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Problem Motivation

• Attenuation correction needed for quantitatively accurate PET
• Post-injection transmission scans necessitated by whole-body PET
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Chicken/Egg Problem
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Measurement Statistical Model
Emission scan:
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• λ [λ1, . . . ,λp] unknown emission pixel values
• YE

i recorded emission counts by ith detector pair, i = 1, . . . ,N
• YT

i recorded transmission counts by ith detector pair, i = 1, . . . ,N
• lE

i =∑p
j=1aE

i j λ j. reprojection of emission distribution (including efficiency)
• lT

i = ∑p
j=1aT

i j µj. reprojection of attenuation map µ= [µ1, . . . ,µp]

• rE
i contribution of randoms and scatter to emission scan

• rT
i contribution of randoms and scatter to transmission scan

• κi loss of emission coincidences due to rod windowing/absorption
• bi blank scan value for ith detector element

Goal: reconstruct emission image λ and attenuation map µ from {YE
i ,Y

T
i }

N
i=1



Conventional Sequential Approach

• Carson, JNM, 1988. Daube-Witherspoon, T-NS, 1988. (Brain imaging)
• Subtract (scaled) emission sinogram from transmission scan
• Scaling accounts for deadtime, scan durations, decay, rod windowing, etc.
• Reconstruct attenuation map from “corrected” sinogram
• Form attenuation correction factors
• Apply to emission sinogram and reconstruct emission image λ̂

• Method of moments: disregards measurement noise statistics
• Subtraction (further) destroys Poisson statistics of transmission sinogram
• Emission contamination high where transmission scan values are low
• Negatives in “corrected” transmission scan problematic
• Smoothing reduces spatial resolution, can induce artifacts
• May require unreasonably long transmission scans for whole-body studies



Joint Maximum-Likelihood Reconstruction

(λ̂, µ̂) 4= arg max
λ≥0, µ≥0

L(λ,µ) (Log-likelihood)

Statistical independence of emission and transmission scans:

L(λ,µ) = LE(λ,µ)+LT(λ,µ)
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• Joint log-likelihood is non-concave
• Use paraboloidal surrogates to form a monotonic algorithm
• Convergence to local maximum



Alternating-Maximization Approach

• Form initial conventional emission image / attenuation map estimates
• Update emission image using most recent attenuation map

λn+1= argmax
λ≥0

L(λ,µn)

• Update attenuation map using most recent emission image

µn+1= argmax
µ≥0

L(λn+1,µ)

• Repeat as necessary

• In practice, we replace “max” with “increase”
• Guaranteed to monotonically increase the joint log-likelihood

• For fixed µn, L(λ,µn) has the usual form of emission log-likelihood.
• For fixed λn, L(λn,µ) is very similar to usual transmission log-likelihood.
... Apply EM, CG, SAGE, PSCA, ...



Alternative Pairwise Maximization Approach

• Form appropriate surrogate function (paraboloids?)
• Sequentially update (λ1,µ1), (λ2,µ2), ... (λp,µp)

• More complicated to derive/implement
• May converge faster due to inherent coupling between λ̂ j and µ̂j

• Regularization is essential!

• Better conditioned than “sourceless” attenuation correction...



Challenges

• Precorrected random coincidences

• Dynamics of emission distribution

• Determining κi: rod windowing factors, deadtime, etc.

•Obtaining good initial estimates

•Matching (?) the spatial resolutions of attenuation correction factors and
emission measurements

• Demonstrating convincingly that joint estimation outperforms a “good”
sequential approach based on approximate statistical models

•One “iteration” of the alternating-maximization method works well



Simulation

Attenuation map Emission distribution

• 128×64 4.22mm pixels
• 192×160sinogram (CTI ECAT EXACT)
• 1M emission counts, 10% random coincidences
• 2M transmission counts, 10% emission contamination
• 100 pseudo-random Poisson realizations



Reconstruction Methods

• RAW: no correction for of emission contamination
• SUB: simple subtraction of emission contamination, FBP reconstruction
• MPL-Q
◦ model emission contamination (estimated from emission scan)
◦ reconstruction µ-map using quadratic penalty
◦ reproject to form ACFs
◦ PL emission reconstruction with quadratic penalty

• MPL-N
◦ same except for nonquadratic penalty for attenuation map

MPL-Q and MPL-N correspond to one iteration of joint estimation



Simulation Results: Attenuation Maps

ORIGINAL MPL−N

MPL−Q SUB



Simulation Results: Attenuation Maps
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Simulation Results: Emission Images

ORIGINAL ATTN:TRUE

ATTN:MPL−N ATTN:MPL−Q

ATTN:SUB ATTN:RAW



Simulation Results: Emission Images
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Summary

• Method for jointly estimating attenuation map and emission distribution
from emission scan and post-injection transmission scan

• Intrinsically monotonic increase in joint log-likelihood
• Simple one-step version yields improved bias/variance tradeoffs over con-

ventional approaches


