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ABSTRACT

We analyze the asymptotic convergence properties of a general class of EM-type algorithms for es-

timating an unknown parameter via alternating estimation and maximization. As examples, this

class includes ML-EM, penalized ML-EM, Green's OSL-EM, and many other approximate EM al-

gorithms. A theorem is given which provides conditions for monotone convergence with respect

to a given norm and speci�es an asymptotic rate of convergence for an algorithm in this class.

By investigating di�erent parameterizations, the condition for monotone convergence can be used

to establish norms under which the distance between successive iterates and the limit point of the

EM-type algorithm approaches zero monotonically. We apply these results to a modi�ed ML-EM

algorithm with stochastic complete/incomplete data mapping and establish global monotone conver-

gence for a linear Gaussian observation model. We then establish that in the �nal iterations the

unpenalized and quadratically penalized ML-EM algorithms for PET image reconstruction converge

monotonically relative to two di�erent norms on the logarithm of the images.

I. INTRODUCTION

The maximum-likelihood (ML) expectation-maximization (EM) algorithm is a popular iterative

method for �nding the maximum likelihood estimate

^

� of a parameter � when the likelihood func-

tion is too di�cult to maximize directly [4, 23, 17, 18, 19, 5, 22]. The penalized ML-EM algorithm

is a variant of the ML-EM algorithm which can be used for �nding MAP estimates of a random

parameter [10, 11, 12]. To apply the penalized or unpenalized ML-EM algorithm requires formu-

lation of the estimation problem in terms of the actual data sample, called the incomplete data,

and a hypothetical data set, called the complete data. To be able to easily implement the ML-EM

algorithm the complete data must be chosen in such a way that: the complete data log-likelihood

function is easily estimated from the incomplete data via conditional expectation (E); and the com-

plete data log-likelihood function is easily maximized (M). Three types of convergence results are

of practical importance: conditions under which the sequence of estimates converges globally to a
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�xed point, norms under which the convergence is monotone; and the asymptotic convergence rate

of the algorithm. A number of authors [24, 16, 3] have derived global convergence results for a wide

range of exact ML-EM algorithms by using an information divergence approach. These authors

establish monotone convergence of ML-EM algorithms in the information divergence measure. This

guarantees that successive iterates of the EM algorithm monotonically increase likelihood. While

increasing likelihood is an attractive property, it does not guarantee monotone convergence in terms

of Cauchy convergence: successive iterates of the EM algorithm reduce the distance to the ML esti-

mate in some norm. In addition, for some implementations the region of convergence may only be a

small subset of the entire parameter space so that global convergence may not hold. Furthermore,

in some cases the ML-EM algorithm can only be implemented by making simplifying approxima-

tions in the conditional expectation step (E) or the maximization step (M). While these algorithms

have an alternating estimation-maximization structure similar to the exact ML-EM algorithm, the

information divergence approach developed to establish global convergence of the exact ML-EM

algorithm may not be e�ective. In this paper we develop a generally applicable approach to conver-

gence analysis which allows us to study monotone convergence and asymptotic convergence rates

for algorithms which can be implemented via alternating estimation-maximization.

We de�ne an EM-type algorithm as any iterative algorithm of the form �

i+1

= argmax

�

Q(�; �

i

),

i = 1; 2; : : : where � 2 � � IR

p

. This general iterative algorithm specializes to popular EM-type

algorithms including: penalized and penalized ML-EM algorithms [4, 11], generalized ML-EM

with stochastic complete-incomplete data mapping [6], one-step-late (OSL) penalized ML-EM [9],

majorization methods [?], and approximate ML-EM algorithms such as the linear and quadratic

approximations introduced in [2, 1]. Let �

�

be a �xed point of the EM-type algorithm which occurs

on the interior of � and assume that Q is a smooth function of both arguments. We give an

implicit relation between successive di�erences ��

i+1

def

= �

i+1

� �

�

and ��

i

def

= �

i

� �

�

of the form

��

i+1

= M

�1

1

M

2

��

i+1

where M

1

and M

2

are p � p matrices associated with the 2p � 2p Hessian

matrix of Q(�

i+1

; �

i

). Using this implicit relation we derive conditions for monotone convergence

and show that the asymptotic rate of convergence is the maximum magnitude eigenvalue of the

curvature matrix [r

20

Q(�

�

; �

�

)]

�1

r

11

Q(�

�

; �

�

) where r

20

Q and r

11

Q are p � p matrices of mixed

derivatives at the point (�

�

; �

�

). For ML-EM this curvature matrix is monotonically increasing in

the conditional Fisher information matrix associated with the complete data.

We provide several illustrations of our convergence results. First we consider a generalized

version of the standard ML-EM algorithm which permits the complete data to be speci�ed in such

a way that it is related to the incomplete data via a possibly random transformation. This algorithm

is of interest since the conventional convergence analysis of the EM algorithm is inapplicable due to

the presence of additive noise in the mapping from the complete data to the incomplete data. Then

we give general forms for the asymptotic convergence rates for the linearized EM algorithm [2], the

unpenalized and penalized ML-EM algorithms, the OSL penalized ML-EM algorithm [9], and the

majorization method [?]. For the latter algorithms the asymptotic convergence rates are of similar

form to those obtained by Green [9] for the standard case of deterministic complete/incomplete

data mapping. Afterwards we consider ML-EM and penalized ML-EM for two important practical
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examples: a linear model involving jointly Gaussian statistics for the complete and incomplete

data and a PET reconstruction model involving jointly Poisson statistics. For the linear Gaussian

model the incomplete data is the output of a Gaussian additive noise channel with input equal to

the complete data. We show that it is necessary for the channel noise to be uncorrelated with the

channel input, i.e. the complete data set, in order to guarantee convergence to the ML estimate. It is

found that the ML-EM algorithm is guaranteed to converge monotonically in a weighted Euclidean

norm for all initial points and is therefore globally monotonically convergent in this norm. It is also

found that increasing the channel noise variance can only degrade the asymptotic convergence rate

of the ML-EM algorithm. For the PET reconstruction model we show that when the unpenalized

ML-EM algorithm converges to a strictly positive estimate, in the �nal iterations convergence is

monotone in the following sense: the logarithm ln �

i

of the i-th image converges monotonically in

the weighted Euclidean norm kuk =

P

p

b=1

P

b

^

�

b

u

2

, where P

b

is the probability of detecting emissions

at pixel b and

^

� is the ML estimate. When P

b

� 1, this is asymptotically equivalent to monotone

convergence of the error ratios

h

��

i

1

�

�

1

; : : : ;

��

i

p

�

�

p

i

T

to zero in the standard unweighted Euclidean norm.

Similar results are obtained for quadratically penalized ML-EM algorithms for PET reconstruction.

II. AN ARCHETYPE ALGORITHM

Let � = [�

1

; : : : ; �

p

]

T

be a real parameter residing in an open subset � = �

1

� � � � � �

p

of the

p-dimensional space IR

p

. Given a function Q : ���! IR and an intial point �

0

2 �, consider the

following recursive algorithm, called the A-algorithm:

A-Algorithm: �

i+1

= argmax

�2�

Q(�; �

i

); i = 0; 1; : : : : (1)

(If there are multiple maxima, then �

i+1

can be taken to be any one of them.) Assume that �

�

2 �

is a �xed point of the recursive mapping (1), i.e. �

�

satis�es:

�

�

= argmax

�2�

Q(�; �

�

): (2)

Let k � k denote a vector norm on IR

p

. For any p � p matrix A the induced matrix norm jjjAjjj

[13] of A is de�ned as:

jjjAjjj

def

= max

u2IR

p

kAuk

kuk

; (3)

where u denotes a vector in IR

p

. A special case is the matrix-2 norm jjjAjjj

2

which is induced by the

Euclidean vector norm kuk = u

T

u:

jjjAjjj

2

def

=

s

max

u

u

T

A

T

Au

u

T

u

::
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jjjAjjj

2

2

is the maximum eigenvalue of A

T

A. We say that a sequence u

i

, i = 1; 2; : : :, converges

monotonically to a point u

�

in the norm k � k if:

ku

i+1

� u

�

k < ku

i

� u

�

k; i = 1; 2; : : : : (4)

Consider the general linear iteration of the form

v

i+1

= Av

i

; i = 1; 2; : : :

with jjjAjjj < 1. Then, since kv

i+1

k � jjjAjjj � kv

i

k < kv

i

k, the sequence fv

i

g converges monotonically

to zero and the asymptotic rate of convergence is speci�ed by the root convergence factor �(A)

which is de�ned as the largest magnitude eigenvalue of A [20]. Observe that �(A) is identical to

jjjAjjj

2

if A is real symmetric non-negative de�nite.

Assume that the function Q(�; �) is twice continuously di�erentiable in both arguments � and

� over �; � 2 �. We de�ne the Hessian matrix of Q over � � � as the following block partioned

2p� 2p matrix:

r

2

Q(�; �) =

"

r

20

Q(�; �) r

11

Q(�; �)

r

11

Q(�; �) r

02

Q(�; �)

#

; (5)

where r

20

Q(�; �) = r

�

r

T

�

Q(�; �), r

02

Q(�; �) = r

�

r

T

�

Q(�; �), and r

11

Q(�; �) = r

�

r

T

�

Q(�; �) are

p � p matrices of partial derivatives

@

2

@�

i

@�

j

Q(�; �),

@

2

@�

i

@�

j

Q(�; �), and

@

2

@�

i

@�

j

Q(�; �), i; j = 1; : : : ; p,

respectively.

A region of monotone convergence relative to the vector norm k � k of the A-algorithm (1) is

de�ned as any open ball B(�

�

; �) = f� : k� � �

�

k � �g centered at � = �

�

with radius � > 0 such

that if the initial point �

0

is in this region then k�

i

� �

�

k, i = 1; 2; : : :, converges monotonically to

zero. Note that as de�ned, the shape in IR

p

of the region of monotone convergence depends on the

norm used. For the Euclidean norm kuk = u

T

u the region of monotone convergence is a spherically

shaped region in �. For a general positive de�nite matrix B the induced norm kuk = u

T

Bu makes

this region an ellipsoid in �. Since all norms are equivalent for the case of a �nite dimensional

parameter space, monotone convergence in a given norm implies convergence, however possibly

non-monotone, in any other norm.

De�ne the p�pmatrices obtained by averagingr

20

Q(u; u) andr

11

Q(u; u) over the line segments

u 2

~

��

�

and u 2

~

��

�

:

(6)

A

1

(�; �) = �

Z

1

0

r

20

Q(t� + (1� t)�

�

; t� + (1� t)�

�

)dt

A

2

(�; �) =

Z

1

0

r

11

Q(t� + (1� t)�

�

; t� + (1� t)�

�

)dt:
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For t

k

2 [0; 1], k = 1; : : : ; p, de�ne the p � p matrices obtained by taking each of the p rows

of r

20

Q(�; �) and r

11

Q(�; �) and replacing � and � with points �(t

k

)

def

= t

k

� + (1 � t

k

)�

�

and

�(t

k

)

def

= t

k

� + (1� t

k

)�

�

:

(7)

A

1

(�; �) = �

2

6

6

4

r

�

@

�

1

Q(�; �(t

1

))j

�=�(t

1

)

.

.

.

r

�

@

�

p

Q(�; �(t

p

))j

�=�(t

p

)

3

7

7

5

A

2

(�; �) =

2

6

6

4

r

�

@

�

1

Q(�; �)j

�=�(t

1

);�=�(t

1

)

.

.

.

r

�

@

�

p

Q(�; �)j

�=�(t

p

);�=�(t

p

)

3

7

7

5

:

De�nition 1 For M

1

and M

2

de�ned as either A

1

and A

1

in (6) or as A

1

and A

2

in (7), de�ne

R

+

� � as the largest open ball B(�

�

; �) = f� : k� � �

�

k � �g such that for each � 2 B(�

�

; �):

M

1

(�; �) > 0; for all � 2 � (8)

and for some 0 � �

2

< 1

�

�

�

�

�

�

�

�

�

�

�

�

h

M

1

(�; �)

i

�1

�M

2

(�; �)

�

�

�

�

�

�

�

�

�

�

�

�

� �

2

; for all � 2 �. (9)

The following convergence theorem establishes that, if R

+

is not empty, the region in De�nition

1 is a region of monotone convergence in the norm k � k for an algorithm of the form (1).

Theorem 1 Let �

�

2 � be a �xed point of the A algorithm (1) �

i+1

= argmax

�2�

Q(�; �

i

), i =

0; 1; : : :. Assume: i) for all � 2 �, the maximum max

�

Q(�; �) is achieved on the interior of the set

�; ii) Q(�; �) is twice continuously di�erentiable in � 2 � and � 2 �. Let the point �

0

initialize

the A algorithm.

1. If the positive de�niteness conditions (8) is satis�ed, then the sucessive di�erences ��

i

=

�

i

� �

�

of the A algorithm obey the recursion:

��

i+1

= [M

1

(�

i+1

; �

i

)]

�1

M

2

(�

i+1

; �

i

) ���

i

; i = 0; 1; : : : ; (10)

2. If �

0

2 R

+

for a norm k � k, then k��

i

k converges monotonically to zero with at least linear

rate, and
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3. ��

i

asymptotically converges to zero with root convergence factor

�

�

�

�r

20

Q(�

�

; �

�

)

�

�1

r

11

Q(�

�

; �

�

)

�

< 1:

Proof of Theorem 1:

De�ne �� = � � �

�

and ��

i

= �

i

� �

�

. Convergence will be established by showing that

k��

i+1

k < k��

i

k. De�ne the 2p� 1 vectors � =

h

�

�

i

i

, �

�

=

h

�

�

�

�

i

and �� = �� �

�

. By assumption ii

we can use the Taylor formula with remainder [21, Eq. B.1.4] to expand Q

10

(�)

def

= [r

10

Q(�; �

i

)]

T

about the point � = �

�

=

h

�

�

�

�

i

:

Q

10

(�) = Q

10

(�

�

) +

Z

1

0

r

�

Q

10

(t� + (1� t)�

�

)dt ��:

Now since by assumption i, �

�

= argmax

�2�

Q(�; �

�

) occurs in the interior of �: Q

10

(�

�

) =

r

10

Q(�

�

; �

�

) = 0, a row vector of zeros. Therefore:

Q

10

(�) =

Z

1

0

r

�

Q

10

(t� + (1� t)�

�

) ��dt: (11)

>From de�nition (6):

Z

1

0

rQ

10

(t� + (1� t)�

�

)dt =

h

�A

1

(�; �

i

)

.

.

. A

2

(�; �

i

)

i

;

we have from (11)

r

10

Q(�; �

i

) = �A

1

(�; �

i

)�� + A

2

(�; �

i

)��

i

: (12)

On the other hand, consider the k-th element of the left hand side of the (11) and de�ne �(t) =

t� + (1� t)�

�

. From the mean value theorem:

Z

1

0

�

r

�

@

@�

k

Q(�(t); �

i

(t))�� +r

�

i

@

@�

k

Q(�(t); �

i

(t))��

i

�

dt

= r

�

@

@�

k

Q(�(t

k

); �

i

(t

k

))�� +r

�

i

@

@�

k

Q(�(t

k

); �

i

(t

k

))��

i

= �[A

1

]

k�

(�; �

i

)�� + [A

2

]

k�

(�; �

i

)��

i

where t

k

is some point in [0; 1], which in general depends on �, �

i

, and �

�

, and [A

1

]

k�

, [A

2

]

k�

denote

the k-th rows of the matrices A

1

, A

2

de�ned in (7). Therefore (11) is equivalent to

r

10

Q(�; �

i

) = �A

1

(�; �

i

)�� + A

2

(�; �

i

)��

i

: (13)
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Combining (12) and (13) we obtain the general relation:

r

10

Q(�; �

i

) = �M

1

(�; �

i

)�� +M

2

(�; �

i

)��

i

: (14)

where M

1

and M

2

are either A

1

and A

2

or A

1

and A

2

. Now, we know �

i+1

= argmax

�

Q(�; �

i

) lies

in the interior of �, r

10

Q(�

i+1

; �

i

) = 0. Therefore from Eq. (14):

�M

1

(�

i+1

; �

i

)��

i+1

+M

2

(�

i+1

; �

i

)��

i

= 0: (15)

Now if the positivity condition (8) holds for � = �

i

then M

1

(�; �

i

) is invertible for all � and it follows

from Eq. (15) that:

��

i+1

= [M

1

(�

i+1

; �

i

)]

�1

M

2

(�

i+1

; �

i

) ���

i

; (16)

Furthermore, by properties of matrix norms [7]:

k��

i+1

k �

�

�

�

�

�

�

M

1

(�

i+1

; �

i

)]

�1

M

2

(�

i+1

; �

i

)

�

�

�

�

�

�

� k��

i

k

� sup

�2�

�

�

�

�

�

�

[M

1

(�; �

i

)]

�1

M

2

(�; �

i

)

�

�

�

�

�

�

� k��

i

k: (17)

Therefore, if �

i

2 R

+

, by condition (9) sup

�2�

jjj[M

1

(�; �

i

)]

�1

M

2

(�; �

i

)jjj � �

2

< 1 so that:

k��

i+1

k � �

2

� k��

i

k:

Since R

+

is an open ball centered at �

�

which contains �

i

, this implies that �

i+1

2 R

+

. By induction

on i we conclude that k�

i

� �

�

k converges monotonically to zero with at least linear convergence

rate.

Next we establish the asymptotic convergence rate stated in the theorem. By continuity of the

derivatives of Q(�; �

i

) and the result (17) we obtain:

M

1

(�

i+1

; �

i

) = �r

20

Q(�

�

; �

�

) + O(k��

i

k)

M

2

(�

i+1

; �

i

) = r

11

Q(�

�

; �

�

) + O(k��

i

k):

Thus, by continuity of the matrix norm:

�

2

� sup

�2�

�

�

�

�

�

�

[M

1

(�; �

i

)]

�1

M

2

(�; �

i

)

�

�

�

�

�

�

=

�

�

�

�

�

�

�

�

�

�

�r

20

Q(�

�

; �

�

)

�

�1

r

11

Q(�

�

; �

�

)

�

�

�

�

�

�

�

�

�
+O(k��

i

k): (18)

Since �

2

< 1 taking the limit of (18) as i!1 establishes that

�

�

�

�

�

�

�

�

�

�

�r

20

Q(�

�

; �

�

)

�

�1

r

11

Q(�

�

; �

�

)

�

�

�

�

�

�

�

�

�
< 1: (19)

Furthermore (16) takes the asymptotic form:

��

i+1

= �[r

20

Q(�

�

; �

�

)]

�1

r

11

Q(�

�

; �

�

) ���

i

+ o(k��

i

k):

7



Therefore the asymptotic rate of convergence is given by the root convergence factor

�

�

[�r

20

Q(�

�

; �

�

)]

�1

r

11

Q(�

�

; �

�

)

�

:

For any matrix A we have �(A) � jjjAjjj [13, Thm. 5.6.9] so that, in view of (19), the root

convergence factor is less than one. 2

The careful reader will have noticed that in the proof of Theorem 1 all that was required of �

i+1

was that r

10

Q(�

i+1

; �

i

) = 0. Analogously to the A-algorithm (1) let f�

i

g be a sequence of points

in � generated by the following stationary point version of this algorithm which we call the AZ

algorithm:

�

i+1

= argzero

�

r

10

Q(�; �

i

); i = 1; 2; : : : ; (20)

where argzero

�

r

10

Q(�; �

i

) is any point � in � where the gradient r

10

Q(�; �

i

) is zero. Note that the

stationary point need not be unique; any stationary point will do. If we assume that the algorithm

(20) is implementable, i.e. a stationary point exists at each iteration i = 1; 2; : : :, then we have:

Corollary 1 Let �

�

2 � be a �xed point of the algorithm (1) �

i+1

= argmax

�2�

Q(�; �

i

), i =

0; 1; : : :. Assume: i) for all � 2 �, the maximum max

�

Q(�; �) is achieved on the interior of the set

�; ii) Q(�; �) is twice continuously di�erentiable in � 2 � and � 2 �; iii) relative to the matrix

norm jjj�jjj the region of monotone convergence R

+

is non-empty. Let the point �

0

initialize the AZ

algorithm (20). Then Assertions 1 and 2 of Theorem 1 hold for the AZ sequence f�

i

g.

In the case that the parameter space � = IR

p

the AZ algorithm (20) is always implementable.

Lemma 1 In addition to the conditions of Corollary 1 assume that � = IR

p

. Then for each

iteration i = 1; 2; : : : of the AZ algorithm (20) there exists a point � for which r

10

Q(�; �

i

) = 0.

Proof

As in the proof of Theorem 1, assuming �

i

2 R

+

we have from Eq. (12):

r

10

Q(�; �

i

) = �M

1

(�; �

i

)�� +M

2

(�; �

i

)��

i

= �M

1

(�; �

i

)

�

�� � [M

1

(�; �

i

)]

�1

M

2

(�; �

i

) ���

i

�

= �M

1

(�; �

i

) � d(�) (21)

Where the p-element vector d(�) = ���

�

� [M

1

(�; �

i

)]

�1

M

2

(�; �

i

) � (�

i

��

�

) is a function of �. Since

�

�

M

�1

1

M

2

�

�

�

�

�

�

�

�

M

�1

1

M

2

�

�

�

�

�

�

< 1 for all � 2 �, the eigenvalues of [M

1

]

�1

M

2

lie in the interval (�1; 1)

8



for all � 2 �. Since � = IR

p

is unbounded, there exist points � = �

+

and � = �

�

in � such that

all p entries of the vector d(�) are strictly positive and strictly negative, respectively. Since d(�)

is continuous this implies that there exists a point � 2 � such that d(�) = 0 which implies that

r

10

Q(�; �

i

) = 0 as claimed. 2

In investigating monotonic convergence properties of the sequence f�

i

g it is sometimes useful to

make a transformation of parameters � ! � . Consider a smooth invertible functional transformation

g: � = g(�). Then �

i

can be represented as g

�1

(�

i

), where g

�1

is the inverse of g, the sequence f�

i

g

is generated by the analogous A-algorithm:

�

i+1

= argmax

�2g(�)

~

Q(�; �

i

); i = 0; 1; : : : ;

and

~

Q(�; �

i

)

def

= Q

�

g

�1

(�); g

�1

(�

i

)

�

= Q(�; �

i

)

�

�

�=g

�1

(�);�

i

=g

�1

(�

i

)

:

The convergence properties of the sequence �

i

= g(�

i

) can be studied using Theorem 1 with M

1

and M

2

de�ned in terms of the mixed partial derivatives of

~

Q:

r

11

~

Q(�; �

i

) = J

�1

(�)

�

r

11

Q

�

g

�1

(�); g

�1

(�

i

)

��

J

�1

(�

i

)

r

20

~

Q(�; �

i

) = J

�1

(�)

�

r

20

Q

�

g

�1

(�); g

�1

(�

i

)

��

J

�1

(�):

where J(�) = rg(�)j

�=g

�1

(�)

is the p� p Jacobian matrix of partial derivatives of g.

In particular, the relation (10) of Theorem 1 with M

1

= A

1

and M

2

= A

2

gives a recursion for

��

i

= g(�

i

)� g(�

�

):

��

i+1

= [

~

A

1

(�

i+1

; �

i

)]

�1

~

A

2

(�

i+1

; �

i

) ���

i

(22)

= J(�

i+1

)

�

A

1

�

g

�1

(�

i+1

); g

�1

(�

i

)

��

�1

A

2

(g

�1

(�

i+1

); g

�1

(�

i

))J

�1

(�

i

) ���

i

:

III. CONVERGENCE OF THE EM ALGORITHM

Let an observed random variable Y take values fyg in a set Y and let Y have the probability

density function f(y; �) where: � = [�

1

; : : : ; �

p

]

T

is a real, non-random parameter vector residing in

an open subset � = �

1

� � � � ��

p

of the p-dimensional space IR

p

. Given a realization Y = y, the

penalized maximum likelihood estimator is de�ned as the parameter value which maximizes the

penalized likelihood of the event Y = y:

^

�

def

= argmax

�2�

fL(�)� P (�)g (23)

9



where L(�) = ln f(y; �) is the log-likelihood function and P (�) is a penalty function. If f(�)

is a prior density for �, the penalized ML estimator is equivalent to the MAP estimator when

P (�) = � ln f(�). When P (�) is constant we obtain the standard unpenalized ML estimator:

^

�

def

= argmax

�2�

L(�): (24)

Under broad conditions the penalized ML estimator enjoys many attractive properties such as con-

sistency, asymptotic unbiasedness, and asymptotic minimum variance among unbiased estimators

[14]. However, in many applications direct maximization of the functions in (24) and (23) is in-

tractible. In this case the EM approach o�ers a simple indirect method for iteratively approximating

the penalized and unpenalized ML estimates.

III.a: A General Class of EM Algorithms with Stochastic Mapping

The key to the ML-EM algorithm is to identify Y as an incomplete data set derived from

a more informative hypothetical complete data set X, where by more informative we mean that

Y can be represented as the output of a �-independent channel C with input X. See Figure 1.

Mathematically, this means that the conditional density of Y given X is functionally independent

of �. Observe that this de�nition of complete data is more general than the standard de�nition,

e.g. as used in [4, 24], since it permits the complete and incomplete data to be related through a

stochastic mapping. Our de�nition of complete data reduces to the standard de�nition when the

channel C is specialized to a noiseless channel, i.e. a deterministic many-to-one transformation h

such that Y = h(X).

Let the random variable X take values fxg in a set X and let X have p.d.f. f(x; �). Then for an

initial point �

0

the EM algorithm produces a sequence of points f�

i

g

1

i=1

via one of the recursions:

�

i+1

=

8

>

<

>

:

argmax

�

fQ(�; �

i

)g; i = 1; 2; : : :

or

argzero

�

fr

10

Q(�; �

i

)g ; i = 1; 2; : : :

(25)

where Q(�; �) is the conditional expectation of the complete data log-likelihood function minus the

penalty:

Q(�; �)

def

= Efln f(X; �)jY = y; �g � P (�): (26)

The recursion (25) is a special case of the A algorithm (1) and thus convergence can be investigated

using Theorem 1.

Using the elementary identity f(x; �) =

f(xjy;�)f(y;�)

f(yjx;�)

and the property that f(yjx; �) = f(yjx)

is independent of � the Q function in the EM algorithm (25) takes the equivalent form:

Q(�; �) = ln f(y; �) + Efln f(Xjy; �)jY = y; �g

10



�Efln f(yjX)jY = y; �g � P (�)

= L(�) +H(�; �)�W (�)� P (�):

Here H(�; �) = Efln f(Xjy; �)jY = y; �g is the (negative) complete-data conditional entropy and

W (�) is a function independent of �. The above Q function di�ers from the standard penalized ML-

EM Q function of [4, 9] in only one respect: the presence of the function W (�). For the standard

case, the mapping from complete to incomplete data is deterministic, f(yjX; �) is degenerate,

and W (�) = 0. Since Efln f(Xjy; �)jY = y; �g and W (�) are functionally independent of �, an

equivalent form for the Q function in the penalized ML-EM algorithm (25) is:

Q(�; �) = L(�)�D(�k�)� P (�) (27)

where D(�k�) is the Kullback-Liebler (KL) discrimination:

D(�k�)

def

=

Z

ln

f(xjy; �)

f(xjy; �)

f(xjy; �)dx:: (28)

The following properties of the KL discrimination D(�k�) follow directly from [15, Ch. 2]:

1. D(�k�) � 0 where \=" holds i� g(xjy; �) = g(xjy; �) a.e. in x.

2. When di�erentiation of f(xjy; �) under the integral sign is justi�ed [15, Sec. 2.6]:

(a) r

10

D(�k�) = r

01

D(�k�) = 0

(b) r

20

D(�k�) � 0

(c) �r

11

D(�k�) = r

20

D(�k�)

3. r

20

D(�k�) = F

Xjy

(�), where

F

Xjy

(�)

def

= Ef�r

2

�

log f(Xjy; �)jY = y; �g:

is the non-negative de�nite conditional Fisher information.

The representation (27) immmediately gives:

Lemma 2 The penalized ML-EM algorithm with stochastic mapping (25) generates a sequence

f�

i

g

1

i=1

for which the penalized ML estimate

^

� = argmax

�

fL(�)� P (�)g is a �xed point. Further-

more, for any initial point �

0

the penalized likelihood is non-decreasing at each step in the sense

that:

L(�

i+1

)� P (�

i+1

) � L(�

i

)� P (�

i

); i = 0; 1; : : : :

11



Proof of Lemma 2:

Fix i and let �

i

=

^

�. Then:

�

i+1

= argmax

�

fL(�)�D(�k

^

�)� P (�)g

Since L(�) � P (�) and �D(�k

^

�) individually take their maximum values at the same point � =

^

�

we have �

i+1

= �

i

=

^

�. By induction we thus obtain �

n

=

^

� for all n > i. The monotonic increase

in penalized likelihood follows from the chain of inequalities:

0 � Q(�

i+1

; �

i

)� Q(�

i

; �

i

)

= (L(�

i+1

)� P (�

i+1

))� (L(�

i

)� P (�

i

))

�D(�

i+1

; �

i

) +D(�

i

; �

i

)

� (L(�

i+1

)� P (�

i+1

))� (L(�

i

)� P (�

i

))

where the last inequality is a consequence of the inequality: D(�; �

i

) � D(�

i

; �

i

) = 0 for all �. 2

We will need the following de�nitions:

De�nition 2 For

^

� = argmax

�

fL(�) � P (�)g the penalized ML estimate de�ne the symmetric

Hessian matrices:

Q

def

= �r

20

Q(

^

�;

^

�)

L

def

= �r

2

^

�

L(

^

�)

P

def

= r

2

^

�

P (

^

�)

D

def

= r

20

D(

^

�k

^

�): (29)

The following relations follow directly from (27) and properties of the KL discrimination:

Q = L +P+D

r

11

Q(

^

�;

^

�) = �D: (30)

Theorem 2 Assume: i) the penalized ML estimate

^

� = argmax

�

fL(�) � P (�)g occurs in the

interior of the set �; ii) for all � 2 �, the maximum max

�

Q(�; �) is achieved on the interior of

the set �; iii) L(�), P (�), and D(�k�) are twice continuously di�erentiable in � 2 � and � 2 �

and L + P = �r

2

^

�

[L(

^

�) � P (

^

�)] > 0. Let the point �

0

initialize the EM algorithm with stochastic

mapping (25).

12



1. If the positivity condition (8) is satis�ed then the sucessive di�erences ��

i

= �

i

�

^

� of the A

algorithm obey the recursion (10).

2. If �

0

2 R

+

then k��

i

k converges monotonically to zero with at least linear rate and

3. ��

i

asymptotically converges to zero with root convergence factor

�

�

I�Q

�1

[L+P]

�

=

�

�

�

�

�

�

�

�

�

�

�

�

I�Q

�

1

2

[L +P]Q

�

1

2

�

�

�

�

�

�

�

�

�

�

�

�

2

which is strictly less than one.

Proof of Theorem 2

By Lemma 2, in the notation of Theorem 1, the EM algorithm has a �xed point at �

�

=

^

�.

Furthermore, since Q(�; �) = L(�) �D(�k�) � P (�), assumption iii of Theorem 2 guarantees that

Q(�; �) is twice continuously di�erentiable in both arguments. Thus the assumptions of Theorem 1

are satis�ed and item 1 of Theorem 2 follows. Now by Theorem 1 the root convergence factor is given

by �

�

�[r

20

Q(

^

�;

^

�)]

�1

r

11

Q(

^

�;

^

�)

�

. >From identities (29) and (30) �[r

20

Q(

^

�;

^

�)]

�1

r

11

Q(

^

�;

^

�) =

Q

�1

D = [D+L+P]

�1

D = I�Q

�1

[L+P]. Since L+P is positive de�nite and D is non-negative

de�nite (property 2.b of the KL discrimination), Lemma 3 (Appendix) asserts that the eigenvalues

of Q

�1

D are in the range [0; 1). Furthermore, I�Q

�1

[L + P] is similar to the symmetric matrix

I�Q

�

1

2

[L+P]Q

�

1

2

and therefore these two matrices have identical eigenvalues. Since �(A) = jjjAjjj

2

for any real symmetric non-negative matrix A the theorem follows. 2

Note that when the penalty function induces coupling between parameters, the M-step of the EM

"algorithm" described above can be intractable. The OSL method of Green and the majorization

method of DePierro, both described below, address this di�culty by modifying the Q function.

III.b: Linear Approximation to ML-EM Algorithm

In [2] the unpenalized ML-EM algorithm was formulated for the di�cult case of intensity pa-

rameter estimation for continuous-time �ltered Poisson-Gaussian observations. By selecting the

complete data as the unobservable Poisson increment process fdN

t

g

t2[0;T ]

over the time interval

[0; T ], an ML-EM algorithm was derived of the form:

�

i+1

= argmax

�

Q(�; �

i

); i = 1; 2; : : : (31)

where

Q(�; �)

def

=

Z

T

0

^

�(tjy; �) ln�(tj�)dt (32)
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and �(tj�) is the Poisson point process intensity over time t 2 [0; T ] and parameterized by �,

and

^

�(tjy; �) = EfdN

t

jY = y; �g is the conditional expectation of the Poisson increment process

given Y = y and � = �, i.e. the minimum mean-square error estimate of N

t

. Unfortunately the

computation of the conditional mean estimator proved to be intractible and instead the best linear

estimator

~

�(t; �jy; �) was substituted into (32):

~

Q(�; �)

def

=

Z

T

0

~

�(tjy; �) ln�(tj�)dt

While the algorithm resulting from replacing Q by

~

Q is no longer an ML-EM algorithm, and

the ML estimate may not even be a �xed point, it belongs to the class of A algorithms (1) for

which Theorem 1 can be applied to establish monotone convergence properties and asymptotic

convergence rate. In particular, with �

�

a �xed point, the asymptotic convergence rate to �

�

is

�

�

[r

20

~

Q(�

�

; �

�

)]

�1

r

11

~

Q(�

�

; �

�

)

�

.

III.c: One-Step-Late (OSL) Penalized ML-EM

Green [9, 10] proposed an approximation, which he called the one-step-late (OSL) algorithm,

for the case of tomographic image reconstruction with Poisson data and a Gibbs prior for which

the M step of the penalized ML-EM algorithm is intractible. Green's algorithm is equivalent to

linearizing the prior ln f(�) about the previous iterate �

i

in (25):

�

i+1

=

8

>

<

>

:

argmax

�

fEfln f(X; �)jY; �

i

g+r

�

i

ln f(�

i

)(� � �

i

)g ; i = 1; 2; : : :

or

argzero

�

fr

�

Efln f(X; �)jY; �

i

g+r

�

i

f(�

i

)g ; i = 1; 2; : : :

: (33)

Again Theorem 1 is applicable by identifying Q in the theorem with the function Efln f(X; �)jY; �

i

g+

r

�

i
ln f(�

i

)(�� �

i

) in (33). If the OSL algorithm converges to a �xed point �

�

the asymptotic con-

vergence rate is:

�

�

[r

20

Q(�

�

; �

�

)]

�1

[r

11

Q(�

�

; �

�

) +r

2

�

i

ln f(�

�

)]

�

= �

�

[L+D]

�1

[D�P]

�

which is identical to the result cited in [10] for the standard case of deterministic complete/incomplete

data mapping and the Gibbs prior f(�) = expf��V (�)g.

IV. APPLICATIONS

We consider two separate applications: the linear Gaussian model and the PET image re-

construction model. These two cases involve complete and incomplete data sets with Gaus-

sian/Gaussian and Poisson/Poisson statistics, respectively.
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IV.a. Linear Gaussian Model

Consider the following linear Gaussian model:

Y = G� +W

y

(34)

where � 2 � = IR

p

is a p-element parameter vector, G is an m � p matrix with full column rank

p � m, and W

y

is an m-dimensional zero mean Gaussian noise with positive de�nite covariance

�

yy

. The unpenalized ML estimator of � given Y is the weighted least squares estimator:

^

� = [G

T

�

�1

yy

G]

�1

G

T

�

�1

yy

Y: (35)

Next consider decomposing the matrix G into the matrix product BC where the m�n matrix

B has full row rank m, the n � p matrix C has full column rank p, and p � m � n. With this

decomposition we can de�ne a complete-incomplete data model associated with (34):

Y = BX+W (36)

X = C� +W

x

(37)

where the m-element vector W and the n-element vector W

x

are jointly Gaussian with zero mean

and �-independent positive de�nite covariance matrix E

�

("

W

W

x

#

[WW

x

]

)

. These assumptions

guarantee that � be identi�able in the noiseless regime when W

x

andW are vectors of zeroes. The

model (36) is of interest to us since the non-zero noiseW case is not covered by the standard ML-EM

algorithm assumptions. On the other hand, the Gaussian complete/incomplete data mapping (36)

speci�es Y as the output of a simple additive noise channel with input X; a complete-incomplete

data model for which our theory directly applies.

For the Gaussian model (36) the conditional distribution of Y given X = x is speci�ed by a

m-variate Gaussian density N (�;�) with vector location parameter:

� = Bx+E[WjX = x; �]

= Bx+�

yx

�

�1

xx

[x�C�]

and matrix scale parameter:

� = �

yy

� �

T

xy

�

�1

xx

�

xy

:

By assumption the scale parameter � is functionally independent of �. However, unless �

nx

= 0

the location parameter � generally depends on �. To ensure that the conditional density of Y given

X = x be independent of � it is required that W and W

x

be uncorrelated. Under this condition

(36) is a valid complete-incomplete data model.
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The complete data log-likelihood is:

ln f(x; �) = �

1

2

(x�C�)

T

�

�1

xx

(x�C�) �

1

2

ln j�

xx

j:

Now the unpenalized ML-EM algorithm is of the form (25) with:

Q(�; �) = E[ln f(X; �)jY; �] (38)

= �

1

2

(E[XjY; �]�C�)

T

�

�1

xx

(E[XjY; �]�C�)

�

1

2

E

h

(X�E[XjY; �])

T

�

�1

xx

(X�E[XjY; �])

�

�

�
Y; �

i

�

1

2

ln j�

xx

j

= �

1

2

(E[XjY; �]�C�)

T

�

�1

xx

(E[XjY; �]�C�) +K(Y; �)

where K(Y; �) is functionally independent of �. The conditional expectation in (38) has the form:

E[XjY; �

i

] = [I� �

xy

�

�1

yy

B]C � �

i

+ �

xy

�

�1

yy

Y (39)

= [I� �

xx

B

T

�

�1

yy

B]C � �

i

+�

xx

B

T

�

�1

yy

Y: (40)

It is easily veri�ed that:

�r

20

Q(�; �) = C

T

�

�1

xx

C

= F

X

and

r

11

Q(�; �) = C

T

�

�1

xx

C�C

T

B

T

�

�1

yy

BC (41)

= C

T

�

�1

xx

C�C

T

B

T

[B�

xx

B

T

+ �

nn

]

�1

BC (42)

= F

X

� F

Xjy

(43)

where F

X

= Ef�r

2

�

ln f(X; �)g and F

Xjy

= Ef�r

2

�

ln f(XjY; �)jY = y; �g are unconditional and

conditional Fisher information matrices associated with X.

Since the matrices r

11

Q and r

20

Q are functionally independent of � and � the matrices A

1

=

A

1

= M

1

and A

2

= A

2

= M

2

de�ned in (6) and (7) are given by the �- and �-independent matrices:

M

1

(�; �) = F

X

M

2

(�; �) = F

X

� F

Xjy

:

Now the condition M

1

(�; �) > 0 (8) is satis�ed since C is full rank. Thus we obtain from Theorem

2 the recursion for ��

i

= �

i

�

^

�:

��

i+1

= F

�1

X

[F

X

� F

Xjy

] ���

i

This is equivalent to:

F

1

2

X

��

i+1

= F

�

1

2

X

[F

X

� F

Xjy

]F

�

1

2

X

� F

1

2

X

��

i

: (44)
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Take the Euclidean norm of both sides of (44) to obtain:

k��

i+1

k �

�

�

�

�

�

�

�

�

�

�

�

�

F

�

1

2

X

[F

X

� F

Xjy

]F

�

1

2

X

�

�

�

�

�

�

�

�

�

�

�

�

2

� k��

i

k (45)

where jjj�jjj

2

is the matrix-2 norm and k�k is the weighted Euclidean norm de�ned on vectors u 2 IR

p

:

kuk

def

= u

T

F

X

u: (46)

Applying the Sherman-Morrisey-Woodbury [7] identity to the matrix F

X

� F

Xjy

(43) we see

that it is symmetric positive de�nite:

�F

def

= F

X

� F

Xjy

= C

T

[�

�1

xx

�B

T

[B�

xx

B+�

nn

]

�1

B]C = C

T

�

�1

xx

[�

�1

xx

+B

T

�

�1

nn

B]

�1

�

�1

xx

C

> 0: (47)

Thus F

�

1

2

X

[F

X

� F

Xjy

]F

�

1

2

X

is symmetric positive de�nite and therefore:

�

�

�

�

�

�

�

�

�

�

�

�

F

�

1

2

X

[F

X

� F

Xjy

]F

�

1

2

X

�

�

�

�

�

�

�

�

�

�

�

�

2

= �

�

F

�

1

2

X

[F

X

� F

Xjy

]F

�

1

2

X

�

= �

�

I� F

�1

X

F

Xjy

�

= �

�

I� [�F+ F

Xjy

]

�1

F

Xjy

�

< 1

where we have used Lemma 3 and the fact that �F > 0 and F

Xjy

� 0. Therefore from (45):

k��

i+1

k < k��

i

k

and the ML-EM algorithm converges monotonically in the norm k � k (46) for all initial points

�

0

. Therefore it converges globally in any norm. The asymptotic convergence rate is seen to be

�

�

I� F

�1

X

F

Xjy

�

. We have thus established the following:

Theorem 3 The ML-EM algorithm for the Gaussian complete/incomplete data mapping de�ned

by (36) globally converges everywhere in � = IR

p

to the ML estimate. Furthermore convergence is

monotone in the norm kuk

def

= u

T

F

X

u and the root convergence factor is �(A) < 1 where A is the

matrix:

A = I� F

�1

X

F

Xjy

(48)

where

F

X

def

= C

T

�

�1

xx

C (49)

F

Xjy

def

= C

T

B

T

[B�

xx

B+�

nn

]

�1

BC: (50)
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Finally, it is useful to remark that due to the form of A (48), the spectral radius �(A) can

only increase as the covariance �

nn

of the channel noise W increases. We therefore conclude that

while increased channel noise does not a�ect the region of monotone convergence of the ML-EM

algorithm it does adversely a�ect the rate of convergence for the Gaussian model (36).

IV.b. PET Image Reconstruction

In the PET problem the objective is to estimate the intensity � = [�

1

; : : : ; �

p

]

T

, �

b

� 0, governing

the number of gamma-ray emissions N = [N

1

; : : : ;N

p

]

T

over an imaging volume of p pixels. The

estimate of � must be based on the projection data Y = [Y

1

; : : : ;Y

m

]

T

. BothN and Y are Poisson

distributed:

P (N; �) =

p

Y

b=1

[�

b

]

N

b

!

N

b

e

��

b

;

P (Y; �) =

m

Y

d=1

[�

d

]

Y

d

!

Y

d

e

��

d

(51)

where �

d

= E

�

[Y

d

] is the Poisson intensity for detector d:

�

d

=

p

X

b=1

P

djb

�

b

and P

djb

is the transition probability corresponding to emitter location b and detector location d.

To ensure a unique ML estimate we assume that m � p, the m � p system matrix [[P

djb

]] is full

rank, and (�

d

, Y

d

) are strictly positive for all d = 1; : : : ; m.

The standard choice of complete data X for estimation of � via the EM algorithm is the set

fN

db

g

m;p

d=1;b=1

, where N

db

denotes the number of emissions in pixel b which are detected at detector

d [23, 17]. This complete data is related to the incomplete data via the deterministic many-to-

one mapping: N

d

=

P

p

b=1

N

db

, d = 1; : : : ; m. It is easily established that fN

db

g are independent

Poisson random variables with intensity E

�

fN

db

g = P

djb

�

b

, d = 1; : : : ; m, b = 1; : : : ; p and that the

conditional expectation Efln f(X; �)jy; �

i

g of the complete data log-likelihood given the incomplete

data is [10]:

Efln f(X; �)jY; �

i

g =

m

X

d=1

p

X

b=1

"

Y

d

P

djb

�

i

b

�

i

d

ln(P

djb

�

b

)� P

djb

�

b

#

where �

i

d

=

P

p

b=1

�

i

b

P

bjd

. For a penalty function P (�) the Q function for the penalized ML-EM

algorithm is:

Q(�; �

i

) = Efln f(X; �)jY; �

i

g � P (�);
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which yields a sequence of estimates �

i

, i = 1; 2; : : : of �. In order to obtain asymptotic convergence

properties using Theorem 2 it will be necessary to assume �

i

lies on the interior of �, i.e. �

i

lies

in the strictly positive orthant, for all i > 0 . This assumption only holds when the unpenalized or

penalized ML estimate

^

� lies in the interior of �, a condition which is usually not met throughout

the image. For example, when

P

m

d=1

P

bjd

= 0 the pixel b is outside the �eld of view and it is easily

established that

^

�

b

= 0. Therefore, for the following analysis to hold, the pixels for which

^

� lies on

the boundary must be eliminated from the vector �

i

.

Under these assumptions

�r

20

Q(�; �

i

) = diag

b

�

�

i

b

�

b

�

� [B(�

i

) +C(�

i

)] � diag

b

�

�

i

b

�

b

�

+ P(�) (52)

r

11

Q(�; �

i

) = diag

b

�

�

i

b

�

b

�

�C(�

i

) (53)

where, similar to the de�nition in [10], B(�

i

) is the positive de�nite p� p matrix:

B(�

i

)

def

=

m

X

d=1

Y

d

[�

i

d

]

2

P

dj�

P

T

dj�

;

B(�

i

) +C(�

i

) is the p� p positive de�nite matrix

B(�

i

) +C(�

i

)

def

= diag

b

 

1

�

i

b

m

X

d=1

Y

d

P

djb

�

i

d

!

:

and

P(�)

def

= r

2

�

P (�):

The matrices A

1

(�; �

i

) and A

2

(�; �

i

) de�ned in (7) are obtained by taking the k-th row of

�r

20

Q(�; �

i

) and the k-th row of r

11

Q(�; �

i

) and replacing � and �

i

with �(t) = t

k

� + (1 � t

k

)

^

�

and �

i

(t) = t

k

�

i

+ (1� t

k

)

^

�, respectively, k = 1; : : : ; p. This gives:

A

1

(�; �

i

) = diag

b

�

�

i

b

(t

b

)

�

b

(t

b

)

�

� [B

t

+C

t

] � diag

b

�

�

i

b

(t

b

)

�

b

(t

b

)

�

+P

t

(54)

A

2

(�; �

i

) = diag

b

�

�

i

b

(t

b

)

�

b

(t

b

)

�

�C

t

(55)

where P

t

is the p� p matrix:

P

t

def

= �

2

6

6

4

r

�

@

@�

1

(t

1

)

P (�(t

1

))

.

.

.

r

�

@

@�

p

(t

p

)

P (�(t

p

))

3

7

7

5

; (56)
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B

t

is the non-negative de�nite p� p matrix:

B

t

def

=

m

X

d=1

Y

d

diag

b

�

1

�

i

d

(t

b

)

�

P

dj�

P

T

dj�

diag

b

�

1

�

i

d

(t

b

)

�

; (57)

B

t

+C

t

is the positive de�nite p� p matrix:

B

t

+C

t

def

= diag

b

 

1

�

i

b

(t

b

)

m

X

d=1

Y

d

P

djb

�

i

d

(t

b

)

!

; (58)

and �

i

d

(t

b

)j

def

=

P

p

k=1

�

i

k

(t

b

)P

kjd

.

Now if A

1

(�; �

i

) is invertible for all �, and �

i

we have from (10) of Theorem 1:

��

i+1

= �[A

1

(�

i+1

; �

i

)]

�1

A

2

(�

i+1

; �

i

) ���

i

(59)

= diag

b

 

�

i+1

b

(t

b

)

�

i

b

(t

b

)

!

� [B

t

+C

t

+ diag

b

 

�

i+1

b

(t

b

)

�

i

b

(t

b

)

!

P

t

diag

b

 

�

i+1

b

(t

b

)

�

i

b

(t

b

)

!

]

�1

C

t

���

i

where t = [t

1

; : : : ; t

p

]

T

is a function of �

i

; �

i+1

;

^

�. Unfortunately, it can be shown that for any �

i

,

sup

�2�

jjjA

1

(�; �

i

)]

�1

A

2

(�; �

i

)jjj is unbounded for any Euclidean-type norm of the form kuk

2

= u

T

Du

where D is positive de�nite. Thus the monotone convergence part of Theorem 2 fails to apply. This

suggests that to establish monotone convergence properties of the PET EM algorithm, we should

consider other parameterizations of �.

Consider the alternative parameterization de�ned by the logarithmic transformation g::

� = ln � = [ln �

1

; : : : ; ln �

p

]

T

:

The inverse of the transformation g(�) = ln � is the exponential transformation

g

�1

(�) = e

�

= [e

�

1

; : : : ; e

�

p

]

T

;

and the Jacobian is the diagonal matrix with diagonal elements:

[J(�)]

bb

= e

��

b

:

Using (54) and (55) we obtain from (22):

��

i+1

= diag

b

�

e

��

i

b

(t

b

)

� h

~

B

t

+

~

C

t

+ diag

b

�

e

�

i+1

b

(t

b

)��

i

b

(t

b

)

�

~

P

t

diag

b

�

e

�

i+1

b

(t

b

)��

i

b

(t

b

)

�i

�1

�

~

C

t

diag

b

�

e

�

i

b

(t

b

)

�

���

i

where

~

B

t

,

~

C

t

and

~

P

t

are B

t

, C

t

and P

t

of (56)-(58) parameterized in terms of � = �(�) and

�(t

b

) = t

b

� + (1 � t

b

)�̂ , b = 1; : : : ; p. Using the facts that �

b

= ln �

b

and �(t

b

) = ln �(t

b

) for some

t

b

2 [0; 1], b = 1; : : : ; p, we can express the above in terms of the original parameterization to obtain:

(60)

� ln �

i+1

= D

t

�1

[B

t

+C

t

+R

T

t

P

t

R

t

]

�1

C

t

D

t

�� ln �

i

;
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where

D

t

def

= diag

b

�

�

i

b

(t

b

)

�

R

t

def

= diag

b

 

�

i+1

b

(t

b

)

�

i

b

(t

b

)

!

and � ln � is the vector:

� ln �

def

= ln � � ln

^

�:

In (60) we have dropped the overline in t for notational simplicity. We divide subsequent treatment

into the unpenalized and penalized cases:

Unpenalized ML-EM

For the unpenalized case P

t

= 0, so that B

t

+C

t

+P

t

= B

t

+C

t

is symmetric positive de�nite

and we have from (60):

[B

t

+C

t

]

1

2

D

t

�� ln �

i+1

(61)

= [B

t

+C

t

]

�

1

2

C

t

[B

t

+C

t

]

�

1

2

� [B

t

+C

t

]

1

2

D

t

�� ln �

i

Taking the Euclidean norm of both sides of (61) we obtain:

�

� ln �

i+1

�

T

D

T

t

[B

t

+C

t

]D

t

�

� ln �

i+1

�

(62)

�

�

�

�

�

�

�

�

�

�

�

�

�

[B

t

+C

t

]

�

1

2

C

t

[B

t

+C

t

]

�

1

2

�

�

�

�

�

�

�

�

�

�

�

�

2

�

�

� ln �

i

�

T

D

T

t

[B

t

+C

t

]D

t

�

� ln �

i

�

= �

�

[B

t

+C

t

]

�1

C

t

�

�

�

� ln �

i

�

T

D

T

t

[B

t

+C

t

]D

t

�

� ln �

i

�

It is easily seen that D

T

t

[B

t

+C

t

]D

t

is the diagonal matrix:

D

T

t

[B

t

+C

t

]D

t

= diag

b

 

�

i

b

(t

b

)

m

X

d=1

Y

d

P

djb

�

i

d

(t

b

)

!

: (63)

This establishes:

p

X

b=1

�

i

b

(t

b

)

m

X

d=1

Y

d

P

djb

�

i

d

(t

b

)

 

ln

�

i+1

b

^

�

b

!

2

� �

�

[B

t

+C

t

]

�1

C

t

�

p

X

b=1

�

i

b

(t

b

)

m

X

d=1

Y

d

P

djb

�

i

d

(t

b

)

 

ln

�

i

b

^

�

b

!

2

:
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We next consider the asymptotic form of (62) for small k��

i

k

2

. By using �

i

b

(t

b

) =

^

�

b

+ t

b

��

i

b

and �

i

d

(t

b

) = �̂

d

+O(k��

i

)k

2

) we obtain:

D

T

t

[B

t

+C

t

]D

t

= D

T

[B+C]D+ O(k��

i

k

2

)

= diag

b

 

^

�

b

m

X

d=1

Y

d

P

djb

�̂

d

!

+ I �O(k��

i

k

2

); (64)

�

�

[B

t

+C

t

]

�1

C

t

�

= �

�

[B+C]

�1

C

�

+O(k��

i

k

2

) (65)

where �̂

d

=

P

p

b=1

P

djb

^

�

b

and D = D

t

j

t=0

, C = C

t

j

t=0

= C(

^

�), B = B

t

j

t=0

= B(

^

�). It is proven in

Appendix B that �

2

1

def

= �([B+C]

�1

C) < 1. Using the asymptotic forms (64) and (64) in (62):

�

� ln �

i+1

�

T

diag

b

 

^

�

b

m

X

d=1

Y

d

P

djb

�̂

d

!

�

�

� ln �

i+1

� �

1 +O(k��

i

k

2

)

�

(66)

� �

2

1

�

�

� ln �

i

�

T

diag

b

 

^

�

b

m

X

d=1

Y

d

P

djb

�̂

d

!

�

� ln �

i

�

�

�

1 + O(k��

i

k

2

)

�

:

Identifying the norm k � k de�ned by:

kuk

def

= u

T

diag

 

^

�

b

m

X

d=1

Y

d

P

djb

�̂

d

!

u

=

p

X

b=1

^

�

b

m

X

d=1

Y

d

P

djb

�̂

d

u

2

b

: (67)

we have the equivalent form:







� ln �

i+1







�

�

1 + O(k��

i

k

2

)

�

: � �

2

1







� ln �

i







�

�

1 +O(k��

i

k

2

)

�

: (68)

Thus if �

i

is su�cently close to

^

�:







� ln �

i+1







<







� ln �

i







(69)

Now it is known that the ML-EM PET algorithm converges [9] so that k�

i

�

^

�k ! 0. As

long as

^

� is strictly positive, the relation (68) asserts that in the �nal iterations of the algorithm

the logarithmic di�erences ln �

i

� ln

^

� converge monotonically to zero relative to the norm (67).

Furthermore the speed of this asymptotic monotone convergence is inversely proportional to �

2

1

=

�([B+C]

�1

C).

The norm k � k in (67) has a simpler equivalent form which is functionally dependent on Y

d

only through

^

�. The PET log-likelihood function ln P (Y; �) (51) has derivative at the maximum

likelihood estimate

^

�:

@

@

^

�

b

lnP (Y;

^

�) =

p

X

d=1

�

Y

d

P

djb

�̂

d

� P

djb

�

; b = 1; : : : ; p: (70)
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Now since

^

� is a stationary point of lnP (Y; �) this derivative is zero and:

p

X

d=1

Y

d

P

djb

�̂

d

= P

d

where

P

b

def

=

p

X

b=1

P

djb

Thus (69)is equivalent to:

p

X

b=1

P

b

^

�

b

�

ln �

i+1

b

� ln

^

�

b

�

2

<

p

X

b=1

P

b

^

�

b

�

ln �

i

b

� ln

^

�

b

�

2

Finally we note that:

� ln � = ln

�

b

^

�

b

=

�

b

�

^

�

b

^

�

b

+O(j��

b

j)

so that to O(k��

i

k

2

) (68) is equivalent to:

p

X

b=1

P

b

 

�

i+1

b

�

^

�

b

^

�

b

!

2

<

p

X

b=1

P

b

 

�

i

b

�

^

�

b

^

�

b

!

2

Assuming the simple case where P

b

=

P

m

d=1

P

djb

= 1 we conclude that asymptotically the vector of

ratios ��

i

=

^

�

def

= [��

i

b

=

^

�

b

; : : : ;��

i

b

=

^

�

b

]

T

converges monotonically to zero in the standard Euclidean

norm.

We summarize these results in the following theorem.

Theorem 4 Assume that the unpenalized PET ML-EM algorithm converges to the strictly positive

limit

^

�. Then, in the �nal iterations the logarithm of sucessive iterates converge monotonically to

log

^

� in the sense that for some su�ciently large positive integer M :

k log �

i+1

� log

^

�k � �

2

1

k log �

i

� log

^

�k; i �M;

where �

2

1

= �([B+C]

�1

C), B = B(

^

�), C = C(

^

�), the norm k � k is de�ned as:

kuk

def

=

p

X

b=1

P

b

^

�

b

u

2

b

:

and P

b

def

=

P

m

d=1

P

djb

.
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Quadratically Penalized ML-EM

We assume that P (�) =

1

2

�

T

�� where � is a symmetric non-negative de�nite p�pmatrix. There

is no known closed form solution to the M-step of the penalized ML-EM algorithm (23) unless

� is diagonal. Therefore, for non-diagonal � the recursion (23) is only a theoretical algorithm.

Nonetheless, the convergence properties of this theoretical penalized ML-EM algorithm can be

studied using Theorem 2.

Since B

t

+C

t

is positive de�nite, B

t

+C

t

+R

T

t

P

t

R

t

= B

t

+C

t

+ R

t

�R

t

is positive de�nite

and from (60) we have the representation:

[B

t

+C

t

+R

T

t

�R

t

]

1

2

D

t

� ln �

i+1

(71)

= [B

t

+C

t

+R

�T

t

�R

�1

t

]

�

1

2

C

t

� [B

t

+C

t

+R

�T

t

�R

�1

t

]

�

1

2

�[B

t

+C

t

+R

�T

t

�R

�1

t

]

1

2

D

t

� ln �

i

:

Taking the Euclidean norm of both sides

�

� ln �

i+1

�

T

D

T

t

[B

t

+C

t

+R

�T

t

�R

�1

t

]D

t

�

� ln �

i+1

�

(72)

�

�

�

�

�

�

�

�

�

�

�

�

�

[B

t

+C

t

+R

�T

t

�R

�1

t

]

�

1

2

C

t

[B

t

+C

t

+R

�T

t

�R

�1

t

]

�

1

2

�

�

�

�

�

�

�

�

�

�

�

�

2

�

�

� ln �

i

�

T

D

T

t

[B

t

+C

t

+R

�T

t

�R

�1

t

]D

t

�

� ln �

i

�

= �

�

[B

t

+C

t

+R

�T

t

�R

�1

t

]

�1

C

t

�

�

�

� ln �

i

�

T

D

T

t

[B

t

+C

t

+R

�T

t

�R

�1

t

]D

t

�

� ln �

i

�

:

As in our study of unpenalized ML-EM we turn to the asymptotic behavior of the penalized

ML-EM inequality (72). First observe that as before D

T

t

[B

t

+C

t

]D

t

= diag

b

�

^

�

b

P

d=1

Y

d

P

djb

�̂

d

�

+

O(k��

i

k

2

) and:

�

�

[B

t

+C

t

+R

�T

t

�R

�1

t

]

�1

C

t

�

= �

�

[B+C+ �]

�1

C

�

+O(k��

i

k

2

):

Now it is easily shown that since � is non-negative de�nite: �

2

2

def

= � ([B+C+�]

�1

C) � � ([B+C]

�1

C) =

�

2

1

< 1. Therefore, similarly to the unpenalized case we have from (72):

�

� ln �

i+1

�

T

"

diag

b

 

^

�

b

m

X

d=1

Y

d

P

djb

�̂

d

!

+D

T

�D

#

�

� ln �

i+1

�

�

�

1 +O(k��

i

k

2

)

�

� �

2

2

�

�

� ln �

i

�

T

"

diag

b

 

^

�

b

m

X

d=1

Y

d

P

djb

�̂

d

!

+D

T

�D

#

�

� ln �

i

�

�

�

1 + O(k��

i

k

2

)

�

;
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where D

def

= diag

b

(

^

�

b

). Identifying the norm k � k de�ned by:

kuk

def

= u

T

"

diag

 

^

�

b

m

X

d=1

Y

d

P

djb

�̂

d

!

+ diag

b

(

^

�

b

)�diag

b

(

^

�

b

)

#

u (73)

we have:







� ln �

i+1







�

�

1 +O(k��

i

k

2

)

�

� �

2

1







� ln �

i







�

�

1 + O(k��

i

k

2

)

�

: (74)

>From these results we obtain:

Theorem 5 Assume that the quadratically penalized PET ML-EM algorithm converges to the

strictly positive limit

^

�. Then, in the �nal iterations the logarithm of sucessive iterates converge

monotonically to log

^

� in the sense that for some su�ciently large positive integer M :

k log �

i+1

� log

^

�k � �

2

2

k log �

i

� log

^

�k; i �M;

where �

2

2

def

= � ([B+C+�]

�1

C) � �

2

1

= � ([B+C]

�1

C), B = B(

^

�), C = C(

^

�), and the norm k � k

is de�ned by (73).

V. CONCLUSION

We have presented a methodology for studying the asymptotic convergence properties of EM-

type algorithms. We have indicated how our methods apply to several important EM and ap-

proximate EM algorithms presented in the literature. We have established asymptotic monotone

convergence of the log images and asymptotic rate of convergence for the PET ML-EM and pe-

nalized ML-EM image reconstruction algorithms. A weakness of the theory given here is that it

does not apply to cases where the maximization in the M step is achieved on a boundary of the

parameter space. While there are a certain number of such problems where this theory will not

apply, we believe that the theory will nonetheless be useful for a large number of applications ar-

eas. The theory presented in this paper has recently been applied to evaluating the convergence

properties of a rapidly convergent class of EM-type algorithms called space-alternating generalized

EM (SAGE) algorithms [6].
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APPENDICES

A. Matrix Lemmas

The following matrix results are used in the paper.

Lemma 3 Let the p�p symmetric matrices A and B be positive de�nite and non-negative de�nite,

respectively, and de�ne the matrix C = A+B. Then the eigenvalues of the matrix C

�1

B all lie in

the interval [0; 1).

Proof: Since the matrix C is positive de�nite there exists a symmetric positive de�nite square

root factor C

1

2

such that C = C

1

2

C

1

2

. Furthermore, since C

�

1

2

BC

�

1

2

is non-negative de�nite:

C

�

1

2

BC

�

1

2

= [I � C

�

1

2

AC

�

1

2

] � 0. Now adding the fact that C

�

1

2

AC

�

1

2

is positive de�nite,

we obtain 0 � C

�

1

2

BC

�

1

2

< I so that all of the eigenvalues of C

�

1

2

BC

�

1

2

are non-negative and

strictly less than one. De�ning S = C

1

2

, observe that C

�1

B = S

�1

�C

�

1

2

BC

�

1

2

� S, so that C

�1

B

and C

�

1

2

BC

�

1

2

are similar matrices. Since similar matrices have identical eigenvalues C

�1

B has

eigenvalues in [0; 1). 2

Lemma 4 Let B be an n � p matrix with full column rank p � n. Then �(A) < 1 implies

�

�

[B

T

B]

�1

B

T

AB

�

< 1.

Proof: We use the following fact: if �(A) < 1 then 0 � AA

T

< I. The following sequence of

inequalities establishes the lemma.

�

2

�

[B

T

B]

�1

B

T

AB

�

= �

2

�

[B

T

B]

�

1

2

B

T
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2

�
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�

1

2

B

T

A �B[B

T
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B

T
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T
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T
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�

1
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�

� �
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�
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T

B[B

T
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�

1

2

�

= �

�

[B

T
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�1

B

T
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T

B

�
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�

[B

T

AA

T

B+B

T

[I �AA

T

]B]

�1

B

T

AA

T

B

�

< 1

where the last inequality follows directly from Lemma 3. The inequality on the third line follows

from the fact that the symmtric idempotent matrix B[B

T

B]

�1

B

T

satis�es: 0 � B[B

T

B]

�1

B

T

� I.

2
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B. PET ML-EM Results

Lemma 5 Let the p-element vectors P

dj�

, d = 1; : : : ; m, span IR

p

and assume m � p. Assume that

�

b

> 0 for all b = 1; : : : ; p and Y

d

> 0 for all d = 1; : : : ; m. De�ne the matrices:

B

def

=

m

X

d=1

Y

d

diag

b

�

1

�

d

�

P

dj�

P

T

dj�

diag

b

�

1

�

d

�

; (75)

and

B+C

def

= diag

b

 

1

�

b

m

X

d=1

Y

d

P

djb

�

d

!

; (76)

where �

d

=

P

p

k=1

�

k

P

kjd

. Then � ([B+C]

�1

C) � �

2

1

where �

2

1

2 [0; 1).

Proof

Since the P

dj�

's span IR

p

and the Y

d

's are positive the matrix B is positive de�nite. Hence, by

Lemma 3, it will su�ce to show that C is non-negative de�nite. De�ne D = diag

b

(�

b

). Then:

C = diag
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m
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(77)

Therefore it su�ces to show that E

d

� 0 for all d = 1; : : : ; m. Let u 2 IR

p

be arbitrary. Then

u

T

Eu =

p

X
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u

2

b

P

djb

�

b

�

d

�

 

p

X

b=1

u

b

P

djb

�

b

�

d

!

2

=

p

X

b=1

P

djb

�

b

�

d

(u

b
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2

� 0

where u
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=

P

p
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u

b

P

djb

�

b

�

d

and we have used the fact that

P

p
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P

djb

�

b

�

d

= 1. 2
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