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“LINEAR” INVERSE PROBLEM

y = Az + noise

e y: noisy measurements (blurred image or sinogram)
e z: unknown object (true image)

e A: known system model
(each column is a point response function)

e Errors in A partially motivate robust methods

Goal: recover an estimate z of 2 from y.



DATA-FIT COST FUNCTION

Want 2 to “fit the data,” i.e. y = Az

Natural cost function for independent measurement errors:

Plee (1) = ”i i (ly — Azl;)

P

o ly— Az]i=yi — L i)
]:

e my: length of y

e 1);: convex function.

Traditional choice: ;(t) = t*/2, which is appropriate for Gaussian
noise, but is not robust to noise with heavy-tailed distributions.



ROBUST DATA-FIT COST FUNCTION
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Example - Huber function:
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ROBUST ESTIMATORS

Generalized-Gaussian family of pdfs with unit variance:

, r(3
fx(zip,p) = 2F(l/)\/fexp< |x—,u|p7“£/) Whererpzrgl?g.

Asymptotic variance of the sample median estimator for p is:

1 1T*(1/p)
dnfp) n p2r,

(cf 1/n for the sample mean).
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REGULARIZATION

Minimizing @92 is inadequate for ill-conditioned inverse problems.

Prior “knowledge” of piece-wise smoothness:

o u;—xj1~0 (piece-wise constant)
o ;| —2x;+xjp ~0 (piece-wise linear)
o 1, ~0 (support constraints)
e ... Combining: Cx =~ 2

Regularized cost function: B(z) = Pdata(g) + Ppenalty(g),

I g) = 5y (O — )



EXAMPLE: ROUGHNESS PENALTY
(AKA GIBBS PRIOR)
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where ® denotes the Kronecker matrix product.

If z =0 and N is the four pixel neighborhood of pixel j, then
q)penalty( ) Z Z wj k( xk)

]kej

Conventional (Tikhonov-Miller) regularization: (t) = */2.
(Gaussian prior)

For edge-preserving image recovery, need non-quadratic v(-),
such as Huber function.



UNIFIED COST FUNCTION

Regularized edge-preserving cost function is a special case:
& ]
J
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Optimization problem:
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OPTIMIZATION

Simple in quadratic case where 1;(t) = t*/2 Vi
i — (B/B)—lB/Q

Good algorithms:
e Preconditioned conjugate gradients
e Coordinate descent (Gauss-Siedel)

Challenging for non-quadratic ¢;'s
Very challenging for non-convex 1);’s

Proposition: algorithms tailored to structure of ® can outperform
general purpose optimization methods.

but cannot solve it all...
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ASSUMPTIONS

B has full column rank, so M >0 = B'MB >0

(Easily achieved with sensible regularization design)

® ¢ is symmetric
e 1) is everywhere differentiable (and therefore continuous)

o 4)(t) = d/dt +(t) is non-decreasing (and hence 1)) is convex)

o |wy(t) = W) (t)/t]is non-increasing for ¢t > 0

o wy(0) = limy_ w(t)/t is finite and nonzero, i.e. 0 < wy(0) < 0o

® has a unique minimizer
(Easily ensured with perturbation of regularizer)

rules out entropy, [¢|? to understand w, look at...
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UNCONSTRAINED SOLUTION

Column gradient:
VO(z) = B'Q(z)(Bz —¢), V&(z)|,_,=0
where  ©(z) = diag{wy,((Bz — )}
Unconstrained solution:

i = [B'Q(2)B]"B'Q(z)c

1
= argmin §(Q — Bz)Q(z)(c — Bx)

(ala WLS, but weights depend on estimate Z, hence nonlinear)

Therefore need iterative algorithm...
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WEIGHTING FUNCTIONS w,
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NEWTON-RAPHSON ALGORITHM

in—H _ in . [B/A(in)B]_lvq)(in)

where
A(z") = diag{;([Bz — c];)}
Advantage:

e Super-linear convergence rate (if convergent)

Disadvantages:

e Requires twice-differentiable 1);'s

Not guaranteed to converge

Not guaranteed to monotonically decrease ¢
Does not enforce nonnegativity constraint

Impractical for image recovery due to matrix inverse

General purpose remedy: bound-constrained Quasi-Newton algorithms
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HUBER ALGORITHM (1981)

Recall & =[B'Q&)B]'B'Q(2)c =& — [B'Q()B]'Vd(2)

Successive Substitutions:

in—H _ ln . [B/Q(in)B]_lvq)(in)

Advantages:
e Monotonically decreases ®

e Converges globally to unique minimizer (not shown by Huber)

Disadvantages:
e Does not enforce nonnegativity constraint
e Impractical for image recovery due to matrix inverse

Successive substitutions is often not convergent. Why here?
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OPTIMIZATION TRANSFER

n-+1
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Minimizing surrogate function ¢ ensures a monotone decrease in O if:
o P(a"iz") =D(z")

o Vidlz:z")|,_p = VP(z)|,
o Oz) < plzia) :

in

These 3 (sufficient) conditions are satisfied by pHuber

16



OPTIMIZATION TRANSFER IN 2D
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GENERALIZED HUBER ALGORITHM

in—l—l — ln . M;lvq)(ln)

where

M, > B'Q(z")B

Advantages:

e Monotonically decreases ®

e Converges globally to unique minimizer

e Can choose M, to be easily invertible, e.g. diagonal.
(Or splitting matrices more generally)

Disadvantages:

e Does not enforce nonnegativity constraint
e Converges slower than Huber algorithm
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CONVERGENCE RATE
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can we beat this tradeofl?
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USING THE STRUCTURE OF o

De Pierro’s decomposition (uses form of argument of ;):

p b -

4
Bz —c= 3} oy —](xj—x?)—I—B@”—Q
=1 Qg

J

provided a;;; > 0 and ¥/_; o;; = 1, Vi.

The «;;'s are algorithm design factors.
Natural choice is cv;; = |bi;|/ x5y |bis].

By convexity of );:
& bij " "
Pi([Bz — cli) < '21 it (w(ﬂﬁj — )+ Ba" — C)
J= 1]

Construct surrogate function:

Be) = 5 i([Br — ) < ¢ ()

PP (2 2") = Y iy 2",

PHPC satisfies the 3 conditions for monotonicity
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LANGE / DE PIERRO CONVEX ALGORITHM

ln—l_l = arg miin ¢LDC(£; in)
o7 = iy dasa)
= arg min g) ozijwi(bij(xj —z")+ Bz" — c)
7j20,=1 Qg /
Advantages:
e Monotonically decreases ®
e Converges globally to unique minimizer
e No matrix inversion required
e Can enforce nonnegativity constraint
e Parallelizable (all pixels updated simultaneously)

Disadvantages:

Requires subiteration for minimization
Solution: use 1-D Huber algorithm
Very slow convergence (ala EM algorithm)
Solution: update only a subset of the pixels simultaneously
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GROUPED COORDINATE DESCENT
ALGORITHM

Construct surrogate function using Lange / De Pierro convexity method
but for only a (large) subset of the pixels.

Pixel Groups (2x3)

1|53 1|53 1|5

1|53 |1|5]|3]1]5

4 |2 |6 |42 |6 |42

Pixels separated => decoupled => fast convergence
Many pixels per subiteration => parallelizable

Retains advantages of Convex Algorithm, but converges faster.

Disadvantages:

o Slightly less parallelizable.

e Slightly more complicated implementation
e Difficult to exploit structure of B

(e.g. FFTs for shift-invariant PSF, separable blur in PET)
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SIMULATION EXAMPLE

True object z:

With 5 pixel horizontal motion blur and Gaussian noise, ¥ is:
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RESTORED IMAGE

Wiener filter:

Edge-preserving restoration Z:

Huber function used for ;'s for piece-wise smoothness.
15 iterations of Grouped Coordinate Descent.
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CONVERGENCE RATES
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G—© LBFGS Quasi—-Newton
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LBFGS: Limited Memory Bound Constrained Quasi-Newton Method
(R. Byrd, P. Lu, J. Nocedal, R. Schnabel, C. Zhu)
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NORMALIZED RMS DISTANCE

Normalized RMS Distance

O O LBFGS Quasi—-Newton
O O Grouped Coordinate Descent

X=X 171X ]

10
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2°°: 400 iterations of single-coordinate descent

(Thanks to Web Stayman for interfacing LBFGS with ASPIRE.)
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SUMMARY

Grouped Coordinate Descent Algorithm

e Accommodates non-quadratic cost function
(for noise robustness and preserving edges)

e Monotonically decreases ®

e Converges globally to unique minimizer

e Easily accommodates nonnegativity constraint
e Parallelizable

e Converges faster than a general-purpose optimization method

Future Work:

Extend convergence proofs for multiple global minimizers:
()

Slides and paper available from:
http://www.eecs.umich.edu/ "fessler/
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