Filtering

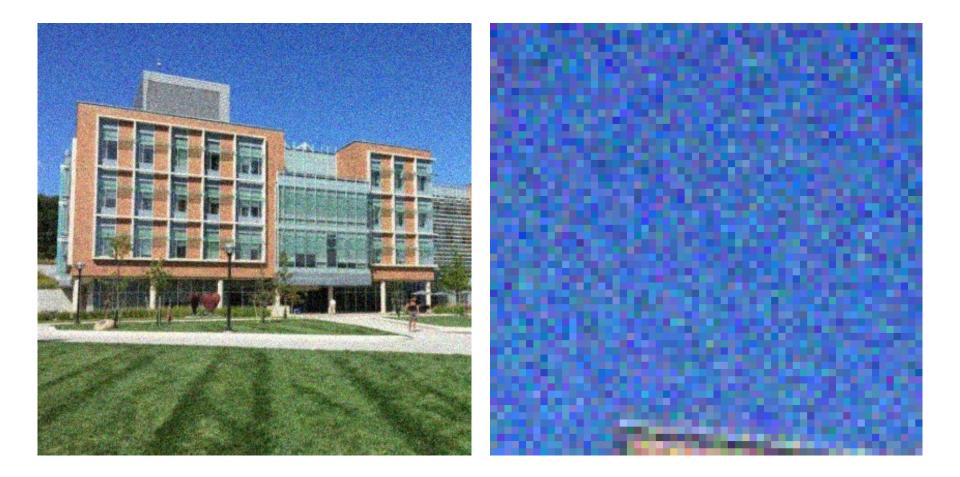
EECS 442 – Prof. David Fouhey

Winter 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W19/

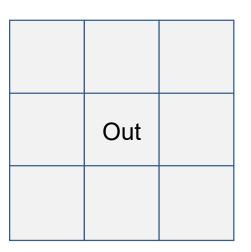
Note: I'll ask the front row on the right to participate in a demo. All you have to do is say a number that I'll give to you. If you don't want to, it's fine, but don't sit in the front.

Let's Take An Image



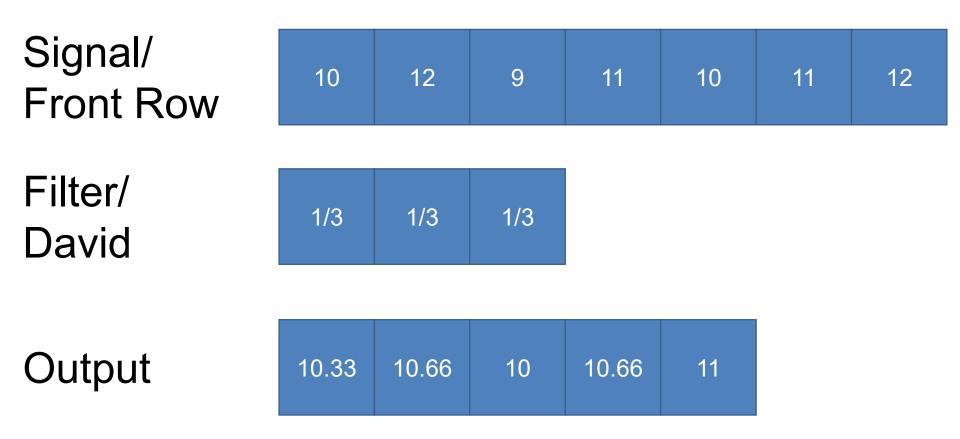
Let's Fix Things

- We have noise in our image
- Let's replace each pixel with a weighted average of its neighborhood
- Weights are *filter kernel*



1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

1D Case



Input

Filter

Output

111	I12	I13	114	I15	I16
I21	122	123	124	125	126
131	132	133	134	135	136
141	142	143	144	145	146
151	152	153	154	155	156

F11	F12	F13
F21	F22	F23
F31	F32	F33

011	012	O13	014
O21	O22	O23	O24
O31	O32	O33	O34

Input & Filter

F11	F12	F13	114	I15	I16
F21	F22	F23	124	125	126
F31	F32	F33	134	135	136
I41	142	143	144	145	146
151	152	153	154	155	156

Output

O11

O11 = I11*F11 + I12*F12 + ... + I33*F33

Input & Filter

I11	F11	F12	F13	l15	116
I21	F21	F22	F23	125	126
131	F31	F32	F33	135	136
141	142	143	144	I45	146
151	152	153	154	155	156

O11	O12

Output

O12 = I12*F11 + I13*F12 + ... + I34*F33

Input	

Filter

Output

111	I12	I13	114	I15	I16
I21	122	123	124	125	126
131	132	133	134	135	136
I41	142	143	144	145	I46
151	152	153	154	155	156

F11	F12	F13
F21	F22	F23
F31	F32	F33

How many times can we apply a 3x3 filter to a 5x6 image?

Input

Filter

Output

111	I12	I13	I14	I15	116
I21	122	123	124	125	126
131	132	133	134	135	136
I41	142	143	144	145	I46
151	152	153	154	155	156

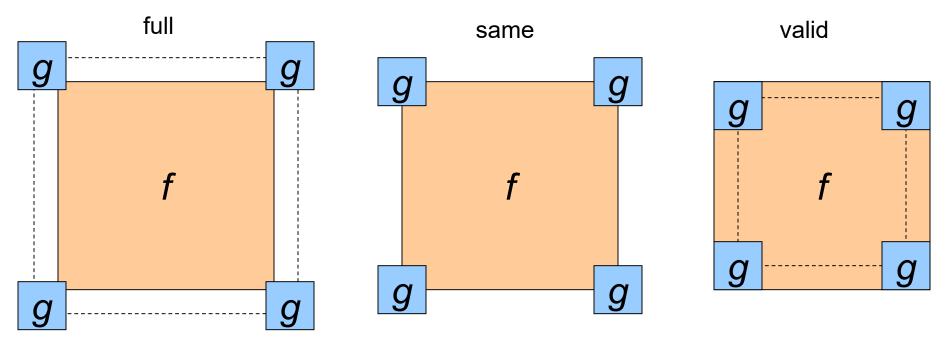
F11	F12	F13
F21	F22	F23
F31	F32	F33

011	012	O13	O14
O21	O22	O23	O24
O31	O32	O33	O34

Oij = Iij*F11 + Ii(j+1)*F12 + ... + I(i+2)(j+2)*F33

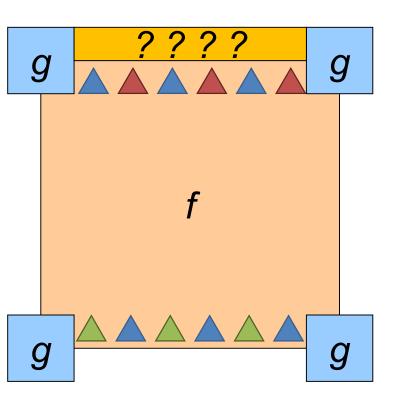
Painful Details – Edge Cases Convolution doesn't keep the whole image. Suppose **f** is the image and **g** the filter.

Full – any part of g touches f. Same – same size as f;
Valid – only when filter doesn't fall off edge.



f/g Diagram Credit: D. Lowe

Painful Details – Edge Cases What to about the "?" region?



Symm: fold sides over



Circular/Wrap: wrap around

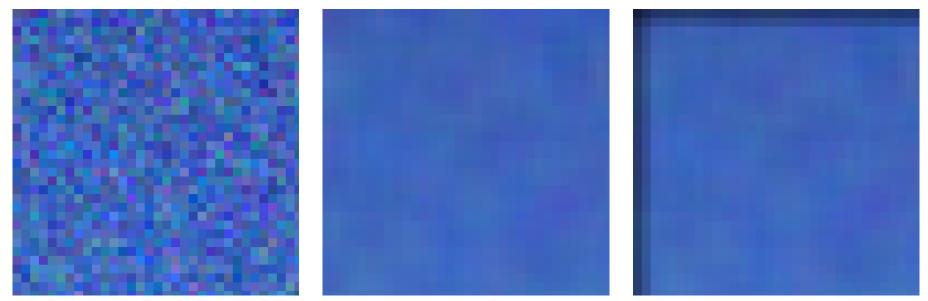
pad/fill: add value, often 0

Painful Details – Does it Matter?

(I've applied the filter per-color channel) Which padding did I use and <u>why</u>?

Input Image

Box Filtered ???



Painful Details – Does it Matter?

(I've applied the filter per-color channel)

Input Image

Box Filtered Symm Pad

Box Filtered Zero Pad

Original

0	0	0
0	1	0
0	0	0

?

Slide Credit: D. Lowe

Original

0	0	0
0	1	0
0	0	0

The Same!

Original

0	0	0
0	0	1
0	0	0

?

Slide Credit: D. Lowe

Original

0	0	0
0	0	1
0	0	0



Shifted <u>LEFT</u> 1 pixel



Original

0	1	0
0	0	0
0	0	0

?

Slide Credit: D. Lowe

Original

0	1	0
0	0	0
0	0	0

Shifted <u>DOWN</u> 1 pixel

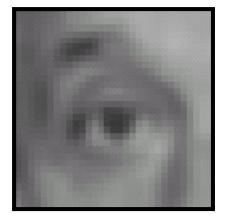
Original

Slide Credit: D. Lowe

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Original

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9



Blur (Box Filter)

Original

0	0	0
0	2	0
0	0	0

7

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Original

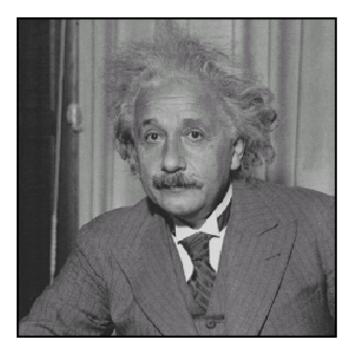
0	0	0
0	2	0
0	0	0

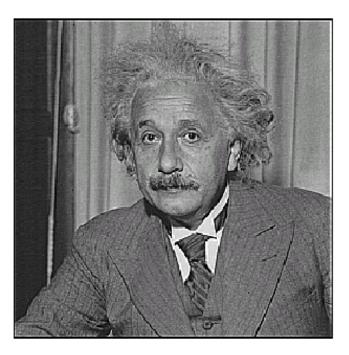
1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9



Sharpened (Acccentuates difference from local average)

Sharpening





before

after

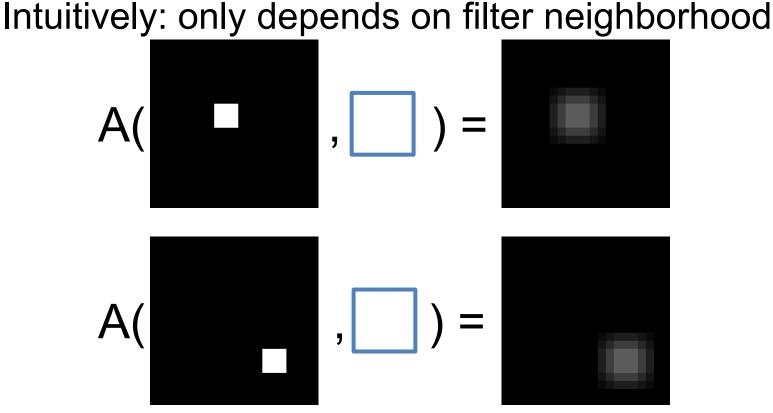
Properties – Linear

Assume: I image f1, f2 filters **Linear:** apply(I,f1+f2) = apply(I,f1) + apply(I,f2) I is a box on black, and and f1, f2 are boxes

Note: I am showing filters un-normalized and blown up. They're a smaller box filter (i.e., each entry is 1/(size^2))

Properties – Shift-Invariant

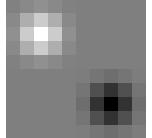
Assume: I image, f filter **Shift-invariant:** shift(apply(I,f)) = apply(shift(I,f))



Painful Details – Signal Processing

Often called "convolution". *Actually* crosscorrelation.

Cross-Correlation (Original Orientation)

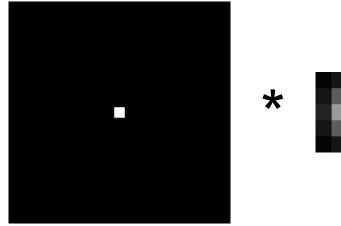


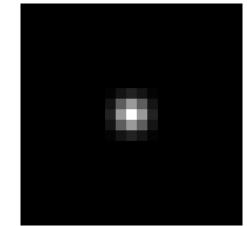
Convolution (Flipped in x and y)



Properties of Convolution

- Any shift-invariant, linear operation is a convolution
- Commutative: f * g = g * f
- Associative: (f * g) * h = f * (g * h)
- Distributes over +: f * (g + h) = f * g + f * h
- Scalars factor out: kf * g = f * kg = k (f * g)
- Identity (a single one with all zeros):





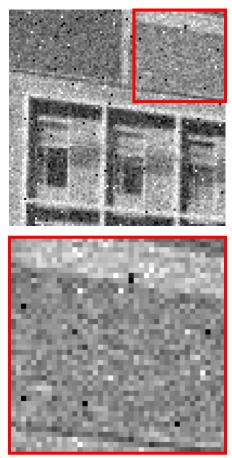
Property List: K. Grauman

Questions?

- Nearly everything onwards is a convolution.
- This is important to get right.

Smoothing With A Box Intuition: if filter touches it, it gets a contribution.

Input



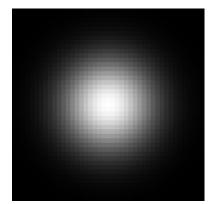
Box Filter

Solution – Weighted Combination

Intuition: weight contributions according to closeness to center.

$$Filter_{ij} \propto 1$$

$$Filter_{ij} \propto \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$



Recognize the Filter?

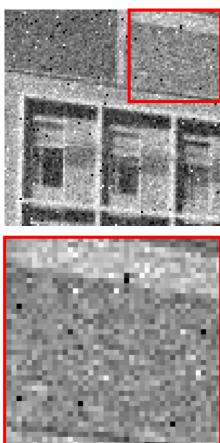
It's a Gaussian!

$$Filter_{ij} \propto \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)$$

0.003	0.013	0.022	0.013	0.003 0.013 0.022 0.013 0.003
0.013	0.060	0.098	0.060	0.013
0.022	0.098	0.162	0.098	0.022
0.013	0.060	0.098	0.060	0.013
0.003	0.013	0.022	0.013	0.003

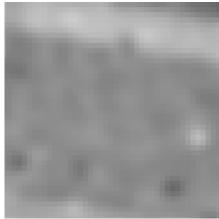
Smoothing With A Box & Gauss Still have some speckles, but it's not a big box

Input

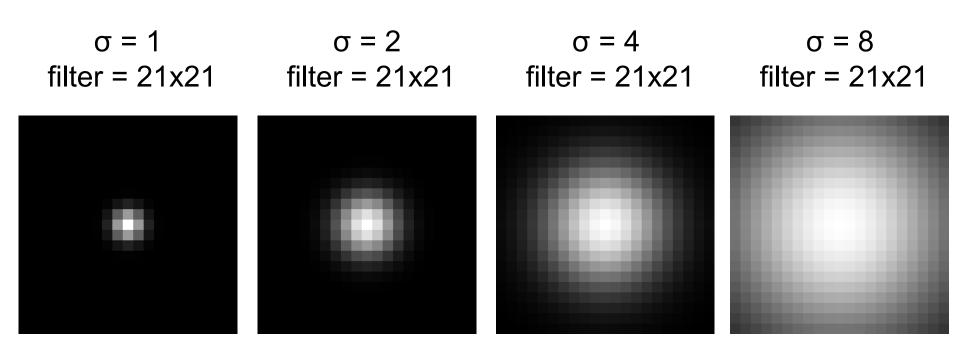


Box Filter

Gauss. Filter

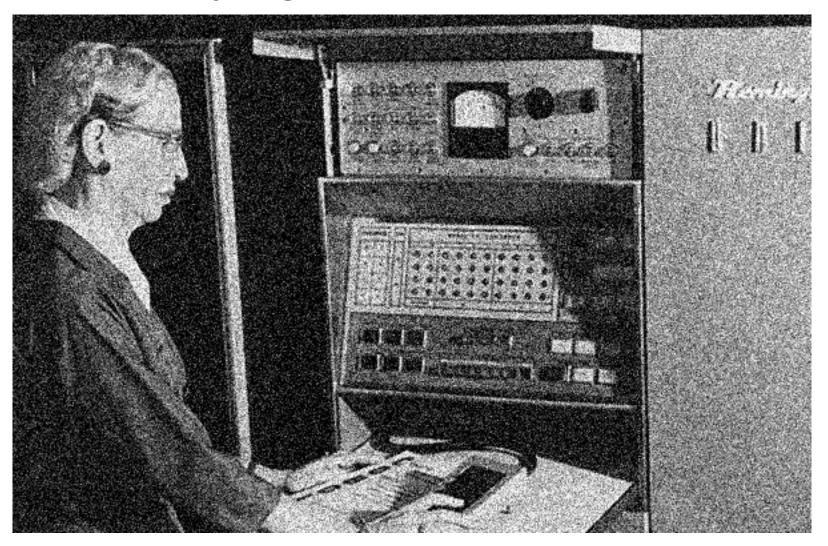


Gaussian Filters



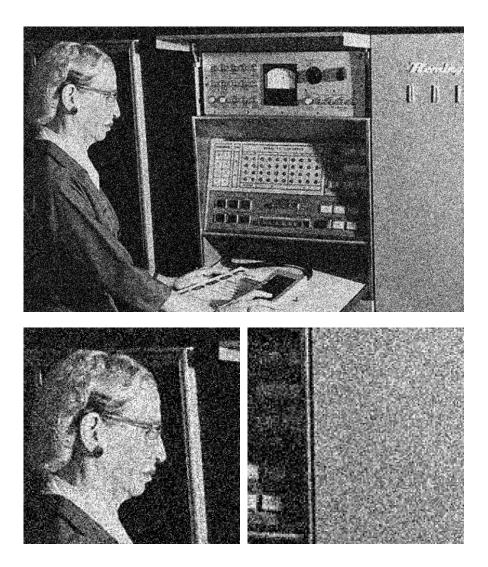
Note: filter visualizations are independently normalized throughout the slides so you can see them better

Applying Gaussian Filters

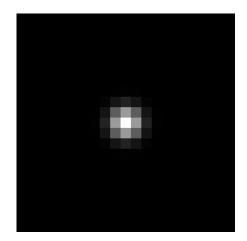


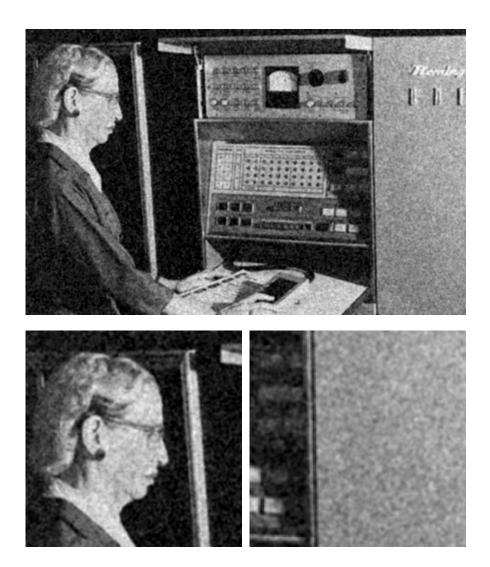
Applying Gaussian Filters

Input Image (no filter)

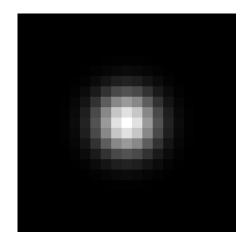


σ = 1

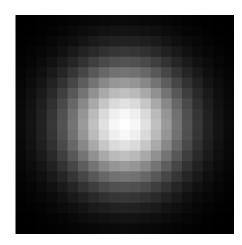




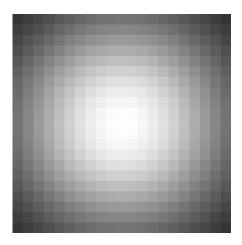
σ = 2

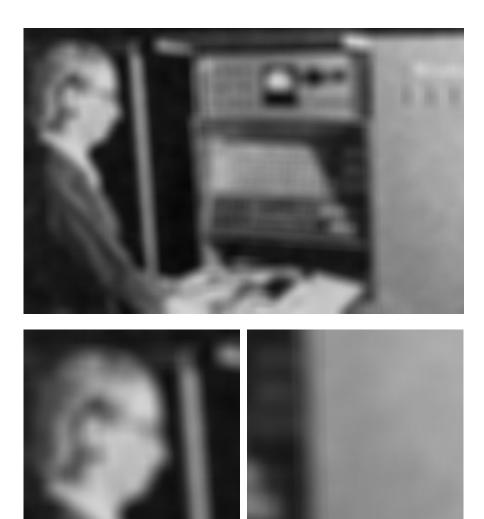


 $\sigma = 4$



 $\sigma = 8$

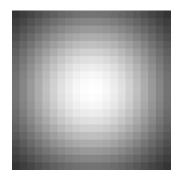


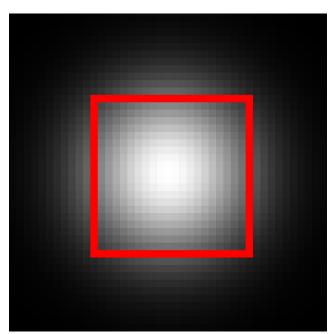


Picking a Filter Size

Too small filter \rightarrow bad approximation Want size $\approx 6\sigma$ (99.7% of energy) Left far too small; right slightly too small!

$$\sigma$$
 = 8, size = 21 σ = 8, size = 43





Runtime Complexity

```
Image size = NxN = 6x6
Filter size = MxM = 3x3
```

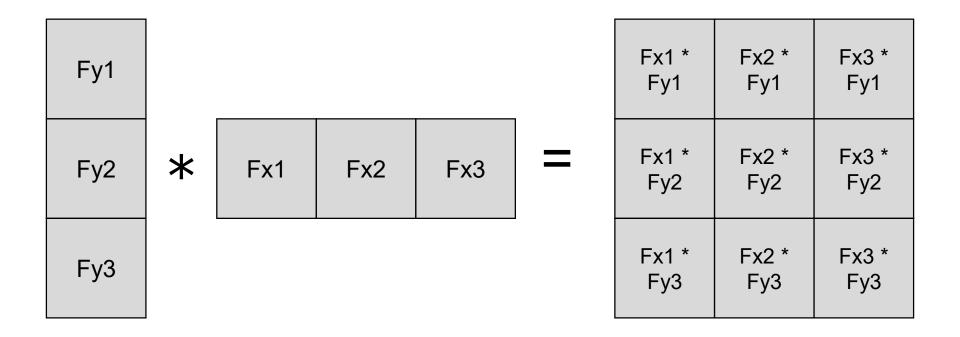
111	l12	113	114	l15	116
I21	F11	F12	F13	125	126
131	F21	F22	F23	135	136
l41	F31	F32	F33	145	146
151	152	153	154	155	156
161	l62	163	164	165	166

for ImageY in range(N): for ImageX in range(N): for FilterY in range(M): for FilterX in range(M):

Time: $O(N^2M^2)$

Separability

Conv(vector, transposed vector) \rightarrow outer product



Separability

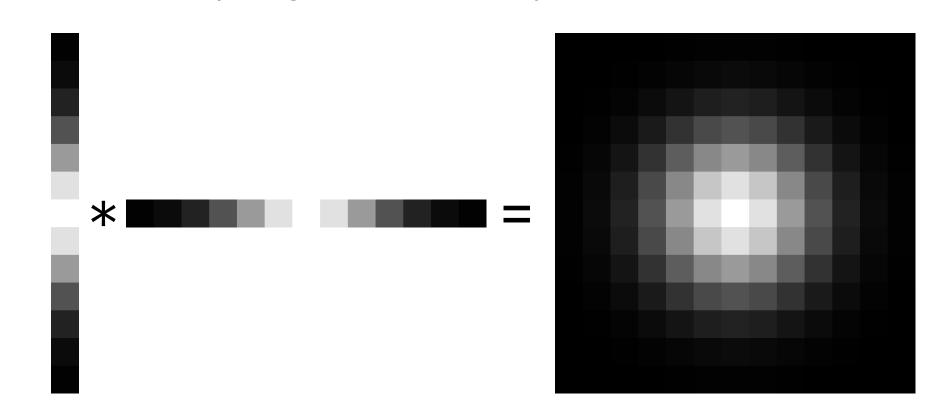
$$Filter_{ij} \propto \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)$$

≯

$$Filter_{ij} \propto \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{y^2}{2\sigma^2}\right)$$

Separability

1D Gaussian * 1D Gaussian = 2D Gaussian Image * 2D Gauss = Image * (1D Gauss * 1D Gauss) = (Image * 1D Gauss) * 1D Gauss



Runtime Complexity

```
Image size = NxN = 6x6
Filter size = Mx1 = 3x1
```

111	112	113	114	l15	I16
I21	F1	123	124	125	126
131	F2	133	134	135	136
141	F3	143	144	145	I46
151	152	153	154	155	156
l61	162	163	164	165	166

for ImageY in range(N): for ImageX in range(N): for FilterY in range(M):

for ImageY in range(N): for ImageX in range(N): for FilterX in range(M):

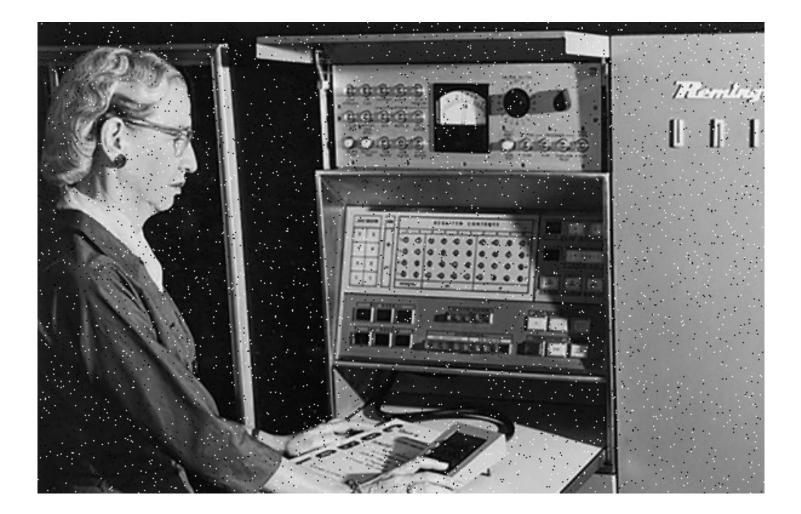
What are my compute savings for a 13x13 filter?

Time: O(N²M)

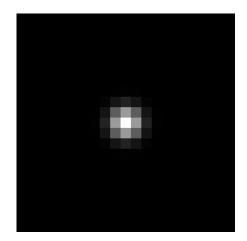
Why Gaussian?

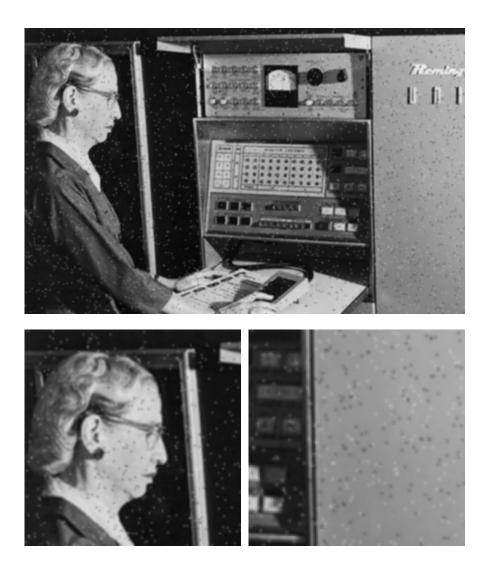
Gaussian filtering removes parts of the signal above a certain frequency. Often noise is high frequency and signal is low frequency.

Where Gaussian Fails



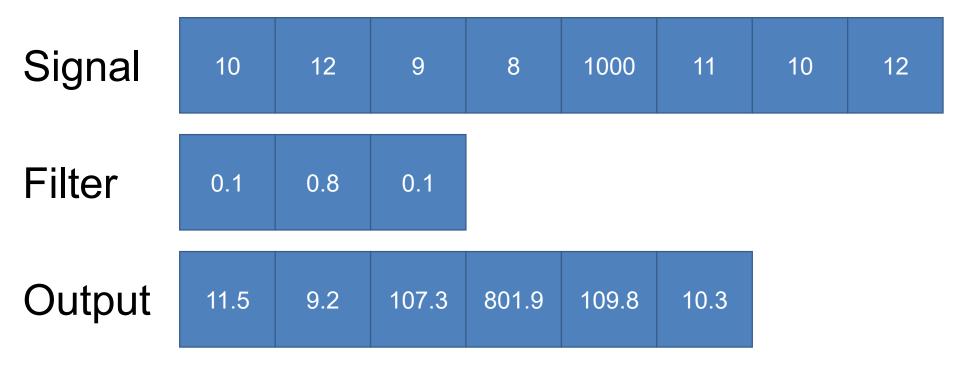
σ = 1





Why Does This Fail?

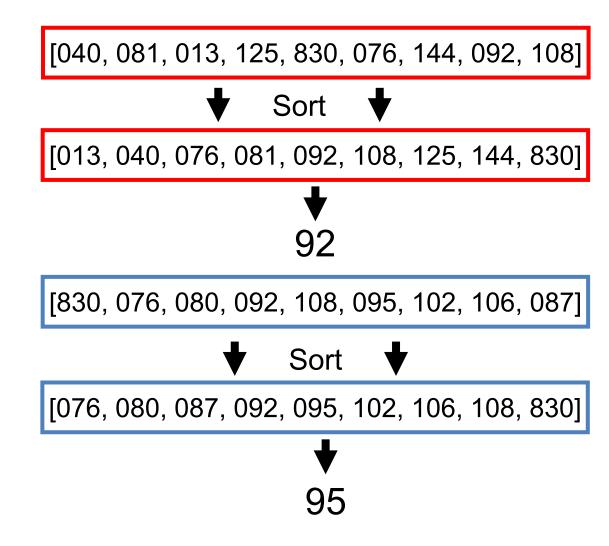
Means can be arbitrarily distorted by outliers



What else is an "average" other than a mean?

Non-linear Filters (2D)

40	81	13	22
125	830	76	80
144	92	108	95
132	102	106	87



Applying Median Filter

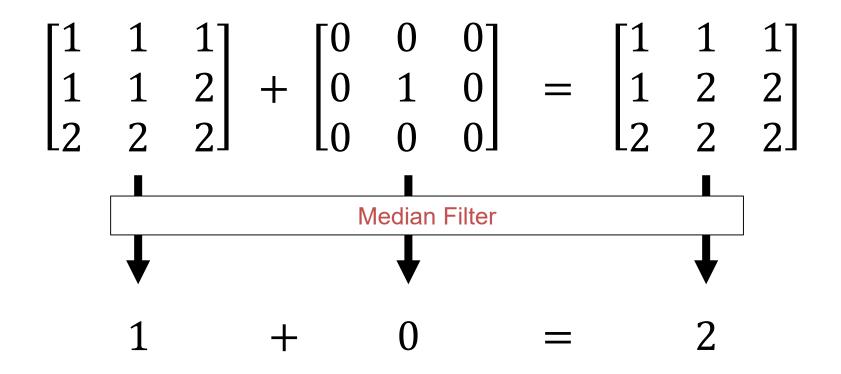
Median Filter (size=3)



Applying Median Filter

Median Filter (size = 7)

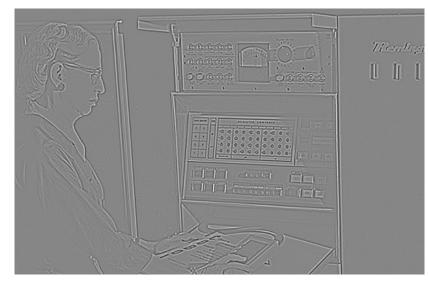
Is Median Filtering Linear?



Some Examples of Filtering

Filtering – Sharpening Image Smoothed

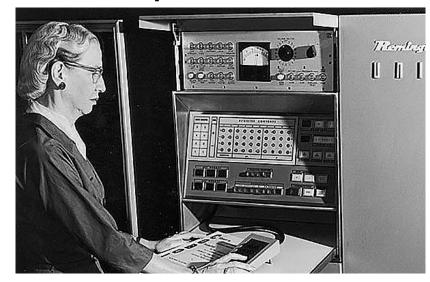
Details



Filtering – Extreme Sharpening Image Details

+α

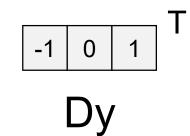
"Sharpened" α=10

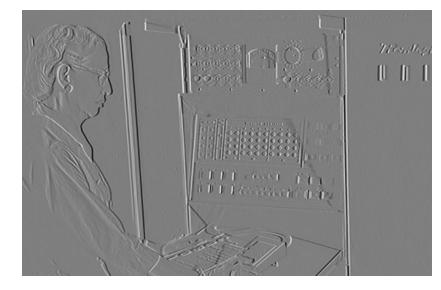


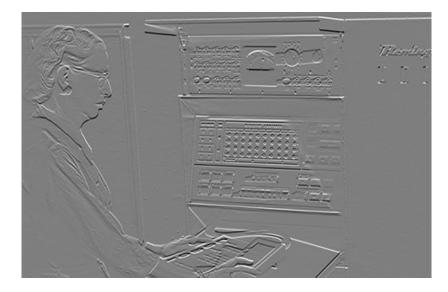
Filtering

What's this Filter?

Dx





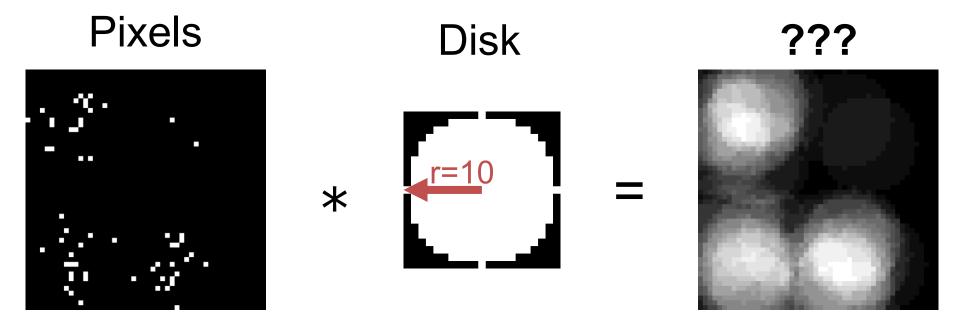


Filtering – Derivatives

$(Dx^2 + Dy^2)^{1/2}$

Filtering – Counting

How many "on" pixels have 10+ neighbors within 10 pixels?

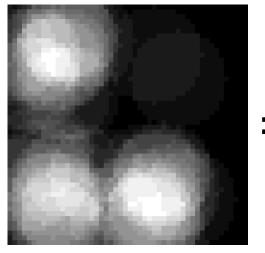


Filtering – Counting

How many "on" pixels have 10+ neighbors within 10 pixels?

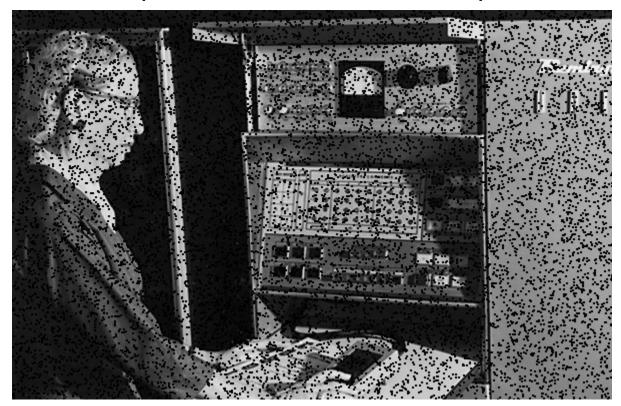
Χ

Density



Answer

Filtering – Missing Data Oh no! Missing data! (and we know where)

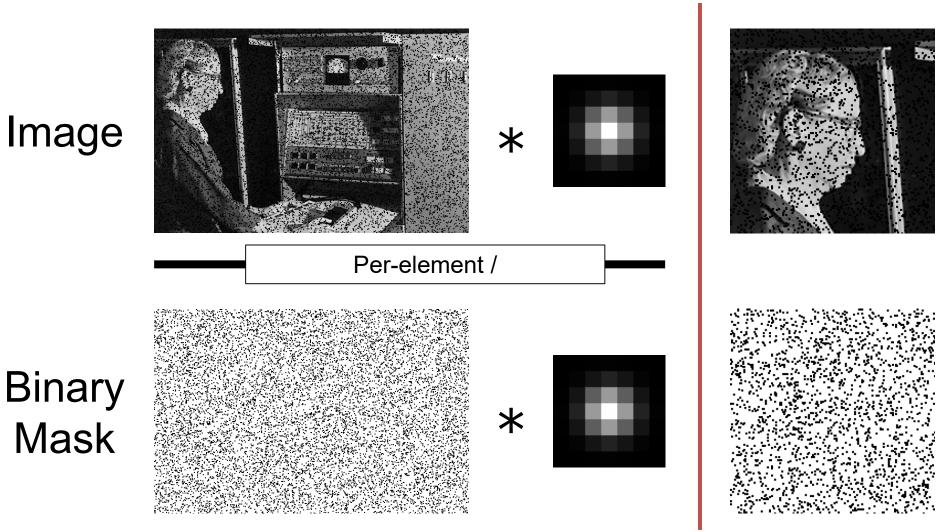


Common with many non-normal cameras (e.g., depth cameras)

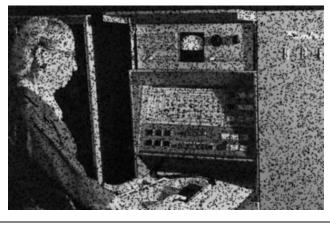
Aside (Added after class)

- Element-wise operations on matrices A,B:
- Addition (same as normal):
 - $Out_{ij} = A_{ij} + B_{ij}$
- Division:
 - $Out_{ij} = A_{ij} / B_{ij}$
- Multiplication (aka Hadamard Product):
 - $Out_{ij} = A_{ij} * B_{ij}$

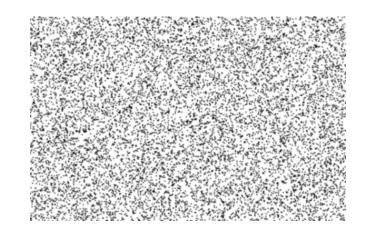
Not typically taught in entry-level linear algebra. Common when working with real matrix data.

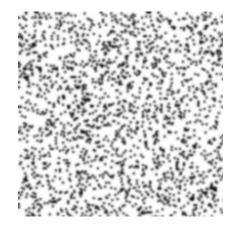


Image

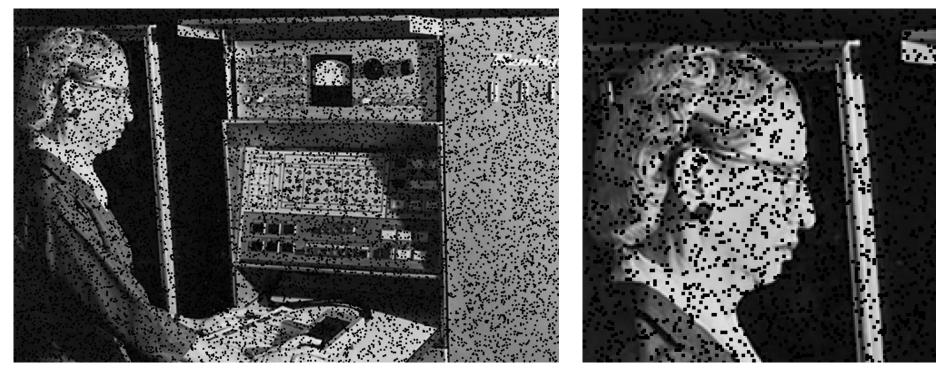


Per-element /

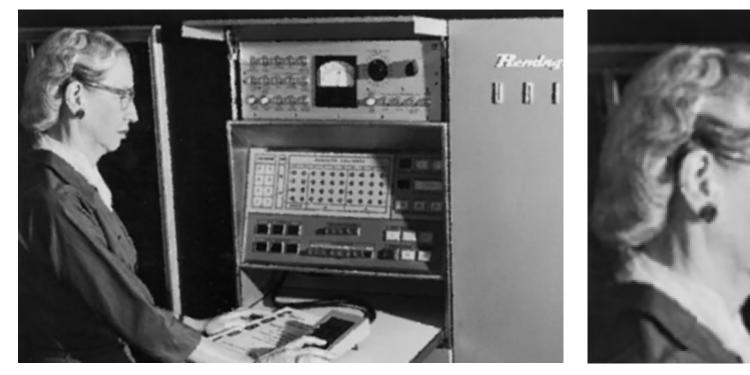




Before



After



After (without missing data)

