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Administrivia

* Project proposal suggestion list out

* Feel free to ask, pitch ideas in office hours or on
plazza

* Homework 2 is out

 Homework 1 is being graded
» So far looks overall very good!
« We’'ll try to get it done fast, accurately, and fairly



Copying: Better Options EXxist

» Usually painfully obvious even with obfuscation
* The graders are really smart
* | don’t have many options here

« Submit it late (that’s why we have late days),
half-working (that’s why we have partial credit),
or take the zero on the homework

* These really aren’t a big deal in the grand scheme
of things. You will almost certainly not care about
doing poorly on a homework in even 1 year.

* If you're overwhelmed, talk to us



Recap: Motivation

1: find corners+features

Image credit: M. Brown



Last Time

Image gradients — treat image like function of
X,y — gives edges, corners, etc.
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Figure credit: S. Seitz



Last Time — Corner Detection

Can localize the location, or any shift —
big intensity change.

“flat” region: “edge”: ‘corner’;
no change in no change significant
all directions along the edge change in all

direction directions

Diagram credit: S. Lazebnik



Corner Detection

By doing a taylor expansion of the image, the
second moment matrix tells us how quickly the
Image changes and in which directions.

Can compute at Directions
each pixel
Y,
M = xX,yEW X,yeW =R_1 Al 0 R
ok 1,
z L1, 2 I
Lx,YEW x,yeWw .

Amounts



In Practice

1. Compute partial derivatives Ix, ly per pixel
2. Compute M at each pixel, using Gaussian

weighting w
> wenE ) wayL,
M = xX,YEW X,YEW
z w(x, ) L I, Z w(x, y)I;
Lx,yeW xX,yeW il

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik


http://www.bmva.org/bmvc/1988/avc-88-023.pdf

In Practice

1. Compute partial derivatives Ix, ly per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R

R = det(M) — a trace(M)?
= 1Ay — a(Ay + 2,)?

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik


http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Computing R

Slide credit: S. Lazebnik



Computing R

Slide credit: S. Lazebnik



In Practice

1. Compute partial derivatives Ix, ly per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R

4. Threshold R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik


http://www.bmva.org/bmvc/1988/avc-88-023.pdf
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Slide credit: S. Lazebnik



In Practice

1. Compute partial derivatives Ix, ly per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R
Threshold R

5. Take only local maxima (called non-maxima
suppression)

s

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik


http://www.bmva.org/bmvc/1988/avc-88-023.pdf
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Slide credit: S. Lazebnik



Final Results

Slide credit: S. Lazebnik



Desirable Properties

If our detectors are repeatable, they should be:

* Invariant to some things: image is transformed
and corners remain the same

« Covariant/equivariant with some things:
image is transformed and corners transform
with it.

Slide credit: S. Lazebnik



Recall Motivating Problem

Images may be different in lighting and geometry

o




Affine Intensity Change

Inew = algig + b

M only depends on derivatives, so b is irrelevant

But a scales derivatives and there’s a threshold

R
threshold

|~ [\

)N

X (image coordinaté)

R

i

X (image coordinaté)

Partially invariant to affine intensity changes

Slide credit: S. Lazebnik



Image Translation

=)

All done with convolution. Convolution is
translation equivariant.

Equivariant with translation

Slide credit: S. Lazebnik



Image Rotation
~ 1
57 S

Rotations just cause the corner rotation matrix to
change. Eigenvalues remain the same.

Equivariant with rotation

Slide credit: S. Lazebnik



Image Scaling

Corner r\

One pixel can become many pixels and
vice-versa.

Not equivariant with scaling
How do we fix this?

Slide credit: S. Lazebnik



Recap: Motivation

1: find corners+features
2: match based on local image data

How?

Image credit: M. Brown



Today

* Fixing scaling by making detectors in both
location and scale

* Enabling matching between features by
describing regions



Key ldea: Scale

Left to right: each image is half-sized
Upsampled with big pixels below

—1/2 — —1/2 — —1/2 —

Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)


https://en.wikipedia.org/wiki/Aliasing

Key ldea: Scale
Left to right: each image is half-sized

If | apply a KxK filter, how much of the
original image does it see in each image?

—1/2 — —1/2 — —1/2 —

Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)


https://en.wikipedia.org/wiki/Aliasing

Solution to Scales

Try them all!

Harris Detection

Harris Detection

Harris Detection

Harris Detection

¢

¢

See: Multi-lmage Matching using Multi-Scale Oriented Patches, Brown et al. CVPR 2005

¢




Aside: This Trick is Common

Given a 50x16 person detector, how do | detect:
(a) 250x80 (b) 150x48 (c) 100x32 (d) 25x8 people?

Sample people from image

I - ‘




Aside: This Trick is Common

Detecting all the people
The red box is a fixed size

Sample people from image




Aside: This Trick is Common

Detecting all the people
The red box is a fixed size

Sample people from image

I - ‘




Aside: This Trick is Common

Detecting all the people
The red box is a fixed size

Sample people from image




Blob Detection

Another detector (has some nice properties)

{‘ ‘;'/,

A _..s'\

Find maxima and minima of blob filter response in
scale and space

Slide credit: N. Snavely



Gaussian Derivatives

1st Deriv 2" Deriv

Gaussian




Laplacian of Gaussian
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Slight detail: for technical reasons, you need to scale the Laplacian. Vnormz o 92 g+ azy g
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Edge Detection with Laplacian

Convolution
o

Sigma = 50
1
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Figure credit: S. Seitz

Edge

Laplacian
Of Gaussian

Edge =
Zero-crossing



Blob Detection with Laplacian

Edge: zero-crossing

Blob: superposition of zero-crossing

Remember: can scale signal or filter

Original signal

u

|

Convolved with Laplacian (o = 1)
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Figure credit: S. Lazebnik

maximum




Scale Selection

Given binary circle and Laplacian filter of scale o, we
can compute the response as a function of the scale.

Image g =2 g=26 =10
Radius: 8 R: 0.02 R: 2.9 R: 1.8




Characteristic Scale

Characteristic scale of a blob is the scale
that produces the maximum response

Abs. Response

2000

Slide credit: S. Lazebnik. For more, see: T. Lindeberg (1998). "Feature detection with automatic scale selection."

International Journal of Computer Vision 30 (2): pp 77--116.


http://www.nada.kth.se/cvap/abstracts/cvap198.html

Scale-space blob detector

1. Convolve image with scale-normalized
Laplacian at several scales

Slide credit: S. Lazebnik



Scale-space blob detector: Example

Slide credit: S. Lazebnik



Scale-space blob detector: Example

sigma = 11.9912

Slide credit: S. Lazebnik



Scale-space blob detector

1. Convolve image with scale-normalized
Laplacian at several scales

2. Find maxima of squared Laplacian response
In scale-space

A T
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Slide credit: S. Lazebnik



(After Class) Finding Maxima

Point i,j is maxima (minima if you flip sign) in
image | if:

for y=range(i-1,i+1+1):
for x in range(j-1,j+1+1):
If y ==1and x==j: continue
#below has to be true
Ily,x] < I[i,]]



(After Class) Scale Space

Red lines are the scale-space neighbors

Image g =2 g=26 =10
Radius: 8 R: 0.02 R: 2.9 R: 1.8

® . )




(After Class) Scale Space

Blue lines are image-space neighbors (should be just
one pixel over but you should get the point)

Image g =2 g=26 =10
Radius: 8 R: 0.02 R: 2.9 R: 1.8

® - u .




(After Class) Finding Maxima

Suppose I[:,:,k] is image at scale k. Point i,j,k is
maxima (minima if you flip sign) in image | if:

for y=range(i-1,i+1+1):
for x in range(j-1,j+1+1):
for c in range(k-1,k+1+1):

if y ==1and x==j and c==k:
continue

#below has to be true
Ily,x,c] < I[i,},K]



Scale-space blob detector:

Example

b Q.00

Slide credit: S. Lazebnik



Efficient implementation

« Approximating the Laplacian with a difference
of Gaussians:

L=o" (Gxx(x, y,0)+G, (x,, 0'))

(Laplacian)

DoG = G(xayaka)_G(xayaa)

(Difference of Gaussians)

Slide credit: S. Lazebnik



Efficient implementation

Difference of
Gaussian Gaussian (DOG)

David G. Lowe. "Distinctive imaqge features from scale-invariant
keypoints.” IJCV 60 (2), pp. 91-110, 2004.

Slide credit: S. Lazebnik



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Problem 1 Solved

* How do we deal with scales: try them all
 Why is this efficient?

Vast majority of effort is in the first and second scales

1+1+1+1+1 o
4 16 64 47 3



Problem 2 — Describing Features

Image — 40 1/2 size, rot. 45°
Lightened+40

100x100 crop
at Glasses




Problem 2 — Describing Features

Once we've found a corner/blobs, we can't just
use the image nearby. What about:

1. Scale?
2. Rotation?
3. Additive light?



Handling Scale

Given characteristic scale (maximum Laplacian
response), we can just rescale image

Slide credit: S. Lazebnik



Handling Rotation

Given window, can compute dominant orientation
and then rotate image

Slide credit: S. Lazebnik



Scale and Rotation

SIFT features at characteristic scales and
dominant orientations

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints.” /[JCV
60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Scale and Rotation

Rotate and set to
common scale

. Rotate and set to
iR St 4 common scale

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints.” /[JCV
60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT Descriptors
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1. Compute gradients
2. Build histogram (2x2 here, 4x4 in practice)

Gradients ignore global illumination changes

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” /JCV 60 (2), pp. 91-110,
2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT Descriptors

* In principle: build a histogram of the gradients

* In reality: quite complicated
» Gaussian weighting: smooth response
« Normalization: reduces illumination effects
» Clamping:
 Affine adaptation:



Properties of SIFT

« Can handle: up to ~60 degree out-of-plane rotation,
Changes of illumination
* Fast and efficient and lots of code available

Slide credit: N. Snavely



Feature Descriptors

Think of feature as some non-linear filter that maps
pixels to 128D feature

128D
vector x

Photo credit: N. Snavely



Using Descriptors

* Instance Matching
 Category recognition



Instance Matching

||1 — . 1'

Example credit: J. Hays



Instance Matching

X4 — Xg|| = 0.34
— Xg|| = 0.30
~ TS NS
40

X4

Example credit: J. Hays



2"d Nearest Neighbor Trick

Given a feature x, nearest neighbor to x is a good
match, but distances can't be thresholded.
Instead, find nearest neighbor and second nearest
neighbor. This ratio is a good test for matches:

Xg — X1NN

Xg — X2NN



2"d Nearest Neighbor Trick
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Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” /JCV 60 (2), pp. 91-110,
2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Category Recognition

Extract features from set of images
(Either SIFT or Raw Patches)

Figure: B. Liebe



Category Recognition

Build codebook of “concepts”
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Figure: B. Liebe



Category Representation

Represent image as histogram of concepts










Extra Reading for the Curious



Affine adaptation

Consider the second moment matrix of the window
containing the blob:

s A 0]
M= wxy) = =R A R
- I, I 0 A,

direction of the
fastest change

Recall: direction of
the slowest
U change
lu v] M = const

V

This ellipse visualizes the “characteristic shape” of the
W|ndOW Slide: S. Lazebnik



Affine adaptation example
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Scale-invariant regions (blobs)

Slide: S. Lazebnik



Affine adaptation example

Affine-adapted blobs

Slide: S. Lazebnik



