Light and Shading

EECS 442 - Prof. David Fouhey Winter 2019, University of Michigan
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W19/

Administrivia

- I sent out requests for waitlist additions. I will continue to add as spots free up but chances are diminishing.
- PLEASE SIGN UP ON PIAZZA. There are no secrets on canvas.
- HW1 out. Any general questions (not about content)?
- Discussion on Wednesday: image processing / numpy. Materials out on piazza.

Recap: Projection

Image $\rightarrow \boldsymbol{P}=\boldsymbol{K}[\boldsymbol{R}, \boldsymbol{t}] \boldsymbol{X} \longleftarrow$ World Intrinsic Extrinsic

Recap: Lenses

Pinhole Model

Mathematically correct Not quite correct in practice Reasonable approximation

Reality: Lenses

Necessary in practice Introduce complications Complications fixable

Today

- A little bit about light and how you represent it
- A little bit about lighting and how it works

Your Very Own Camera

Where's the film/CCD?

Your Very Own Camera

Where's the film/CCD?

Demo Time

What is Retina/Film Made Of?

Two Type of Photo Receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods
rod-shaped
highly sensitive
operate at night gray-scale vision

Rod / Cone Sensitivity

Rod/Cone Distribution

(a)

Blindspot
(b)

Electromagnetic Spectrum

Why do we see light in these wavelengths?

The Physics of Light

The Physics of Light

The Physics of Light

How Do We Get Light?

Artificial Cones

Estimate RGB at 'G' cells from neighboring values

Color Image

Slide Credit: J. Hays

Color Image

Slide Credit: J. Hays

Images in Python

Images in Python

Images are matrix / tensor im

```
im[0,0,0]
top, left, red
```

im[y,x, c]
row y, column x, channel c
im[H-1,w-1,2]
bottom right blue

5 Things To Always Remember

1. Origin is top left
2. Rows are first index (what's the fastest direction for accessing?)
3. Usually referred to as Height x Width
4. Typically stored as uint8 $[0,255]$
5. for y in range(H): for x in range (W) : will run 1 million times for a 1000×1000 image. A 4 GHz processor can do only $4 K$ clock cycles per pixel per second.

Representing Colored Light

Discussion time: how many numbers do you actually need for colored light? Assume all tuples ($\mathrm{R}, \mathrm{G}, \mathrm{B}$) are legitimate colors (they are).

One Option: RGB

Cons

1. Distances don't make sense 2. Correlated

RGB

Another Option: HSV

Pros

1. Intuitive for picking colors
2. Sort of common
3. Fast to convert

Cons

1. Not as good as other better spaces

Slide Credit: J. Hays, HSV cylinder: https://en.wikipedia.org/wiki/HSL_and_HSV

HSV

Another Option: YCbCr/YUV

Pros
 1. Great for transmission / compression

Cons

1. Not as good as other better smart color spaces

Cb

YCbCr

Another Option: Lab

Pros
 1. Distances correspond with human judgment 2. Safe

Cons
1. Complex to calculate (don't write it yourself, lots of fp calculations)

Lab

Photo credit: J. Hays

Why Are There So Many?

- Each serves different functions
- RGB: sort of intuitive, standard, everywhere
- HSV: good for picking, fast to compute
- YCbCr/YUV: fast to compute
- Lab: the right(?) thing to do, but "slow" to compute
- Pick based on what you need and don't sweat it: color really isn't crucial

So Far

How do we represent light and its storage on film?

Now

Light and Surfaces

What happens when light hits a surface?

Surface

Light and Surfaces

Surface
What happens when light hits a surface?

1. Absorbed

It's absorbed and
converted into some other form of energy (e.g., a black shirt getting hot in the sun)

Light and Surfaces

What happens when light hits a surface?
2. Transmitted

Possibly bouncing around before going through or out (e.g. lenses bend and go through, milk bounces around)

Light and Surfaces

Surface

What happens when light hits a surface?
3. Reflected

It's reflected back, in one or more directions with varying amounts (e.g., mirror, or a white surface)

Light and Surfaces

What happens when light hits a surface?
4. Everything

All of the above! Real surfaces often have combinations of all of these options.

Modeling Light and Surfaces

Specular and Diffuse Reflection

Same lighting, as close as possible camera settings, but different location

Specular and Diffuse Reflection

 Diffuse Specular

Totally different

Diffuse Reflection

Lambertian Surface

Light depends only on orientation of surface ϕ_{i}, θ_{i}
to light. Result of random small facets. Looks identical at all views.

Diffuse Reflection

Surface

Lambert's Law

N : surface normal S : source direction and strength
ρ : how much is reflected

$$
\begin{gathered}
B=\rho \boldsymbol{N} \cdot \boldsymbol{S} \\
B=\rho\|\boldsymbol{S}\| \cos (\theta)
\end{gathered}
$$

Specular Reflection

Specular Surface
Light reflected like a mirror, but spreads out in a "lobe" around the reflection ray

Surface

Specular Reflection

Surface

Phong Model

V : angle to viewer
R : reflection ray α : shininess constant

$$
B=\left(V^{T} R\right)^{\alpha}
$$

BRDFs can be incredibly complicated...

Slide Credit: L. Lazebnik

What Can This Be Used For

Shape from Shading

Lambert's Law: for every pixel i

Reflected

Light
(1 dim)

Surface
Illumination
Orientation Global, (3? dim) (3 dim)
Given: illumination and light, recover normals Potential problems?

Shape From Shading

$$
\overbrace{\text { 1D, fixed }}^{B_{i}=\rho \boldsymbol{N}_{i} \cdot \boldsymbol{S}}
$$

- System of equations that's underdetermined (N equations, 2 N unknowns, $\mathrm{N}+3$ known)
- Solution: Add more equations that enforce smoothness or finding a single surface.

Realistic Shape From Shading

- System of equations that's underdetermined (N equations, $2 \mathrm{~N}+3$ unknowns)
- Solution: need prior beliefs to disambiguate.

Ambiguity

Ambiguity

Humans assume light from above (and the blueness also tells you distance)

Shape from Shading in Practive

https://www.youtube.com/watch?v=4GiLAOtjHNo

