# Scales and Descriptors

#### EECS 442 – Prof. David Fouhey Winter 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442\_W19/

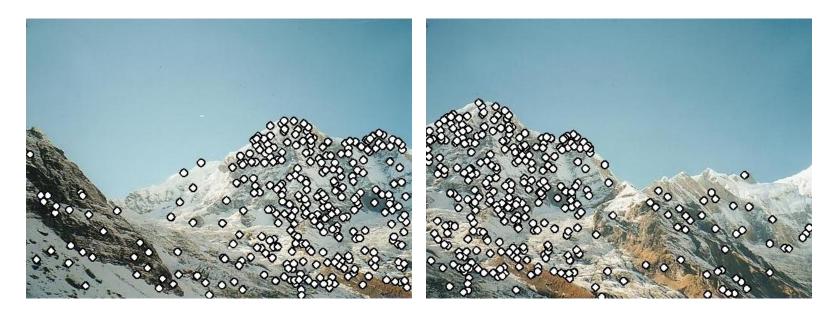
#### Administrivia

- Project proposal suggestion list out
  - Feel free to ask, pitch ideas in office hours or on piazza
- Homework 2 is out
- Homework 1 is being graded
  - So far looks overall very good!
  - We'll try to get it done fast, accurately, and fairly

#### Copying: Better Options Exist

- Usually painfully obvious even with obfuscation
- The graders are really smart
- I don't have many options here
- Submit it late (that's why we have late days), half-working (that's why we have partial credit), or take the zero on the homework
  - These really aren't a big deal in the grand scheme of things. You will almost certainly not care about doing poorly on a homework in even 1 year.
- If you're overwhelmed, talk to us

#### **Recap: Motivation**

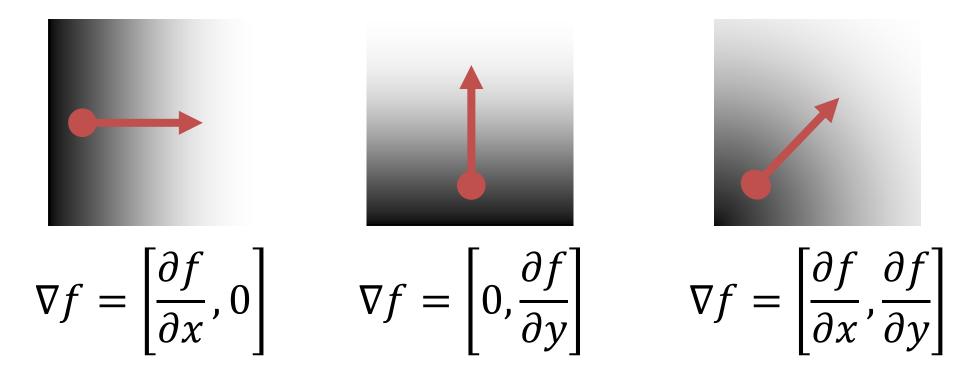


#### 1: find corners+features

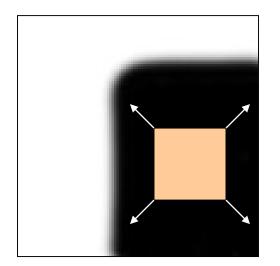
Image credit: M. Brown

#### Last Time

#### Image gradients – treat image like function of x,y – gives edges, corners, etc.



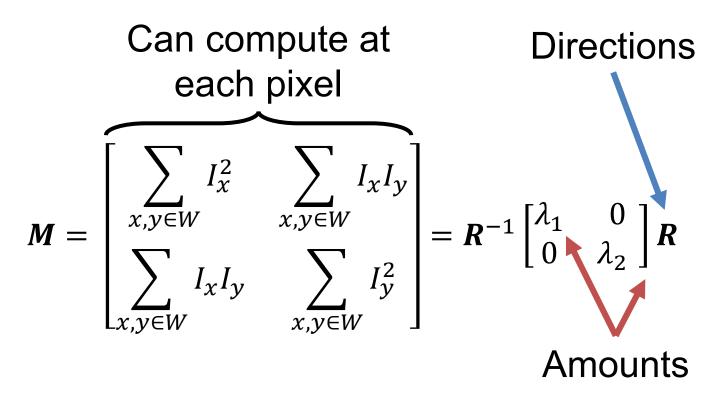
## Last Time – Corner Detection Can localize the location, or any shift $\rightarrow$ big intensity change.



"flat" region: no change in all directions "edge": no change along the edge direction "corner": significant change in all directions

#### **Corner Detection**

By doing a taylor expansion of the image, the second moment matrix tells us how quickly the image changes and in which directions.



#### In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w

$$\boldsymbol{M} = \begin{bmatrix} \sum_{x,y \in W} w(x,y) I_x^2 & \sum_{x,y \in W} w(x,y) I_x I_y \\ \sum_{x,y \in W} w(x,y) I_x I_y & \sum_{x,y \in W} w(x,y) I_y^2 \end{bmatrix}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

#### In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R

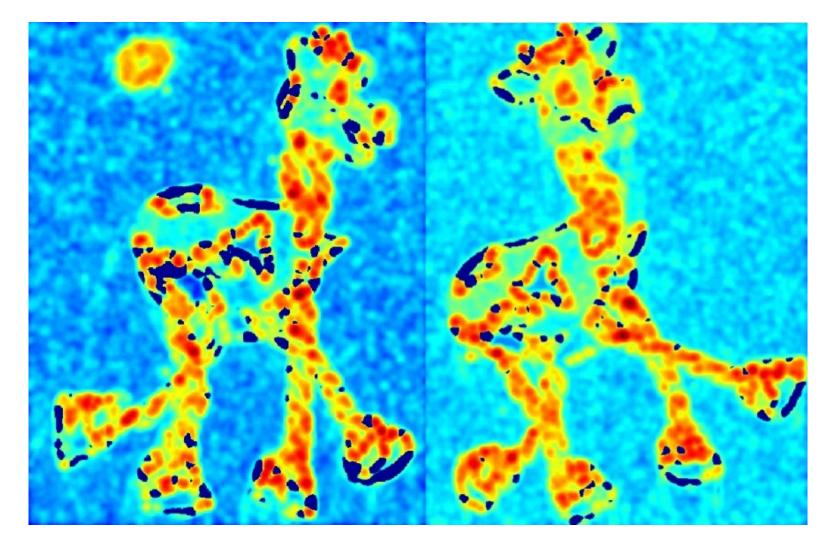
$$R = \det(\mathbf{M}) - \alpha \ trace(\mathbf{M})^{2}$$
$$= \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

#### Computing R



#### Computing R



#### In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R
- 4. Threshold R

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

#### Thresholded R



#### In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R
- 4. Threshold R
- 5. Take only local maxima (called non-maxima suppression)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

#### Thresholded



#### **Final Results**



#### **Desirable Properties**

If our detectors are repeatable, they should be:

- Invariant to some things: image is transformed and corners remain the same
- Covariant/equivariant with some things: image is transformed and corners transform with it.

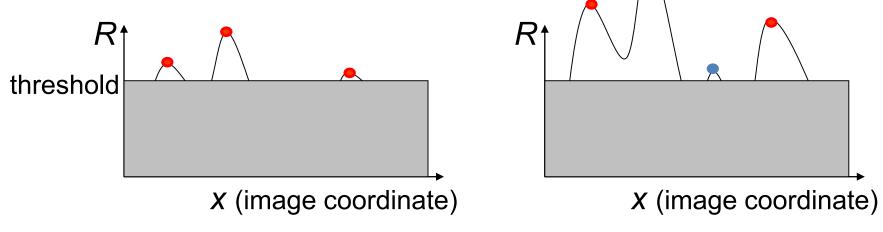
#### **Recall Motivating Problem**

#### Images may be different in lighting and geometry



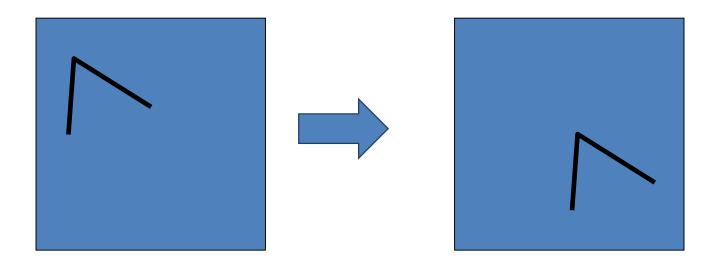
#### Affine Intensity Change $I_{new} = aI_{old} + b$

M only depends on derivatives, so *b* is irrelevant But *a* scales derivatives and there's a threshold



#### Partially invariant to affine intensity changes

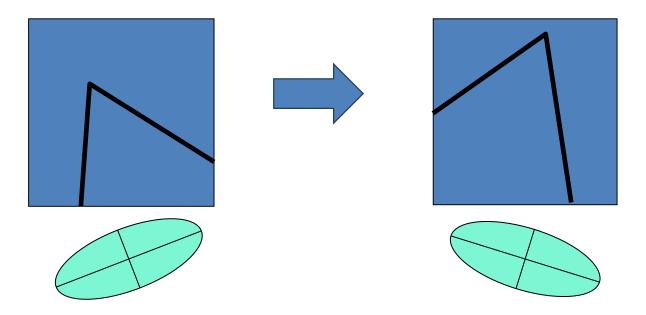
#### **Image Translation**



# All done with convolution. Convolution is translation equivariant.

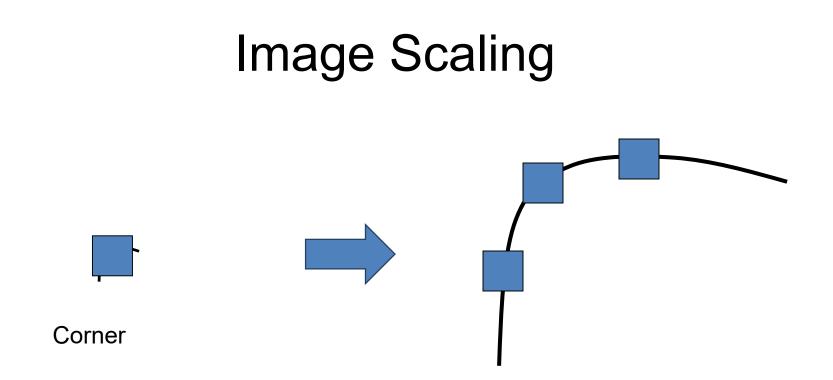
#### **Equivariant with translation**

#### **Image Rotation**



Rotations just cause the corner rotation matrix to change. Eigenvalues remain the same.

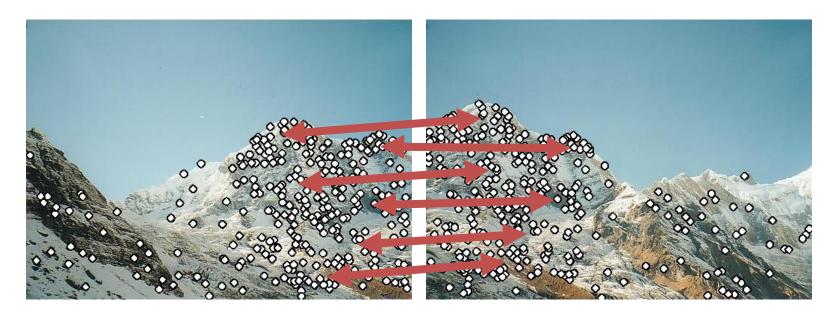
#### **Equivariant with rotation**



## One pixel can become many pixels and vice-versa.

#### Not equivariant with scaling How do we fix this?

#### **Recap: Motivation**



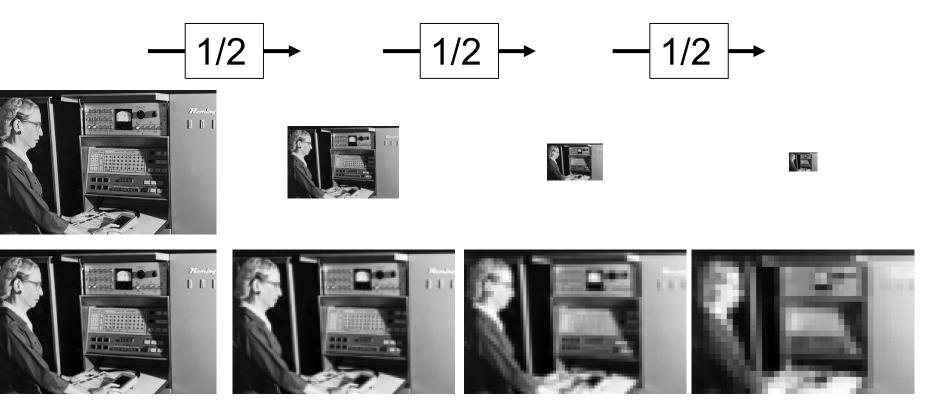
# 1: find corners+features2: match based on local image dataHow?

Image credit: M. Brown

#### Today

- Fixing scaling by making detectors in both location **and scale**
- Enabling matching between features by describing regions

#### Key Idea: Scale Left to right: each image is half-sized Upsampled with big pixels below



Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)

#### Key Idea: Scale Left to right: each image is half-sized If I apply a KxK filter, how much of the original image does it see in each image?

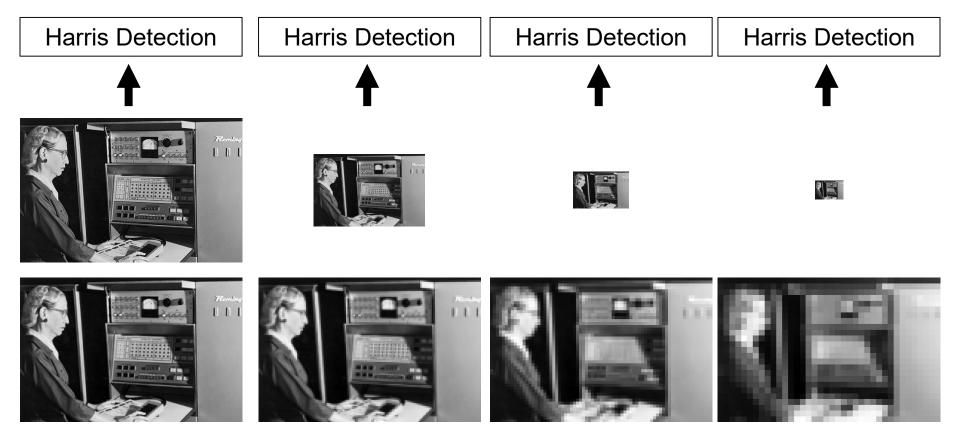
$$-1/2 \rightarrow -1/2 \rightarrow -1/2 \rightarrow$$



Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)

#### Solution to Scales

#### Try them all!



See: Multi-Image Matching using Multi-Scale Oriented Patches, Brown et al. CVPR 2005

Given a 50x16 person detector, how do I detect: (a) 250x80 (b) 150x48 (c) 100x32 (d) 25x8 people?









#### Detecting all the people The red box is a fixed size











#### Detecting all the people The red box is a fixed size











#### Detecting all the people The red box is a fixed size





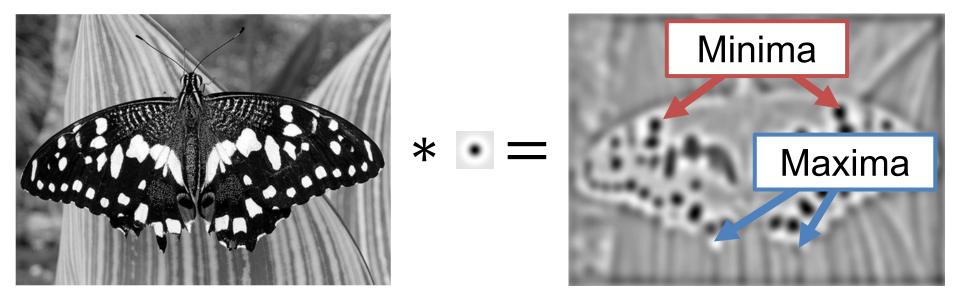






#### **Blob Detection**

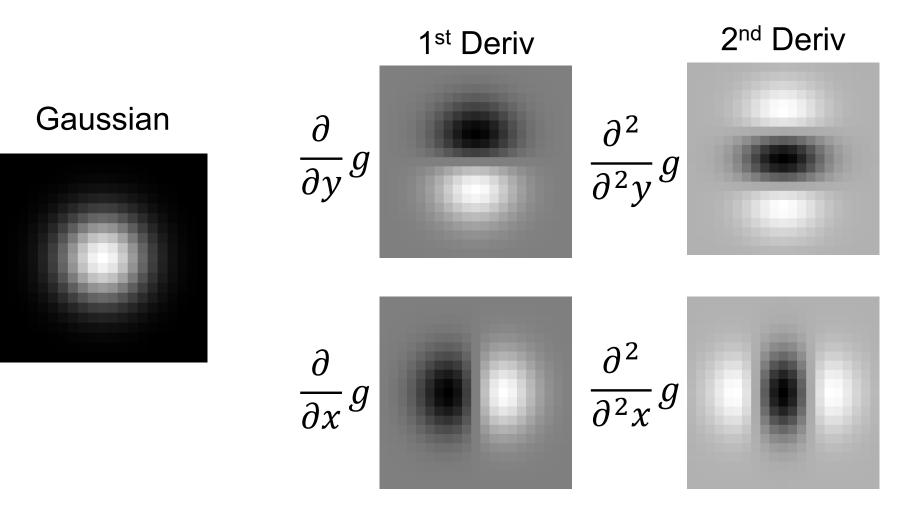
#### Another detector (has some nice properties)



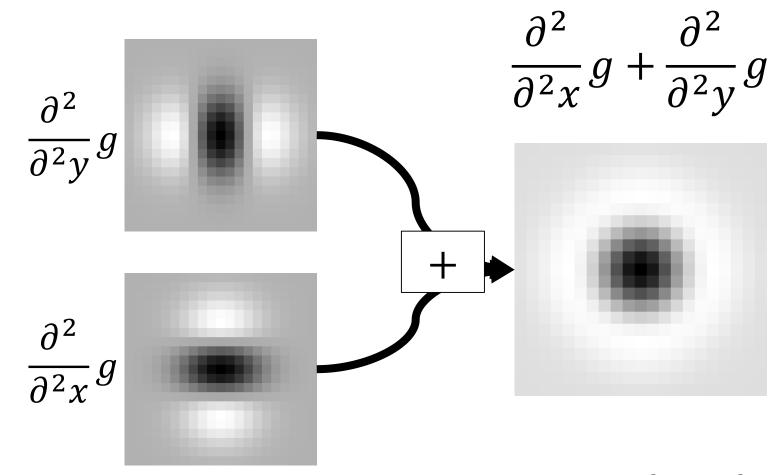
# Find maxima *and minima* of blob filter response in scale *and space*

Slide credit: N. Snavely

#### **Gaussian Derivatives**



#### Laplacian of Gaussian



Slight detail: for technical reasons, you need to scale the Laplacian.

$$\nabla_{norm}^2 = \sigma^2 \left( \frac{\partial^2}{\partial x^2} g + \frac{\partial^2}{\partial^2 y} g \right)$$

#### **Edge Detection with Laplacian**

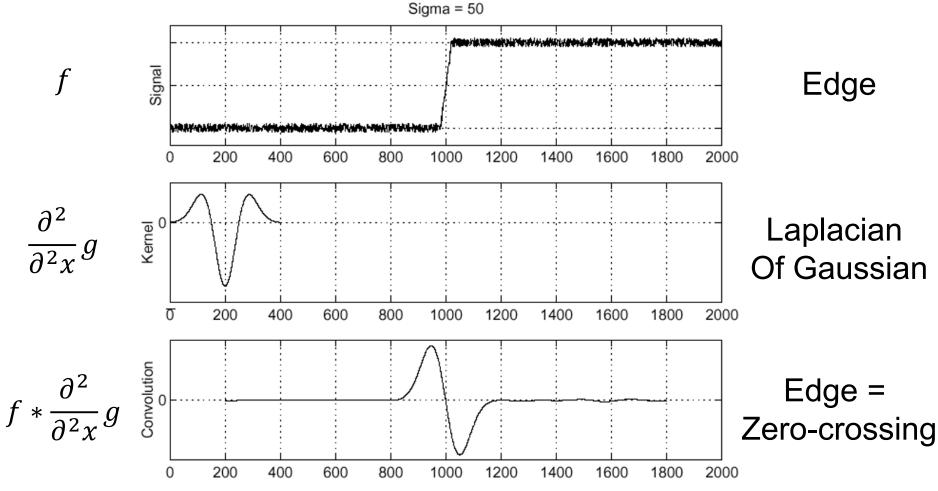


Figure credit: S. Seitz

#### **Blob Detection with Laplacian**

Edge: zero-crossing Blob: superposition of zero-crossing

Remember: can scale signal or filter

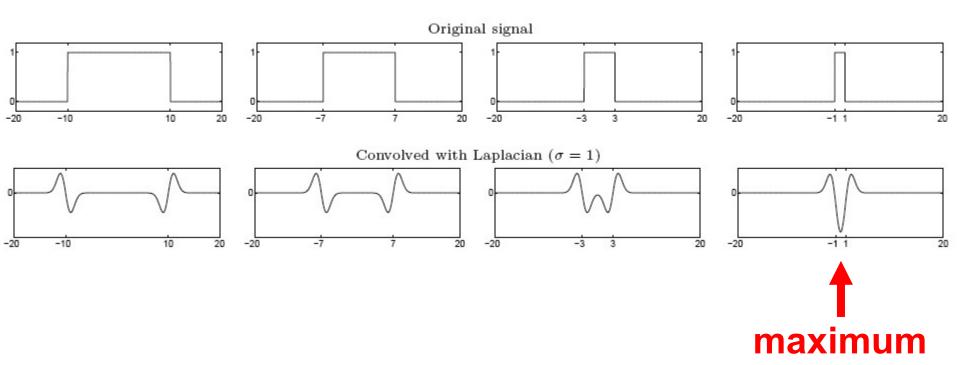
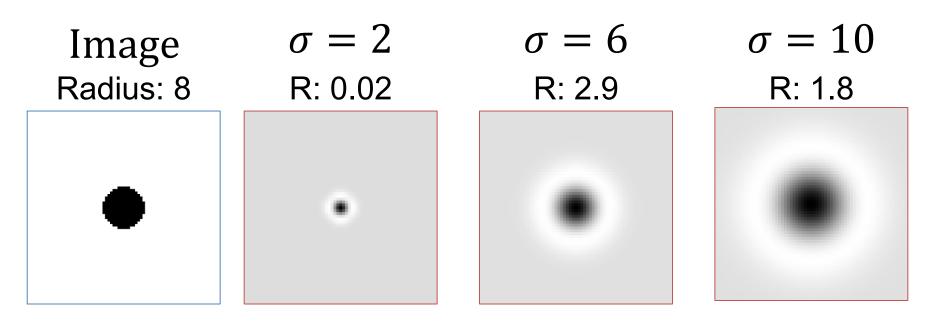


Figure credit: S. Lazebnik

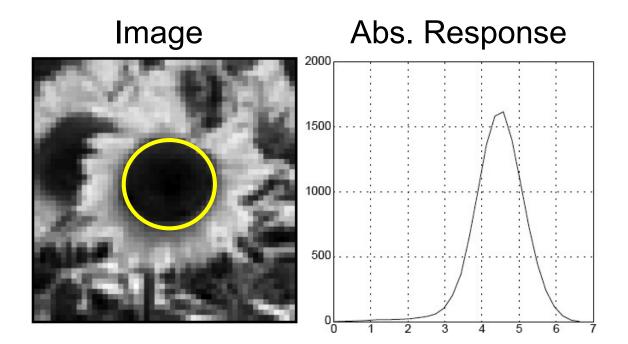
#### Scale Selection

Given binary circle and Laplacian filter of scale  $\sigma$ , we can compute the response as a function of the scale.



#### **Characteristic Scale**

## Characteristic scale of a blob is the scale that produces the maximum response



Slide credit: S. Lazebnik. For more, see: T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> International Journal of Computer Vision **30** (2): pp 77--116.

#### Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales

#### Scale-space blob detector: Example



Slide credit: S. Lazebnik

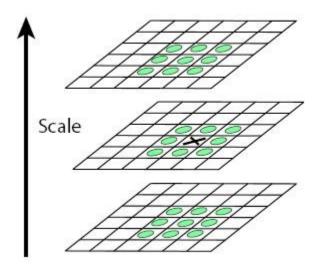
#### Scale-space blob detector: Example



sigma = 11.9912

#### Scale-space blob detector

- 1. Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scale-space



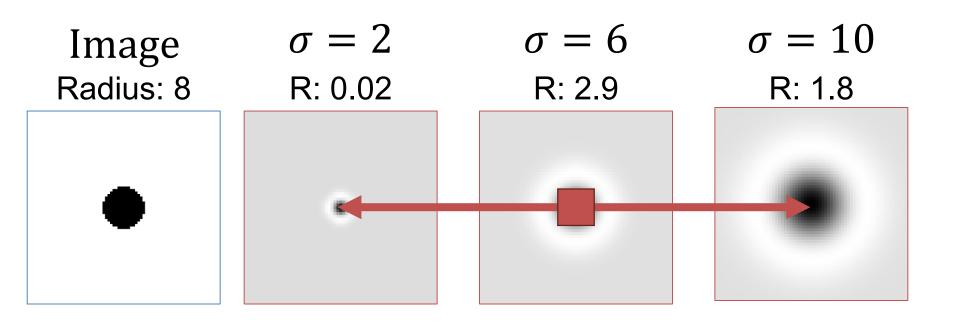
## (After Class) Finding Maxima

Point i,j is maxima (minima if you flip sign) in image I if:

```
for y=range(i-1,i+1+1):
for x in range(j-1,j+1+1):
if y == i and x== j: continue
#below has to be true
I[y,x] < I[i,j]
```

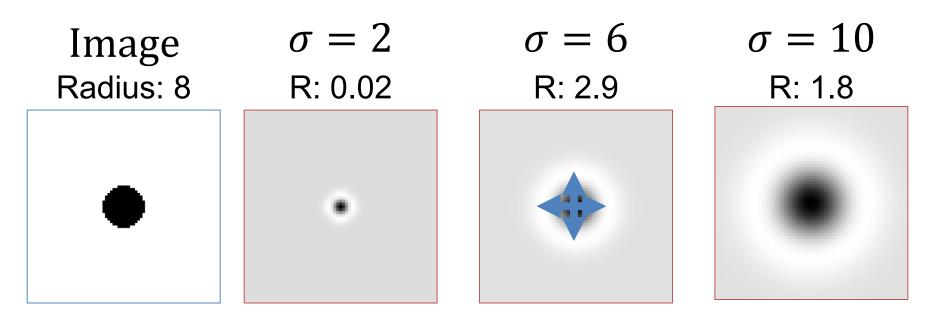
### (After Class) Scale Space

Red lines are the scale-space neighbors



## (After Class) Scale Space

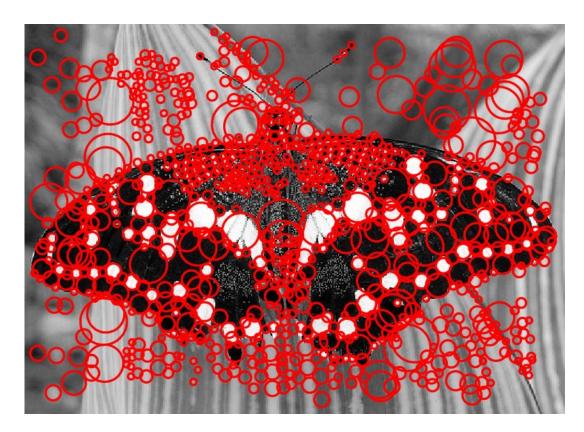
Blue lines are image-space neighbors (should be just one pixel over but you should get the point)



## (After Class) Finding Maxima

Suppose I[:,:,k] is image at scale k. Point i,j,k is maxima (minima if you flip sign) in image I if: for y=range(i-1,i+1+1): for x in range(j-1,j+1+1): for c in range(k-1,k+1+1): if y == i and x == j and c == k: continue #below has to be true I[y,x,c] < I[i,i,k]

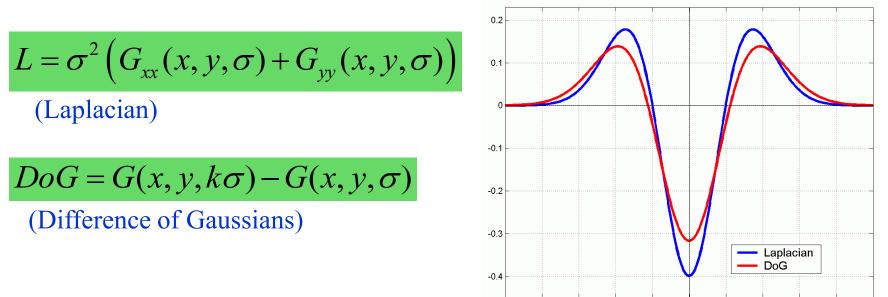
#### Scale-space blob detector: Example



Slide credit: S. Lazebnik

### Efficient implementation

• Approximating the Laplacian with a difference of Gaussians:



-5

-2

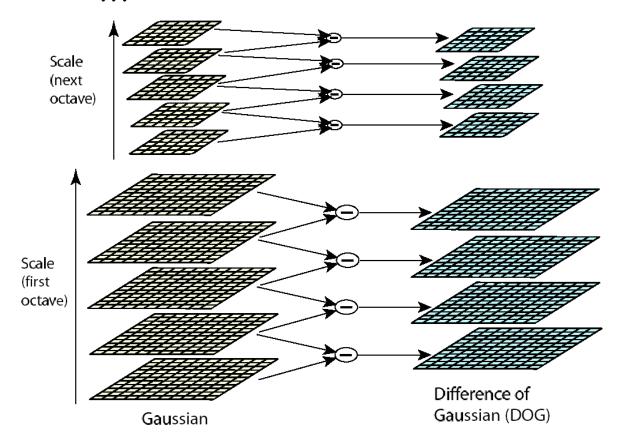
\_1

0

2

-3

#### **Efficient implementation**



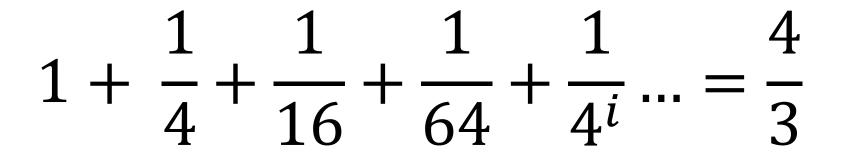
David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Slide credit: S. Lazebnik

#### Problem 1 Solved

- How do we deal with scales: try them all
- Why is this efficient?

Vast majority of effort is in the first and second scales



## Problem 2 – Describing Features

Image – 40

1/2 size, rot. 45° Lightened+40







100x100 crop at Glasses





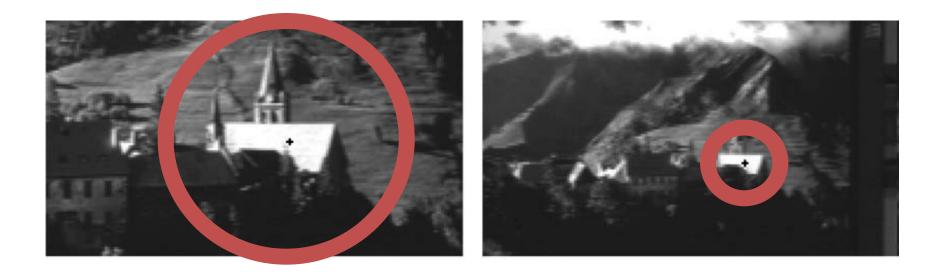
## Problem 2 – Describing Features

Once we've found a corner/blobs, we can't just use the image nearby. What about:

- 1. Scale?
- 2. Rotation?
- 3. Additive light?

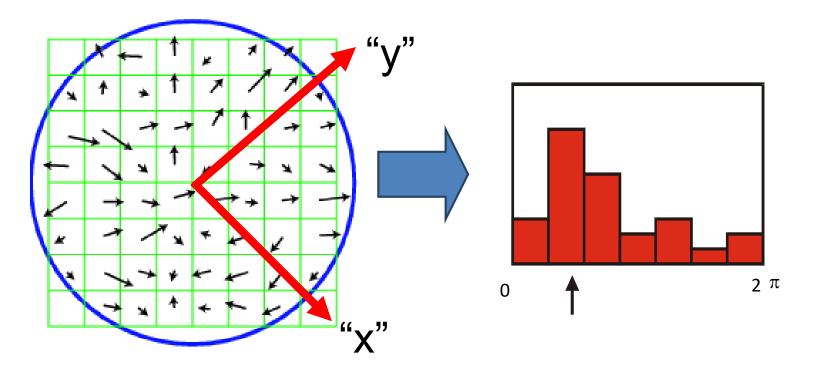
### Handling Scale

## Given characteristic scale (maximum Laplacian response), we can just rescale image



## Handling Rotation

#### Given window, can compute dominant orientation and then rotate image



## Scale and Rotation SIFT features at characteristic scales and dominant orientations



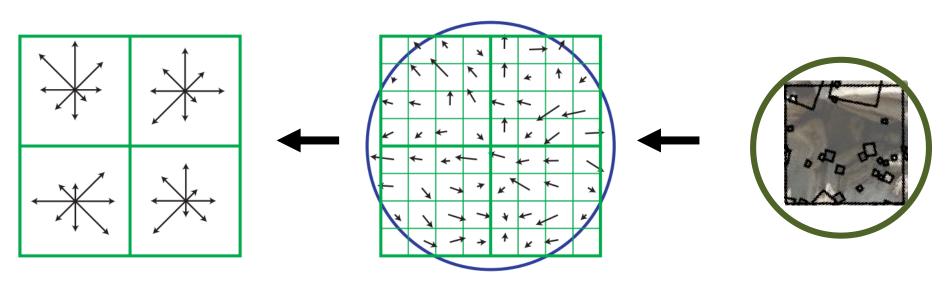
Picture credit: S. Lazebnik. Paper: David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

#### Scale and Rotation



Picture credit: S. Lazebnik. Paper: David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

#### **SIFT Descriptors**



- 1. Compute gradients
- 2. Build histogram (2x2 here, 4x4 in practice) Gradients ignore global illumination changes

Figure from David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

## SIFT Descriptors

- In principle: build a histogram of the gradients
- In reality: quite complicated
  - Gaussian weighting: smooth response
  - Normalization: reduces illumination effects
  - Clamping:
  - Affine adaptation:

## **Properties of SIFT**

- Can handle: up to ~60 degree out-of-plane rotation, Changes of illumination
- Fast and efficient and lots of code available



### **Feature Descriptors**

# Think of feature as some non-linear filter that maps pixels to 128D feature

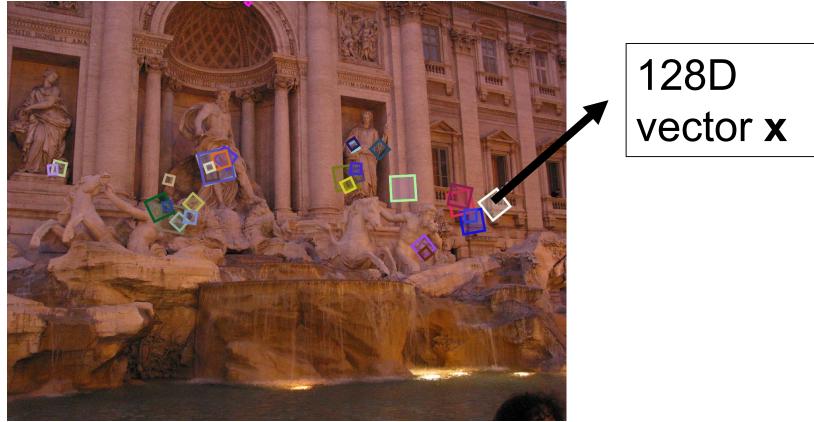
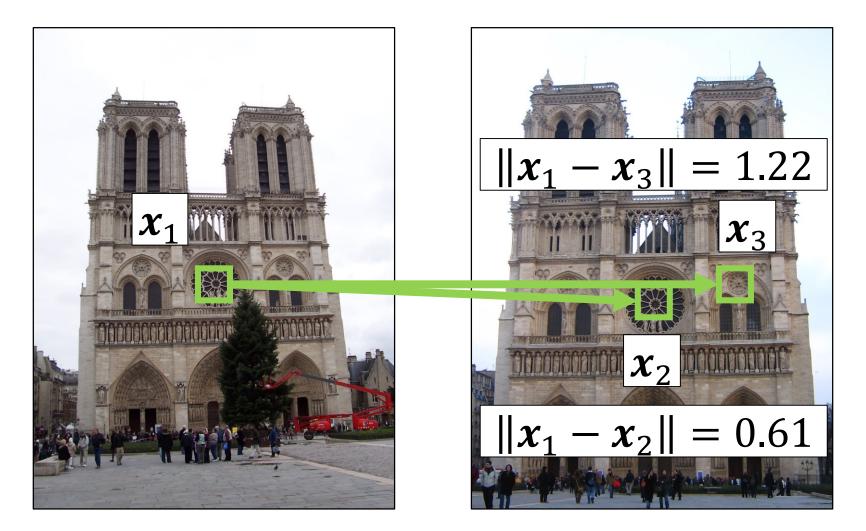


Photo credit: N. Snavely

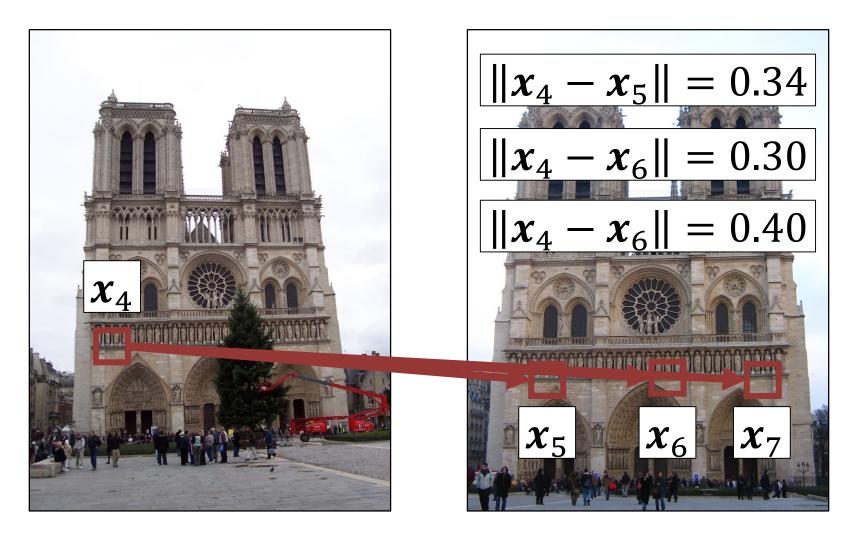
## **Using Descriptors**

- Instance Matching
- Category recognition

#### **Instance Matching**



#### **Instance Matching**



Example credit: J. Hays

## 2<sup>nd</sup> Nearest Neighbor Trick

- Given a feature x, nearest neighbor to x is a good match, but distances can't be thresholded.
- Instead, find nearest neighbor and second nearest neighbor. This ratio is a good test for matches:

$$r = \frac{\|\boldsymbol{x}_q - \boldsymbol{x}_{1NN}\|}{\|\boldsymbol{x}_q - \boldsymbol{x}_{2NN}\|}$$

### 2<sup>nd</sup> Nearest Neighbor Trick

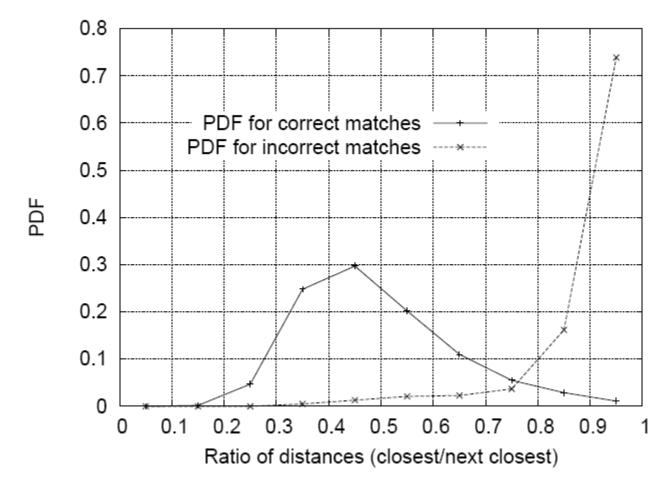
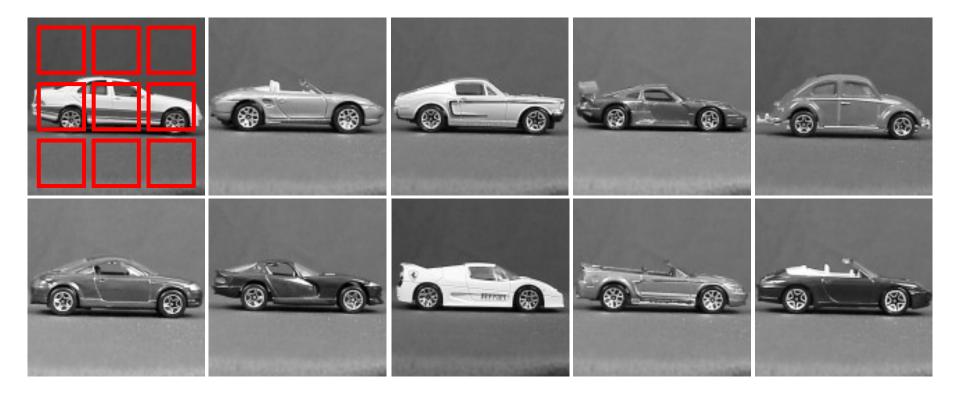


Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

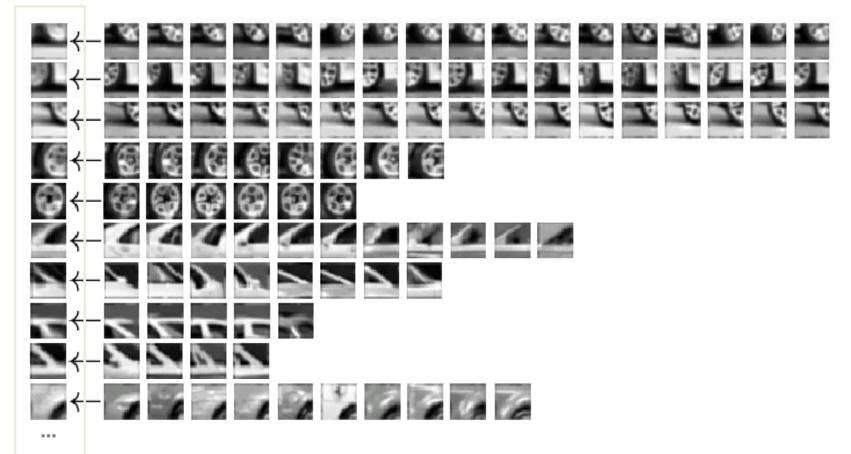
## **Category Recognition**

# Extract features from set of images (Either SIFT or Raw Patches)

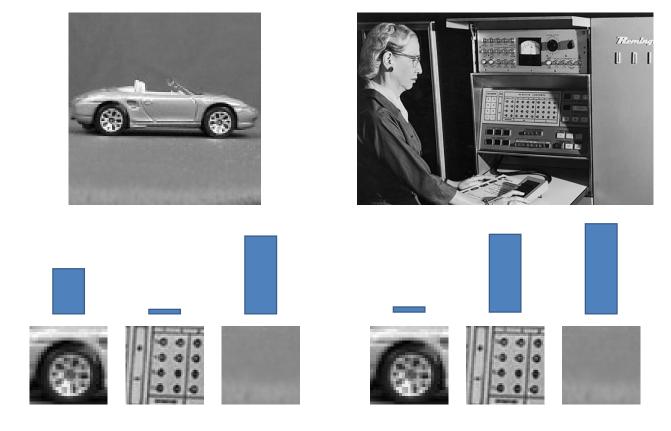


## **Category Recognition**

Build codebook of "concepts"



## Category Representation Represent image as histogram of concepts



### Extra Reading for the Curious

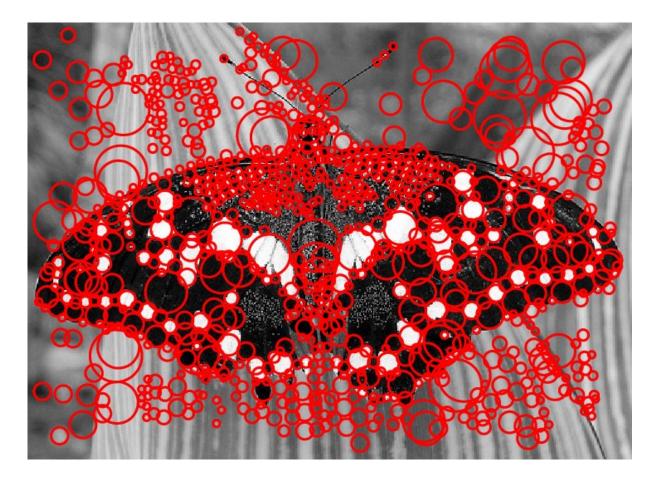
## Affine adaptation

Consider the second moment matrix of the window containing the blob:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$
  
direction of the  
fastest change  
$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$
  
$$(\lambda_{\text{max}})^{-1/2} (\lambda_{\text{min}})^{-1/2}$$

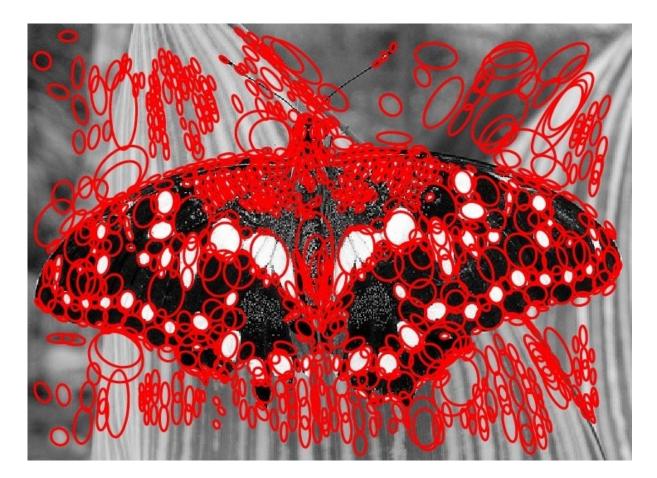
This ellipse visualizes the "characteristic shape" of the window Slide: S. Lazebnik

#### Affine adaptation example



Scale-invariant regions (blobs)

#### Affine adaptation example



Affine-adapted blobs