LPs

Standard Form:

minc' z s.t. Az =b,x > 0,b> 0.
Getting it to standard form:
Getting rid of >,<:

1 <4z +a2=4,222>0
Getting rid of — vars:
zER—z=u—vuveR"
Bounded vars:

z€(2,5] »2<z,x<5.

Simplex algorithm:

(1) Take cost function, turn into min z s.t.
Tz = z, remainder in standard LP form.
(2) Pivoting: do Gaussian Elimination to
get rid of as many variables as possible,
without distributing the z around.

(3) Variables that have been eliminated ex-
cept in one equation are dependent/basic;
others independent/non-basic. Can always
get a feasible point by setting non-basic
variables to zero, and reading out basic
variables.

[100
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(4) Improve solutions: find smallest reduced
cost C;. If C; > 0, optimality reached,
quit. Else, J is incoming.

(5) Find as far as we can go by picking out-
going variable:

T =argmin; 4, -, bi/A; ;

} [—z,mbN]T = [—zo,b}T

(6) Perform elimination to get rid of J, us-

in% equation that makes the outgoing vari-
ble a basic one. That is, take the only

equation in which the outgoing variable is

non-zero, and eliminate the incoming vari-

able with it.

(7) Repeat from 4 until optimality reached.

Convex sets,fcns:

Defns:

A set is is X if for any weighted sum of data
points satisfying Y, the weighted sum is in
the set.

Convex: y ,6;=1,6; >0

Affine: ), 6; = 1.

Conic: 6; > 0.

FExamples:

Lines, line segments, hyperplanes, halfs-
paces, L, balls for p > 1, polyhedrons,

polytopes.
Preserving operations:
Translation, scaling, intersection, Affine

functions (e.g., projection, coordinate drop-
ping), set sum {Cl + Czlcl € Ci,c2 € 02},
direct sum {(c1,c2)|c1 € Ci,c2 € Ca}, per-
spective projection.

Conv. Fen. Defn:

[0z + (1 =0)y) <O0f(x)+(1-0)f(y)
fy) = fl@) + V(@) (y —2)

Preserving operations, functions:
Non-negative weighted sum, pointwise-
max, affine map f(Ax + b), composition,
perspective map.

Strict, Strong Convexity
Defns:

Strict convexity:
fOx+(1-0)y) <0f(x)+
sically, not linear).

m- Strong conve

TR G o4+ 0= 05
fgme(l 0|z — yl2

(1-0)f(y) (ba-

Better strong convexity defns:
(VF(@) = Vi) (z —y) = mllz - yll3

f) > f@)+ Vi) (y—=z)+

2y — |5

V2 f(z) > ml.

Gradient Descent

Given z°, repeat ¥ = zF~1 — £, Vf(zF~1).
Picking t: can diverge if ¢ too big, too slow
if ¢t too small.

Backtracing line search: start with ¢ = 1,
while f(z —tVf(z)) > f(z) — at||Vf(z)|]3,
updatet = St with0 < a < 1/2,0 < 8 < 1.

Subgradients

Defn.:

Subgradient of convex f is g s.t.
f@) > f@)+9" (y — =)

Subdifferential 9 f(X
SG calculus:

d(af) = adf; O(f1 + f2) = Ofr + Ofz;
Af (Azx +b) = ATOf(Ax +b).
Finite-pointwise max: Omaxser f(z) is
the convex hull of the active (achieving
max functions at x).

Norms: if f(z) = ||z||p and 1/p+1/¢ =1,
then ||z||, = max;.|, <1 2" «; thus

lzll, = {y lylle <
matzWSlz l’}

Optimality: f(z*) = minf(z) < 0 €
of(z")

Remember that sgs may not exist for non-

convex functions!

Subgradient Method

Given z°, repeat z* = zF7! — ;g% 1

SG method not descent method; keep track
of best so far.

Picking t: square summable but not
summable (e.g., 1/t). Polyak steps:
(f@1) = f@)/Nlg" I3 _
Projected sqg method: Project after taking a
step.

Generalized GD

Suppose f(z) = g(z) + h(z) with g convex,
diff, h convex, not necessarily diff.

Define prox,(z) = argmin, 5|z — 2|3 +
h(z); GGD is:

x¥ = prox, (#F 7! — 1, Vg(z* 1))
Generalized gradient since if

Gi(z) = (1/t)(x — prox,(z — tVg(x)))

then update is

k= 2F —tht(xk 1)

With backtracking: While g(xz — tG¢(x)) >
9(x) = tVg(2)" Ge(w) + 5]|Gi(2)|[3 (maybe
with « in last term?) update ¢ = St.

): set of all g.

L,yTz =

Ezample (Lasso): Prox is argmin, o-||3 —
2|13 4+ M|zlli = Sxe(B). Sa(B) is the soft-
threshold operator,
Bi—X fi>A
[Sx(B)]i = 0 :=A<B <A
Bi+ A 1 fi<—

Ezample (Matriz Completion): Objective:
3 2 (i) obsery(Yig = Big)® 4+ A||B||« with
1Bll« = > iy 0i(B).

Prox function: argmin, iHB — ZH% +
M| Z|-.

Solution: matrix soft-thresholding;
U VT where B = USVT and (Z))u =

Newton’s Method: Originally devel-
oped for finding roots; use it to find roots
of gradient. Want V f(x) + V2 f(2)A, = 0;
solution is A, = —[V2f(2)] 'V f(z).
Damped Newton method:
2T =gk — by [V f(2)] TV f(2).

Conjugate Direction methods: Want
to solve min = atTQm —bTz with Q > 0.
Define Q-orthogonahty as df Qd; = 0.

FExp. subspace thm.:

Let {d;}7-; be Q-conjugate.

(for method) g = Qzr — b

Tht1 = Tk + ady

o = —gi di/(dis Qdi)

Proof sketch (gr L By) by ind.:

ge+1 = Qi1 — b= Q(zx + ardr) — b
(Qzk — b) + aQdr = gi + aQdy

From here, by defn of «, dfgrii1 =
dii (g + aQdy) = dj, g — adi Qdy, =0
Algorithm:

Arbitrary xo, repeat do = —go = b — Qxo
ap = *g;{dk/d{Qdk; Thp+1 = Tk + ordy

g = Qi — by diey1 = —grr1 + Brdk

Br = gi11Qdr/(drQdr)

Quasi-Newton Methods:
Gist: approximate Hessian/inverse Hes-
sian.
Symmetric rank-one correction:
Update: zrp11 = xx — aHrkgx
ay = argmin, f(zr — aHkgr) (LS)
gk = V [k
- (Pe—Hpar) (e —Hpap)”

Hyr = H + a (pk—Hp.ax)

9k+1 — Gk

Pr = Tiet1 = Tho Qi =
Might not be PSD!

DFP (Rank 2)

Hyqeql H
qF Hiqp

PEPE

Hyy =
DLk

Hy +

BFGS

Update inverse of Hessian via Sherman-
Morrison).

Let gx = gk+1 — g&

ar Hrar )pkpf
prar " plar
T T
_ PrGx Hi + Hrqrpy,
qkPk

Hypp1 =Hp + (1+

LP Duality

Let cn, Amxna b, Grxn, hr.
(P) mincTz s.t.

Axr =b, Gz < h

(D) max —b"u — hTv s.t.
—ATy —GTv=¢c,v>0.

Duality:

Consider min f(z) s.t.

hi(z) <0,i=1,...,m

l](x) :Oj: 1,...,7”

Lagrangian:

L(z,u,v) = f(z) + > wihi(z) +
> =1 vsli(z) with uw € R™, v € R” and
u > 0.

Note: f(z) > L(z,u,v) at feasible z.

Dual problem:

Let g(u,v) = ming L(z,u,v). La-
grange dual function is g. Dual problem
maxy>0,0 g(u, v).

Note: dual problem always concave.
Strong duality:

Always have f* > g* where f*, gx primal
and dual objectives. When f* = g*, have
strong duality. If primal is a convex prob-
lem (f,h; convex, l; affine) and exists a
strictly feasible x, then strong duality.

Dual example (lasso):
Have primal:



ming 3 |ly — XB|[3 + A||B]]1;

Introduce dummy z and solve:
minﬁle\y—Z|\2+)\|\5|\1 st. z=XpB.
Dual is t

mlnﬂle\y—Z|\2+)\|\ﬂl\1 +u’(z— XB)

syl = 31y —ull3 = 1, \|U|\x<1(XTu/)\)
Or min, 5 (|[yl13 — |ly — ull3) s.t.
[IX T ulloo < A

KKT Conditions:

Stationarity:

0€0f(x) + 32, widhi(x) + 327, 9l;(x)
Complementary slackness:

u; - hi(z) = 0 for all ¢

P feas.: hi(x) <0, l;(x) =0 for all i,

D feas.: u; > 0 for all i Necessary: if strong
duality, then if z*,u*,v* solutions, then
they satisfy KKT conditions.

Sufficient: always, if 2™, u*, v* satisfy KKT,
then primal dual solutions.

Correspondence Under strong duality, x*
achieves the minimum in L(z,u",v*); if
L(z,u",v") has a unique minimum, then
the corresponding point is the primal solu-
tion.

Correspondence, Conjugates:
Defn. convex conjugate: Given f, f*(y) =

max, y'x — f(z).
Implies f(z) + f*(y) > z"y.

and convex, ** = f.

Ezxzample, norm:

If f(z) = [lz[l, f*(y) = L:jjz.<1(y)

Ellipsoid method for LP: Solves feasi-
bility problems, but any LP can be turned
into a feasibility problem. Setup: Let € be
the set satisfying the constraints. Assume
Q) C R-radius ball centered at yo, and there
is a ball with radius r centered at y* inside
Q. We know R, 1, yo, but not y*. Iterations:
Can check if center of ellipsoid € is in €2;
if so, done. Else: find a constraint that is
violated, find side that is not violated, fit
ellipsoid to that half.

Convergence:

VOI(E()) —\R —\2
which implies & < O(m?log R/7) where
T=1/(m+1).

If f closed

Penalty Methods:

problem min f(z) + cp(x). p satisfies: p
continuous, p(xz) > 0, p(z) = 0 iff z € S.
Idea: find some solution, increasingly pe-
nalize outside S by increasing ¢ — oco:
Penalty functions:

p(@) = 3 37, max((0, g ()])*

Barrier Methods:
Replace original problem with min, f(z) +
1B(x) where B is continuous; B(z) > 0
for all € int(S); B(z) — co as x — 0S.
Idea: start out in interior, don’t let the al-
orithm leave S. Increase ¢ — oco. Barrier
%unctions:
Suppose g;(z) < 0:
B(z) = - >0, -1
B(z) = - 321, log(—
SDP: Inner
22 AiyBi

ICA: Step 1: whiten. Step 2: want to mini-
mize gaussian-likeness. But non-convex and
lots of local minima. Assume additive lin-

ear model.

Whitening: ¥ = cov(X) = UDU7T,
A* =D 'PUT A
Coordinate descent: Do argmin on each
dimension, updating one-by-one. When
does coordinate descent work?  g(z) +
Non-convex problems:
proach for each.

gi(x))

product: tr(A - B) =

Specialized ap-

Convex Conjugates:

£(w) =maxa”" — f(x)
mfm(x) T T
flar)  [@fa)
flz+b) f *( ) b
af (2) o fa)
e 77 log(m )—x*
|||l Iz <a(27)
Matrix derivatives:
0A =
d(aX) = adX
o(tr(X)) = tr(0X)
I(XY) = (0X)Y +X(9Y)
92Ta/dx = a
02T Xb/0X = ab”

Suppose s,r are functions of z and A is
constant,

Matrix properties:

SVD: A=UXV” where:
U are the eigenvectors of AAT

diag(eig(AAT))
V are the elgenvectors of AT A.
Can also write A as the weighted sum of r
rank-1 matmces The rank-1 matrices are
E”Uz‘/,b for 1 S 7 S T.
EVD: X = VDV ™! with D diagonal. If X
is symmetric, VV7T = I.
Traces: Linear.
tr(A) = tr(A")
tr(XTY) = tr(XY7T)
tr(XTY) = vec(X)T vec(Y)
tr(ABC) = tr(BCA) = tr(CAB)

P! exists, tr(A) = tr(P"*AP).
tr(A) = ZZ i
Sherman-Morrison Mat. Inv.: Suppose
A~V exists, 1+ vT A7 u £ 0.
(A+w™)™t=A7t - AprA
Matrix norms:
Trace/Nuclear norm:
l[A[l« = >i_; oi(a)
Spectral/Operator norm:
[ Al|op = o1(A)
Frobenius norm:
1AllF = tr(ATA).
Derivatives:

T(z)a(z) ['@)g(x) + f(2)g (2)

e) 7(g(2))g (2)

ne
1/ f(x) —f2f ()
F@)/g(x)  (f'(2)g(x) — g'(2)f(2))/(g(x)*)
e e
In(z) 1/x
log,.(x) 1/(z1n(c))

Miscellaneous math:

Lipschitz: A function f is Lipschitz contin-
uous if | f(z1) — f(x2)| < L|x1 —x2|; controls
how quickly the function changes.
Gradient Lipschitiz:

A differentiable function f has Lipschitz

continuous gradient [|[Vf(y) — Vf(z)|| <
L||y — «|; if it is twice-differentiable, LI >
V2 f(x).

Useful inequalities:

Cauchy-Schwarz:  |zTy| < |lz|| - ||yl

{folder 1 fgllr < ||f||p\|9\|q for 1/p+1/q =

Original  constrained  problem  (P), 9sT Ar  9sT orT .
minges f(x), replace with unconstrained 9~ o2 Ar + 7 A's
Gr. SG. Prox. New. Conj. QN Bar. P/D IPM
Crit fsm any sm g + simple h 2X sm 2% 2% 2% 2x
Const.  Proj.  Proj. Const. Prox Equality None None 2X sm. ineq.  2X sm. ineq.
Param. fix ¢/LS ¢t—0 fix t/LS fixt=1/LS  fix/LS LS in: fixed/LS; in:LS
out.: bar. — oo out.: bar. — oo
Cost/It.  chp chp ? prox Exp. (V?) ~chp = chp V.Exp ~ Exp
+Storage
Rate O(1/e) O(1/€?) O(1/e) O(log(log(1/e))) super-lin. superlin.  O(log(1/e)) O(log(1/e))

Gr. and Prox. Gr. are O(1/+/€) w/ accel., O(log(1/€)) w/strong convexity.



