Approximate Variance Images for Penalized-Likelihood Image Reconstruction

Jeffrey A. Fessler University of Michigan

NSS/MIC Nov. 1997

Introduction

- Statistical image reconstruction methods are nonlinear estimators
 - ⇒ space-variant pixel variances
- Potential applications of variance maps:
 - reconstruction algorithm evaluation
 - imaging system design
 - medical diagnosis (confidence)
 - choosing simulation parameters
 - ???
- Fast approximate variance maps may be useful (cf simulations)
- Variance maps for FBP images: well-known but little used...

Poisson Statistical Model

$$Y_i \sim \text{Poisson}\{\bar{Y}_i(\underline{\lambda}^{\text{true}})\}\$$

 $\bar{Y}_i(\underline{\lambda}) = \sum_j c_i g_{ij} \lambda_j + r_i$

- $\bullet Y_i$ measured emission counts
- \bar{Y}_i modeled mean of Y_i
- ullet λ_j unknown activity in the jth pixel
- G geometric system response $G = \{g_{ij}\}$
- c_i ray factors e.g. attenuation and detector efficiency
- \bullet r_i random coincidences and scatter.

Image reconstruction: estimate image $\underline{\lambda}$ from sinogram \underline{Y}

Penalized-Likelihood Estimators

Log-likelihood:

$$L(\underline{\lambda}, \underline{Y}) = \sum_{i=1}^{n} y_i \log \bar{Y}_i(\underline{\lambda}) - \bar{Y}_i(\underline{\lambda}) + \text{constant}$$

Estimator:

$$\hat{\underline{\lambda}} = \arg\max_{\underline{\lambda} \ge 0} \Phi(\underline{\lambda}, \underline{Y})$$

Penalized-Likelihood Objective Function:

$$\Phi(\underline{\lambda}, \underline{Y}) = L(\underline{\lambda}, \underline{Y}) - \beta R(\underline{\lambda}),$$

where $R(\underline{\lambda})$ is a roughness penalty function.

Fast converging algorithms available for finding minimizer $\hat{\underline{\lambda}}$ of Φ .

Covariance Approximation

Estimator defined implicitly \Rightarrow no explicit expression for covariance.

Approximation from (Fessler, IEEE Tr. Image Proc., Mar. 1996):

$$\operatorname{Cov}\{\hat{\underline{\lambda}}\} \approx [\boldsymbol{F} + \beta \boldsymbol{R}]^{-1} \boldsymbol{F} [\boldsymbol{F} + \beta \boldsymbol{R}]^{-1}$$

- $F = G'D(u_i)G$ Fisher-information matrix
- $\boldsymbol{D}(u_i)$ Diagonal matrix with $\boldsymbol{D}_{ii} = u_i$
- $u_i = c_i^2/\bar{Y}_i$ Inverse of measurement variance
- $\mathbf{R} = \nabla^2 R$ Hessian of the penalty.

Covariance approximation improves with increasing scan time.

Variance

Variance map: image of the diagonal elements of $Cov\{\hat{\lambda}\}$.

$$\operatorname{Var}\{\hat{\lambda}_{j}\} = [\operatorname{Cov}\{\hat{\underline{\lambda}}\}]_{jj} = \underline{e}'_{j}\operatorname{Cov}\{\hat{\underline{\lambda}}\}\underline{e}_{j}$$

$$\approx \underline{e}'_{j}[\boldsymbol{F} + \beta\boldsymbol{R}]^{-1}\boldsymbol{F}[\boldsymbol{F} + \beta\boldsymbol{R}]^{-1}\underline{e}_{j}$$

$$= \underline{x}'\boldsymbol{G}'\boldsymbol{D}(u_{i})\boldsymbol{G}\underline{x}$$

$$= \sum_{i=1}^{n} u_{i}[\boldsymbol{G}\underline{x}]_{i}^{2}$$

where \underline{e}_{j} is the jth standard unit vector and

$$[\mathbf{G}'\mathbf{D}(u_i)\mathbf{G} + \beta \mathbf{R}]\underline{x} = \underline{e_j}.$$

One would have to solve this system of equations once for each pixel. Too expensive (simulations would be cheaper!): : approximate further.

Fisher Information Approximation

From (Fessler and Rogers, IEEE Tr. Image Proc., Sep. 1996):

$$F = G'D(u_i)G \approx D(\kappa_j)G'GD(\kappa_j)$$

where $\kappa_j = \sqrt{\frac{\sum_{i=1}^n g_{ij}^2 u_i}{\sum_{i=1}^n g_{ij}^2}}$ is the "effective certainty" of the jth pixel.

(Normalized backprojection of inverse ray variances.)

For homoscedastic Gaussian noise, the κ_j 's would all be equal.

New Covariance Approximation

$$\operatorname{Cov}\{\hat{\underline{\lambda}}\} \approx \boldsymbol{D}(\kappa_j^{-1})[\boldsymbol{G}'\boldsymbol{G} + \beta\boldsymbol{R}_2]^{-1}\boldsymbol{G}'\boldsymbol{G}[\boldsymbol{G}'\boldsymbol{G} + \beta\boldsymbol{R}_2]^{-1}\boldsymbol{D}(\kappa_j^{-1})$$
 where $\boldsymbol{R}_2 = \boldsymbol{D}(\kappa_j^{-1})\boldsymbol{R}\boldsymbol{D}(\kappa_j^{-1})$

Proposed Variance Approximation

$$\operatorname{Var}\{\hat{\lambda}_j\} \approx \frac{\sigma_j^2(\beta/\kappa_j^2)}{\kappa_j^2}$$

where
$$\sigma_j^2(\eta) \stackrel{\triangle}{=} \underline{e}_j' [\mathbf{G}'\mathbf{G} + \eta \mathbf{R}]^{-1} \mathbf{G}'\mathbf{G} [\mathbf{G}'\mathbf{G} + \eta \mathbf{R}]^{-1} \underline{e}_j$$

- In PET the σ_j^2 function(s) depend only on the system geometry and the penalty function, \Rightarrow precompute / tabulate once.
- \bullet All object-dependent factors are contained in the κ_i 's.
- $\sigma_j^2(\eta)$ is the variance of $\hat{\lambda}_j$ under homoscedastic Gaussian noise and reconstruction with regularization parameter η .

For shift-invariant systems:

- ullet The σ_i^2 functions are all identical
- \bullet $\sigma^2(\eta)$ easily computed using FFTs

Simulation

- 2000 realizations
- PET digital emission phantom / nonuniform attenuation
- Modified quadratic penalty
- 10 iterations of PML-SAGE-3
- Nonnegativity enforced

Center Horizontal Profile

Center Vertical Profile

Mismatch in cold spot where nonnegativity constraint is very active.

Autocorrelation Functions

Autocorrelation Function: Radial Average

Summary and Future Work

- Fast approximation for pixel variances in penalized-likelihood or penalized weighted least-squares image reconstruction methods
- Very fast for shift-invariant systems
- Over-estimates variance in low-count regions
- Refinement needed for asymmetric autocorrelation functions
- Extend to 3D and shift-variant systems
- When is it useful?

Preprints: http://www.eecs.umich.edu/~fessler/