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‘ Introduction I

e Statistical image reconstruction methods are nonlinear estimators
= space-variant pixel variances
e Potential applications of variance maps:
e reconstruction algorithm evaluation
e imaging system design
e medical diagnosis (confidence)

e choosing simulation parameters
® 777

e Fast approximate variance maps may be useful (cf simulations)

e Variance maps for FBP images: well-known but little used...
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‘ Poisson Statistical Model.

Poisson{Y;(A"")}
> cigijhi +

J

measured emission counts

modeled mean of Y]

unknown activity in the jth pixel

geometric system response G = {g;; }

ray factors e.g. attenuation and detector efficiency
random coincidences and scatter.

Image reconstruction: estimate image A from sinogram Y




‘ Penalized-Likelihood Estimators.

Log-likelihood:

L(AY) = Zyz log Y;(A) — Y;()) + constant
i=1

Estimator:

A

A= arg tmax PN\, Y)

Penalized-Likelihood Objective Function:

where R()) is a roughness penalty function.

Fast converging algorithms available for finding minimizer \ of ®.




‘ Covariance Approximation I

Estimator defined implicitly = no explicit expression for covariance.

Approximation from (Fessler, IEEE Tr. Image Proc., Mar. 1996):

Cov{)\} ~ [F + BR] ' F[F + 3R]

e F = G'D(u;)G Fisher-information matrix

e D(u;) Diagonal matrix with D;; = u;
eu; =c2/Y; Inverse of measurement variance
e R=V?R Hessian of the penalty.

Covariance approximation improves with increasing scan time.




‘ Variance I

Variance map: image of the diagonal elements of Cov{\}.
Var{};} [Cov{A})j; = €;Cov{dle,
e;[F + SR]" F[F + (R] ¢,
2’G'D(u;)Gz

S wilGal?
1—=1

where e, is the jth standard unit vector and

[G'D(u;)G + SR]z = ¢;.

J

One would have to solve this system of equations once for each pixel.
Too expensive (simulations would be cheaper!): .. approximate further.




‘Fisher Information Approximation'

From (Fessler and Rogers, IEEE Tr. Image Proc., Sep. 1996):

F = G'D(u;)G = D(x;)G'G D(r;)

where r; = \/ZZ : g” ! is the “effective certainty” of the jth pixel.

z 1 gzg
(Normalized backprojection of inverse ray variances.)

For homoscedastic Gaussian noise, the x;’s would all be equal.

‘New Covariance Approximation'

Cov{\} = D(k;")[G'G + BR:] ' G'G[G'G + BR2] ' D(r}")

where Ry =




‘Proposed Variance Approximation'

o2
Var{j\j} ~ 2 fﬁﬁ

J

where 02() £ ¢/ [G'G + 7R] ' G'G|G'G + nR] e,

J
e In PET the 0]2- function(s) depend only on the system geometry
and the penalty function, = precompute / tabulate once.
o All object-dependent factors are contained in the &;’s.
2

e 03(n) is the variance of \; under homoscedastic Gaussian noise

and reconstruction with regularization parameter 7.
For shift-invariant systems:
e The o7 functions are all identical
e o°(n) easily computed using FFTs




'Example “Table” I

Table of o%(n) for Simulated PET System




‘Simulation.

e 2000 realizations
e PET digital emission phantom / nonuniform attenuation
e Modified quadratic penalty

e 10 iterations of PML-SAGE-3
e Nonnegativity enforced




‘Standard Deviation I\/IapsI

Empirical

Predicted




‘Center Horizontal Profile.

Std. Dev. of Reconstructions
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‘Center Vertical Profile'

Std. Dev. of Reconstructions
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Mismatch in cold spot where nonnegativity constraint is very active.




‘ Histograms I

Histogram of PL Estimates (2000 realizations)

Center of Cold Disk I Image Center

o

@
S
o
<

o
o ()
N a
© o
o o
a o

o
o
=

>
(&)

c

()

=

(on
(]

b
[

(]
=

e}
©

()

L

relative frequency

o
-
Q1

o

Y
o
o
w

0o 9 2
pixel value . . pixel value




‘ Autocorrelation Functions I

Autocorrelation Profiles for Center Pixel
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‘Autocorrelation Function: Radial Average'

Autocorrelation Function: Radial Average

PL Predicted
PL-SAGE Empirical
FBP

(For Center Pixel)
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‘Summary and Future Work.

e Fast approximation for pixel variances in penalized-likelihood or
penalized weighted least-squares image reconstruction methods

e Very fast for shift-invariant systems

e Over-estimates variance in low-count regions

e Refinement needed for asymmetric autocorrelation functions

e Extend to 3D and shift-variant systems

e When is it useful?

Preprints: http://www.eecs.umich.edu/~fessler/




