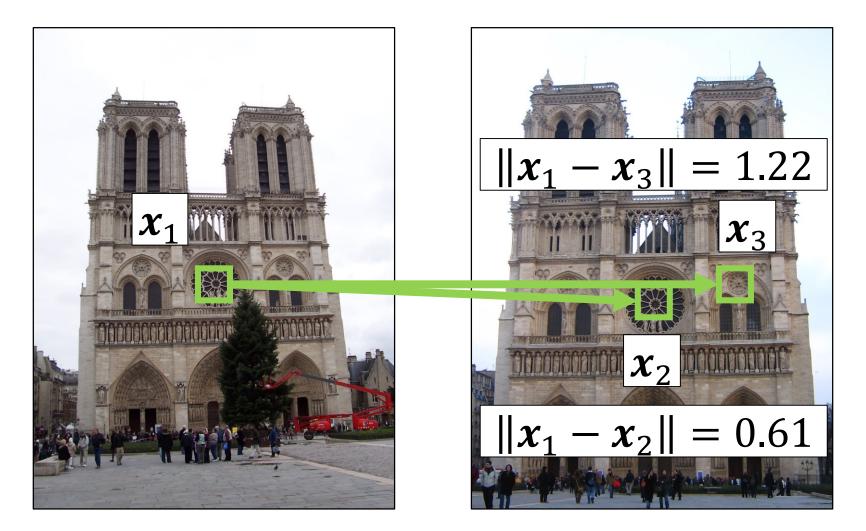


Photo credit: N. Snavely

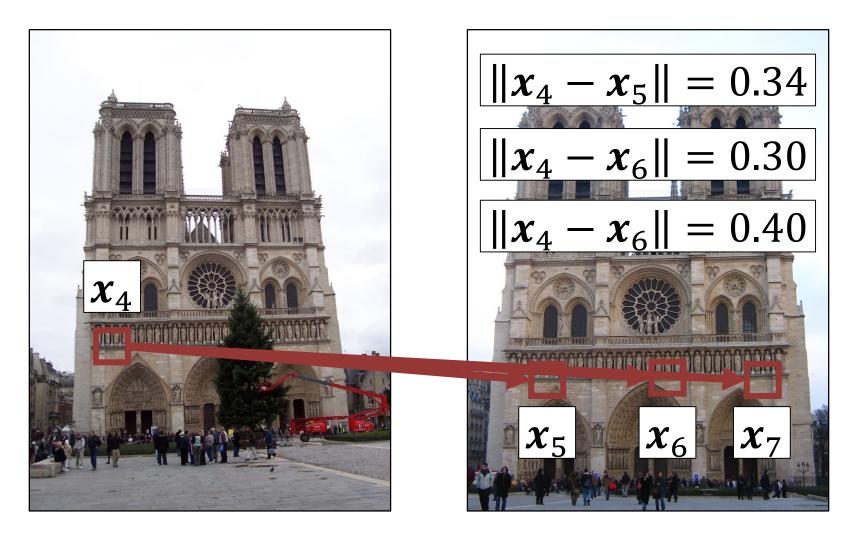
Using Descriptors

- Instance Matching
- Category recognition

Instance Matching



Instance Matching



Example credit: J. Hays

2nd Nearest Neighbor Trick

- Given a feature x, nearest neighbor to x is a good match, but distances can't be thresholded.
- Instead, find nearest neighbor and second nearest neighbor. This ratio is a good test for matches:

$$r = \frac{\|\boldsymbol{x}_q - \boldsymbol{x}_{1NN}\|}{\|\boldsymbol{x}_q - \boldsymbol{x}_{2NN}\|}$$

2nd Nearest Neighbor Trick

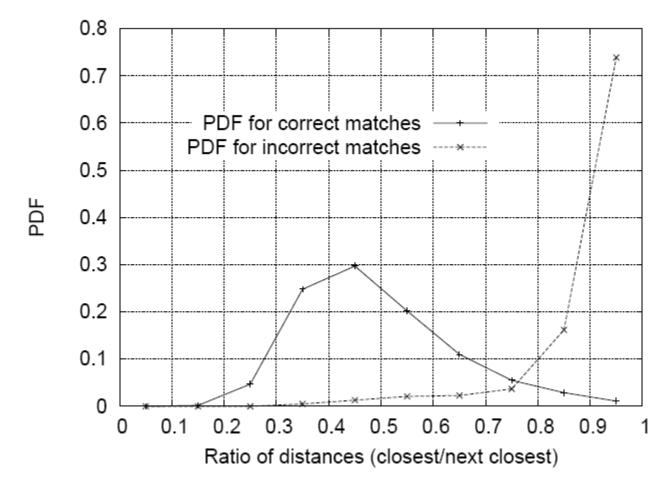
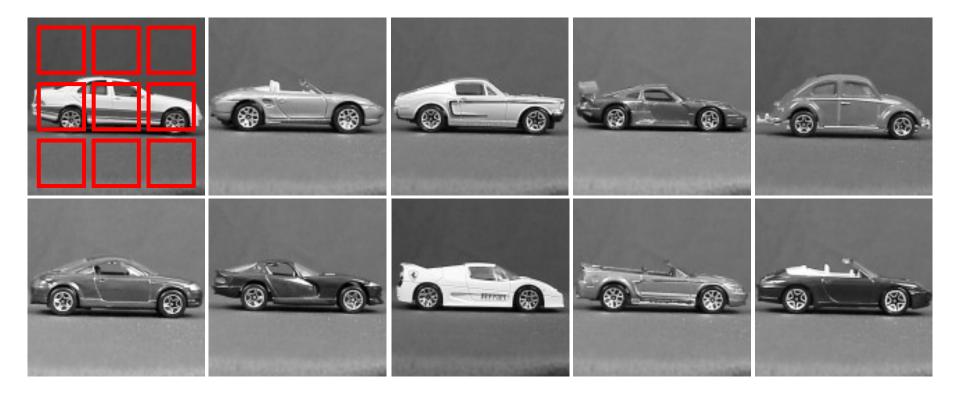


Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

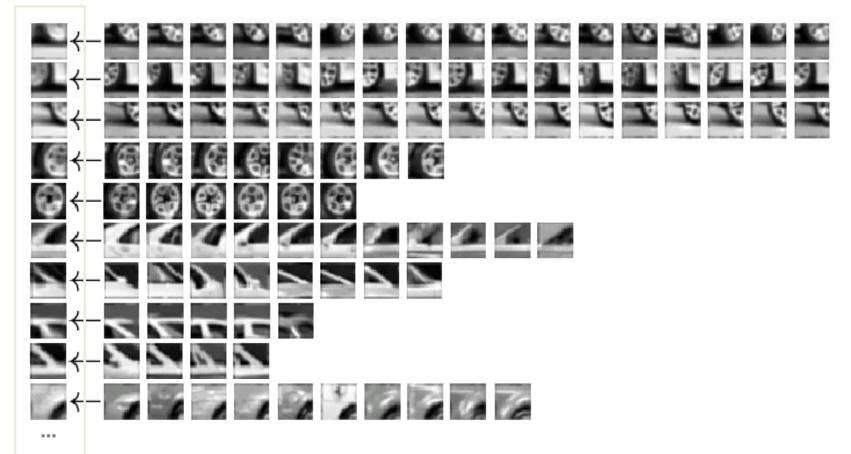
Category Recognition

Extract features from set of images (Either SIFT or Raw Patches)

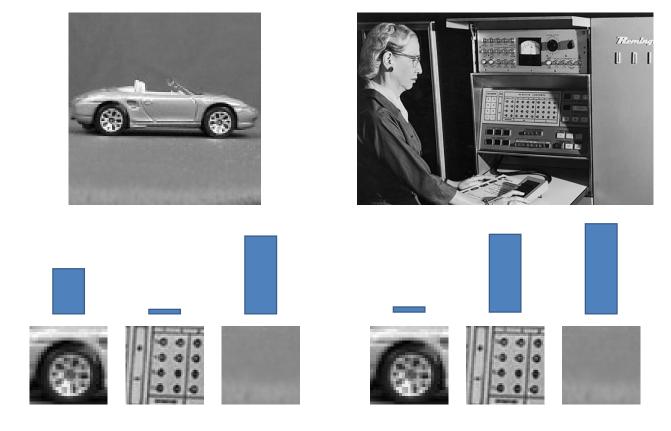


Category Recognition

Build codebook of "concepts"



Category Representation Represent image as histogram of concepts



Extra Reading for the Curious

Affine adaptation

Consider the second moment matrix of the window containing the blob:

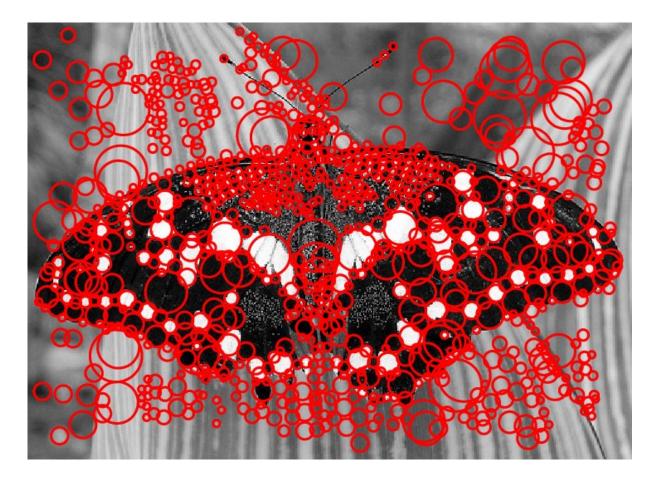
$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

direction of the
fastest change
$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

$$(\lambda_{\text{max}})^{-1/2} (\lambda_{\text{min}})^{-1/2}$$

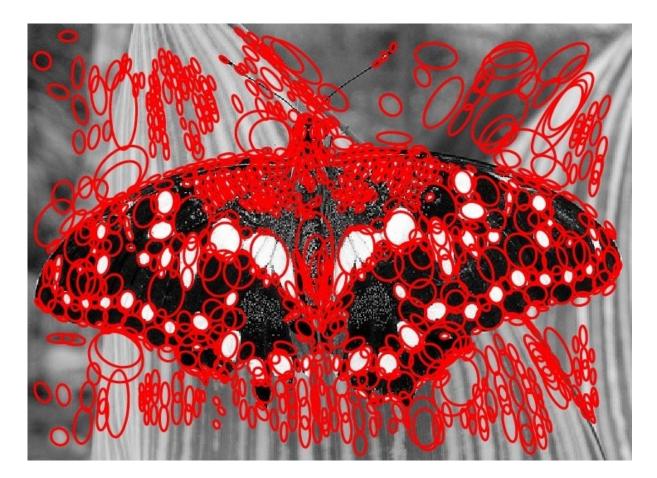
This ellipse visualizes the "characteristic shape" of the window Slide: S. Lazebnik

Affine adaptation example



Scale-invariant regions (blobs)

Affine adaptation example



Affine-adapted blobs